七年级数学上册《角》优质课PPT
合集下载
人教版七年级上册4.角课件
不同.故有1 个说法正确.
答案:A
感悟新知
知1-练
1-1. 下列说法:
①平角就是直线;② 两条射线组成的图形叫角;
③ 角的大小与边的长短无关;
④角的两边是两条线段.
其中正确的有( B )
A. 0 个
B. 1 个
C. 2 个
D. 3 个
感悟新知
知1-练
1-2. 用5 倍的放大镜看10°的角,视察到角的度数为( A )
秒是一样的.
2. 使用三角尺可以画出30°,45°,60°,90°等特殊角,
使用量角器可以画出任意给定度数的角.
感悟新知
知3-练
例 3 计算:
(1)将57.32°用度、分、秒表示;
(2)将10°6′36″用度表示.
解题秘方:利用高级单位和低级单位相互转化的方
法进行计算.
感悟新知
知3-练
解:(1)57.32°
∠ACB ∠ 2 可以表示成________.
感悟新知
知识点 3 角的单位及换算
知3-讲
1. 角的度量单位
度、分、秒是常用的角的度量单位. 把一个周角360
等分,每一份就是1 度的角,记作1°;把1 度的角60 等分,
每一份叫做1 分的角,记作1′;把1 分的பைடு நூலகம்60 等分,每一
份叫做1 秒的角,记作1″ .
个平角. 其中,正确说法的个数为(
A. 1
B. 2
C. 3
D. 4
)
感悟新知
解题秘方:紧扣定义中的关键词进行辨析.
知1-练
解:①是错误的,因为若两条射线无公共端点,则构成的
图形不是角;②是错误的,因为角的大小与所画边的
长短无关;③是正确的;④是错误的,因为直线和平
答案:A
感悟新知
知1-练
1-1. 下列说法:
①平角就是直线;② 两条射线组成的图形叫角;
③ 角的大小与边的长短无关;
④角的两边是两条线段.
其中正确的有( B )
A. 0 个
B. 1 个
C. 2 个
D. 3 个
感悟新知
知1-练
1-2. 用5 倍的放大镜看10°的角,视察到角的度数为( A )
秒是一样的.
2. 使用三角尺可以画出30°,45°,60°,90°等特殊角,
使用量角器可以画出任意给定度数的角.
感悟新知
知3-练
例 3 计算:
(1)将57.32°用度、分、秒表示;
(2)将10°6′36″用度表示.
解题秘方:利用高级单位和低级单位相互转化的方
法进行计算.
感悟新知
知3-练
解:(1)57.32°
∠ACB ∠ 2 可以表示成________.
感悟新知
知识点 3 角的单位及换算
知3-讲
1. 角的度量单位
度、分、秒是常用的角的度量单位. 把一个周角360
等分,每一份就是1 度的角,记作1°;把1 度的角60 等分,
每一份叫做1 分的角,记作1′;把1 分的பைடு நூலகம்60 等分,每一
份叫做1 秒的角,记作1″ .
个平角. 其中,正确说法的个数为(
A. 1
B. 2
C. 3
D. 4
)
感悟新知
解题秘方:紧扣定义中的关键词进行辨析.
知1-练
解:①是错误的,因为若两条射线无公共端点,则构成的
图形不是角;②是错误的,因为角的大小与所画边的
长短无关;③是正确的;④是错误的,因为直线和平
人教七年级数学上册《角》课件(共15张PPT)
B
5
4 3
D
A
∠1
∠3
∠BAC
2 1
C
∠4
∠ABC
E
平角和周角
分别确定四个城市相应钟表上时针与分针所成 角的度数 。
巴黎时20°
90°
除了“度”之外,还有其它的度量单位吗?
1°的60分之一为1分,记作“1′”,即1°=60′
1′的60分之一为1秒,记作“1″”,即1′=60″
谢谢观赏
You made my day!
我们,还在路上……
⒊角的度量单位是度、分、秒,是六十 进制。
探索与思考:
如果一个角(小于平角)内有一条射线, 则图中共有多少个角?有两条射线呢?三条? n条?
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022
例1 计算: ⑴ 1.45°等于多少分?等于多少秒? ⑵ 1800″等于多少分?等于多少度?
用度、分、秒表示: ⑴0.75°= 45 ′= 2700″ ⑵(1-45)°= 16 ′= 960″ ⑶16.24°= 16 ° 14 ′ 24″ ⑷34.37°= 34 ° 22 ′ 12″
用度表示:
⑴1800″= 0.5°
射边线
5
4 3
D
A
∠1
∠3
∠BAC
2 1
C
∠4
∠ABC
E
平角和周角
分别确定四个城市相应钟表上时针与分针所成 角的度数 。
巴黎时20°
90°
除了“度”之外,还有其它的度量单位吗?
1°的60分之一为1分,记作“1′”,即1°=60′
1′的60分之一为1秒,记作“1″”,即1′=60″
谢谢观赏
You made my day!
我们,还在路上……
⒊角的度量单位是度、分、秒,是六十 进制。
探索与思考:
如果一个角(小于平角)内有一条射线, 则图中共有多少个角?有两条射线呢?三条? n条?
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022
例1 计算: ⑴ 1.45°等于多少分?等于多少秒? ⑵ 1800″等于多少分?等于多少度?
用度、分、秒表示: ⑴0.75°= 45 ′= 2700″ ⑵(1-45)°= 16 ′= 960″ ⑶16.24°= 16 ° 14 ′ 24″ ⑷34.37°= 34 ° 22 ′ 12″
用度表示:
⑴1800″= 0.5°
射边线
人教版数学七年级上册角精品课件PPT
判断下列哪些图形是角
(√)
(×)
(√) (√)
判断:下面的图形那些是角?
⑴
⑵
⑶
⑷
⑸
⑹
人教版数学七年级上册4.3.1角(1) 课件
人教版数学七年级上册4.3.1角(1) 课件
表示方法
用三个大写的字母 表示
B
图标 A
C
用一个顶点的字母 表示
o
用希腊字母加弧线
α
表示
用一个数字加弧线
表示
1
人教版数学七年级上册4.3.1角(1) 课件
人教版数学七年级上册4.3.1角(1) 课件
(4)以点O为端点引5条射线时, 共有多少个角?怎样表示?
AC D
E
人教版数学七年级上册4.3.1角(1) 课件
O
B
人教版数学七年级上册4.3.1角(1) 课件
(5)以点O为端点
A
引n条射线,共有多
少个角?
角的个数 n(n 1) 2O
(n为射线的条数)
···
B
人教版数学七年级上册4.3.1角(1) 课件
人教版数学七年级上册4.3.1角(1) 课件
判断:有人说,平角是一条直线,周角是一条 射线对吗?
A
B
直线
人教版数学七年级上册4.3.1角(1) 课件
A
O
射线
A
O
B
平角
A
B
O
周角
人教版数学七年级上册4.3.1角(1) 课件
1.判断题:
(1)两条射线组成的图形叫角. (2)直线是一个平角. (3)具有公共端点的两条射线组成角. (4)角的边画得越长,角就越大. (5)角的两边是两条线段. (6)18时整,时针和分针成一个平角.
(√)
(×)
(√) (√)
判断:下面的图形那些是角?
⑴
⑵
⑶
⑷
⑸
⑹
人教版数学七年级上册4.3.1角(1) 课件
人教版数学七年级上册4.3.1角(1) 课件
表示方法
用三个大写的字母 表示
B
图标 A
C
用一个顶点的字母 表示
o
用希腊字母加弧线
α
表示
用一个数字加弧线
表示
1
人教版数学七年级上册4.3.1角(1) 课件
人教版数学七年级上册4.3.1角(1) 课件
(4)以点O为端点引5条射线时, 共有多少个角?怎样表示?
AC D
E
人教版数学七年级上册4.3.1角(1) 课件
O
B
人教版数学七年级上册4.3.1角(1) 课件
(5)以点O为端点
A
引n条射线,共有多
少个角?
角的个数 n(n 1) 2O
(n为射线的条数)
···
B
人教版数学七年级上册4.3.1角(1) 课件
人教版数学七年级上册4.3.1角(1) 课件
判断:有人说,平角是一条直线,周角是一条 射线对吗?
A
B
直线
人教版数学七年级上册4.3.1角(1) 课件
A
O
射线
A
O
B
平角
A
B
O
周角
人教版数学七年级上册4.3.1角(1) 课件
1.判断题:
(1)两条射线组成的图形叫角. (2)直线是一个平角. (3)具有公共端点的两条射线组成角. (4)角的边画得越长,角就越大. (5)角的两边是两条线段. (6)18时整,时针和分针成一个平角.
新北师大版七年级数学上册《角》课件(共14张PPT)
• 用一个数字表示,如∠1
• 在不引起混淆的情况下,也可以只用角的顶点这一个字
母来表示(即以该字母为顶点的角有且只有一个角的时
候),如(1)中∠ B. A
B
D
BαC 图 ( 1)
A C 图 ( 2)
合作探究 达成目标
【小组讨论2】和同伴说说如何表示一个角.
【反思小结】有四种方法:(1)三个大写英文字母表示 法:用角的两边上的两个大写字母和顶点的字母表示角 ,注意顶点的字母写在中间.(2)顶点字母表示法:当角 的顶点处只有一个角时,也可以只用顶点的字母表示角 .(3)阿拉伯数字表示法:在角的顶点处加上弧线标上数 字,就可以用这个数字来表示角.(4)希腊字母表示法: 在角的顶点处加上弧线标上小写希腊字母(α,β,γ 等),就可以用这个小写希腊字母来表示角.
合作探究 达成目标
活动三:阅读教材内容,思考:角的度量单位有哪些? 度、分、秒之间有何换算规定?
【展示点评】(1)度、分、秒的进率是60. 即1°=60′,1′=60″,1°=60′=3 600″.
度
60 分 60 秒
60
60
(2)度、分、秒有关的计算:度、分、秒的进率是六 十进制,不同于十进制.在运算中满60才向高位进1,而 借1则表示低位的60.
达标检测 反思目标
2. 如图,下列说法: (1)∠ECG和∠C是同一个角. (2)∠OGF和∠OGB是同一个角. (3)∠DOF和∠EOG是同一个角. (4)∠ABC和∠ACB不是同一个角,其中正 确的说法有( C ) A.1个 B.2个 C.3个 D.4个
达标检测 反思目标
3. 比较大小:38°15′_____>___38.15度. (填“> ”“=”或“<”)
谢谢观赏
• 在不引起混淆的情况下,也可以只用角的顶点这一个字
母来表示(即以该字母为顶点的角有且只有一个角的时
候),如(1)中∠ B. A
B
D
BαC 图 ( 1)
A C 图 ( 2)
合作探究 达成目标
【小组讨论2】和同伴说说如何表示一个角.
【反思小结】有四种方法:(1)三个大写英文字母表示 法:用角的两边上的两个大写字母和顶点的字母表示角 ,注意顶点的字母写在中间.(2)顶点字母表示法:当角 的顶点处只有一个角时,也可以只用顶点的字母表示角 .(3)阿拉伯数字表示法:在角的顶点处加上弧线标上数 字,就可以用这个数字来表示角.(4)希腊字母表示法: 在角的顶点处加上弧线标上小写希腊字母(α,β,γ 等),就可以用这个小写希腊字母来表示角.
合作探究 达成目标
活动三:阅读教材内容,思考:角的度量单位有哪些? 度、分、秒之间有何换算规定?
【展示点评】(1)度、分、秒的进率是60. 即1°=60′,1′=60″,1°=60′=3 600″.
度
60 分 60 秒
60
60
(2)度、分、秒有关的计算:度、分、秒的进率是六 十进制,不同于十进制.在运算中满60才向高位进1,而 借1则表示低位的60.
达标检测 反思目标
2. 如图,下列说法: (1)∠ECG和∠C是同一个角. (2)∠OGF和∠OGB是同一个角. (3)∠DOF和∠EOG是同一个角. (4)∠ABC和∠ACB不是同一个角,其中正 确的说法有( C ) A.1个 B.2个 C.3个 D.4个
达标检测 反思目标
3. 比较大小:38°15′_____>___38.15度. (填“> ”“=”或“<”)
谢谢观赏
初一 角ppt课件ppt课件
初一 角ppt课件ppt课件
目录 CONTENTS
• 角的基本概念 • 角的种类 • 角的性质 • 角的运算 • 角的应用
01
角的基本概念
角的定义
总结词
角的定义是指两条射线在同一平面内形成的夹角。
详细描述
角是由两条射线在同一平面内相交形成的,这两条射线称为角的边,相交的点 称为角的顶点。根据定义,一个角的大小是固定的,与其边的长度无关,只与 两条射线的夹角有关。
角的表示方法
总结词
角的表示方法有多种,包括使用顶点和两条边的字母表示、 使用数字表示以及使用弧度表示。
详细描述
在几何学中,角通常用顶点和两条边的字母表示,例如∠ABC 表示一个角,其中B是角的顶点,AB和BC是角的两边。此外 ,也可以使用数字表示角,例如∠1、∠2等。另外,角也可以 用弧度表示,例如π/2弧度表示90度的角。
在日常生活中的应用
时钟
时钟上的时针、分针和秒针之间 的角度变化可以用来表示时间, 这是角度在日常生活中最直观的
应用之一。
导航
在导航中,方向通常用角度来表 示,例如北纬、东经等。通过测 量和计算角度,可以确定物体的
位置和方向。
建筑学
在建筑设计中,角度是一个重要 的参数,用于确定建筑物的外观 、结构和稳定性。例如,斜屋顶 的角度会影响到雨水的流向和建
。
05
角的应用
在几何图形中的应用
角度的测量
多边形的内角和
在几何学中,角度是描述两条射线、 线段或平面之间的夹角的重要参数。 通过测量角度,可以确定图形的形状 、大小和相对位置。
多边形的内角和与边数和角度有关, 通过计算多边形的内角和,可以进一 步研究多边形的性质。
三角形的全等判定
目录 CONTENTS
• 角的基本概念 • 角的种类 • 角的性质 • 角的运算 • 角的应用
01
角的基本概念
角的定义
总结词
角的定义是指两条射线在同一平面内形成的夹角。
详细描述
角是由两条射线在同一平面内相交形成的,这两条射线称为角的边,相交的点 称为角的顶点。根据定义,一个角的大小是固定的,与其边的长度无关,只与 两条射线的夹角有关。
角的表示方法
总结词
角的表示方法有多种,包括使用顶点和两条边的字母表示、 使用数字表示以及使用弧度表示。
详细描述
在几何学中,角通常用顶点和两条边的字母表示,例如∠ABC 表示一个角,其中B是角的顶点,AB和BC是角的两边。此外 ,也可以使用数字表示角,例如∠1、∠2等。另外,角也可以 用弧度表示,例如π/2弧度表示90度的角。
在日常生活中的应用
时钟
时钟上的时针、分针和秒针之间 的角度变化可以用来表示时间, 这是角度在日常生活中最直观的
应用之一。
导航
在导航中,方向通常用角度来表 示,例如北纬、东经等。通过测 量和计算角度,可以确定物体的
位置和方向。
建筑学
在建筑设计中,角度是一个重要 的参数,用于确定建筑物的外观 、结构和稳定性。例如,斜屋顶 的角度会影响到雨水的流向和建
。
05
角的应用
在几何图形中的应用
角度的测量
多边形的内角和
在几何学中,角度是描述两条射线、 线段或平面之间的夹角的重要参数。 通过测量角度,可以确定图形的形状 、大小和相对位置。
多边形的内角和与边数和角度有关, 通过计算多边形的内角和,可以进一 步研究多边形的性质。
三角形的全等判定
6.3.1角的概念 课件(共35张PPT) 初中数学人教版(2024)七年级上册
用三个大写 字母表示
图例 A
O
B
用一个大写 字母表示
O
用数字表示
1
用希腊字母 表示
记法
方法解读
字母O表示顶点,要写在中 间,A,B表示角的两边上 的点,用该表示法可以表 示任何一个角。
当以某一个字母表示的点为 顶点的角只有一个时,可以 用这个顶点的字母来表示
在靠近角的顶点处加上 弧线,并标上数字或希 腊字母。该表示法形象 直观
巩固练习
1、下列图形是角吗?
2、判断题: (1)两条射线组成的图形叫角。 (2)角的大小与边的长短无关。 (3)角的两边是两条射线。
总结
定义
图例
组成元素
“静” 态的观
点
“动” 态的观
点
有公共端点的
边
两条射线组成
的图形叫做角 顶点
边
角可以看作由 一条射线绕着 它的端点旋转 而形成的图形。
终边 始边
因此,54.26°= 54°15′36″.
例3 .把45°25′48″化成度.
解:45°25′48″ =45°+25′+48×(610)' =45°+25.8' =45°+25.8×(610)° =45.43°
巩固练习
例2:填空 ① 1小时= 60分, 1分= 60 秒. ② 3.3小时= 3 小时 18 分, 2小时30分= 2.5 小时. ③ 1°= 60 ′,1′= 60 ″. ④ 0.75°= 45 ′= 2700 ″, ⑤ 1800″= 0.5 °,39°36′= 39.6 °.
向两端 无限延 伸
0个
不可 度量
射线
·
A
B· l
1.射线AB 2.射线l
图例 A
O
B
用一个大写 字母表示
O
用数字表示
1
用希腊字母 表示
记法
方法解读
字母O表示顶点,要写在中 间,A,B表示角的两边上 的点,用该表示法可以表 示任何一个角。
当以某一个字母表示的点为 顶点的角只有一个时,可以 用这个顶点的字母来表示
在靠近角的顶点处加上 弧线,并标上数字或希 腊字母。该表示法形象 直观
巩固练习
1、下列图形是角吗?
2、判断题: (1)两条射线组成的图形叫角。 (2)角的大小与边的长短无关。 (3)角的两边是两条射线。
总结
定义
图例
组成元素
“静” 态的观
点
“动” 态的观
点
有公共端点的
边
两条射线组成
的图形叫做角 顶点
边
角可以看作由 一条射线绕着 它的端点旋转 而形成的图形。
终边 始边
因此,54.26°= 54°15′36″.
例3 .把45°25′48″化成度.
解:45°25′48″ =45°+25′+48×(610)' =45°+25.8' =45°+25.8×(610)° =45.43°
巩固练习
例2:填空 ① 1小时= 60分, 1分= 60 秒. ② 3.3小时= 3 小时 18 分, 2小时30分= 2.5 小时. ③ 1°= 60 ′,1′= 60 ″. ④ 0.75°= 45 ′= 2700 ″, ⑤ 1800″= 0.5 °,39°36′= 39.6 °.
向两端 无限延 伸
0个
不可 度量
射线
·
A
B· l
1.射线AB 2.射线l
(2024秋季新教材)人教版数学七年级上册6.3.1角的概念 课件(共30张PPT)
注意:(1)顶点、两边是构成角的两个要素: 每个角都有两条边,这两条边都是射线; 角的两边有公共端点,即顶点. (2)角的大小与边的长短无关,只与构成角的两边张开的 幅度有关.
新知探究 知识点1 角的概念
例1 给出下列说法:①两条射线组成的图形是角;②将一条线 段绕它的一个端点旋转得到的图形是角;③把一个角放在放大镜 下观察,角的度数不变;④平角是一条直线,周角是一条射线.其
∠α的度数是48度56分37秒, 记作:∠α=48°56′37″.
角的度、分、秒是60进制,这和计量 时间的时、分、秒是一样的.
新知探究 知识点3 角的度量和换算
以度、分、秒为单位的角的度量制,叫作角度制. 此外,还有其他度量角的单位制. 例如,以后将要学到的以弧度为基本度量单位的弧度制, 在军事上经常使用的角的密位制,等等.
我们常用量角器量角,度、分、秒是常用的角的度量单位. 如图,把一个周角360等分,每一份就是1度的角,记作1°; 把1度的角60等分,每一份叫作1分的角,记作1′; 把1分的角60等分,每一份叫作1秒的角, 记作1″.
1周角= 360 °;1平角= 180°.
1°= 60′;1′= 60″.
新知探究 知识点3 角的度量和换算
O
始边 A
如果射线OB继续旋转,还会形成什么角呢?
新知探究 知识点1 角的概念
一条射线绕它的端点旋转,当终边和始边成一条直线时, 所成的角叫作平角.
B
O
A
当终边又和始边重合时,所成的角叫作周角.
O
A (B)
新知探究 知识点1 角的概念 归纳:角的概念 (1)静态:角由两条具有公共端点的射线组成. (2)动态:角也可以看成是由一条射线绕着它的端点旋转而成的.
新知探究 知识点1 角的概念
例1 给出下列说法:①两条射线组成的图形是角;②将一条线 段绕它的一个端点旋转得到的图形是角;③把一个角放在放大镜 下观察,角的度数不变;④平角是一条直线,周角是一条射线.其
∠α的度数是48度56分37秒, 记作:∠α=48°56′37″.
角的度、分、秒是60进制,这和计量 时间的时、分、秒是一样的.
新知探究 知识点3 角的度量和换算
以度、分、秒为单位的角的度量制,叫作角度制. 此外,还有其他度量角的单位制. 例如,以后将要学到的以弧度为基本度量单位的弧度制, 在军事上经常使用的角的密位制,等等.
我们常用量角器量角,度、分、秒是常用的角的度量单位. 如图,把一个周角360等分,每一份就是1度的角,记作1°; 把1度的角60等分,每一份叫作1分的角,记作1′; 把1分的角60等分,每一份叫作1秒的角, 记作1″.
1周角= 360 °;1平角= 180°.
1°= 60′;1′= 60″.
新知探究 知识点3 角的度量和换算
O
始边 A
如果射线OB继续旋转,还会形成什么角呢?
新知探究 知识点1 角的概念
一条射线绕它的端点旋转,当终边和始边成一条直线时, 所成的角叫作平角.
B
O
A
当终边又和始边重合时,所成的角叫作周角.
O
A (B)
新知探究 知识点1 角的概念 归纳:角的概念 (1)静态:角由两条具有公共端点的射线组成. (2)动态:角也可以看成是由一条射线绕着它的端点旋转而成的.
人教版七年级数学上册第四章:4.角课件
线绕端点旋转所组成的图
念 形。动
我思我想我进步
方法
图标
记法
适用范围
备注
1、用三个大写 字母表示
O
2、用一个大写 字母表示
O
A ∠AOB 任何角都可以用此方法表示 或 ∠BOA
B
当以某一个字母(如O)为 顶点只有一个角时可以这样 ∠O 表示。
3、用一个
β
数字或希腊
∠2
当一个角的内部没有别的角 时,可用此法。
① 1 把 的角等分成60份,每一份就是1分,记作 1
② 把 1的角等分成60份,每一份就是1秒,记作 1
即:
1 ( 1 )
60
1 ( 1 ) 60
(1)以点O为端点引2条射线,此时图中 共有多少个角?怎样表示?
A
O
B
(2)以点O为端点引3条射线时, 共有多少个角?怎样表示?
A C
O
B
(3)以点O为端点引4条射线时, 共有多少个角?怎样表示?
B
O
A
如果一个角的终边旋转到与始边成一条直 线时,所成的角叫做平角.
特殊的角
O
A (B)
当旋转到终边与始边重合时,所成 的角叫做周角.
说明:
在不做特别说明的情况 下,我们说的角都指不大于 平角的角。
这个角该 叫什么名
字呢?
角的表示方法:
方法
图标
记法
适用范围
1、用一个大写 字母表示
O
当以某一个字母
∠O
(如O)为顶点只有 一个角时可以这样表
示。
2、用三个大写 字母表示
O
3、用一个 数字或希腊 字母来表示
A B
∠AOB 或 ∠BOA
人教版数学七年级上册 4.3.1《角》17张PPT课件
3.用小写希腊字母表示, 如:∠α
用数字或希腊字母表示角时, 一定要在图形中用角弧标出.
角也可以看作由一条射线绕着 它的端点旋转而形成的图形.
新知讲解
思考:如图,射线 OA 绕点 O 旋转,当终止位置 OB 和起
始位置 OA 成一条直线时,形成什么角?继续旋转,
OB 和 OA 重合时,又形成什么角?
例3 填写下表,将图中的角用不同方法表示出来.
B 5
43 DA
21 CE
∠1 ∠2 ∠3 ∠4 ∠5 ∠BCE ∠ACB ∠BAC ∠BAD ∠ABC
新知讲解
角的度量
问题:怎么知道这个角的大小?
角的度量工具:量角器
新知讲解
我们常用量角器量角,度、分、秒 是常用的角的度量单位.把一个周角 360 等分,每一份就是 1 度的角,记作1°; 把 1 度的角 60 等分,每一份叫做1 分的 角,记作 1′;把1分的角 60等分,每一份 叫做1 秒的角,记作1″.
角
新知引入
观察左边的实物, 你发现这些实物能 抽象出什么样的共 同形象?
——角
新知讲解
你会画角吗?
角的定义与表示方法
问题 从你刚画的这些不同的图形中,能归纳出它们的共 同特点吗?尝试去描述一下角是由什么组成的图形?
公共端点 两条射线 角的定义
有公共端点的两条射线组成的图形,叫做角.
两条射线 —角的两条边 公共端点 —角的顶点
新知讲解
角的表示方法 A
C
O
B
如图,还能把 ∠AOB 记作∠O 吗?为什么?
1.用三个大写字母表示, 如:∠AOB 或∠BOA
表示顶点的字母一定写在中间.
用一个大写字母表示, 如:∠O
用数字或希腊字母表示角时, 一定要在图形中用角弧标出.
角也可以看作由一条射线绕着 它的端点旋转而形成的图形.
新知讲解
思考:如图,射线 OA 绕点 O 旋转,当终止位置 OB 和起
始位置 OA 成一条直线时,形成什么角?继续旋转,
OB 和 OA 重合时,又形成什么角?
例3 填写下表,将图中的角用不同方法表示出来.
B 5
43 DA
21 CE
∠1 ∠2 ∠3 ∠4 ∠5 ∠BCE ∠ACB ∠BAC ∠BAD ∠ABC
新知讲解
角的度量
问题:怎么知道这个角的大小?
角的度量工具:量角器
新知讲解
我们常用量角器量角,度、分、秒 是常用的角的度量单位.把一个周角 360 等分,每一份就是 1 度的角,记作1°; 把 1 度的角 60 等分,每一份叫做1 分的 角,记作 1′;把1分的角 60等分,每一份 叫做1 秒的角,记作1″.
角
新知引入
观察左边的实物, 你发现这些实物能 抽象出什么样的共 同形象?
——角
新知讲解
你会画角吗?
角的定义与表示方法
问题 从你刚画的这些不同的图形中,能归纳出它们的共 同特点吗?尝试去描述一下角是由什么组成的图形?
公共端点 两条射线 角的定义
有公共端点的两条射线组成的图形,叫做角.
两条射线 —角的两条边 公共端点 —角的顶点
新知讲解
角的表示方法 A
C
O
B
如图,还能把 ∠AOB 记作∠O 吗?为什么?
1.用三个大写字母表示, 如:∠AOB 或∠BOA
表示顶点的字母一定写在中间.
用一个大写字母表示, 如:∠O
《角》示范课教学PPT课件【初中数学人教版七年级上册】
A.∠α=∠β B.∠α<∠β C.∠α=∠γ D.∠β>∠γ
2.(1)把周角平均分成360份,每份就是_1_度___的角, 1°=__6_0_′_, 1′=__6_0_″___.
(2)25.72°=_2_5__°_4_3__′_1_2__″. (3)15°48′36″=_1_5_._8_1__°. (4)3600″=__6_0___′=__1____°.
个角?
有公共端点的两条射线组成的图形叫做角. ——角的静态定义.
公共端点叫角的顶点, 两条射线叫角的边.
射线 边
公共端点
顶点
边 射线
如图 A
O
探究新知
角的表示 角用符号“∠”来表示.
(1)用三个大写字母表示: ∠AOB 或∠BOA ;
或用一个大写字母表示:
B
∠O.
角的表示
1.用三个大写字母表示时,中间字母是顶点字母;
O
A
探究新知
平角、周角 平角:当射线OA绕O点旋转,当终止位置OB与起始位置 OA在一条直线上时,形成平角; 周角:当射线OA绕O点旋转,当终止位置OB与起始位置 OA重合时,形成周角.
探究新知
角的单位
把一个周角360°等分,每一份就是1度的角,记作1°.除了“度” 之外,还有其它的度量单位吗?
(2)38°15′和38.15°相等吗?如不相等,哪一个大?
解:(1)35 °=35 ×60=2100分=126000秒; (2) 38°15′ =2289分; 38.15°=2295分; 38°15′ >38.15°.
课堂练习
6.从蜂巢的入口处看,蜂巢由许多正六边形(六条边相等,六个角也 相等)构成,按图示的方法,利用三角尺和圆规画出一个正六边形.
2.(1)把周角平均分成360份,每份就是_1_度___的角, 1°=__6_0_′_, 1′=__6_0_″___.
(2)25.72°=_2_5__°_4_3__′_1_2__″. (3)15°48′36″=_1_5_._8_1__°. (4)3600″=__6_0___′=__1____°.
个角?
有公共端点的两条射线组成的图形叫做角. ——角的静态定义.
公共端点叫角的顶点, 两条射线叫角的边.
射线 边
公共端点
顶点
边 射线
如图 A
O
探究新知
角的表示 角用符号“∠”来表示.
(1)用三个大写字母表示: ∠AOB 或∠BOA ;
或用一个大写字母表示:
B
∠O.
角的表示
1.用三个大写字母表示时,中间字母是顶点字母;
O
A
探究新知
平角、周角 平角:当射线OA绕O点旋转,当终止位置OB与起始位置 OA在一条直线上时,形成平角; 周角:当射线OA绕O点旋转,当终止位置OB与起始位置 OA重合时,形成周角.
探究新知
角的单位
把一个周角360°等分,每一份就是1度的角,记作1°.除了“度” 之外,还有其它的度量单位吗?
(2)38°15′和38.15°相等吗?如不相等,哪一个大?
解:(1)35 °=35 ×60=2100分=126000秒; (2) 38°15′ =2289分; 38.15°=2295分; 38°15′ >38.15°.
课堂练习
6.从蜂巢的入口处看,蜂巢由许多正六边形(六条边相等,六个角也 相等)构成,按图示的方法,利用三角尺和圆规画出一个正六边形.
6.3.1 角 课件(共28张PPT) 人教版数学七年级上册
终边
B
O
始边 A (B)
平周角角
平周角角=1=8306°0°
1.判断下列哪些图形是角
(√ )
( ×)
(√ )
(√ )
2、说出下列各图中角的顶点和角的两边.
A
C
O
B
(1)
A
B
(2)
3.下列说法正确的是 A. 平角是一条直线
()
D
B. 一条射线是一个周角
C. 两条射线组成的图形叫做角
D. 两边成一直线的角是平角
射线 OE 射线 OF 射线 OH 射线 OG
表示方位的角(方位角)在航行、测绘等工作中 经常用到。一般以正北、正南方向为基准,描述物 体运动的方向。如“北偏东30°”、“南偏西 25°”。
方位角的一边是表示正北或正南的射 线,另一边是表示偏西或偏东的射线。
例1 如图,货轮O在航行过程中,发现灯塔A在它南偏东60°
角的表示方法
1 α
O
A C
B
3. 用一个数字表示, 如∠1;
4. 用小写希腊字母表示, 如∠α.
用数字或希腊字母 表示角时,一定要在图形
中用角弧标出.
角也可以看做由一条射线绕着它的端点旋转所形成的图形.
想一想:如图,射线 OA 绕点 O 旋转,当终止位置 OB 和起始位置 OA 成一条直线时,形成什么角?继续旋转,OB 和 OA 重合时,又形成什 么角?
什么是角呢? 生活中有许多与角有关的例子,我们先观察下列
图片,看一看图片中哪些地方现出了角这个图形。 然后我们一起来找一找,这些角都有什么共同
的特点。
导入新课
探究新知
根据你的观察你能归纳出角的特点吗?用自己的话描述一下 角是由什么组成的图形?
B
O
始边 A (B)
平周角角
平周角角=1=8306°0°
1.判断下列哪些图形是角
(√ )
( ×)
(√ )
(√ )
2、说出下列各图中角的顶点和角的两边.
A
C
O
B
(1)
A
B
(2)
3.下列说法正确的是 A. 平角是一条直线
()
D
B. 一条射线是一个周角
C. 两条射线组成的图形叫做角
D. 两边成一直线的角是平角
射线 OE 射线 OF 射线 OH 射线 OG
表示方位的角(方位角)在航行、测绘等工作中 经常用到。一般以正北、正南方向为基准,描述物 体运动的方向。如“北偏东30°”、“南偏西 25°”。
方位角的一边是表示正北或正南的射 线,另一边是表示偏西或偏东的射线。
例1 如图,货轮O在航行过程中,发现灯塔A在它南偏东60°
角的表示方法
1 α
O
A C
B
3. 用一个数字表示, 如∠1;
4. 用小写希腊字母表示, 如∠α.
用数字或希腊字母 表示角时,一定要在图形
中用角弧标出.
角也可以看做由一条射线绕着它的端点旋转所形成的图形.
想一想:如图,射线 OA 绕点 O 旋转,当终止位置 OB 和起始位置 OA 成一条直线时,形成什么角?继续旋转,OB 和 OA 重合时,又形成什 么角?
什么是角呢? 生活中有许多与角有关的例子,我们先观察下列
图片,看一看图片中哪些地方现出了角这个图形。 然后我们一起来找一找,这些角都有什么共同
的特点。
导入新课
探究新知
根据你的观察你能归纳出角的特点吗?用自己的话描述一下 角是由什么组成的图形?
6.3.1 角的概念 课件(共24张PPT) 人教版七年级数学上册
×
√
×
×
2.将图中的角用不同方法表示出来,填在下表中.
用数字或小写希腊字母表示
∠1
∠3
∠4
∠α
用三个大写英文字母表示
∠BCA
∠BAC
∠ABF
∠ABC
∠2
∠β
∠BCE(或∠FCE)
∠BAD
3.计算:(1)1.45°=______′=________″;(2)1 800″=______′=_______°;(3)58.37°=_______°_______′______″;(4)15°32′24″=_______°=__________″.
解:(1)①22.5°=22°30′. ②51.23°=51°13′48″.
【题型二】度、分、秒的换算
(2)①18°36′=18.6°. ②13°37′48″=13.63°.
例4:灯塔在货轮的南偏东50°方向的30海里处,则货轮相对于灯塔的位置是( )A.北偏西50°方向,30海里处 B.西偏北50°方向,30海里处C.北偏西40°方向,30海里处 D.南偏东50°方向,30海里处
把一个周角平均分成360份,每一份就是1度的角;把1度的角平均分成60份,每一份就是1分的角;把1分的角平均分成60份,每一份就是1秒的角
360
180
60
60
1.判断下列说法是否正确,对的打“√”,错的打“×”.(1)两条射线组成的图形叫作角;( )(2)角的两边是两条射线;( )(3)平角是一条直线;( )(4)周角是一条射线.( )
知识点2:角的度量及单位换算(难点)
度量单位
换算方法
度量工具
(1)度:把一个周角360等分,每一份是1度的角,1度记作1°.(2)分:把1度的角60等分,每一份是1分的角,1分记作1′.(3)秒:把1分的角60等分,每一份是1秒的角,1秒记作1″
√
×
×
2.将图中的角用不同方法表示出来,填在下表中.
用数字或小写希腊字母表示
∠1
∠3
∠4
∠α
用三个大写英文字母表示
∠BCA
∠BAC
∠ABF
∠ABC
∠2
∠β
∠BCE(或∠FCE)
∠BAD
3.计算:(1)1.45°=______′=________″;(2)1 800″=______′=_______°;(3)58.37°=_______°_______′______″;(4)15°32′24″=_______°=__________″.
解:(1)①22.5°=22°30′. ②51.23°=51°13′48″.
【题型二】度、分、秒的换算
(2)①18°36′=18.6°. ②13°37′48″=13.63°.
例4:灯塔在货轮的南偏东50°方向的30海里处,则货轮相对于灯塔的位置是( )A.北偏西50°方向,30海里处 B.西偏北50°方向,30海里处C.北偏西40°方向,30海里处 D.南偏东50°方向,30海里处
把一个周角平均分成360份,每一份就是1度的角;把1度的角平均分成60份,每一份就是1分的角;把1分的角平均分成60份,每一份就是1秒的角
360
180
60
60
1.判断下列说法是否正确,对的打“√”,错的打“×”.(1)两条射线组成的图形叫作角;( )(2)角的两边是两条射线;( )(3)平角是一条直线;( )(4)周角是一条射线.( )
知识点2:角的度量及单位换算(难点)
度量单位
换算方法
度量工具
(1)度:把一个周角360等分,每一份是1度的角,1度记作1°.(2)分:把1度的角60等分,每一份是1分的角,1分记作1′.(3)秒:把1分的角60等分,每一份是1秒的角,1秒记作1″
七年级数学上册《角》PPT课件
18
05
角的证明与推理
2024/1/28
19
等量代换法证明角相等
定义法
根据角的定义,通过证明 两个角所对的边或顶点关 系来证明它们相等。
2024/1/28
等量代换法
通过证明两个角分别与第 三个角相等,从而得出这 两个角相等。这种方法常 用于几何图形的证明中。
推理法
结合已知条件和图形性质 ,通过逻辑推理证明两个 角相等。
角的表示方法
角可以用三个大写字母表示,其中中间的字母表示角的顶点,两 边的字母表示角的两条边;也可以用一个大写字母表示,这个字 母就是角的顶点;还可以用一个数字或希腊字母表示。
4
角的度量单位与换算
2024/1/28
角的度量单位
角的度量单位是度,用符号“°” 表示。把一个圆周分成360等份 ,每一份叫做1度,记作1°。
角的换算
1度等于60分,1分等于60秒。因 此,角度可以换算成分和秒。例 如,45°可以换算成45°00'00''。
5
角的基本性质
2024/1/28
• 角的大小与边的长短无关:角的大小只与两条边叉开的大小 有关,与边的长短无关。
• 角的平分线性质:从一个角的顶点引出一条射线,把这个角 分成两个相等的角,这条射线叫做这个角的平分线。
两个角相加,将它们的度 数相加即可。
2024/1/28
角的减法
两个角相减,将它们的度 数相减即可。
应用
利用角的加减运算进行角 度的计算和证明,解决与 角度相关的问题。
14
04
角在生活中的应用
2024/1/28
15
时钟上的角度问题
时钟面上的角度计算
时钟面平均分成了12份,每份对应的角度是30度。可以用这个知识点来解决时 钟上时针和分针之间的角度问题。
05
角的证明与推理
2024/1/28
19
等量代换法证明角相等
定义法
根据角的定义,通过证明 两个角所对的边或顶点关 系来证明它们相等。
2024/1/28
等量代换法
通过证明两个角分别与第 三个角相等,从而得出这 两个角相等。这种方法常 用于几何图形的证明中。
推理法
结合已知条件和图形性质 ,通过逻辑推理证明两个 角相等。
角的表示方法
角可以用三个大写字母表示,其中中间的字母表示角的顶点,两 边的字母表示角的两条边;也可以用一个大写字母表示,这个字 母就是角的顶点;还可以用一个数字或希腊字母表示。
4
角的度量单位与换算
2024/1/28
角的度量单位
角的度量单位是度,用符号“°” 表示。把一个圆周分成360等份 ,每一份叫做1度,记作1°。
角的换算
1度等于60分,1分等于60秒。因 此,角度可以换算成分和秒。例 如,45°可以换算成45°00'00''。
5
角的基本性质
2024/1/28
• 角的大小与边的长短无关:角的大小只与两条边叉开的大小 有关,与边的长短无关。
• 角的平分线性质:从一个角的顶点引出一条射线,把这个角 分成两个相等的角,这条射线叫做这个角的平分线。
两个角相加,将它们的度 数相加即可。
2024/1/28
角的减法
两个角相减,将它们的度 数相减即可。
应用
利用角的加减运算进行角 度的计算和证明,解决与 角度相关的问题。
14
04
角在生活中的应用
2024/1/28
15
时钟上的角度问题
时钟面上的角度计算
时钟面平均分成了12份,每份对应的角度是30度。可以用这个知识点来解决时 钟上时针和分针之间的角度问题。
人教版七年级数学上册课件4.3.1 角 课件(共24张PPT)
(1)能用一个大写字母表示的角. (2)能用一个数字表示的角,并用三个大写字母表示. (3)以D为顶点的角.
【思路点拨】(1)以某点为顶点的角只有一个时才能用一个 大写字母表示. (2)找出标有数字的角,并用三个大写字母表示. (3)找以D为端点的射线(或线段)形成的角,并用三个字母表 示.
【自主解答】(1)顶点处只有一个角的为∠B,所以能用一个大写 字母表示的角为∠B. (2)∠1用三个大写字母表示为∠CAD, ∠2用三个大写字母表示 为∠ACE, ∠3用三个大写字母表示为∠ABD. (3)∠ADC,∠ADB.
【总结提升】表示角时注意的三点 1.用三个字母表示角时,顶点字母必须写在中间. 2.用一个字母表示角时,必须顶点处只有一个角. 3.用数字或希腊字母表示角时,必须在相应角的内部加弧线及 数字或希腊字母.
知识点 2 角的度、分、秒的换算 【例2】(1)把4.62°化成度、分、秒. (2)把45°23′45″化成度. 【教你解题】
4.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的 图形是( )
【解析】选D.前三个选项以O为顶点的角都不止一个,所以都 不能用一个大写字母来表示 .
5.写出如图所示的符合下列条件的角(图中 所有的角指小于平角的角). (1)能用一个大写字母表示的角. (2)以A为顶点的角. (3)图中所有的角(可用简便方法表示). 【解析】(1)∠B,∠C. (2)∠1或∠CAD,∠2或∠DAB,∠CAB. (3)∠C,∠1,∠2,∠CAB,∠B,∠3,∠4.
5.如图,分别确定四个城市相应钟表上时针与分针所成角的度 数(小于平角的角).
【解析】巴黎:30°,伦敦:0°,北京:30°×4=120°,东京: 30°×3=90°.
【想一想错在哪?】钟表上3时30分的时针与分针的夹角是多 少?
【思路点拨】(1)以某点为顶点的角只有一个时才能用一个 大写字母表示. (2)找出标有数字的角,并用三个大写字母表示. (3)找以D为端点的射线(或线段)形成的角,并用三个字母表 示.
【自主解答】(1)顶点处只有一个角的为∠B,所以能用一个大写 字母表示的角为∠B. (2)∠1用三个大写字母表示为∠CAD, ∠2用三个大写字母表示 为∠ACE, ∠3用三个大写字母表示为∠ABD. (3)∠ADC,∠ADB.
【总结提升】表示角时注意的三点 1.用三个字母表示角时,顶点字母必须写在中间. 2.用一个字母表示角时,必须顶点处只有一个角. 3.用数字或希腊字母表示角时,必须在相应角的内部加弧线及 数字或希腊字母.
知识点 2 角的度、分、秒的换算 【例2】(1)把4.62°化成度、分、秒. (2)把45°23′45″化成度. 【教你解题】
4.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的 图形是( )
【解析】选D.前三个选项以O为顶点的角都不止一个,所以都 不能用一个大写字母来表示 .
5.写出如图所示的符合下列条件的角(图中 所有的角指小于平角的角). (1)能用一个大写字母表示的角. (2)以A为顶点的角. (3)图中所有的角(可用简便方法表示). 【解析】(1)∠B,∠C. (2)∠1或∠CAD,∠2或∠DAB,∠CAB. (3)∠C,∠1,∠2,∠CAB,∠B,∠3,∠4.
5.如图,分别确定四个城市相应钟表上时针与分针所成角的度 数(小于平角的角).
【解析】巴黎:30°,伦敦:0°,北京:30°×4=120°,东京: 30°×3=90°.
【想一想错在哪?】钟表上3时30分的时针与分针的夹角是多 少?
初一数学七年级数学角ppt课件
THANKS
感谢观看
垂直平分线的判定:必须同时满足( 1)直线过线段中点;(2)直线⊥线 段。
角平分线与垂直平分线的应用
在几何图形中的应用
角平分线和垂直平分线在解决几何图形问题中,特别是与角、线段和三角形相关的问题 时,具有重要的作用。它们可以帮助我们找到关键的等量关系,从而简化问题的解决过
程。
在现实生活中的应用
角平分线和垂直平分线的概念不仅在数学中有应用,在现实生活中也有广泛的应用。例 如,在建筑和工程设计中,角平分线和垂直平分线可以帮助设计师更精确地计算和布局
角的差
两个角的度数之差。
角的和差运算规则
同号相加,取相同的 符号,并把绝对值相 加。
任何数与0相加,仍 得这个数。
异号相加,取绝对值 较大的符号,并用较 大的绝对值减去较小 的绝对值。
角的加减混合运算
要点一
减法转化成加法
减去一个数等于加上这个数的相反数。把减法转化成加法 时,注意同时改变运算符号和减数的性质符号。
角的大小取决于其所夹的度数,与角的两条边的长短无关。
角的和差性质
两个角如果它们的非公共边构成一条直线,则这两个角的度数之和等于180度; 如果两个角的和等于90度,则这两个角互为余角。
02
角的分类与比较
锐角、直角、钝角、平角
锐角
直角
钝角
平角
小于90°的角叫做锐角。
等于90°的角叫做直角。
大于90°而小于180°的 角叫做钝角。
角的内部到角的两边距离相等 的点在这个角的平分线上。
垂直平分线的定义及性质
定义:经过某一条线段的中点,并且 垂直于这条线段的直线,叫做这条线
段的垂直平分线(中垂线)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角的定义(2):
角也可以看做一条射线绕端点旋转一定 角度停下来所形成的图形
么位置时,可得到平角和周角?
平角
B
B
O
A
1平角=180º
如果一个角的终边旋转到与始边成一条 直线时,所成的角叫做 平角。
周角
O
A (B)
当终边旋转到与始边 重合 时,所成 的角叫做 周角 . 1周角=360º
(2)用顶点字
母来表示
O
∠O
(3)用数字 来表示
1
∠1
(4)用希腊 字母表示
α
∠α
适用范围
任何情况都适用, 表示顶点的字母 要写在中间 以某一点为顶点 的角只有一个
任何情况都 适用
任何情况都适 用
角的表示方法要注意的几个问题:
1、用三个大写字母表示时,表示顶点的字母一定要写在中间; 2、用数字或希腊字表示时,数字或希腊字母写在角的内部; 3、用顶点的大写字母表示时,该顶点不能再有其他角。
学习目标
1、认识角是一种基本的几何图形,理解角的概念, 学会角的表示方法。
2、认识角的度量单位:度、分、秒,学会进行简 单的单位换算。
学 习重点、难点
角的表示方法、角度的换算
本节课的主要内容有:
1、角的两种描述方法,即角的两种定义; 2、角的几种表示方法; 3、角度的换算。
角的定义(1)
角是由具有
几个小于平角的角?引两条射线 OC,OD 呢?引三 条射线 OC,OD,OE 呢?若引 10 条射线一共会有
多少个角?引n条射线呢?
引 1 条射线有 2+1=3 个角; 引 2 条射线有 3+2+1 =6个角; 引 3 条射线有 4+3+2+1=10 个角; 引 10 条射线有 11+10+9+……+3+2+1=66 个角
【问题 2】下列 4 个图形中,能用1,AOB,O三 种方法表示同一角的图形是( B ).
尝试练习
如图 7 所示,我们可将这个角表示为 ∠AOB
或 ∠O 或 ,
另外我们还可以用
数字
来表示角.
你知道一度角有多大吗?
把半圆分成180等份,每一份所对的角 叫做一度角。记作 “ 1º ” 。
1º
把 半 圆 分 成 1 8 0 等 分 , 每 一 份 所 对 的 角 叫1做度角 ”
的两条
组成的图形。
其中公共端点是角的
,两条射线是角的
角的定义(1) 静态角的定义
角是由具有公共端点 的两条 射线 组成的图形。
其中公共端点是角的 顶点 ,两条射线是角的 两条边
边
顶点
边
判断下列哪些图形是角
(√)
(×) (√)
(√)
角的大小与边的长短有关吗?
角的第二定义:
动态角的定义
B
B
O
A
角也可以看作由一条射线绕着它的端点 旋转 而形成 的图形。
1分角 把1度的角60等分,每一份所对的角叫做
。记1作 “ °1 ′
。记作 “
”
1 秒角
1″
以度,分,秒为单位的角的度量制叫做角度制。
把1分的角60等分,每一份所对的角叫做
。记作 “ ”
角的度、分、秒是60进制,和计量时间的度分秒是一样的。
1 °
1度=60分
1分=60秒
1秒=
1 60
分
1秒= 1 度
你能举出生活中跟 角有关的实例吗?
请用适当的方法表示下列角:
A
O
B
A
D B
C
A
O
B
AOB或O
α
∠α
A
1 ∠1
D B
C
∠DBC或∠CBD
角用“∠”表示,读做“角”。角的表示方 法有下面四种:
表示方法
图示
记法
A
(1)用一三个个字母只表示一个角∠AOB或
大写字母表示
O
B ∠BOA
∠2 ∠BAC
∠B
∠ABC
∠β ∠BAD
3、6时整,钟表的时针与分针构成的角是
是
度,8时30分时是
度
6º
度,8时
30º
6时整,钟表的时针和分针构成的角度是 180º
8时分针与时针所夹的角是:120º 8 时30分时分针与时针所夹的角是:75º
8.如图 6,在∠AOB的内部引一条射线 OC,可得
引N条射线有(n+1)+n. +……+1个角
谢谢!
3600
1°=60 ′
1″=( 1 ) ′
60
1′=60″.
1′=
(1) 60
°
.
计算:
(1)121.3º=
º
'
(2)23º36'=
º
尝试练习
1、如图:以0为顶点的角有(
分别是: A
) 个,
C O
B
5、将图中的角用不同的方法表示出来, 并填写下表。
B
β 2
α 1
E
D
A
C
∠1
∠BCE
∠α ∠ACB