全等三角形与旋转问题

合集下载

专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)(解析版)

专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)(解析版)

专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)本专题重点分析旋转中的三类全等模型(手拉手、半角、对角互补模型),结合各类模型展示旋转中的变与不变,并结合经典例题和专项训练深度分析基本图形和归纳主要步骤,同时规范了解题步骤,提高数学的综合解题能力。

模型1.手拉手模型【模型解读】将两个三角形(或多边形)绕着公共顶点旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等。

其中:公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。

手拉模型解题思路:SAS型全等(核心在于导角,即等角加(减)公共角)。

1)双等边三角形型条件:△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。

结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。

2)双等腰直角三角形型条件:△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。

结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。

3)双等腰三角形型条件:△ABC 和△DCE 均为等腰三角形,C 为公共点;连接BE ,AD 交于点F 。

结论:①△ACD ≌△BCE ;②BE =AD ;③∠ACM =∠BFM ;④CF 平分∠AFD 。

4)双正方形形型条件:△ABCFD 和△CEFG 都是正方形,C 为公共点;连接BG ,ED 交于点N 。

结论:①△△BCG ≌△DCE ;②BG =DE ;③∠BCM =∠DNM=90°;④CN 平分∠BNE 。

例1.(2022·黑龙江·中考真题)ABC V 和ADE V 都是等边三角形.(1)将ADE V 绕点A 旋转到图①的位置时,连接BD ,CE 并延长相交于点P (点P 与点A 重合),有PA PB PC +=(或PA PC PB +=)成立;请证明.(2)将ADE V 绕点A 旋转到图②的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将ADE V 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【答案】(1)证明见解析 (2)图②结论:PB PA PC =+,证明见解析 (3)图③结论:PA PB PC+=【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,PA =0,即可得出结论;(2)在BP 上截取BF CP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明CAP BAF ≌△△(SAS ),得CAP BAF Ð=Ð,AF AP =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论;(3)在CP 上截取CF BP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明BAP CAF ≌△△(SAS ),得出CAF BAP Ð=Ð,AP AF =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论:PA PB PF CF PC +=+=.(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∵点P 与点A 重合,∴PB =AB ,PC =AC ,PA =0,∴PA PB PC +=或PA PC PB +=;(2)解:图②结论:PB PA PC=+证明:在BP 上截取BF CP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC CAD DAE CAD Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AC =AB ,CP =BF , ∴CAP BAF ≌△△(SAS ),∴CAP BAF Ð=Ð,AF AP =,∴CAP CAF BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PC PF BF PB +=+=;(3)解:图③结论:PA PB PC +=,理由:在CP 上截取CF BP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC BAE DAE BAE Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AB =AC ,BP =CF ,∴BAP CAF ≌△△(SAS ),∴CAF BAP Ð=Ð,AP AF =,∴BAF BAP BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PB PF CF PC +=+=,即PA PB PC +=.【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.例2.(2023·湖南·长沙市八年级阶段练习)如图1,在Rt △ABC 中,∠B =90°,AB =BC =4,点D ,E 分别为边AB ,BC 上的中点,且BD =BE .(1)如图2,将△BDE 绕点B 逆时针旋转任意角度α,连接AD ,EC ,则线段EC 与AD 的关系是 ;(2)如图3,DE ∥BC ,连接AE ,判断△EAC 的形状,并求出EC 的长;(3)继续旋转△BDE ,当∠AEC =90°时,请直接写出EC 的长.例3.(2023·黑龙江·虎林市九年级期末)已知Rt △ABC 中,AC =BC ,∠ACB =90°,F 为AB 边的中点,且DF =EF ,∠DFE =90°,D 是BC 上一个动点.如图1,当D 与C 重合时,易证:CD 2+DB 2=2DF 2;(1)当D 不与C 、B 重合时,如图2,CD 、DB 、DF 有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当D 在BC 的延长线上时,如图3,CD 、DB 、DF 有怎样的数量关系,请写出你的猜想,并加以证明.【答案】(1)CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2,证明见解析【分析】(1)由已知得222DE DF =,连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论;(2)连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论.【详解】解:(1)CD 2+DB 2=2DF 2证明:∵DF =EF ,∠DFE =90°,∴222DF EF DE += ∴222DE DF = 连接CF ,BE ,如图∵△ABC 是等腰直角三角形,F 为斜边AB 的中点∴CF BF =,CF AB ^,即90CFB Ð=° ∴45FCB FBC Ð=Ð=°,90CFD DFB Ð+Ð=°又90DFB EFB Ð+Ð=° ∴CFD EFB Ð=Ð在CFD D 和BFE D 中CF BF CFD BFE DF EF =ìïÐ=Ðíï=î∴CFD D @BFED ∴CD BE =,45EBF FCB Ð=Ð=° ∴454590DBF EBF Ð+Ð=°+°=° ∴222DB BE DE +=∵CD BE =,222DE DF =∴CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2 证明:连接CF 、BE∵CF =BF ,DF =EF 又∵∠DFC +∠CFE =∠EFB +∠CFB=90°∴∠DFC =∠EFB ∴△DFC ≌△EFB ∴CD =BE ,∠DCF =∠EBF =135°∵∠EBD =∠EBF -∠FBD =135°-45°=90° 在Rt △DBE 中,BE 2+DB 2=DE 2∵ DE 2=2DF 2 ∴ CD 2+DB 2=2DF 2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题.例4.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若ABC V 和ADE V 是顶角相等的等腰三角形,BC ,DE 分别是底边.求证:BD CE =;(2)解决问题:如图2,若ACB △和DCE V 均为等腰直角三角形,90ACB DCE Ð=Ð=°,点A ,D ,E 在同一条直线上,CM 为DCE V 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系并说明理由.图1 图2【答案】(1)见解析 (2)90DCE Ð=°;2AE AD DE BE CM=+=+【分析】(1)先判断出∠BAD =∠CAE ,进而利用SAS 判断出△BAD ≌△CAE ,即可得出结论;(2)同(1)的方法判断出△BAD ≌△CAE ,得出AD =BE ,∠ADC =∠BEC ,最后用角的差,即可得出结论.【解析】(1)证明:∵ABC V 和ADE V 是顶角相等的等腰三角形,∴AB AC =,AD AE =,BAC DAE Ð=Ð,∴BAC CAD DAE CAD Ð-Ð=Ð-Ð,∴BAD CAE Ð=Ð.在BAD V 和CAE V 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,∴()BAD CAE SAS ≌△△,∴BD CE =.(2)解:90AEB =°∠,2AE BE CM =+,理由如下:由(1)的方法得,≌ACD BCE V V ,∴AD BE =,ADC BEC ÐÐ=,∵CDE △是等腰直角三角形,∴45CDE CED Ð=Ð=°,∴180135ADC CDE Ð=°-Ð=°,∴135BEC ADC Ð=Ð=°,∴1354590AEB BEC CED Ð=Ð-Ð=°-°=°.∵CD CE =,CM DE ^,∴DM ME =.∵90DCE Ð=°,∴DM ME CM ==,∴2DE CM =.∴2AE AD DE BE CM =+=+.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD ≌△BCE 是解本题的关键.3)15°模型2.半角模型【模型解读】半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半思想方法:通过旋转构造全等三角形,实现线段的转化1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④D AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。

【几何模型】“全等模型”与“旋转全等模型”

【几何模型】“全等模型”与“旋转全等模型”

全等变换
说明:
旋转全等模型
说明:
旋转半⾓的特征是相邻等线段所成⾓含⼀个⼆分之⼀⾓,通过旋转将另外两个和为⼆分之⼀的⾓拼接在⼀起,成对称全等。

⾃旋转模型
构造⽅法:
遇60度旋60度,造等边三⾓形
遇90度旋90度,造等腰直⾓
遇等腰旋顶点,造旋转全等
遇中点旋180度,造中⼼对称
共旋转模型
说明:模型变形
说明:
模型变形主要是两个正多边形或者等腰三⾓形的夹⾓的变化,另外是等腰直⾓三⾓形与正⽅形的混⽤。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三⾓形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三⾓形证全等。

中点旋转:
说明:
两个正⽅形、两个等腰直⾓三⾓形或者⼀个正⽅形⼀个等腰直⾓三⾓形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直⾓三⾓形。

证明⽅法是倍长所要证等腰直⾓三⾓形的⼀直⾓边,转化成要证明的等腰直⾓三⾓形和已知的等腰直⾓三⾓形(或者正⽅形)公旋转顶点,通过证明旋转全等三⾓形证明倍长后的⼤三⾓形为等腰直⾓三⾓形从⽽得证。

专题01 全等三角形中的手拉手旋转模型(原卷版)

专题01 全等三角形中的手拉手旋转模型(原卷版)

专题01 全等三角形中的手拉手旋转模型【模型展示】【模型证明】ECDABC CD CE ACD BCE AC BC ECD ABC ACD BCE ACE ECD ACE ACB ECDACB ECD ACB CD CE AC BC ECD ABC ∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=∆∆∠=∠∴∠+∠=∠+∠∴∠=∠=∠=∠==∴∆∆中与在为等边三角形与 60,,BDMN NCD MNC NCD MNC MCN MCN MCN CN CM ACN BCM AFB AFM BCM AFM BMC AMF MAF AFM BMC CBM BCM AFM AMF MAF BCM BMC CBM CADCBE ACD BCE ADBE ACD BCE //60606060,60)(180)(180180180∴∠=∠∴=∠=∠∴∆∆∴=∠=∴∆≅∆=∠=∠=∠∴∠=∠∠+∠-=∠∠+∠-=∠∴=∠+∠+∠=∠+∠+∠∠=∠∴∆≅∆=∴∆≅∆为等边三角形为等边三角形即P Q NMFECABD【模型拓展】【题型演练】一、单选题1.如图,在ABCV中,90ABC∠=°,分别以AB,AC为边作等边ABD△和等边ACEV,连结DE,若3AB=,5AC=,则ED=()A.B.C.4D.2.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下结论错误的是()A .∠AOB =60°B .AP =BQC .PQ ∥AED .DE =DP3.如图,在Rt △ABC 和Rt △ADE 中,∠BAC =∠DAE =90°,AB =AC =5,AD =AE =2,点P ,Q ,R 分别是BC ,DC ,DE 的中点.把△ADE 绕点A 在平面自由旋转,则△PQR 的面积不可能是( )A .8B .6C .4D .24.如图,在ABC V 中,AB AC =,点D 、F 是射线BC 上两点,且AD AF ⊥,若AE AD =,15BAD CAF ∠=∠=°;则下列结论中正确的有( )①CE BF ⊥;②ABD ACE △≌△;③ABC ADCE S S =四边形△;④122BC EF AD CF-=-A .1个B .2个C .3个D .4个5.如图,正ABC V 和正CDE △中,B 、C 、D 共线,且3BC CD =,连接AD 和BE 相交于点F ,以下结论中正确的有( )个①60AFB ∠=° ②连接FC ,则CF 平分BFD ∠ ③3BF DF = ④BF AF FC =+A .4B .3C .2D .16.如图,点C 是线段AE 上一动点(不与A ,E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,有以下5个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP ;⑤∠AOB=60°.其中一定成立的结论有( )个A .1B .2C .3D .4二、填空题7.如图,ABD △、CDE △是两个等边三角形,连接BC 、BE .若30DBC ∠=°,6BD =,8BC =,则BE =________.8.如图,△ABC 中,∠C =90°,AC =BC =△ABC 绕点A 顺时针方向旋转60°到△AB 'C '的位置,连接BC ',BC '的延长线交AB '于点D ,则BD 的长为 _____.9.如图,ABC V 是边长为5的等边三角形,BD CD =,120BDC ∠=°.E 、F 分别在AB 、AC 上,且60EDF ∠=°,则三角形AEF 的周长为______.10.如图,C 为线段AE 上一动点(不与点A 、E 重合),在AE 同侧分别作正△ABC 和正△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD =BE ;②PQ P AE ;③AP =BQ ;④DE =DP ;⑤∠AOB =60°.恒成立的结论有_____.(把你认为正确的序号都填上)三、解答题11.如图,ACB △和ECD V 都是等腰直角三角形,,,CA CB CD CE ACB ==△的顶点A 在ECD V 的斜边DE 上,连接BD .(1)求证:BD AE =.(2)若3cm,6cm AE AD ==,求AC 的长.12.如图,A 、B 、C 在同一直线上,且△ABD ,△BCE 都是等边三角形,AE 交BD 于点M ,CD 交BE 于点N ,MN ∥AC ,求证:(1)∠BDN=∠BAM ;(2)△BMN是等边三角形.13.如图1,B、C、D三点在一条直线上,AD与BE交于点O,△ABC和△ECD是等边三角形.(1)求证:△ACD≌△BCE;(2)求∠BOD的度数;14.在△AEB和△DEC中,AC、BD相交于点P,AE、BD相交于点O,AE=BE,DE=CE,∠AEB=∠DEC.(1)求证:AC=BD;(2)求证:∠APB=∠AEB.15.△ACB和△DCE是共顶点C的两个大小不一样的等边三角形.(1)问题发现:如图1,若点A,D,E在同一直线上,连接AE,BE.①求证:△ACD≌△BCE;②求∠AEB的度数.(2)类比探究:如图2,点B、D、E在同一直线上,连接AE,AD,BE,CM为△DCE中DE边上的高,请求∠ADB的度数及线段DB,AD,DM之间的数量关系,并说明理由.(3)拓展延伸:如图3,若设AD(或其延长线)与BE的所夹锐角为α,则你认为α为多少度,并证明.16.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD与CE交于点O,BD与AC交于点F.(1)求证:BD=CE.(2)若∠BAC=48°,求∠COD的度数.(3)若G为CE上一点,GE=OD,AG=OC,且AG∥BD,求证:BD⊥AC.17.如图1,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),过点A作AG⊥AH且AG=AH,连接GC,HB.(1)证明:V AHB≌V AGC;(2)如图2,连接GF,HG,HG交AF于点Q.①证明:在点H的运动过程中,总有∠HFG=90°;②当V AQG为等腰三角形时,求∠AHE的度数.18.在图1、图2中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.(1)如图1,线段AN与线段BM是否相等?证明你的结论;(2)如图1,线段AN与线段BM交于点O,求∠AOM的度数;(3)如图2,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.19.已知:两个等腰直角三角板△ACB和△DCE(AC=BC,DC=CE,∠ACB=∠DCE=90°)如图所示摆放,连接AE、BD交于点O.AE与DC交于点M,BD与AC交于点N.(1)如图1(两个等腰直角三角板大小不等),试判断AE与BD有何关系并说明理由;(2)如图2(两个等腰直角三角板大小相等,即AC=DC),在不添加任何辅助线的情况,请直接写出图2中四对全等的直角三角形.20.如图1,在△ABC中,CA=CB,∠ACB=90°.点D是AC中点,连接BD,过点A作AE⊥BD交BD的延长线于点E,过点C作CF⊥BD于点F.(1)求证:∠EAD=∠CBD;(2)求证:BF=2AE;(3)如图2,将△BCF沿BC翻折得到△BCG,连接AG,请猜想并证明线段AG和AB的数量关系.21.定义:我们把两条对角线互相垂直的四边形称为“垂美四边形”.(1)特例感知:如图1,四边形ABCD 是“垂美四边形”,如果13OA OD OB ==,2OB =,60OBC ∠=°,则22AD BC +=______,22AB CD +=______.(2)猜想论证:如图1,如果四边形ABCD 是“垂美四边形”,猜想它的两组对边AB ,CD 与BC ,AD 之间的数量关系并给予证明.(3)拓展应用:如图2,分别以Rt ACB △的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连接CE ,BG ,GE ,已知4AC =,60BAC ∠=°,求GE 长.22.两个顶角相等的等腰三角形,如果具有公共的顶角顶点,并将它们的底角顶点分别对应连接起来得到两个全等三角形,我们把这样的图形称为“手拉手”图形.如图1,在“手拉手”图形中,AB =AC ,AD =AE ,∠BAC =∠DAE ,连接BD ,CE ,则△ABD ≌△ACE .(1)请证明图1的结论成立;(2)如图2,△ABC 和△AED 是等边三角形,连接BD ,EC 交于点O ,求∠BOC 的度数;(3)如图3,AB =BC ,∠ABC =∠BDC =60°,试探究∠A 与∠C 的数量关系.23.已知在Rt △ABC 中,∠ACB =90°,a ,b 分别表示∠A ,∠B 的对边,a b >.记△ABC 的面积为S .(1)如图1,分别以AC ,CB 为边向形外作正方形ACDE 和正方形BGF C .记正方形ACDE 的面积为1S ,正方形BGFC 的面积为2S .①若19S =,216S =,求S 的值;②延长EA 交GB 的延长线于点N ,连结FN ,交BC 于点M ,交AB 于点H .若FH ⊥AB (如图2所示),求证:212S S S -=.(2)如图3,分别以AC ,CB 为边向形外作等边三角形ACD 和等边三角形CBE ,记等边三角形ACD 的面积为1S ,等边三角形CBE 的面积为2S .以AB 为边向上作等边三角形ABF (点C 在△ABF 内),连结EF ,CF .若EF ⊥CF ,试探索21S S -与S 之间的等量关系,并说明理由.24.如图,在Rt △ABC 中,90ACB ∠=°,AC =BC ,D 为斜边AB 上一动点(不与端点A ,B 重合),以C 为旋转中心,将CD 逆时针旋转90°得到CE ,连接AE ,BE ,F 为AE 的中点.(1)求证:BE AB ⊥;(2)用等式表示线段CD ,BE ,CF 三者之间数量关系,并说明理由;(3)若CF =32,CD tan BCE ∠的值.25.如图,AOB V 和COD △都是以O 为直角顶点的等腰直角三角形,连接AC ,BD .(1)如图1,试判断AC 与BD 的数量关系和位置关系,并说明理由.(2)如图2,若点D 哈好在AC 上,且D 为AC 的中点,AB =BOD V 的面积.(3)如图3,设AC 与BD 的交点为E ,若AE CE =,60AOD ∠=°,4AB =,求CD 的长.。

三角形全等(旋转与截长补短专题)

三角形全等(旋转与截长补短专题)
向量与矩阵
向量与矩阵是高等数学中的重要概念,它们在解决几何问 题,特别是涉及旋转、平移等变换的问题时具有广泛的应 用。
THANKS FOR WATCHING
感谢您的观看
全等三角形的性质
对应边相等
对应角相等 面积相等
周长相等
判定三角形全等条件
01
02
03
04
SSS(边边边)
三边分别相等的两个三角形全 等。
SAS(边角边)
两边和它们之间的夹角分别相 等的两个三角形全等。
ASA(角边角)
两角和它们之间的夹边分别相 等的两个三角形全等。
AAS(角角边)
两角和一角的对边分别相等的 两个三角形全等。
04 复杂图形中三角形全等问 题解决方法
分析复杂图形中隐藏信息
观察图形特点
挖掘隐藏条件
注意图形的对称性、角的度数、边的 长度等,这些可能是解决问题的关键。
根据已知信息和图形特点,挖掘出可 能对解决问题有帮助的隐藏条件。
寻找潜在的全等三角形
通过观察和分析,尝试找出可能的全 等三角形,以便利用全等三角形的性 质解决问题。
应注意准确理解和运用各种判定定理。
02
旋转操作中的误区
在运用旋转证明三角形全等时,学生可能忽略旋转前后的图形关系,导
致证明失败。应注意保持旋转前后的图形对应关系。
03
截长补短法的使用不当
学生可能在不适当的场合使用截长补短法,或者在使用时未能正确构造
出全等三角形。应注意分析问题的具体条件,合理运用截长补短法。
截取法
通过截取线段,使得两个三角形在对应边上相等。例如,在证明两三角形全等 时,可以截取其中一个三角形的一条边,使得这条边与另一个三角形的一条边 相等。

旋转法证三角形全等(教师版)

旋转法证三角形全等(教师版)

旋转法证三角形全等(教师版)例题4,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.(3)当直线MN绕点C旋转到图③时,DE、AD、BE具有怎样的等量关系?分析:(1)由已知AC=BC,∠ADC=∠CEB=90°,利用互余关系可证∠DAC=∠ECB,可证△ACD≌△CBE,得AD=CE,CD=BE,故AD+BE=CE+CD=DE;(2)此时,仍有△ACD≌△CBE,AD=CE,CD=BE,利用线段的和差关系得DE=AD-BE.解答:证明:(1)∵∠DAC+∠ACD=90°,∠ACD+∠ECB=90°,∴∠DAC=∠ECB,又∵AC=BC,∠ADC=∠CEB=90°,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CE+CD=AD+BE;(2)DE=BE-AD.仿照(1)可证△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD.( 3 ) 当MN 旋转到图3 的位置时,DE , AD , BE 满足的等量关系是DE = BE-AD (或AD = BE-DE , BE = AD + DE 等) .∵∠ADC = ∠CEB = ∠ACB = 90度,∴∠ACD = ∠CBE .又∵AC = BC ,∴△ ACD ≌△CBE .∴AD = CE , CD = BE .∴DE = CD- CE = BE- AD .。

初二数学全等三角形旋转模型知识点-+典型题附解析(1)

初二数学全等三角形旋转模型知识点-+典型题附解析(1)

初二数学全等三角形旋转模型知识点-+典型题附解析(1)一、全等三角形旋转模型1.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.答案:C解析:(1)CF=CG;(2)CF=CG,见解析【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,∴∠MCN=30º+30º=60º,∴∠MCN=∠DCE ,∵∠MCF=∠MCN-∠DCN ,∠NCG=∠DCE-∠DCN ,∴∠MCF=∠NCG ,在△MCF 和△NCG 中,CMF CNG CM CNMCF NCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF ≌△NCG (ASA ),∴CF=CG (全等三角形对应边相等);【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等 .2.问题提出:(1)如图1,在ABC 中,AB AC BC =≠,点D 和点A 在直线BC 的同侧,BD BC =,90BAC ∠=︒,30DBC ∠=︒,连接AD ,将ABD △绕点A 逆时针旋转90︒得到ACD ',连接BD '(如图2),可求出ADB ∠的度数为______.问题探究:(2)如图3,在(1)的条件下,若BAC α∠=,DBC β∠=,且120αβ+=︒,DBC ABC ∠<∠ ,①求ADB ∠的度数.②过点A 作直线AE BD ⊥,交直线BD 于点E ,7,2BC AD ==.请求出线段BE 的长.答案:A解析:(1)30°;(2)①30︒;②73-【分析】(1)由旋转的性质,得△ABD ≌ACD '∆,则ADB AD C '∠=∠,然后证明BCD '∆是等边三角形,即可得到30ADB AD C '∠=∠=︒;(2)①将ABD △绕点A 逆时针旋转,使点B 与点C 重合,得到'ACD △,连接'BD .与(1)同理证明D BC '∆为等边三角形,然后利用全等三角形的判定和性质,即可得到答案;②由解直角三角形求出3DE =,再由等边三角形的性质,即可求出答案. 【详解】解:(1)根据题意,∵AB AC BC =≠,90BAC ∠=︒,∴ABC ∆是等腰直角三角形,∴45ABC ACB ∠=∠=︒,∵30DBC ∠=︒,∴15ABD ∠=︒,由旋转的性质,则△ABD ≌ACD '∆, ∴ADB AD C '∠=∠,15ABD ACD '∠=∠=︒,BC CD '=,∴60BCD '∠=︒,∴BCD '∆是等边三角形,∴60BD C '∠=︒,BD CD ''=∵AB AC =,AD AD ''=,∴ABD '∆≌ACD '∆,∴30AD B AD C ''∠=∠=︒,∴30ADB AD C '∠=∠=︒;(2)①DBC ABC ∠<∠,60120α︒︒∴<<.如图1,将ABD △绕点A 逆时针旋转,使点B 与点C 重合,得到'ACD △,连接'BD .AB AC =,ABC ACB ∴∠=∠,BAC α∠=,()111809022ABC αα︒︒∴∠=-=-, 1902ABD ABC DBC αβ︒∴∠=∠-∠=--, 119090180()22D CB ACD ACB αβααβ''︒︒︒∴∠=∠+∠=--+-=-+. 120,αβ︒+=60D CB '︒∴∠=.,BD BC BD CD '==,,BC CD '∴=D BC '∴为等边三角形,D B D C ''∴=,AD B AD C ''∴≌,AD B AD C ''∴∠=∠, 1302AD B BD C ''︒∴∠=∠=, 30ADB ︒∴∠=.②如图2,由①知,30ADB ︒∠=,在Rt ADE △中,30,2ADB AD ︒∠==, 3DE ∴=.BCD '是等边三角形,7BD BC '∴==,7BD BD '∴==,73BE BD DE ∴=-=-.【点睛】本题考查了解直角三角形,旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰直角三角形的性质,以及三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确利用旋转模型进行解题.3.定义:按螺旋式分别延长n 边形的n 条边至一点,若顺次连接这些点所得的图形与原多边形相似,则称它为原图形的螺旋相似图形.例如:如图1,分别延长多边形A 1A 2…A n 的边得A 1′,A 2′,…,A n ′,若多边形A 1′A 2′…A n ′与多边形A 1A 2…An 相似,则多边形A 1′A 2′…A n ′就是A 1A 2…A n 的螺旋相似图形.(1)如图2,已知△ABC 是等边三角形,作出△ABC 的一个螺旋相似图形,简述作法,并给以证明.(2)如图3,已知矩形ABCD ,请探索矩形ABCD 是否存在螺旋相似图形,若存在,求出此时AB 与BC 的比值;若不存在,说明理由.(3)如图4,△ABC 是等腰直角三角形,AC =BC =2,分别延长CA ,AB ,BC 至A′,B′,C′,使△A′B′C′是△ABC 的螺旋相似三角形.若AA′=kAC ,请直接写出BB′,CC′的长(用含k 的代数式表示)答案:A解析:(1)见解析;(2)AB:BC=1;(3)BB′=2k,CC′=k.【分析】(1)如图2中,延长AB到E,延长BC到F,延长CA到D,使得BE=CF=AD,连接EF,DF,DE.则△DEF是△ABC的一个螺旋相似图形,证明△DEF是等边三角形即可解决问题.(2)如图3中,假设存在.四边形EFGH是矩形ABCD的螺旋相似图形,设AB=CD=a,BC=AD=b,BE=DG=x,CF=AH=y.分两种情形,利用相似三角形的性质以及相似矩形的性质,构建关系式证明a=b即可解决问题.(3)如图4中,作B′T⊥CB交CB的延长线于T.设TB=TB′=m,证明△A′CC′≌△A′TB′(ASA),推出A′C=TC′,CC′=TB′=BT,构建关系式推出m=k即可解决问题.【详解】解:(1)如图2中,延长AB到E,延长BC到F,延长CA到D,使得BE=CF=AD,连接EF,DF,DE.则△DEF是△ABC的一个螺旋相似图形.理由:∵△ABC是等边三角形,∴AB=BC=AC,∠CAB=∠ABC=∠ACB,∴∠DAE=∠FCD=∠EBF=120°,∵BE=CF=AD,∴CD=AE=BF,∴△FCD≌△DAE≌△EBF(SAS),∴DF =DE =EF ,∴△DEF 是等边三角形,∴△DEF ∽△ABC ,∴△DEF 是△ABC 的一个螺旋相似图形.(2)如图3中,假设存在.四边形EFGH 是矩形ABCD 的螺旋相似图形,设AB =CD =a ,BC =AD =b ,BE =DG =x ,CF =AH =y .由题意:△BEF ∽△AHE , ∴EF EH =BE AH =BF AE, ∴x y =b y a x++, 当EF HE =BC AB =b a 时,b a =x y =b y a x++, ∴x =b a•y ,ax +x 2=by +y 2, ∴by +22b a•y 2=by +y 2, ∴a 2=b 2,∴a =b ,即AB :BC =1. 当EF EH =AB BC =a b 时.a b =x y =b y a x ++, ∴x =a b•y ,ax +x 2=by +y 2, ∴2a b •y +22a b•y 2=by +y 2, ∴22a b b -•y (1+y b)=0, ∵y ≠0,1+y b≠0,∴a2=b2,∴a=b,即AB:BC=1,综上所述,AB:BC=1.(3)如图4中,作B′T⊥CB交CB的延长线于T.∵AC=BC=2,∠ACB=90°,∴∠ABC=∠CAB=45°,∴∠TBB′=∠ABC=45°,∴∠TB′B=∠TBB′=45°,∴TB=TB′,设TB=TB′=m,∵△A′B′C′是△ABC的螺旋相似三角形,∴A′C′=B′C′,∠A′C′B′=90°,∵∠A′C′C+∠B′C′=90°,∠A′CC+∠C′A′C=90°,∴∠C′A′C=∠B′C′T,∵∠A′CC′=∠T=90°,∴△A′CC′≌△A′TB′(ASA),∴A′C=TC′,CC′=TB′=BT,∴2+2k=2+2m,∴m=k,∴BB′2k,CC′=k.【点睛】本题属于相似形综合题,考查了等边三角形的性质,矩形的性质,等腰直角三角形的判定和性质等知识,解题的关键是理解题意,学会利用参数解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.4.△CDE和△AOB是两个等腰直角三角形,∠CDE=∠AOB=90°,DC=DE=1,OA=OB=a(a>1).(1)将△CDE的顶点D与点O重合,连接AE,BC,取线段BC的中点M,连接OM.①如图1,若CD,DE分别与OA,OB边重合,则线段OM与AE有怎样的数量关系?请直接写出你的结果;②如图2,若CD在△AOB内部,请你在图2中画出完整图形,判断OM与AE之间的数量关系是否有变化?写出你的猜想,并加以证明;③将△CDE绕点O任意转动,写出OM的取值范围(用含a式子表示);(2)是否存在边长最大的△AOB,使△CDE的三个顶点分别在△AOB的三条边上(都不与顶点重合)?如果存在,请你画出此时的图形,并求出边长a的值;如果不存在,请说明理由.答案:A解析:(1)①OM =12AE ;②OM =12AE ,证明详见解析;③12a -≤OM ≤12a +;(2)5【分析】(1)①利用△CDE ≌△AOB 得出BC =AE ,再由直角三角形斜边的中线等于斜边的一半求解.②作辅助线,利用△COF ≌△EOA 及三角形中位线得出OM =12AE . ③分两种情况,当OC 与OB 重合时OM 最大,当OC 在BO 的延长线上时OM 最小,据此求出OM 的取值范围.(2)分两种情况:当顶点D 在斜边AB 上时,设点C ,点E 分别在OB ,OA 上.由DM +OM ≥OF 求出直角边a 的最大值;当顶点D 在直角边AO 上时,点C ,点E 分别在OB ,AB 上时,利用△EHD ≌△DOC ,得出OD =EH ,在Rt △DHE 中,运用勾股定理ED 2=DH 2+EH 2,得出方程,由△判定出a 的最大值.【详解】解:(1)①∵△CDE 和△AOB 是两个等腰直角三角形,∴CD =ED ,AO =B 0,∠CDE =∠AOB ,在△CDE 和△AOB 中,CD ED CDE AOB AO BO =⎧⎪∠=∠⎨⎪=⎩∴△CDE ≌△AOB (SAS ),∴BC =AE∵M 为BC 中点,∴OM =12BC ,∴OM =12AE . ②猜想:OM =12AE . 证明:如图2,延长BO 到F ,使OF =OB ,连接CF ,∵M 为BC 中点,∴OM =12CF , ∵△CDE 和△AOB 是两个等腰直角三角形,∴CD =ED ,AO =BO =OF ,∠CDE =∠AOB ,∵∠AOC +∠COB =∠BOE +∠COB =90°,∴∠AOC =∠BOE ,∠FOC =∠AOE ,在△COF 和△EOA 中,CD ED FOC AOE OF AO =⎧⎪∠=∠⎨⎪=⎩∴△COF ≌△EOA ,∴CF =AE ,∴OM =12AE . ③Ⅰ、如图3,当OC 与OB 重合时,OM 最大,OM=11122 a a-++=Ⅱ、如图4,当OC在BO的延长线上时,OM最小,OM=12a+﹣1=12a-,所以12a-≤OM≤12a+,(2)解:根据△CDE的对称性,只需分两种情况:①如图5,当顶点D在斜边AB上时,设点C,点E分别在OB,OA上.作OF⊥AB于点F,取CE的中点M,连接OD,MD,OM.∵△AOB和△CDE是等腰直角三角形,∠AOB=∠CDE=90°,OA=OB=a(a>1),DC=DE=1,∴AB =2a ,OF =12AB =22a , ∴CE =2,DM =12CE =22, 在RT △COE 中,OM =12CE =22, 在RT △DOM 中,DM +OM ≥OD , 又∵OD ≥OF ,∵DM +OM ≥OF ,即22+22≥22a , ∴a ≤2,∴直角边a 的最大值为2. ②如图6,当顶点D 在直角边AO 上时,点C ,点E 分别在OB ,AB 上,作EH ⊥AO 于点H . ∵∠AOB =∠CDE =∠DHE =90°, ∵∠HED +∠EDH =∠CDO +∠EDH =90°, ∴∠HED =∠CDO , ∵DC =DE ,在△EHD 和△DOC 中,EHD CODHED CDO DE DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EHD ≌△DOC (AAS ) 设OD =x ,∴OD =EH =AH =x ,DH =a ﹣2x , 在Rt △DHE 中,ED 2=DH 2+EH 2, ∴1=x 2+(a ﹣2x )2, 整理得,5x 2﹣4ax +a 2﹣1=0, ∵x 是实数,∴△=(4a )2﹣4×5×(a 2﹣1)=20﹣4a 2≥0, ∴a 2≤5,∴a 2的最大值为5,∴a 的最大值为5. 综上所述,a 的最大值为5. 【点睛】本题主要考查了几何变换综合题及三角形全等的判定和性质,解题的关键是在取最大值时,对三角形的位置进行讨论分别求值.5.在ABC 中,,AB AC BAC α=∠=,点P 为线段CA 延长线上一动点,连接PB ,将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD ,连接,DB DC .(1)如图1,当60α=︒时,请直接写出线段PA 与线段CD 的数量关系是__________,DCP ∠为______度;(2)如图2,当120α=︒时,写出线段PA 和线段DC 的数量关系,并说明理由; (3)如图2,在(2)的条件下,当23AB =13BP PC +的最小值. 答案:A解析:(1)PA =DC ,60;(2)CD 3PA .理由见详解;(232【分析】(1)先证明△ABC ,△PBD 是等边三角形,再证明△PBA ≌△DBC ,进而线段PA 与线段CD 的数量关系,利用全等三角形的性质以及三角形内角和等于180°,解决问题即可;(2)证明△CBD ∽△ABP ,可得3CD BCPA AB== (3)过点C 作射线CM ,使得sin ∠ACM =13,过点P 作PN ⊥CM 于点N ,则PN =13PC ,过点B 作BG ⊥BA 于点G ,当点B 、P 、N 共线时,BP +PN 最小,即13BP PC +最小,由BGP CNP ∽,得13GP NP BP CP ==,结合勾股定理求出GP ,从而得CP ,进而即可求解. 【详解】(1)①证明: ∵将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD , ∴PB =PD ,∵AB =AC ,PB =PD ,∠BAC =∠BPD =60°,∴△ABC ,△PBD 是等边三角形, ∴∠ABC =∠PBD =60°, ∴∠PBA =∠DBC , ∵BP =BD ,BA =BC , ∴△PBA ≌△DBC (SAS ), ∴PA =DC .设BD 交PC 于点O ,如图1,∵△PBA ≌△DBC , ∴∠BPA =∠BDC , ∵∠BOP =∠COD ,∴∠OBP =∠OCD =60°,即∠DCP =60°. 故答案是:PA =DC ,60;(2)解:结论:CD 3.理由如下: ∵AB =AC ,PB =PD ,∠BAC =∠BPD =120°,∴BC =2•AB •cos30°3,BD ═2BP •cos30°3, ∴BC BDBA BP=3 ∵∠ABC =∠PBD =30°, ∴∠ABP =∠CBD , ∴△CBD ∽△ABP , ∴3CD BCPA AB== ∴CD 3;(3) 过点C 作射线CM ,使得sin ∠ACM =13,过点P 作PN ⊥CM 于点N ,则PN =13PC , 过点B 作BG CA ⊥于点G ,则BG =AB ×sin ∠BAG 3=3,AG = AB ×cos ∠BAG 3 当点B 、P 、N 共线时,BP +PN 最小,即13BP PC +最小, ∵∠BGP =∠CNP =90°,∠BPG =∠CPN ,∴BGP CNP ∽, ∴13GP NP BP CP ==, 设GP =x ,则AP =3-x ,BP =3x , ∴()22233x x +=,解得:x =324, ∴BP =924,AP =3-324,∴CP =AC +AP =23+3-324=33-324,∴13BP PC +最小值=924+13×(33-324)=3+22.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,第(1)(2)题解题的关键是正确寻找全等三角形或相似三角形解决问题,第(3)题的关键是过点C 作射线CM ,使得sin ∠ACM =13,过点P 作PN ⊥CM 于点N .6.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起. (1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ; (2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由; (3)解决问题:如图③,90ACB AED ∠∠︒==,25AC =AE =2,连接CE 、BD ,在AED 绕点A旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.答案:C解析:(1)60BD CE ,=;(2)452CEB BD CE ∠︒=,=,理由见解析;(3)CE 的长为2或2 【分析】(1)证明ACE ABD ≌,得出CE =BD ,AEC ADB ∠=∠,即可得出结论; (2)证明ACE ABD ∽,得出AEC ADB ∠=∠,2BD CE =,即可得出结论;(3)先判断出2BD CE =,再求出210AB =:①当点E 在点D 上方时,先判断出四边形APDE 是矩形,求出AP =DP =AE =2,再根据勾股定理求出,BP =6,得出BD =4;②当点E 在点D 下方时,同①的方法得,AP =DP =AE =1,BP =6,进而得出BD =BP +DP =8,即可得出结论. 【详解】解:(1)ABC 为等腰三角形,60AC BC ACB ∠︒=,=,∴ABC 是等边三角形, 同理可得ADE 是等边三角形6018012060BAD DAC DAC CAE BAD CAEAD AE AB ACEAC DAB ACE ABD SAS BD CEAEC ADB ADE AEC AED CEB CEB ∠+∠=∠+∠=︒∴∠=∠=⎧⎪=⎨⎪∠∠⎩∴∴=∠=∠=︒-∠=︒∠=∠+∠∴∠=︒=≌()故答案为:60CEB BD CE ∠=︒=;. (2)452CEB BD CE ∠︒=,=,理由如下: 在等腰三角形ABC 中,AC =BC ,90ACB ∠︒=,245AB AC CAB ∴∠︒=,= ,同理,45AD ADE DAE ∠∠︒,==,∴AE ACAD AB=,DAE CAB ∠∠=, EAC DAB ∴∠∠=, ACE ABD ∴∽ ,∴BD ADCE AE== ∴AEC ADB BD ∠∠=,,点B 、D 、E 在同一条直线上:180135ADB ADE ∴∠︒-∠︒== 135AEC ∴∠︒=45CEB AEC AED ∴∠∠-∠︒==; (3)由(2)知,ACE ABD ∽,BD ∴,在Rt ABC 中,AC =AB ∴=,①当点E 在点D 上方时,如图③, 过点A 作AP BD ⊥交BD 的延长线于P ,DE BD ⊥,PDE AED APD ∴∠∠∠==, ∴四边形APDE 是矩形, AE DE = ,∴矩形APDE 是正方形, 2AP DP AE ∴===,在Rt APB △中,根据勾股定理得,6BP ,4BD BP AP ∴-==,CE BD ∴=②当点E 在点D 下方时,如图④ 同①的方法得,AP =DP =AE =2,BP =6,∴BD =BP +DP =8,CE ∴=综上CE 的长为或.【点睛】本题是几何变换的综合题,主要考查了旋转的性质,全等三角形的判定和定理,相似三角形的判定和性质,勾股定理,等边三角形的性质,判断出三角形ACE 和三角形ABD 相似是关键.7.已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”.请利用上面信息解决以下问题:已知Rt ABC 中,AC BC =,90C ∠=︒,D 为AB 边的中点,90EDF ∠=︒,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .(1)当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图①),求证:12DEF CEF ABC S S S +=△△△; (2)当EDF ∠绕D 点旋转到DE 和AC 不垂直时,在图②和图③这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABCS 又有怎样的数量关系?请写出你的猜想,不需要证明.答案:D解析:(1)见解析;(2)图2成立,图3不成立:12DEF CEF ABC S S S -=△△△ 【分析】(1)根据等腰直角三角形和正方形的性质得到AED 、DFB △、EDF 、ECF △为全等的等腰直角三角形,据此即可证明;(2)对于图2:过点D 作DM AC ⊥,DN BC ⊥,根据中位线的性质和等量代换证得MD ND =和MDE NDF ∠=∠,结合90DME DNF ∠=∠=︒,证得DME DNF ∆≅∆,根据全等三角形的性质即可求证;对于图3:根据ASA 证明DME DNF ∆≅∆,根据全等三角形的性质即可求证. 【详解】(1)证明:连接CD∵D 为AB 边的中点,AC BC = ∴AD=CD=BD∴45DAC DCA DCB DBC ∠=∠=∠=∠=︒ 又∵DE AC ⊥,90EDF ∠=︒,90C ∠=︒, ∴四边形ECFD 为矩形 ∴∠CFD=90° 又∵∠DCF=45° ∴CF=DF∴四边形ECFD 是正方形 ∴DE=DF∴DEF CEF DEC DFC S S S S +=+△△△△又∵12DCF DBF ABC S S S +=△△△,且DCF DBF S S =△△ ∴12DEF CEF ABC S S S +=△△△ (2)图2成立,图3不成立 对于图2:过点D 作DM AC ⊥,DN BC ⊥,如图2,则90DME DNF MDN ∠=∠=∠=︒又∵90C ∠=︒ ∴DMBC ,DN AC∵D 为AB 边的中点∴根据中位线定理得到:12DN AC =,12MD BC = ∵AC=BC ∴MD=ND ∵90EDF ∠=︒∴90MDE EDN ∠+∠=︒,90NDF EDN ∠+∠=︒ ∴MDE NDF ∠=∠ 在DME ∆与DNF ∆中DME DNFMD NDMDE NDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴DME DNF ∆≅∆ ∴DME DNF S S ∆∆=∴DEF CEF DMCN DECF S S S S ∆∆==+四边形四边形∴12DMCN ABC S S =△ ∴12DEF CEF ABC S S S +=△△△对于图3: 连接DC ,在DEC ∆与DBF ∆中135DCE DBF DC DBCDE BDF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴DEC DBF ∆≅∆∴12DEF CFE DBC CFE ABC DBFEC S S S S S S ∆∆∆∆∆==+=+五边形 ∴12DEF CEF ABC S S S ∆∆∆-=. 【点睛】本题考查了全等三角形的判定和性质,中位线的性质,等腰直角三角形的性质,题目较为综合,利用作出的辅助线将不规则的三角形转化为直角三角形进行解决.8.如图1所示,在Rt ABC △中90BAC ∠=︒,AB AC =,2BC =,以BC 所在直线为x 轴,边BC 的垂直平分线为y 轴建立平面直角坐标系,将ABC 绕P 点0,1顺时针旋转.(1)填空:当点B 旋转到y 轴正半轴时,则旋转后点A 坐标为______;(2)如图2所示,若边AB 与y 轴交点为E ,边AC 与直线1y x =-的交点为F ,求证:AEF 的周长为定值;(3)在(2)的条件下,求AEF 内切圆半径的最大值.解析:(1)2,21;(2)见解析;(3)324-【分析】(1)作出图形,'''A B C 是ABC 绕 P 点0,1顺时针旋转,点B 旋转到y 轴正半轴时得到的图形,连接 BP ,CP ,根据2BC =,y 轴垂直平分BC , AB AC =,()0,1P -可证得四边形ABPC 是正方形,则有 '''2BP B PAB A B ,'0'21B B PPO,可得点 A 坐标;(2)作BPQ CPF ∠=∠,交AB 延长线于Q 点,根据四边形ABPC 是正方形,得到90QBP FCP ∠=∠=︒,BP CP =,可证BPQ CPF ASA ≌△△,得BQ CF =,QP FP =,利用ASA 再可证得QPE FPE ≌△△,得QE FE =则AEF 的周长22AB AC =+=(3)设EF m =,AE n =,Rt AEF 的内切圆半径为r ,由(2)可得22AF m n =--则2AE AF EF r +-=222n m n m+---=2m =-,当m 最小时,r 最大.得到22222n m nm 整理得:2224220nm n m,关于n的一元二次方程有解,即22244220m m化简得24280m m +-≥,利用二次函数图像可得422m ≥-或422m ≤--(不合题意,舍去)可得m 的最小值为422-,即r 的最大值为2422324,则有AEF 内切圆半径的最大值为324-.【详解】解:(1)如图示,'''A B C 是ABC 绕 P 点0,1顺时针旋转,点B 旋转到y 轴正半轴时得到的图形,连接 BP ,CP ,∵2BC =,y 轴垂直平分BC∴1BO CO ==又∵Rt ABC △中,AB AC = ∴1AO =,2AB AC ==∵()0,1P - ∴1PO =∴AO BO CO PO === ∴四边形ABPC 是正方形 ∴'''2BP B P AB A B∴'0'21B B PPO∴点A 坐标为2,21(2)如图2所示,作BPQ CPF ∠=∠,交AB 延长线于Q 点 ∵四边形ABPC 是正方形∴90QBP FCP ∠=∠=︒, BP CP = ∴BPQ CPF ASA ≌△△∴ BQ CF =,QP FP =∵点F 在直线1y x =-∴45FPE ∠=︒∴ 45BPE FPC ∠+∠=︒ ∴45BPE BPQ ∠+∠=︒∴45QPE FPE ∠=∠=︒ ∵EP EP =∴QPE FPE ASA ≌△△∴ QE FE =∴AEF 的周长AE EF AF AE QE AF =++=++AE BE BQ AF AE BE FC AF =+++=+++22AB AC =+=(3)设EF m =,AE n =,Rt AEF 的内切圆半径为 r , 由(2)可得22AF m n =-则2AE AF EFr +-=22n m n m+---=2m =∴当m 最小时,r 最大.∵在Rt AEF 中,222AE AF EF +=∴22222n m nm 整理得: 2224220nm nm ∵关于n 的一元二次方程有解∴22244220m m∴24280m m +-≥利用二次函数图像可得422m ≥-或422m ≤--(不合题意,舍去) ∴m 的最小值为422-∴r 的最大值为2422324即AEF 内切圆半径的最大值为324-. 【点睛】本题主要考查了一次函数的综合应用以及根的判别式、全等三角形的判定与性质、旋转、三角形内切圆等知识,能熟练应用相关性质是解题关键. 9.(1)ABC 和CDE △是两个等腰直角三角形,如图1,其中90ACB DCE ∠=∠=︒,连接AD 、BE ,求证:ACD △≌BCE .(2)ABC 和CDE △是两个含30°的直角三角形,中90ACB DCE ∠=∠=︒,∠=CAB CDE ∠30=︒,CD AC <,CDE △从边CD 与AC 重合开始绕点C 逆时针旋转一定角度()0180αα︒<<︒.①如图2,DE 与BC 交于点F ,交AB 于G ,连接AD ,若四边形ADEC 为平行四边形,求BGAG的值. ②若12AB =,当点D 落在AB 上时,求BE 的长.答案:A解析:(1)见解析;(2)①13BG AG =;2123sin 12cos αα+ 【分析】(1)利用SAS 证明即可;(2)①连接CG ,根据平行四边形的性质推出//AD CE ,求出120ADE ∠=︒,得到90ADC ADE CDE ∠=∠-∠=︒,根据30CAB CDE ∠=∠=︒证得A 、D 、G 、C 四点共圆,从而得到90AGC ADC ∠=∠=︒,利用直角三角形中30度角的性质求出3AG CG =, 3CG BG =,即可求出答案;②先证明ACD △∽BCE ,由此推出∠DBE=90°,得到DBE 为直角三角形,设BE a =,则3AD a =,123BD a =-,过D 点作DH AC ⊥于H ,利用30A ∠=︒得到3sin 30DH AD =︒=,由ACD α∠=,得到3sin HD aCD α==cos30sin CD aDE α==︒,由勾股定理得222DE BE BD =+,即()2222221231443243sin a a a a a a α=+-=++-,解方程求出a.【详解】(1)∵ABC 和CDE △是两个等腰直角三角形,∴AC BC =,CD CE =,ACB DCE ∠=∠, ∴∠ACB-∠DCB=∠DCE-∠DCB , ∴ACD BCE ∠=∠,在ACD △和BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴ACD △≌BCE (SAS ).(2)①连接CG ,如图所示, ∵四边形ADEC 为平行四边形, ∴//AD CE ,∴180ADE CED ∠+∠=︒,∵90903060CED CDE ∠=︒-∠=︒-︒=︒, ∴120ADE ∠=︒,∴90ADC ADE CDE ∠=∠-∠=︒, ∵30CAB CDE ∠=∠=︒, ∴A 、D 、G 、C 四点共圆, ∴90AGC ADC ∠=∠=︒, ∵30CAB ∠=︒,∴12CG AC =,3AG CG =,30BCG ∠=︒,∴3CG BG =,即33BG CG =, ∴13BG AG =;②∵90ACB DCE ∠=∠=︒, ∴ACB DCB DCE DCB ∠-∠=∠-∠, ∴ACD BCE ∠=∠, ∵30CAB CDE ∠=∠=︒,∴3AC DCBC CE==,∴ACD △∽BCE ,∴CAD CBE ∠=∠,∴90DBE DBC CBE DBC CAD ∠=∠+∠=∠+∠=︒, ∴DBE 为直角三角形,设BE a =,∴3AD a =,∴123BD a =-, 过D 点作DH AC ⊥于H ,30A ∠=︒, 则3sin 302DH AD a =︒=, 又∵ACD α∠=,∴3sin 2sin HD aCD αα==, 又在Rt CDE △中,30∠=︒CDE , ∴cos30sin CD aDE α==︒,∴在Rt BDE △中,由勾股定理得222DE BE BD =+,即()2222221231443243sin a a a a a a α=+-=++-,∴22142431440sin a a α⎛⎫--+= ⎪⎝⎭, 解得22576243576sin 28sin a αα±-=-, 即222243sin 241sin 8sin 2a ααα+-=- 2222243sin 24cos 123sin 12cos 8sin 24sin 1αααααα++==--, 故BE 的长为22123sin 12cos 4sin 1ααα+-.【点睛】此题考查等腰直角三角形的性质,三角形全等的判定及性质,旋转的性质,平行四边形的性质,四点共圆,含30度角的直角三角形的性质,相似三角形的判定及性质,锐角三角函数,是一道较难的几何综合题.10.在等腰Rt ABC △中,AB AC =、90BAC ∠=︒.(1)如图1,D ,E 是等腰Rt ABC △斜边BC 上两动点,且45DAE ∠=︒,将ABE △绕点A 逆时针旋转90后,得到AFC △,连接DF .①求证:AED AFD ≌.②当3BE =,9CE =时,求DE 的长.(2)如图2,点D 是等腰Rt ABC △斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt ADE △(E 点在直线BC 的上方),当3BD =,9BC =时,求DE 的长.答案:D解析:(1)①证明见解析;②5;(2)35或317 【分析】(1)①证明∠DAE=∠DAF=45°即可利用SAS 证明全等;②由①中全等可得DE=DF ,再在Rt △FDC 中利用勾股定理计算即可;(2)连接BE ,根据共顶点等腰直角三角形证明全等,再利用勾股定理计算即可。

专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)(原卷版)

专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)(原卷版)

专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)本专题重点分析旋转中的三类全等模型(手拉手、半角、对角互补模型),结合各类模型展示旋转中的变与不变,并结合经典例题和专项训练深度分析基本图形和归纳主要步骤,同时规范了解题步骤,提高数学的综合解题能力。

模型1.手拉手模型【模型解读】将两个三角形(或多边形)绕着公共顶点旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等。

其中:公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。

手拉模型解题思路:SAS型全等(核心在于导角,即等角加(减)公共角)。

1)双等边三角形型条件:△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。

结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。

2)双等腰直角三角形型条件:△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。

结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。

3)双等腰三角形型条件:△ABC 和△DCE 均为等腰三角形,C 为公共点;连接BE ,AD 交于点F 。

结论:①△ACD ≌△BCE ;②BE =AD ;③∠ACM =∠BFM ;④CF 平分∠AFD 。

4)双正方形形型条件:△ABCFD 和△CEFG 都是正方形,C 为公共点;连接BG ,ED 交于点N 。

结论:①△△BCG ≌△DCE ;②BG =DE ;③∠BCM =∠DNM=90°;④CN 平分∠BNE 。

例1.(2022·黑龙江·中考真题)ABC V 和ADE V 都是等边三角形.(1)将ADE V 绕点A 旋转到图①的位置时,连接BD ,CE 并延长相交于点P (点P 与点A 重合),有PA PB PC +=(或PA PC PB +=)成立;请证明.(2)将ADE V 绕点A 旋转到图②的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将ADE V 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.例2.(2023·湖南·长沙市八年级阶段练习)如图1,在Rt△ABC中,∠B=90°,AB=BC=4,点D,E分别为边AB,BC上的中点,且BD=BE.(1)如图2,将△BDE绕点B逆时针旋转任意角度α,连接AD,EC,则线段EC与AD的关系是 ;(2)如图3,DE∥BC,连接AE,判断△EAC的形状,并求出EC的长;(3)继续旋转△BDE,当∠AEC=90°时,请直接写出EC的长.例3.(2023·黑龙江·虎林市九年级期末)已知Rt△ABC中,AC=BC,∠ACB=90°,F为AB边的中点,且DF=EF,∠DFE=90°,D是BC上一个动点.如图1,当D与C重合时,易证:CD2+DB2=2DF2;(1)当D不与C、B重合时,如图2,CD、DB、DF有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当D在BC的延长线上时,如图3,CD、DB、DF有怎样的数量关系,请写出你的猜想,并加以证明.例4.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若ABC V 和ADE V 是顶角相等的等腰三角形,BC ,DE 分别是底边.求证:BD CE =;(2)解决问题:如图2,若ACB △和DCE V 均为等腰直角三角形,90ACB DCE Ð=Ð=°,点A ,D ,E 在同一条直线上,CM 为DCE V 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系并说明理由.图1 图2模型2.半角模型【模型解读】半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半思想方法:通过旋转构造全等三角形,实现线段的转化1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④∆AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。

专题6 类比探究—图形旋转中三角形全等题型(学生版)

专题6 类比探究—图形旋转中三角形全等题型(学生版)

专题6类比探究—图形旋转中三角形全等题型知识归纳几何类比探究题是近几年中招考试的必考题型,目前位于解答题的最后一题,分值为11分或12分.主要考查方式有求线段长,求角度,判断图形形状,判断两条线段的数量关系和位置关系并证明,考查知识点主要涉及特殊三角形,勾股定理,四边形的判定与性质,全等、相似三角形的判定及性质,二次函数等,综合性较强。

本专题主要对类比探究—图形旋转中三角形全等题型进行总结,对其解法进行归纳总结,所选题型为近几年期末考试中的常考题型。

解题思路总结图形的类比探究常以三角形、四边形为背景,与翻折、旋转相结合,考查三角形全等或相似的性质与判定,难度较大.此类题目第一问相对简单,后面的问题需要结合第一问的方法进行类比解答.根据其特征大致可分为:几何变换类比探究问题、旋转综合问题、翻折类问题等。

解决此类问题要善于将复杂图象分解为几个基本图形,通过添加副主席补全或构造基本图形,借助转化、方程、数形结合、分类讨论等数学思想解决几何证明问题,计算则把几何与代数知识综合起来,渗透数形结合思想,考查学生分析问题的能力、逻辑思维和推理能力.常考题型专练一、解答题1.如图1,△ABC和△DCE都是等边三角形.探究发现(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD 的长.2.在△ABC中,∠BAC=90°,点O是斜边BC上的一点,连接AO,点D是AO上一点,过点D分别作DE AB∥,DF AC∥,交BC于点E、F.(1)如图1,若点O为斜边BC的中点,求证:点O是线段EF的中点.(2)如图2,在(1)的条件下,将△DEF绕点O顺时针旋转任意一个角度,连接AD,CF,请写出线段AD和线段CF的数量关系,并说明理由.(3)如图3,若点O是斜边BC的三等分点,且靠近点B,当∠ABC=30°时,将△DEF绕点O顺时针旋转任意一个角度,连接AD、BE、CF,请求出BEAD的值.3.在等腰直角三角形ABC中,∠ACB=90°,AC=BC,D是AB边上的中点,Rt△EFG的直角顶点E在AB边上移动.(1)如图1,若点D与点E重合且EG⊥AC、DF⊥BC,分别交AC、BC于点M、N,易证EM=EN;如图2,若点D与点E重合,将△EFG绕点D旋转,则线段EM与EN的长度还相等吗?若相等请给出证明,不相等请说明理由;(2)将图1中的Rt△EGF绕点O顺时针旋转角度α(0∘<α<45∘).如图2,在旋转过程中,当∠MDC=15∘时,连接MN,若AC=BC=2,请求出写出线段MN的长;(3)图3,旋转后,若Rt△EGF的顶点E在线段AB上移动(不与点D、B重合),当AB=3AE时,线段EM与EN 的数量关系是________;当AB=m·AE时,线段EM与EN的数量关系是__________.4.(1)问题发现:如图1,在等边ABC ∆中,点D 为BC 边上一动点,//DE AB 交AC 于点E ,将AD 绕点D 顺时针旋转60︒得到DF ,连接CF .则AE 与FC 的数量关系是_____,ACF ∠的度数为______.(2)拓展探究:如图2,在 Rt ABC ∆中,90ABC ∠=︒,60ACB ∠=︒,点D 为BC 边上一动点,//DE AB 交AC 于点E ,当∠ADF=∠ACF=90°时,求AE FC 的值.(3)解决问题:如图3,在ABC ∆中,:BC AB m =,点D 为BC 的延长线上一点,过点D 作//DE AB 交AC 的延长线于点E ,直接写出当ADF ACF ABC ∠=∠=∠时AE FC 的值.5.在等边△ABC 中,点D 是BC 边上一点,点E 是直线AB 上一动点,连接DE,将射线DE 绕点D 顺时针旋转120°,与直线AC 相交于点F .(1)若点D 为BC 边中点.①如图1,当点E 在AB 边上,且DE AB ⊥时,请直接写出线段DE 与DF 的数量关系________;②如图2,当点E 落在AB 边上,点F 落在AC 边的延长线上时,①中的结论是否仍然成立?请结合图2说明理由;(2)如图3,点D 为BC 边上靠近点C 的三等分点.当:3:2AE BE =时,直接写出CF AF 的值.6.在ABCD 中,BAD ∠=α,以点D 为圆心,适当的长度为半径画弧,分别交边AD 、CD 于点M 、N ,再分别以M 、N 为圆心,大于 MN 的长为半径画弧,两弧交于点K ,作射线DK ,交对角线AC 于点G ,交射线AB 于点E ,将线段EB 绕点E 顺时针旋转α得线段EP .(1)如图1,当120α=︒时,连接AP ,线段AP 和线段AC 的数量关系为;(2)如图2,当90α=︒时,过点B 作BF EP ⊥于点F ,连接AF ,请求出∠FAC 的度数,以及AF ,AB ,AD 之间的数量关系,并说明理由;(3)当120α=︒时,连接AP ,若13BE AB =,请直接写出线段AP 与线段DG 的比值.7.在数学兴趣小组活动中,小亮进行数学探究活动.(1)△ABC是边长为3的等边三角形,E是边AC上的一点,且AE=1,小亮以BE为边作等边三角形BEF,如图(1)所示.则CF的长为.(直接写出结果,不说明理由)(2)△ABC是边长为3的等边三角形,E是边AC上的一个动点,小亮以BE为边作等边三角形BEF,如图(2)所示.在点E从点C到点A的运动过程中,求点F所经过的路径长.思路梳理并填空:当点E不与点A重合时,如图,连结CF,∵△ABC、△BEF都是等边三角形∴BA=BC,BE=BF,∠ABC=∠EBF=60°∴①∠ABE+=∠CBF+;∴∠ABE=∠CBF∴△ABE≌△CBF∴∠BAE=∠BCF=60°又∠ABC=60°∴∠BCF=∠ABC∴②______∥______;当点E在点A处时,点F与点C重合.当点E在点C处时,CF=CA.∴③点F所经过的路径长为.(3)△ABC是边长为3的等边三角形,M是高CD上的一个动点,小亮以BM为边作等边三角形BMN,如图(3)所示.在点M从点C到点D的运动过程中,求点N所经过的路径长.(4)正方形ABCD的边长为3,E是边CB上的一个动点,在点E从点C到点B的运动过程中,小亮以B为顶点作正方形BFGH,其中点F,G都在直线AE上,如图(4).当点E到达点B时,点F,G,H与点B重合.则点H所经过的路径长为.(直接写出结果,不说明理由)8.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.。

旋转中的手拉手模型—全等三角形

旋转中的手拉手模型—全等三角形

1
2
B
C
全等—手拉手模型
归纳 旋转中的“手拉手”模型----全等
顶角相等且顶点重合两个 等腰三角形
全等三角形
全等—手拉手模型

其他特殊等腰三角形“手拉手”模型
全等—手拉手模型
变式1
变式一:将例1中的△BCE绕点B旋转至如图
位置,其中AB=DB,EB=CB,∠ABD=∠EBC=α,
延长AE与CD交于H. 问:上述结论还成立吗?
全等—手拉手模型
“草长莺飞二月天,拂堤杨柳醉春烟, 儿童散学归来早,忙趁东风放纸鸢.” ——《村居》
下图是《村居》中的纸鸢(风筝),在制作时只 要保证AB=AD, BC=DC,就能使.
请用所学知识来解释这一现象
全等—手拉手模型
——旋转中的“手拉手”模型
温故而知新 全等三角形
全等三角形的性质
对应角相等 对应边相等
(选做)
3.放飞性作业
(希望大家都做)
《初中数学学习方法指导》北京师范 大学出版社
全等—手拉手模型
教师寄语
上帝忘了给我翅膀, 所以我用思维飞翔.
全等—手拉手模型
全等三角形的判定
SSS SAS ASA AAS H L (RtΔ)
全等—手拉手模型
已知:如图 CF=BE, 请根据以下要求补充一个条件
使ΔABC≌ΔDEF
一: 当∠C=∠DFE=90°时
(1)若以“SAS”为依据,补充_A_C_=D_F_
(2) 若以“ASA”为依据,补充∠_AB_C_= ∠_E (3) 若以“AAS”为依据,补充∠_A_=_∠_D_
(4)若以“HL” 为依据,补充_AB_=_DE__
二: 当 AB=DE 时

全等三角形角6090旋转 易错题难题提优专项训练试题

全等三角形角6090旋转 易错题难题提优专项训练试题

全等三角形角6090旋转 易错题难题提优专项训练试题一、全等三角形角6090旋转1.数学课上,王老师出示了问题:如图1,AC ,BD 是四边形ABCD 的对角线,若60ACB ACD ABD ADB ∠=∠=∠=∠=︒,则(1)线段BC ,CD ,AC 三者之间存在等量关系为:______________________; (2)经过思考:小丽、小明和小亮三位同学分别展示了三种正确的思路:如图2,在AC 上取一点E ,使CE CB =,连接BE ;如图3,延长CB 到E ,使BE CD =,连接AE ;如图4,将ABC ∆绕着点A 逆时针旋转60︒.在此基础上,请你选择一种合适的方法证明上述等量关系.(3)小强同学提出:如图5,如果把“60ACB ACD ABD ADB ∠=∠=∠=∠=︒”改为“45ACB ACD ABD ADB ∠=∠=∠=∠=︒”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小强提出的问题,请你写出结论,并给出证明.2.如图,在等腰ABC 中,AC =AB ,∠CAB =90°,E 是BC 上一点,将E 点绕A 点逆时针旋转90°到AD ,连接DE 、CD .(1)求证:ABE ACD △≌△;(2)当BC =6,CE =2时,求DE 的长.3.(1)如图1,在正方形ABCD 中,点E 、F 分别是BC 、CD 边上的动点,且∠EAF =45°,求证:EF =DF+BE .(2)如图2,在正方形ABCD 中,如果点E 、F 分别是CB 、DC 延长线上的动点,且∠EAF =45°,则EF 、BE 、DF 之间数量关系是什么?请写出证明过程.(3)如图1,若正方形ABCD 的边长为6,AE =35,求AF 的长.4.如图1,ABC 与CDE △都是等腰直角三角形,直角边AC ,CD 在同一条直线上,点M 、N 分别是斜边AB 、DE 的中点,点P 为AD 的中点,连接AE ,BD ,PM ,PN ,MN .(1)观察猜想:图1中,PM 与PN 的数量关系是______,位置关系是______.(2)探究证明:将图1中的CDE △绕着点C 顺时针旋转()090αα︒<<︒,得到图2,AE 与MP 、BD 分别交于点G 、H ,判断PMN 的形状,并说明理由;(3)拓展延伸:把CDE △绕点C 任意旋转,若4AC =,2CD =,请直接写出PMN 面积的最大值. 5.已知,四边形ABCD 中,,,,120,60AB AD BC CD BA BC ABC MBN ︒︒⊥⊥=∠=∠=,MBN ∠绕B 点旋转,它的两边分别交,AD DC (或它们的延长线)于E ,F .当MBN ∠绕B 点旋转到AE CF =时,如图(1),易证:AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时,在图(2)和图(3)中这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段,,AE CF EF 又有怎样的数量关系?请写出你的猜想,不需证明.6.如图,BC 为等边△ABM 的高,AB =52,点P 为射线BC 上的动点(不与点B ,C 重合),连接AP ,将线段AP 绕点P 逆时针旋转60°,得到线段PD ,连接MD ,BD . (1)如图①,当点P 在线段BC 上时,求证:BP =MD ;(2)如图②,当点P 在线段BC 的延长线上时,求证:BP =MD ;(3)若点P 在线段BC 的延长线上,且∠BDM =30°时,请直接写出线段AP 的长度.7.如图1,已知△ABC 是边长为8的等边三角形,∠EBD =30°,BE =DE ,连接AD ,点F 为AD 的中点,连接EF .将△BDE 绕点B 顺时针旋转.(1)如图2,当点E 位于BC 边上时,延长DE 交AB 于点G .①求证:BG =DE ;②若EF =3,求BE 的长;(2)如图3,连接CF ,在旋转过程中试探究线段CF 与EF 之间满足的数量关系,并说明理由.8.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE ,(1)求证:ABD ACE ≅;(2)若AF 平分DAE ∠交BC 于F ,①探究线段BD ,DF ,FC 之间的数量关系,并证明;②若3BD =,4CF =,求AD 的长,9.在Rt ABC 中,ACB =∠90°,30A ∠=︒,点D 是AB 的中点,连结CD .(1)如图①,BC 与BD 之间的数量关系是_________,请写出理由;(2)如图②,若P 是线段CB 上一动点(点P 不与点B 、C 重合),连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,请猜想BF ,BP ,BD 三者之间的数量关系,并证明你的结论;(3)若点P 是线段CB 延长线上一动点,按照(2)中的作法,请在图③中补全图形,并直接写出BF ,BP ,BD 三者之间的数量关系.10.已知90ACD ∠=︒,MN 是过点A 的直线,AC DC =,DB MN ⊥于点B ,如图(1)所示.易证BD AB 2CB +=,过程如下:过点C 作CE CB ⊥于点C ,与MN 交于点E90ACB BCD ∠+∠=︒,90ACB ACE ∠+∠=︒,BCD ACE ∴∠=∠.四边形ACDB 内角和为360︒,180BDC CAB ∴∠+∠=︒.180EAC CAB ∠+∠=︒,EAC BDC ∴∠=∠.又AC DC =,ACE DCB ∴∆≅∆,AE DB ∴=,CE CB =,ECB ∴∆为等腰直角三角形BE 2CB ∴=.又BE AE AB =+,BE BD AB ∴=+,BD AB 2CB ∴+=.(1)当MN 绕A 旋转到如图(2)所示和如图(3)所示两个位置时,BD 、AB 、CB 满足什么样关系式,请写出你的猜想,并对如图所示给予证明.(2)MN 在绕点A 旋转过程中,当30BCD ∠=︒,2BD =时,则CD =______,CB =______.【参考答案】***试卷处理标记,请不要删除一、全等三角形角6090旋转1.(1)BC CD AC +=;(2)见解析;(3)2BC CD AC +=,见解析【分析】(1)与(2)中的证明一证法一样;(2)添加不同的辅助线证明一:如图2,在AC 上取一点E ,使CE CB =,连接BE ;证明二:延长CB 到E ,使BE CD =,连接AE ;证明三:将ABC ∆绕着点A 逆时针旋转60︒,分别证明两三角形全等,再根据全等三角形的性质及等量代换即可得证;(3)先证出ABE ADC ∠=∠,再证明ABE ∆≌ADC ∆,最后利用勾股定理得出结果.【详解】(1)BC CD AC +=;(2)3种证明方法均可证明一:如图2,在AC 上取一点E ,使CE CB =,连接BE∵60ACB ∠=︒,∴BCE ∆为等边三角形,∴,60BE BC CE CBE ==∠=︒,又∵60ABD ADB ∠=∠=︒,∴ABD ∆为等边三角形,∴AB BD =,60ABE EBD DBC ∠=︒-∠=∠,在ABE ∆和DBC ∆中,AB BD ABE DBC BE BC =⎧⎪∠=∠⎨⎪=⎩,∴ABE ∆≌DBC ∆,∴AE CD =∴BC CD CE AE AC +=+=;证明二:如图3,延长CB 到E ,使BE CD =,连接AE若AC 与BD 交于O 点,∵60ABD ACD ∠=∠=︒,AOB DOC ∠=∠∴12∠=∠,∴31160ACB ∠=∠+∠=∠+︒,2260ADC ADB ∠=∠+∠=∠+︒,∴3ADC ∠=∠在AEB ∆和ACD ∆中,,3AB AD ADC BE CD =⎧⎪∠=∠⎨⎪=⎩,∴AEB ∆≌ACD ∆∴AE AC =,而60ACE ∠=︒,∴ACE ∆为等边三角形,∴CE AC =又∵CE BC BE BC CD =+=+,∴AC BC CD =+.证明三:如图4:将ABC ∆绕着点A 逆时针旋转60︒.由旋转的性质得:ADE ∆≌ABC ∆,∴AE AC =,BC DE =又∵60ACE ∠=︒,∴ACE ∆为等边三角形,∴AC CE =,∴CE CD DE CD BC =+=+,∴AC BC CD =+(3)线段BC ,CD ,AC 三者的等量关系为: 2BC CD AC +=.证明:延长CB 到E ,使BE CD =,连接AE ,∵45ABD ACD ∠=∠=︒,∴AB AD =,180454590BAD ∠=︒-︒-︒=︒∵45ACB ACD ∠=∠=︒,∴454590BCD ∠=︒+︒=︒在四边形ABCD 中,180BAD BCD ∠+∠=︒,∴180ABC ADC ∠+∠=︒又∵180ABC ABE ∠+∠=︒,∴ABE ADC ∠=∠在ABE ∆和ADC ∆中,,AB AD ABE ADC BE CD =⎧⎪∠=∠⎨⎪=⎩,∴ABE ∆≌ADC ∆,∴AE AC =,∵45ACB ∠=︒,∴45E ACB ∠=∠=︒,∴90EAC ∠=︒, ∴CE =,∵CE BC BE BC CD =+=+, ∴BC CD +=. 【点睛】不同考查了全等三角形的判定,四边形的内角和,等腰三角形的判定和性质,解本题的关键是构造全等三角形,是一道综合性较强的题目.2.(1)见解析;(2)【分析】(1)根据E 点绕A 点逆时针旋转90°到AD ,可得AD =AE ,∠DAE =90°,进而可以证明△ABE ≌△ACD ;(2)结合(1)△ABE ≌△ACD ,和等腰三角形的性质,可得∠DCE =90°,再根据勾股定理即可求出DE 的长.【详解】(1)证明:∵E 点绕A 点逆时针旋转90°到AD ,∴AD =AE ,∠DAE =90°,∵∠CAB =90°,∴∠DAC =∠EAB ,∵AC =AB ,∴△ABE ≌△ACD (SAS );(2)∵等腰△ABC 中,AC =AB ,∠CAB =90°,∴∠ACB =∠ABC =45°,∵△ABE ≌△ACD ,∴BE =CD ,∠DCA =∠ABE =45°,∴∠DCE =90°,∵BC =6,CE =2,∴BE =4=CD ,∴DE【点睛】本题考查了旋转的性质、全等三角形的判定与性质、等腰直角三角形的性质,解决本题的关键是综合运用以上知识.3.(1)见解析;(2)EF =DF ﹣BE ,见解析;(3)【分析】(1)把△ABE 绕点A 顺时针旋转90°至△ADG ,由“SAS”可证△EAF ≌△GAF ,可得出EF =FG ,则结论得证;(2)将△ABE绕点A顺时针旋转90°至△ADM,根据SAS可证明△EAF≌△MAF,可得EF =FM,则结论得证;(3)由全等三角形的性质可得AE=AG=35,EF=FG,BE=DG,由勾股定理可求DG的长,FD的长,AF的长.【详解】(1)把△ABE绕点A顺时针旋转90°至△ADG,如图1,∴∠BAE=∠DAG,AE=AG,∵∠EAF=45°,∴∠BAE+∠FAD=45°,∴∠DAG+∠FAD=45°,∴∠EAF=∠FAG,∵AF=AF,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=DF+BE;(2)结论:EF=DF﹣BE;证明:如图2,将△ABE绕点A顺时针旋转90°至△ADM,∴∠EAB=∠MAD,AE=AM,∠EAM=90°,BE=DM,∴∠FAM=45°=∠EAF,∵AF=AF,∴△EAF≌△MAF(SAS),∴EF=FM=DF﹣DM=DF﹣BE;(3)如图,由(1)可得AE =AG =35EF =FG ,BE =DG ,∵DG 2245363AG AD -=-=,∴BE =DG =3,∴EC =BC ﹣BE =3,∵EF 2=EC 2+CF 2,∴(DF+3)2=9+(6﹣DF )2,∴DF =2,∴AF 22AD DF +436+10.【点睛】本题考查了全等三角形的判定和性质,勾股定理,旋转等知识,此题为半角模型,∠EAF 是∠BAD 的一半,故命名半角模型,半角模型必旋转,再证全等即可.4.(1)PM PN =,PM PN ⊥;(2)PMN 的形状为等腰直角三角形,理由见解析;(3)PMN 的面积的最大值为92. 【分析】(1)延长AE 交BD 于点H ,易证ΔACE ≌ΔBCD ,得AE=BD ,∠CAE=∠CBD ,进而得∠BHA=90°,结合中位线的性质,得PM=12BD ,PM//BD ,PN=12AE , PN//AE ,进而得PM=PN ,PM ⊥PN ;(2)设AE 交BC 于⊙O ,易证ΔACE ≌ΔBCD ,得AE=BD ,∠CAE=∠CBD ,进而得∠BHA=90°,结合中位线的性质,得PM=12BD ,PM//BD ,PN=12AE , PN//AE ,进而得PM=PN ,PM ⊥PN ;(3)易证ΔPMN 是等腰直角三角形,PM=12BD ,当B 、C 、D 共线时,BD 的值最大,进而求解.【详解】解:(1)如图1,延长AE 交BD 于点H ,∵ΔACB 和ΔECD 是等腰直角三角形,∴AC=BC ,EC=CD ,∠ACB=∠ECD=90°,∴∠ACB+∠BCE=∠ECD+∠BCE ,∴∠ACE=∠BCD ,∴ΔACE ≌ΔBCD (SAS ),∴AE=BD ,∠CAE=∠CBD ,又∵∠AEC=∠BEH ,∴∠BHA=∠ACE=90°,∵点P 、M 、N 分别为AD 、AB 、DE 的中点,∴PM=12BD ,PM//BD ,PN=12AE ,PN//AE , ∴PM=PN ,∴PM ⊥AH ,∴PM ⊥PN .(2)如图中,设AE 交BC 于O .∵ACB △和ECD 是等腰直角三角形,∴AC BC =,EC CD =,90ACB ECD ∠=∠=︒∴ACB BCE ECD BCE ∠+∠=∠+∠∴ACE BCD ∠=∠.∴ACE BCD ≅∴AE BD =,CAE CBD ∠=∠又∵AOC BOE ∠=∠,CAE CBD ∠=∠,∴90BHO ACO ∠=∠=︒∵点P 、M 、N 分别为AD 、AB 、DE 的中点,∴12PM BD =,//PM BD ; PN AE =,//PN AE .∴PM PN =∴180MGE BHA ∠+∠=︒∴90MGE ∠=︒∴90MPN ∠=︒∴PM PN ⊥(3)PMN 的面积的最大值为92. 由(2)可知PMN 是等腰直角三角形,12PM BD =, ∴当BD 的值最大时,PM 的值最大,PMN 的面积最大,∴当B 、C 、D 共线时,BD 的最大值6BC CD =+=,∴3PM PN ==,∴PMN 的面积的最大值193322=⨯⨯=. 【点睛】 本题主要考查三角形全等的判定和性质定理,等腰直角三角形的性质和判定定理,掌握旋转全等三角形模型,是解题的关键.5.图(2)成立,图(3)不成立;图(2)中有AE CF EF +=,理由见解析;在图(3)中,有结论EF AE CF =-,理由见解析【分析】根据已知可以利用SAS 证明△ABE ≌△CBF ,从而得出对应角相等,对应边相等,从而得出∠ABE =∠CBF =30°,△BEF 为等边三角形,利用等边三角形的性质及边与边之间的关系,即可推出AE +CF =EF .同理图2可证明是成立的,图3不成立.【详解】解:∵AB ⊥AD ,BC ⊥CD ,AB =BC ,AE =CF ,在△ABE 和△CBF 中,90AB BC A C AE CF =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△CBF (SAS );∴∠ABE =∠CBF ,BE =BF ;∵∠ABC =120°,∠MBN =60°,∴∠ABE =∠CBF =30°,∴AE =12BE ,CF =12BF ; ∵∠MBN =60°,BE =BF ,∴△BEF 为等边三角形;∴AE +CF =12BE +12BF =BE =EF ; 图2成立,图3不成立.证明图2.延长DC 至点K ,使CK =AE ,连接BK ,在△BAE 和△BCK 中,90AB CB A BCK AE CK =⎧⎪∠=∠=︒⎨⎪=⎩则△BAE ≌△BCK ,∴BE =BK ,∠ABE =∠KBC ,∵∠FBE =60°,∠ABC =120°,∴∠FBC +∠ABE =60°,∴∠FBC +∠KBC =60°,∴∠KBF =∠FBE =60°,在△KBF 和△EBF 中,BK BE KBF EBF BF BF =⎧⎪∠=∠⎨⎪=⎩∴△KBF ≌△EBF ,∴KF =EF ,∴KC +CF =EF ,即AE +CF =EF .图3不成立,AE 、CF 、EF 的关系是AE ﹣CF =EF .理由如下:延长DC 至G ,使CG =AE ,同理可知,△BAE≌△BCG(SAS),∴BE=BG,∠ABE=∠GBC,∠GBF=∠GBC﹣∠FBC=∠ABE﹣∠FBC=120°+∠FBC﹣60°﹣∠FBC=60°,∴∠GBF=∠EBF,∵BG=BE,∠GBF=∠EBF,BF=BF,∴△GBF≌△EBF,∴EF=GF,∴AE﹣CF=CG﹣CF=GF=EF.【点睛】本题几何变换综合题,考查的是全等三角形的判定和性质,正确作出辅助性、掌握全等三角形的判定定理和性质定理是解题的关键.6.(1)证明见解析;(2)证明见解析;(3)AP=52【分析】(1)由旋转定理,可得AP=DP,结合∠APD=60°,可推导出△APD是等边三角形;再通过角度之间加减关系,推导出∠BAP=∠MAD,结合等边△ABM的性质,可证明△BAP≌△MAD,即完成BP=MD证明;(2)由旋转定理,可得AP=DP,结合∠APD=60°,可推导出△APD是等边三角形;再通过角度之间加减关系,推导出∠BAP=∠MAD,结合等边△ABM的性质,可证明△BAP≌△MAD,即完成BP=MD证明;(3)由△BAP≌△MAD和BC为等边△ABM的高,计算得∠DBM=60°,从而证明点D在BA的延长线上,再利用Rt△BMD和特殊角度三角函数,计算得到答案.【详解】(1)如图①,连接AD∵△ABM是等边三角形∴AB=AM,∠BAM=60°由旋转的性质可得:AP=DP,∠APD=60°∴△APD是等边三角形∴PA=PD=AD,∠PAD=∠BAM=60°∴∠BAP=∠BAC﹣∠CAP,∠MAD=∠PAD﹣∠CAP ∴∠BAP=∠MAD∵AB AMBAP MADAP AD=⎧⎪∠=∠⎨⎪=⎩∴△BAP≌△MAD(SAS)∴BP=MD;(2)如图②,连接AD∵△AMB是等边三角形∴AB=AM,∠BAM=∠AMB=60°由旋转的性质可得:AP=DP,∠APD=60°∴△APD是等边三角形∴PA=PD=AD,∠PAD=∠BAM=60°∴∠BAP=∠BAC+∠CAP,∠MAD=∠PAD+∠CAP ∴∠BAP=∠MAD在△BAP与△MAD中∵AB AMBAP MADAP AD=⎧⎪∠=∠⎨⎪=⎩∴△BAP≌△MAD(SAS)∴BP=MD;(3)∵BC为等边△ABM的高∴∠ABC=30°∵△BAP≌△MAD∴∠ABP=∠AMD=30°∴∠BMD=∠AMB+∠AMD=90°∴∠BMD=90°∵∠BDM=30°∴∠DBM=60°∴点D在BA的延长线上如图③∵∠BDM=30°,∠BMD=90°∴BD=2BM=2∴AD=BD﹣AB=2∵PA=PD=AD∴AP=AD=2.【点睛】本题考察了全等三角形、旋转、特殊角度三角函数等知识点;求解的关键在于结合图形,熟练掌握运用等边三角形、旋转的性质,推导证明全等三角形和直角三角形,并运用特殊角度三角函数计算得到答案.7.(1)①见解析;②2;(2)EC3EF,EC⊥EF,见解析【分析】(1)①想办法证明△BEG是等边三角形即可解决问题;②利用三角形的中位线定理求出AG,再求出BG即可解决问题.(2)结论:EC3,EC⊥EF.延长DF交CA的延长线于M,延长FE到K,使得EK=EF,连接AK,CK,CF,在FM上截取FN=DF,连接BN.证明图中,红色三角形全等,推出△CFK是等边三角形即可解决问题.【详解】(1)①证明:如图2中,∵△ABC是等边三角形,∴∠ABC=60°,∵EB=ED,∴∠EBD=∠EDB=30°,∴∠GBD=∠ABC+∠EBD=90°,∴∠BGD=60°,∴△BEG是等边三角形,∴BG=BE,∴BG=ED.②解:由①可知,BG=GE=BE=DE,又∵AF=DF,∴AG=2EF=6,∵AB=8,∴BG=AB﹣AG=8﹣6=2,∴BE=BG=2.(2)结论:EC3,EC⊥EF.理由:如图2中,延长DF交CA的延长线于M,延长FE到K,使得EK=EF,连接AK,CK,CF,在FM上截取FN=DF,连接BN.∵FB=FD=FN,∴∠DBN=90°,∵∠DBF=30°,∴∠FBN=60°,∴△FBN是等边三角形,∴BN=BF,∵∠ABC=∠NBF=60°,∴∠ABN=∠CBF,∵AB=BC,∴△ABN≌△CBF(SAS),∴AN=CF,∵FN=DF,AE=ED,∴EF∥AN,AN=2EF,∵2EF=FK,∴AN=FK,AN∥FK,∴四边形ANFK是平行四边形,∴AK∥DM,AK=FN=BN,∴∠CAK=∠M,∵∠AOM=∠BON,∠OAM=∠BNO=120°,∴∠M=∠OBN,∴∠ABN=∠CAK,∵AB=AC,∴△ABN≌△CAK(SAS),∴AN =CK ,∴CF =CK =FK ,∴△CFK 是等边三角形,∠CFE =60°∵2EF =FK ,∴CE ⊥FK ,∵∠EFC =60°,∴tan ∠CFE =EC EF =3, ∴EC =3EF ,EC ⊥EF .【点睛】本题主要考查了三角形的综合应用,准确应用等边三角形的性质进行分析是关键. 8.(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【分析】(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.【详解】解:(1)∵AE AD ⊥∴90DAC CAE ∠+∠=︒∵90BAC ∠=︒∴90DAC BAD ∠+∠=︒∴BAD CAE ∠=∠∴在ABD △和ACE △中 AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌ACE △()SAS(2)①结论:222BD FC DF +=证明:连接EF ,如图:∵ABD △≌ACE △∴B ACE ∠=∠,BD CE =∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒∴222FC CE EF +=∴222FC BD EF +=∵AF 平分DAE ∠∴DAF EAF ∠=∠∴在DAF △和EAF △中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴DAF △≌EAF △()SAS∴DF EF =∴222FC BD DF +=即222BD FC DF +=②过点A 作AG BC ⊥于点G ,如图:∵由①可知222223425DF BD FC =+=+= ∴5DF =∴35412BC BD DF FC =++=++=∵AB AC =,AG BC ⊥ ∴1112622BG AG BC ===⨯= ∴633DG BG BD =-=-= ∴在Rt ADG 中,22223635AD DG AG =+=+=故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【点睛】本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.9.(1)BC BD =,理由见解析;(2)BF BP BD +=,证明见解析;(3)BF BP BD +=.【分析】(1)利用含30的直角三角形的性质得出12BC AB =,即可得出结论; (2)同(1)的方法得出BC BD =进而得出BCD ∆是等边三角形,进而利用旋转全等模型易证DCP DBF ∆≅∆,得出CP BF =即可解答;(3)同(2)的方法得出结论.【详解】解:(1)90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,故答案为:BC BD =;(2)BF BP BD +=,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠-∠=∠-∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中, DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,DCP DBF ∴∆≅∆,CP BF ∴=,CP BP BC +=,BF BP BC ∴+=,BC BD =,BF BP BD ∴+=;(3)如图③,BF BD BP =+,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠+∠=∠+∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中, DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,DCP DBF ∴∆≅∆,CP BF ∴=,CP BC BP =+,BF BC BP ∴=+,BC BD =,BF BD BP ∴=+.【点睛】此题是三角形综合题,主要考查了含30的直角三角形的性质,等边三角形的判定,全等三角形的判定和性质,旋转的性质,解本题的关键是判断出DCP DBF ∆≅∆,是一道中等难度的中考常考题.10.(1)详见解析;(2)2CD =,31CB =31【解析】【分析】 ()1过点C 作CE CB ⊥于点C ,与MN 交于点E ,证明ACE ≌DCB ,则ECB 为等腰直角三角形,据此即可得到2BE CB =,根据BE AB AE =-即可证得;()2过点B 作BH CD ⊥于点H ,证明BDH 是等腰直角三角形,求得DH 的长,在直角BCH 中,利用直角三角形中30的锐角所对的直角边等于斜边的一半,即可求得.【详解】解:()1如图()2:2AB BD CB -=.证明:过点C 作CE CB ⊥于点C ,与MN 交于点E ,90ACD ∠=, 90ACE DCE ∠∠∴=-,90BCD ECD ∠∠=-,BCD ACE ∠∠∴=.DB MN ⊥,90CAE AFC ∠∠∴=-,90D BFD ∠∠=-,AFC BFD ∠∠=,CAE D ∠∠∴=,又AC DC =,ACE ∴≌DCB ,AE DB ∴=,CE CB =,ECB ∴为等腰直角三角形, 2BE CB ∴=.又BE AB AE =-,BE AB BD ∴=-, 2AB BD CB ∴-=.如图()3:2BD AB CB -=.证明:过点C 作CE CB ⊥于点C ,与MN 交于点E ,90ACD ∠=, 90ACE ACB ∠∠∴=+,90BCD ACB ∠∠=+,BCD ACE ∠∠∴=.DB MN ⊥, 90CAE AFB ∠∠∴=-,90D CFD ∠∠=-,AFB CFD ∠∠=,CAE D ∠∠∴=,又AC DC =,ACE ∴≌DCB ,AE DB ∴=,CE CB =,ECB ∴为等腰直角三角形, 2BE CB ∴=.又BE AE AB =-,BE BD AB ∴=-, 2BD AB CB ∴-=.()2MN 在绕点A 旋转过程中,有两种情况:i .如图(1):易证ACE ≌DCB ,CE CB =,ECB ∴为等腰直角三角形,45AEC CBD ∠∠∴==,过D 作.DH CB ⊥则DHB 为等腰直角三角形.2BD BH =,1BH DH ∴==.直角CDH 中,30DCH ∠=,22CD DH ∴==,3CH =31CB CH HB ∴=+=ii .如图(2):过D 作DH CB ⊥交CB 延长线于H .同理可得,2CD =,31CB CH HB =-=.【点睛】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,全等三角形的性质是全等三角形的对应边相等,对应角相等.。

三角形旋转全等常见模型

三角形旋转全等常见模型

1•绕点型(手拉手模型)(1 )自旋转:自旋转构造放方法:①遇60°旋60°,构造等边三角形;②遇90°旋90°,构造等腰直角三角形;③遇等腰旋转顶角,构造旋转全等;④遇中点180°,构造中心对称。

(2)共旋转(典型的手拉手模型)例1、在直线ABC的同一侧作两个等边三角形4ABD和aBCE,连接AE与CD,证明:(1)A ABE^A DBC(2)) AE=DC(3)AE与DC的夹角为60。

(4)A AGB^A DFB(5)A EGB^A CFB(6)BH 平分N AHC(7)GFllAC变式练习1、如果两个等边三角形4ABD和aBCE,连接AE与CD,证明:(1) A ABE^A DBC(2 ) AE=DC(3)AE与DC的夹角为60。

(4)AE与DC的交点设为H,BH平分N AHC变式练习2、如果两个等边三角形MBD和aBCE,连接AE与CD,证明:⑴MBE空4DBC(2)AE=DC(3)AE与DC的夹角为60。

(4)AE与DC的交点设为H,BH平分N AHC(1)如图1,点C是线段AB上一点,分别以AC, BC为边在AB的同侧作等边MCM和4BN,连接AN,BM .分别取BM , AN的中点E,F,连接CE,CF,EF .观察并猜想^CEF的形状,并说明理由.(2)若将(1)中的“以AC, BC为边作等边MCM和482 改为“以AC, BC为腰在AB的同侧作等腰4ACM和4BN,〃如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由.例4、例题讲解:1.已知^ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F逆时针排列),使NDAF=60°,连接CF.⑴如图1,当点D在边BC上时,求证:①BD=CF ,②AC=CF+CD.(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A •钝角三角形B •直角三角形C •等边三角形D •非等腰三角形七年级数学下---全等三角形【1】如图,点C 为线段AB 上一点,ACM 、 CBN 是等边三角形. 请你证明:⑴ AN BM ;(2) DE II AB ;(3) CF 平分 AFB .【2】如图,点C 为线段AB 上一点,ACM 、 CBN 是等边三角形,D 是AN 中点,E 是BM 中点, 求证: CDE 是等边三角形.【3】如下图,在线段AE 同侧作两个等边三角形 ABC 和CDE ( ACE 120°,点P 与点M 分别是 线段BE 和AD 的中点,贝U CPM 是AEAE【4】如图,等边三角形 ABC 与等边DEC 共顶点于C 点.求证:AE BD .【5】如图,D 是等边 ABC 内的一点,且 BD AD , BP AB , DBP DBC ,问 BPD 的度数是 否一定,若一定,求它的度数;若不一定,说明理由.【9】如图所示,ABC 是边长为1的正三角形,BDC 是顶角为120的等腰三角形,以D为顶点作【6】如图,等腰直角三角形ABC 中,Z B 90,AB a ,O 为AC 中点,EO OF .求证:BE BF为定值. 【7】在等腰Rt ABC 的斜边AB 上取两点M 、N ,使则以x 、m 、 n 为边长的三角形的形状是(MCN 45,记 AM m ,MN )。

A .锐角三角形 B .直角三角形BN n ,C .钝角三角形D .随 x 、m 、 n 的变化而变化C一个60的MDN,点M、N分别在AB、AC上,求AMN的周长。

【8】请阅读下列材料:已知:如图1在Rt ABC中,BAC 90 , AB AC ,点D、E分别为线段BC上两动点,若DAE 45 •探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把AEC绕点A顺时针旋转90,得到ABE,连结ED,使问题得到解决.请你参考小明的思路探究并解决下列问题:⑴猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;⑵ 当动点E在线段BC上,动点D运动在线段CB延长线上时,如图2,其它条件不变,⑴中探究的结论是否发生改变?请说明你的猜想并给予证明.图1【12】平面上三个正三角形ACF , ABD , BCE 两两共只有一个顶点,求证:EF 与CD 平分.【10】在等边ABC 的两边AB , AC 所在直线上分别有两点 M , N , D 为ABC 外一点,且 MDN 60, BDC 120 , BD CD ,探究:当点 M , N 分别爱直线 AB ,AC 上移动时,BM ,NC ,MN 之间的数量关系及⑴如图①,当点M ,N 在边AB ,AC 上,且DM=DN时,BM ,NC ,MN 之间的数量关系式此时L =⑵如图②,当点M , N 在边AB ,AC 上,且DMDN 时,猜想(1)问的两个结论还成立吗?写出AMN 的周长与等边 ABC 的周长L 的关系。

图【11】(1)如图,在四边形ABCD 中,AB = AD ,ZB=ZD = 90,E 、F 分别是边BC 、CD 上的点, 且ZEAF= - /BAD .求证:EF = BE FD 。

2你的猜想并加以证明;⑶如图③,当点M , N 分别在边AB , CA 的延长线上时,若AN=x ,贝U Q =ABC 、 CDE 、 EHK 都是等边三角形,且 A 、D 、K 共线,AD DK .求证:HBD 也是等边三角形.【13】已知:如 BCE(2)如图,在四边形 ABCD 中,AB = AD ,/B+ ZD = 180 , E 、F 分别是边BC 、CD 上的点,且ZEAF= - /BAD ,(1)中的结论是否仍然成立?不用证明.2面积。

求证:AD 平分 CDE .相等的理由.【14】如图所示,在五边形ABCDE 中,B E90 ,AB CD AE BC DE 1,求此五边形的【15】 在五边形ABCDE 中,已知 AB AE , BC DE CD ,ABCAED 180°,连接 AD.【16】如图,已知ABC 和ADE 都是等边三角形,B 、C 、D 在一条直线上,试说明CE 与AC CDD实用标准文案【17】在梯形ABCD 中,AB //CD ,A 90,AB 2,BC 3,CD 1,E 是 AD 中点,试判断 EC 与EB 的位置关系,并写出推理过程.【18】在等腰直角 ABC 中,ACB 90°, AC BC , M 是AB 的中点,点P 从B 出发向C 运动,MQ MP 交AC 于点Q ,试说明 MPQ 的形状和面积将如何变化.【19】等边ABD 和等边CBD 的边长均为1,E 是BE AD 上异于A D 的任意一点,F 是CD 上 点,满足AECF 1,当E、F移动时,试判断BEF 的形状.BC答案:【1】(1): ACM、CBN是等边三角形,••• MC AC , CN CB , ACN•ACN也 MCB , • AN BM ;⑵由ACN也 MCB易推得NDC也 BEC , 所以CD CE , 又MCN 60°,进而可得DEC为等边三角形.易得DE II AB .⑶过点C作CG AN于G , CH BM于H,由ACN也MCB ;禾【」用AAS进而再证BCH也 NCD,可得AFC BFC,故CF平分AFB .【21:ACN 也 MCB,•AN BM,ABM ANC ;又:。

、E 分别是AN、BM 的中点,•BCE也 NCD,.・・CE CD,BCE NCD ;•DCE NCD NCE BCE NCE NCB 60 ; • CDE 是等边三角形【3】易得ACD也BCE .所以BCE可以看成是ACD绕着点C顺时针旋转60而得到的.又M为线段AD中点,P为线段BE中点,故CP就是CM绕着点C顺时针旋转60°而得.所以CP CM 且,PCM 60°,故CPM是等边三角形,选C.【41:ABC是等边三角形,• ACB 60 , AC BC .• BCD DCA 60,同理ACE DCA 60 , DC EC . • BCD ACE在BCD与ACE 中,BC ACBCD ACE • BCD 也 ACE , • BD AE .DC EC【5】连接CD ,将条件BD AD , BP AB这两个条件,易得ACD也BCD ( SSS), 得BCDACD - ACB 30 ,2由BP AB BC , DBP DBC , BD BD (公共边),知BDP也 BDC(SAS),.'. BPD BCD 30 . 故BPD的度数是定值.MCB【6】连结OB 由上可知, Z1 2 90 ,2 Z3 90° , 13,而 Z4 C 45 , OBOC .• OBE 也 OCF , • BE FC ,• BE BF CF BFBC a .【7】如图,将 CBN 绕点C 顺时针旋转 90 , 得CAD ,连结 MD ,贝U AD BN n , CDCN,Z ACD Z BCN , -ZMCDZACM ZACDACM Z BCN90° 45° 45°MCN .二 MDC 也 MNC ,:MDMN x 又易得 DAM 45° 45 90°,•在Rt AMD 中, 又T AB AC , •• AF AC ; T FAE FAD DAEFAD 45 ;EACBACBAE90DAE DAB 45 DAB ; • FAE EAC ;又T AE AE ;• -AFE 也 ACE ; -FEEC , AFE ACE 45 ;AFD ABD ' 180 ABC 135 ;•DFE AFD AFE 135 45 90 ;• ••在Rt DFE 中; 2 DF 2 2 口仃 2 2 2 FE DE 即 DE BD EC ;【9】如图所示,延长 AC 至U E 使CE BM . 在BDM 与CDE 中,因为BD CD ,MBDECD 90°,BMCE ,所以 BDM 也 CDE ,故MD 二 AFD 也FAD BAD , AFD ABD ; ED .ABD ; • AF AB , FD DB ; 有 m 2 n 2 x 2,故应选(B)【8 】(1) DE 2 BD 2 EC 2证明:根据 AEC 绕点A 顺时针旋转90得到 ABE ;二 AEC 也 ABE• BE EC , AE AE , C ABE ,EAC EAB ;在 Rt ABC 中;T AB AC ;• •• ABC ACB 45 ; • ABC ABE 90 ;即2 2 2EBD 90 ;• EB BD ED ; 又I DAE 45 ; • BAD EAC 45 ・ ・ 2AED ; -DE DE ;• • DE ⑵关系式 DE 2 BD 2 EC 2仍然成立;证明:将ADB 沿直线AD 对折,得 AFD ,连 FEEAB 7EC BAD 45 ;即 EAD 45 ;2BD因为BDC 120°, MDN 60°,所以BDM NDC 60° .又因为BDM CDE ,所以MDN EDN 60°.在MND 与END 中,DN DN , MDN EDN 60°, DM DE , 所以MND也 END,贝U NE MN,所以AMN的周长为2 .【10】BM+NC=MN ;Q-L 3⑵猜想:仍然成立;证明:如图,延长AC至E,使CE=BM,连接DE; Q BD CD,且BDC 120,DBC DCB 30 ;由ABC是等边二角形,MBD NCD 90,MBD 也ECD (SAS) DM DE, BDM CDE,EDN BDC MDN 60 ;在MDN 与EDN 中;DM DEMDN EDN MDN也EDN (SAS);MN NE NC BM ;DN DNAMN的周长Q AM AN MN =(AM BM) (AN NC) = AB AC 2AB 7Q - 2而等边ABC的周长L 3AB ;L 3 ;⑶2X 3L;【11 】证明:延长EB到G,使BG=DF,联结AG . tzABG = /ABC= ZD = 90,AB = AD,1二ABG 也 ADF .「•AG = AF, 1 2 .二 1 3 2 3 EAF BAD .2•••zGAE= ZEAF .又AE = AE,「AEG 也 AEF . ^EG= EF. vEG=BE+BG . AEF= BE + FD ⑵(1)中的结论EF BE FD仍然成立.【12】连接DE与DF ;DBA EBC,BAD CAF …DBE ABC,BAC DAF ;DB AB• ••在DBE 与ABC 中;DBE ABC ; /. DBE 也ABC (SAS) ; A DE CA FCBE BCDA BA在DFA 与BCA 中DAF BAC ;• DFA 也BCA(SAS) ; • DF BC EC ;AF AC•DECF为平行四边形,• EF , CD互相平分.【13】连结EB,V CE CD , CE EA , BE AD,所以BE AD,并且BE与AD的夹角为60 ,延长EB 交AK 于M,贝U EBH 360 BHD HDE BED 300 HDM MDE MED180 HDM 180 60 MDE MED 180 HDM HDK .又因为HK AD BE , BH HD •所以BEH 也 DKH •所以HK HE,EHD EHD DHK BHE .【14】连接AF,则发现ABC也AEF,且FD 1,AF AC,AE AB,ADF是底、高各为1的三角形,其面积为1,而ACD与AFD全等,从而可知此五边形的面积为1 .2【15】连接AC .由于AB AE , ABC AED 180° •我们以A 为中心, 将ABC 逆时针旋转到AEF 的位置.因AB AE ,所以B 点与E 点重合,而 AEF AEDABC AED 180°, 所以D 、E 、F 在一条直线上,C 点旋转后落在点F 的位置, AF AC , EF BC . 所以DF DE EF DE BC CD .在 ACD 与AFD 中,因为AC AF ,CD FD , AD AD ,故ACD 也AFD ,因此 ADC ADF ,即AD 平分 CDE . 【16】 • ••CE 【17】 答案:••• AC AB ,BD ;又:BD BC CAE BAD CD AC CD ;答案:延长 BE 交CD 延长线于点 ,AE • CE AD AC CD ; F . T E 是 AD 中点,• DE AE , FE••• AB II CD , A 90 ,二 EDF EAB 90 , ABE DFE 在AEB 和FED 中,ABE DFEEAB EDF ;二 AEB也 FED , /• FE BE ;又:AB 2, BC 3,CD 1 , /. CF BCAE DEFC BC在FCE和BCE中,••- CE CE ;••• FCE 也 BCE,二 CE EBFE BE【18】答案:连接CM .因为AC BC且ACB 90°,所以 B 45° .因为M是AB的中点,所以AMC BMC 90°,ACM 45°且CM BM,贝U ACM B .因为MQ MP,所以QMC 90°CMP PMB ,所以QCM也PBM,所以QM PM •因此MPQ是等腰直角三角形,在P的运动过程中形状不变.MPQ的面积与边MP的大小有关.当点P从B出发到BC中点时,面积由大变小;当P是BC中点时,三角形的面积最小;P继续向点C运动时,面积又由小变大.【19】答案:由条件AE CF 1,且DF CF 1,得AE DF .因为AB DB, A BDF 60°,所以ABE也 DBF,因此BE BF,ABE DBF .因为EBF EBD DBF EBD ABE ABD 60°,所以BEF为等边三角形.。

相关文档
最新文档