关于矩阵的Kronecker积的一些性质

合集下载

kronecker product 解方程

kronecker product 解方程

kronecker product 解方程1. 引言在数学和计算机科学领域,kronecker product(克罗内克积)是一种常见的线性代数运算,它在解决方程组和矩阵运算中起着重要的作用。

本文将介绍kronecker product的基本概念,以及它在解方程中的应用。

2. kronecker product的定义kronecker product是指两个矩阵的乘积运算,其定义如下:设A是一个m×n的矩阵,B是一个p×q的矩阵,那么它们的kronecker product记作A⊗B,它是一个mp×nq的矩阵,其中每个元素是A矩阵中的元素乘以B矩阵中的所有元素。

3. kronecker product的性质- 结合律:(A⊗B)⊗C = A⊗(B⊗C)- 分配律:A⊗(B+C) = A⊗B + A⊗C- 数乘结合律:k(A⊗B) = (kA)⊗B = A⊗(kB),其中k为一个常数 - 归一性质:对于单位矩阵I,有I⊗A = A⊗I = A4. kronecker product在解方程中的应用kronecker product在解方程中起着重要的作用,通过使用kronecker product,我们可以将一个大型方程组拆分成较小的子方程组,从而简化求解过程。

5. 示例假设我们要解以下的线性方程组:Ax = b其中A是一个m×n的矩阵,x是一个n维向量,b是一个m维向量。

我们可以使用kronecker product将该方程组转化成一个更简单的形式。

我们将A分解为两个矩阵A1和A2,分别是p×q和r×s的矩阵,即A = A1⊗A2。

我们可以将x分解为两个向量x1和x2,分别是q维和s维的向量,即x = [x1;x2]。

同样地,b也可以分解为两个向量b1和b2,分别是p维和r维的向量,即b = [b1;b2]。

将原方程组改写为:(A1⊗A2)x = b(A1⊗A2)(x1⊗x2) = b(A1x1)⊗(A2x2) = bA1x1 = b1A2x2 = b2这样,我们将原方程组拆分成了两个较小的子方程组,分别是A1x1 = b1和A2x2 = b2。

Kronecker积与矩阵方程

Kronecker积与矩阵方程
H i, j= 0 l
= = =
i, j= 0 l
H i j c (P ⊗ Q) (A ⊗ B )(P ⊗ Q) ∑ ij H i H j c (P A P) ⊗ (Q B Q) ∑ i= 0
∑ cij A 1 ⊗ B j = f(A 1 ,B 1 )
i j
从上面可以看出 f(A,B)与f(A 1 ,B 1 )具有完全相同的特征 值 并且,f(A 1 ,B 1 )是上三角矩阵
例题:设 ⎡1 0 ⎤ A=⎢ ⎥,B = [1 − 2] 1 2 ⎣ ⎦ 则 ⎡B 0 ⎤ ⎡1 A ⊗B = ⎢ =⎢ ⎥ ⎣B 2B ⎦ ⎣1 ⎡1 B ⊗ A = [A − 2A ] = ⎢ ⎣1 −2 0 0 ⎤ − 2 2 − 4⎥ ⎦ 0 −2 0 ⎤ ≠ A ⊗B 2 − 2 − 4⎥ ⎦
T
(5)(A ⊗ B)(C ⊗ D) a 12 B " a 1n B ⎤ ⎡c 11 D c 12 D " ⎡a 11 B ⎥ ⎢c D c D " ⎢a B a B a B " 22 21 22 2n ⎥ ⎢ 21 =⎢ ⎢ # # # # ⎥⎢ # ⎥⎢ ⎢ c n2 D " a B a B a B " m2 mn ⎦ ⎣c n1 D ⎣ m1 n ⎡ n ⎤ a c BD a c BD " ∑ 1k ks ⎥ ⎢ ∑ 1k k1 k =1 k =1 ⎢ ⎥ =⎢ # # # ⎥ n n ⎢ a c BD " a mk c ks BD ⎥ ∑ ∑ mk k1 ⎢ k =1 ⎥ k =1 ⎣ ⎦ n ⎡ n ⎤ a c a c " ∑ 1k ks ⎥ ⎢ ∑ 1k k1 k =1 k =1 ⎢ ⎥ =⎢ # # # ⎥ ⊗(BD) n n ⎢ a c " ∑ a mk c ks ⎥ ∑ mk k1 ⎢ k =1 ⎥ k =1 ⎣ ⎦ = (AC) ⊗(BD) c 1s D ⎤ c 2s D ⎥ ⎥ # ⎥ ⎥ c ns D ⎦

-矩阵的Kronecker乘积的性质与应用

-矩阵的Kronecker乘积的性质与应用

摘要按照矩阵乘法的定义,我们知道要计算矩阵的乘积AB,就要求矩阵A的列数和矩阵B的行数相等,否则乘积AB是没有意义的。

那是不是两个矩阵不满足这个条件就不能计算它们的乘积呢本文将介绍矩阵的一种特殊乘积BA ,它对矩阵的行数和列数的并没有具体的要求,它叫做矩阵的Kronecker积(也叫直积或张量积)。

本文将从矩阵的Kronecker积的定义出发,对矩阵的Kronecker积进行介绍和必要的说明。

之后,对Kronecker积的运算规律,可逆性,秩,特征值,特征向量等性质进行了具体的探究,得出结论并加以证明。

此外,还对矩阵的拉直以及矩阵的拉直的性质进行了说明和必要的证明。

矩阵的Kronecker积是一种非常重要的矩阵乘积,它应用很广,理论方面在诸如矩阵方程的求解,矩阵微分方程的求解等矩阵理论的研究中有着广泛的应用,实际应用方面在诸如图像处理,信息处理等方面也起到重要的作用。

本文讨论矩阵的Kronecker积的性质之后还会具体介绍它在矩阵方程中的一些应用。

关键词:矩阵;Kronecker积;矩阵的拉直;矩阵方程;矩阵微分方程Properties and Applications of matrix KroneckerproductAbstractAccording to the definition of matrix multiplication, we know that to calculate the matrix product AB, requires the number of columns of the matrix A and matrix B is equal to the number of rows, otherwise the product AB makes no is not two matrices not satisfy this condition will not be able to calculate their product doThis article will describe a special matrix product BA , the number of rows and columns of a matrix and its no specific requirements, it is called the matrix Kronecker product (also called direct product or tensor product).This paper will define the matrix Kronecker product of view, the Kronecker product matrix are introduced and the necessary instructions. Thereafter, the operation rules Kronecker product, the nature of reversibility, rank, eigenvalues, eigenvectors, etc. specific inquiry, draw conclusions and to prove it. In addition, the properties of the stretch of matrix and its nature have been described and the necessary proof.Kronecker product matrix is a very important matrix product, its use is very broad, theoretical research, and other matrix solving differential equations, such as solving the matrix equation matrix theory has been widely applied in practical applications such as image processing aspects of information processing, also play an important role. After the article discusses the nature of the matrix Kronecker product it will introduce a number of specific applications in the matrix equation. Keywords:Matrix; Kronecker product; Stretch of matrix; Matrix equation; Matrix Differential Equations目录摘要 ........................................................................ I Abstract ................................................................... II 第一章 矩阵的Kronecker 积 . (1)矩阵的Kronecker 积的定义 ................................................ 1 矩阵的Kronecker 积的性质 ................................................ 1 第二章 Kronecker 积的有关定理及推论 .......................................... 6 第三章 矩阵的拉直 (9)矩阵的拉直的定义 ......................................................... 9 矩阵的拉直的性质 ......................................................... 9 第四章 矩阵的Kronecker 积与矩阵方程 .. (11)矩阵的Kronecker 积与Lyapunov 矩阵方程 ................................... 11 矩阵的Kronecker 积与一般线性矩阵方程 .................................... 13 矩阵的Kronecker 积与矩阵微分方程 ........................................ 14 参考文献.................................................................... 16 致谢 .. (18)符号说明W a W a 属于集合元素nm ij a A ⨯=)( 矩阵的记法列元素的行为以n m j i a ij⨯ij A )( 列的元素行的矩阵j i AT A 的转置矩阵A H A 的共轭转置矩阵A1-A 的逆矩阵矩阵A→A 按行拉直得到的列向量矩阵AA det 的行列式方阵AtrA 的主对角元素之和的迹,方阵A A)(A rank 的秩矩阵A)(A λ 的特征值方阵An I 阶单位矩阵nR 实数域 C 复数域n C 维复向量的全体n n m C ⨯ 复矩阵全体n m ⨯O 零矩阵B A ⊗ 的和矩阵B A Kronecker 积第一章 矩阵的Kronecker 积矩阵的Kronecker 积的定义定义设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,定义A 和B 的Kronecker 积(或直积,张量积)B A ⊗为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B a B a B a B a B a B a B a B a B a B A mn m m n n 212222111211 可以看出,其结果是一个)()(nq mp ⨯矩阵,同时也是一个以B a ij 为子块的分块矩阵.例 设⎥⎦⎤⎢⎣⎡-=1201A ,[]31-=B ,则 ⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡-=⊗316200312B B O BB A []⎥⎦⎤⎢⎣⎡---=-=⊗361203013A A A B 由此可见,B A ⊗与A B ⊗具有相同的阶数,但是它们并不相等,也就是说,Kronecker 积不满足交换律.矩阵的Kronecker 积的性质虽然Kronecker 积不满足交换律,但是具有以下一些性质: 性质 设矩阵n m C A ⨯∈,矩阵q p C O ⨯∈,则O O A A O =⊗=⊗(这个O 为)()(nq mp ⨯矩阵).证明:略.性质 设k 为任一常数,矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B A k kB A B kA ⊗=⊗=⊗.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n ka ka ka ka ka ka ka ka ka kA 212222111211, 根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B kA mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka kB a kB a kB a kB a kB a kB a kB a kB a kB a kB A mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, 即)(B A k B kA ⊗=⊗,)()(B A k kB A ⊗=⊗. 所以)()()(B A k kB A B kA ⊗=⊗=⊗.性质 设A ,B 为同阶矩阵(同阶是为了可以做加法),则C B C A C B A ⊗+⊗=⊗+)(,B C A C B A C ⊗+⊗=+⊗)(.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n b b b b b b b b b B 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=+mn mn m m m m n n n n b a b a b a b a b a ba b a b a b a B A221122222221211112121111,根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗+C b a C b a C b a C b a Cb aC b a C b a C b a C b a C B A mn mn m m m m n n n n )()()()()()()()()()(221122222221211112121111*,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C a C a C a C a C a C a C a C a C a C A mn m m n n 212222111211 *, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C b C b C b C b C b C b C b C b C b C B mn m m n n 212222111211 *,由*,*得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C A mn mn m m m m n n n n 221122222221211112121111 *, 由*,*可得:C B C A C B A ⊗+⊗=⊗+)(.同理设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n c c c c c cc c c C 212222111211可证:B C A C B A C ⊗+⊗=+⊗)(.性质 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s r C F ⨯∈,则)()(F B A F B A ⊗⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⊗⊗⊗⊗⊗⊗⊗⊗⊗=⊗⊗)()()()()()()()()()(212222111211F B a F B a F B a F B a F B a F B a F B a F B a F B a F B A mn m m n n)(212222111211F B A F B a B a B a B a B a B a B a B a B a mn m m n n ⊗⊗=⊗⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 得证.性质设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s n C F ⨯∈,矩阵t q C D ⨯∈,则)()())((BD AF D F B A ⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=ns n n s s f f f f f f f f f F212222111211, 则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗⊗D f D f Df D f D f Df D f D f D f B a B a B a B a B a B a B a B a B a D F B A ns n n s s mn m m n n212222111211212222111211))(()()()()()()()()()()()(112111112211211121111BD AF BD f a BD f a BD f a BD c a BD f a BD f a BD f a BD f a BD f a nk ks mk n k k mk n k k mk nk ks k n k k k n k k k n k ks k n k k k n k k k ⊗=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑∑∑∑=========得证.性质 设矩阵m m C A ⨯∈可逆, 且矩阵n n C B ⨯∈可逆,则B A ⊗可逆,且111)(---⊗=⊗B A B A .证明:mn n m I I I BB AA B A B A =⊗=⊗=⊗⊗----)()())((1111(这里I n 与数的乘法中的1起到相同的作用), 故111)(---⊗=⊗B A B A .性质 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则T T T B A B A ⊗=⊗)(H H H B A B A ⊗=⊗)(证明: ij T T T ji ij T B A B a B A ][])[(⊗==⊗ 得证.同理可证:H H H B A B A ⊗=⊗)(.性质 两个正交(酉)矩阵的Kronecker 积还是正交(酉)矩阵. 证明:设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈.因为A ,B 都是正交(酉)矩阵,所以有m T T I A A AA ==,n T T I B B BB ==. 由性质和性质可得:mn n m T T T T T I I I BB AA B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(())((. mn m n T T T T T I I I B B A A B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(()()(.故mn T T I B A B A B A B A =⊗⊗=⊗⊗)()())((. 得证.第二章 Kronecker 积的有关定理及推论定理 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B rank A rank B A rank =⊗.证明:设rank A=r ,rank B=s ,A ,B 的标准形分别为:1111--⎥⎦⎤⎢⎣⎡=Q O O O I P A r ,1212--⎥⎦⎤⎢⎣⎡=Q O O O I P B s其中i P ,i Q =i (1,2)均为非奇异矩阵,则由性质和可以得:`1211211211121112121111)()()()(----------⊗⎥⎦⎤⎢⎣⎡⊗=⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⊗=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡=⊗Q Q O O O I P P Q Q O O O I O O O I P P Q O O O I P Q O O O I P B A rss r s r 所以)()()(B rank A rank s r B A rank =•=⊗ 得证.定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B A ⊗对应特征值λμ的一个特征向量.证明:因为x ,y 都是非零向量,所以x ⊗y 也是非零向量,由性质和性质可得:)()()()()())((y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗λμμλ.所以,y x ⊗是B A ⊗对应特征值λμ的一个特征向量.推论 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若A 的特征值是1λ,2λ,…,m λ;B 的特征值是1μ,2μ,…,n μ,则B A ⊗的特征值为t s μλ,m s ≤≤1,n t ≤≤1(k 重根算k 个).定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.证明:由性质,性质可以得到:)()()()())((y x y x y I Ax y x I A n n ⊗=⊗=⊗=⊗⊗λλ, )()()()())((y x y x By x I y x B I m m ⊗=⊗=⊗=⊗⊗μμ,故))(())(())(())((y x y x B I y x I A y x B I I A m n m n ⊗+=⊗⊗+⊗⊗=⊗⊗+⊗μλ.所以,y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.推论 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m s C x ∈和n t C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y ,2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,则B I I A m n ⊗+⊗的n m •个特征值为{t s μλ+}.(s=1,2,…,m ;t=1,2,…,n ).例 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m i C x ∈和n j C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y , 2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,证明:矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量为j i y x ⊗.(i=1,2,…,m ;j=1,2,…,n ).证明:由性质和性质可得:))(()()()()())((j i j i j j i i j i j i y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗μλμλ,故有:))(1())(()())(()())(())(())](()[(j i j i j i j i j i j i j i j i mn j i j i n m j i n m y x y x y x y x y x I y x B A y x I I y x B A I I ⊗-=⊗-⊗=⊗-⊗=⊗⊗-⊗⊗=⊗⊗-⊗μλμλμλ所以,矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量j i y x ⊗. 定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则trB trA B A tr •=⊗)(证明:由Kronecker 积和迹的定义可得:trBtrA trB a trB a trB a B a tr B a tr B a tr B A tr nn nn •=+++=+++=⊗ 22112211)()()()(得证.定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则m n B A B A )(det )(det )det(=⊗证明:设A 的特征值为1λ,2λ,…,m λ,B 的特征值为1μ,2μ,…,n μ, 由推论可得:mn m n n m n m m n n nj j m nj j mnji nj j j i B A B A )(det )(det )()()())(())(()()()()()det(21211212111112,11=====⊗∏∏∏∏===μμμλλλμλμλμλμλμλμλμλμλμλμλ得证.第三章 矩阵的拉直矩阵的拉直的定义定义 设n m ij a A ⨯=)(,定义矩阵A 的按行拉直为:T mn m n n a a a a a a A A vec )()(1221111,,,,,,,,, ==→即矩阵A 的拉直是一个mn 元的列向量,它是由矩阵A 所有元素按行顺序依次排成一列得到的.例如:⎥⎦⎤⎢⎣⎡=d c b a A ,则矩阵A 的拉直为T d c b a A )(,,,=→.矩阵的拉直的性质矩阵的拉直具有以下性质: 性质 设矩阵nm C A ⨯∈,矩阵nm CB ⨯∈,k 和l 是常数,则(lB kA +=→→+B l A k .证明:略.性质 设n m ij t a t A ⨯=))(()(,则dtt dA (=dt d)(t A . 证明:左边==))((dtt dA vet ij a vet ((′)))(n m t ⨯ = [(a 11′(t ),…,a n 1′(t ),a 21′(t ),…,a n 2′(t ),…,a 1m ′(t ),…,a mn ′(t ) ]T=[(a 11(t ),…,a n 1(t ),a 21(t ),…,a n 2(t ),…,a 1m (t ),…,a mn (t ) )T ]′ = ))](([t A vet ′=))](([t A vec dtd=右边,得证. 性质设矩阵nm C A ⨯∈,矩阵pn CX ⨯∈,矩阵qp CB ⨯∈,则→⊗=X B A T)(.证明:设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,T n x x X )(1,, =→,其中,T i x 是X 的第i 行=i (1,2,…,)n ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=B x a x a B x a x a AXB T n mn T m Tn n T )()(111111 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=→n x x X 1 所以T Tn mn T m T n n T B x a x a B x a x a ])()[(111111++++= ,, →⊗=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=X B A x x B a B a B a B a x a x a B x a x a B n T mn T m T n T n mn m T n n T )()()()()(11111111111 得证. 推论 设矩阵m m C A ⨯∈,矩阵n m C X ⨯∈,矩阵n n C B ⨯∈,则有1.AX →⊗=X I A n )( 2.→⊗=X B I Tm )(.3(AX +)→⊗+⊗=X B I I A Tm n )(.第四章 矩阵的Kronecker 积与矩阵方程矩阵的Kronecker 积与Lyapunov 矩阵方程设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,矩阵n m C F ⨯∈,解Lyapunov 矩阵方程:AX+XB=F.第一步:将方程两边拉直,由推论可得:→→=⊗+⊗C X B I I A Tm n )(.第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程有解的充要条件是:Tm n B I I A rank ⊗+⊗(┊)()T m n B I I A rank C ⊗+⊗=→,:有唯一解的充要条件是det(A ⊗I n + I m ⊗B T )≠0,即A 和(-B )没有公共的特征值或者说A 和B 无互为相反数的特征值.例 分别在下2列条件下解矩阵方程AX+XB=C.(1) ⎥⎦⎤⎢⎣⎡-=0112A ,⎥⎦⎤⎢⎣⎡=42-1-3B ,⎥⎦⎤⎢⎣⎡--=1081710C (2) ⎥⎦⎤⎢⎣⎡=3201A ,⎥⎦⎤⎢⎣⎡--=1052B ,⎥⎦⎤⎢⎣⎡--=11353C 解:(1) 首先计算A 和B 的特征值,解0=-A I λ得:121==λλ,解0=-B I μ得:5221==μμ,.观察有无互为相反数的特征值发现,A 和B 没有互为相反数的特征值,所以矩阵方程有唯一解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(.设⎥⎦⎤⎢⎣⎡=4321x x x x X ,计算⎥⎦⎤⎢⎣⎡--=4123TB ,将A ,T B ,X ,C 代入得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡-108171041231001100101124321x x x x ,计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------108171041102301106101254321x x x x , 根据矩阵的乘法的定义可以求得:21314321-===-=x x x x ,,,. 故矩阵方程AX+XB=C 的唯一解为:⎥⎦⎤⎢⎣⎡--=2131X . (2) 同样先计算A 和B 的特征值,解0=-A I λ得:3121==λλ,, 解0=-B I μ得:1221-==μμ,.通过观察可知:021=+μλ. 一所以矩阵方程的解不唯,即存在通解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(.设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡--=1502TB ,将A ,T B ,X ,C 代入得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡1135315021001100132014321x x x x , - 计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--113532520050200050034321x x x x ,根据矩阵的乘法的定义可以求得:c x x c x x -=-===3114321,,,. 故矩阵方程AX+XB=C 的通解为:⎥⎦⎤⎢⎣⎡--=c c X 311(c 为任意常数).矩阵的Kronecker 积与一般线性矩阵方程设矩阵n m k C A ⨯∈,矩阵q p C B ⨯∈,矩阵q m C F ⨯=,解一般线性矩阵方程:F XB Ark k k=∑=1(r = 1,2,…).第一步,将矩阵方程两边拉直,由性质可以得到:∑=→→=⊗rk T kk F X B A 1)][(.第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程有解的充要条件是:∑⊗)((Tkk B A rank ┊))(()1∑=→⊗=rk Tkk B A rank F . 即∑=⊗rk Tkk B A 1)(的所有特征值均不为0. 例 设A 和C 都是n ⨯n 矩阵,A 的特征值λi (i=0,1,2,…,n )R ∈(实数),求证:矩阵方程C XA A AXA X =++22有唯一解.证明:将两边方程拉直得到:→→=⊗+⊗+⊗C X A A A A I I T T n n ])([(22,化简得到:→→=⊗+⊗+C X A A A A I TTn ])()([22.由定义可知:T A A ⊗的2n 个特征值是=j i j i ,(λλ0,1,2,…,n ). 故:2)()(2T T n A A A A I ⊗+⊗+的2n 个特征值是:22)21(43)()(1j i j i j i λλλλλλ++=++>00(=j i ,,1,2,…,n ). 即2)()(2T T n A A A A I ⊗+⊗+是可逆的,由唯一解的判断方法可知:矩阵方程C XA A AXA X =++22有唯一解.例 在下列条件下解矩阵方程C XB A XB A =+2211.已知:⎥⎦⎤⎢⎣⎡-=20311A ,⎥⎦⎤⎢⎣⎡-=13101B ,⎥⎦⎤⎢⎣⎡-=11022A ,⎥⎦⎤⎢⎣⎡-=01232B ,⎥⎦⎤⎢⎣⎡--=48213C . 解:将矩阵方程两边拉直得到:→→=⊗+⊗C X B A B A T T)(2211. *设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡-=11301T B 和 ⎥⎦⎤⎢⎣⎡-=02132TB 代入*得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-4821302131102113020314321x x x x .计算化简得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------4821320027313331390564321x x x x . 根据矩阵的乘法的定义可以求得:10214321===-=x x x x ,,,.计算T T B A B A rank 2211(⊗+⊗┊4)()2211=⊗+⊗=TT B A B A rank C , 所以方程有唯一解:⎥⎦⎤⎢⎣⎡-=1021X . 矩阵的Kronecker 积与矩阵微分方程设m m C A ⨯∈矩阵,n n C B ⨯∈矩阵,n m C t X ⨯∈)(,求下列矩阵微分方程初值问题的解:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX 引理:设m m C A ⨯∈矩阵A ,矩阵n m C B ⨯∈,则n A I A I e e n ⊗=⊗,B m B I e I e m ⊗=⊗. 证明:因为性质可得:∑∑∞=∞=⊗⊗=⊗=11)(!1)(!1k k k k kI A I A k I A k enn A k kI e I A k ⊗=⊗=∑∞=1)!1(. 同理可证:B m B I e I e m ⊗=⊗.将矩阵微分方程两边拉直,由推论可以得到:⎪⎩⎪⎨⎧=⊗+⊗=→00(()()(X X t X B I I A dt t X d T m n 由引理可得:T t B At tB AtB I I A t TT m n e X e X ee X et X )()()(000)(=⊗==→→⊗+⊗,又因为∑∑∞=∞====11!1))(!1()(k Bt k k T k k k T Tt B e t B k t B k eT ,故Bt At e X e t X 0)(= 这就是微分方程的解.例 求解下列矩阵微分方程的初值问题:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX已知:⎥⎦⎤⎢⎣⎡=0011A ,⎥⎦⎤⎢⎣⎡-=0011B ,⎥⎦⎤⎢⎣⎡=10010X . 解:可计算得到:⎥⎦⎤⎢⎣⎡-=101t tAte e e,⎥⎦⎤⎢⎣⎡-=101t t Bte e e .由式可以得到: ⎥⎦⎤⎢⎣⎡--==10)1()(220t tBtAt e e eX e t X . 即的解为⎥⎦⎤⎢⎣⎡--=10)1()(22t te e t X . 通过本章的学习,我们知道矩阵的Kronecker 积在解矩阵方程领域有很大的作用,利用Kronecker 积的性质,我们可以解决Lyapunov 矩阵方程,一般矩阵方程,矩阵微分方程的初值问题等问题.参考文献[1]矩阵论简明教程(第三版).徐仲等编.北京:科学出版社..[2]矩阵论教程(第2版).张绍飞,赵迪编.北京:机械工业出版社..[3]矩阵论引论(第2版).陈祖明,周家胜编.北京:北京航空航天大学出版社..[4]矩阵论十讲.李乔,张晓东编.合肥:中国科学技术大学出版社..[5]矩阵理论及方法.谢冬秀,雷纪刚,陈桂芝编.北京:科学出版社.2012.[6]H-矩阵类的理论及应用.徐仲等编.北京:科学出版社.2013.[7]高等代数教程(上).王萼芳编.北京:清华大学出版社.1997(2008重印).[8]常微分方程(第二版).东北师范大学微分方程教研室.北京:高等教育出版社.(重印).[9]矩阵分析与应用(第2版).张贤达编.北京:清华大学出版社.2013(重印).[10]线性代数及其应用.毛立新,咸美新编.北京:高等教育出版社..[11]线性代数(第2版).钟玉泉,周建编.北京:科学出版社..[12]矩阵理论与方法(第2版).吴昌悫,魏洪增编.北京:电子工业出版社..[13]线性代数学习指导.赵春燕,单净,王麟编.哈尔滨:哈尔滨工程大学出版社..[14]矩阵论.张凯院等编.北京:科学出版社.2013.[15]矩阵论导教·导学·导考.张凯院,徐仲编.西安:西北工业大学出版社..[16]矩阵函数与矩阵方程.柏兆俊,高卫国,苏仰锋编.北京:高等教育出版社..[17]矩阵分析.姜志侠,孟品超,李延忠编.北京:清华大学出版社.2015.[18]矩阵论札论.梁昌洪编.北京:科学出版社.2014.[19]线性代数及其应用.马新顺,王涛,郭燕编.北京:高等教育出版社..[20]矩阵论引论.田振际,王永铎,吴德军编.北京:科学出版社.2013.[21]线性代数及其应用(第2版).河北农业大学理学院编.北京:高等教育出版社..(重印).[22]线性代数及其应用.王坤龙编.北京:电子工业出版社..[23]线性代数(第2版).许峰,范爱华编.合肥:中国科学技术大学出版社..[24]线性代数及其应用.俞方元编.上海:同济大学出版社..[25]线性代数学习指导.谢政,陈挚编.北京:清华大学出版社..[26]高等线性代数学.黎景辉,白正简,周国晖编.北京:高等教育出版社..[27]线性代数讲义.江惠坤,邵荣,范红军编.北京:科学出版社.2013.[28]线性代数.贾屹峰编.上海:上海交通大学出版社.2012.[29]线性代数.侯亚君,艾玲,沙萍,林洪娟编.北京:机械工业出版社.(重印).[30]线性代数.郝秀敏,姜庆华编.北京:经济科学出版社..[31]线性代数.韩旸,王静宇,周莉编.北京:化学工业出版社..[32]线性代数重点难点考点辅导与精析.高淑萍,张剑湖编.西安:西北工业大学出版社..[33]线性代数.傅媛编.武汉:武汉大学出版社.(重印).[34]跟我学线性代数:导学与习题精解.董晓波编.北京:机械工业出版社..[35]线性代数同步学习辅导.陈绍林,唐道远编.北京:科学出版社,.[36]线性代数及应用.刘三明编.南京:南京大学出版社..[37]线性代数.谭福锦,黎进香编.北京.人民邮电出版社..[38]工程数学.线性代数(第6版).同济大学数学系编.北京:高等教育出版社..[39]矩阵分析与计算.李继根,张新发编.武汉:武汉大学出版社..[40]矩阵计算的理论与方法.徐树方编.北京:北京大学出版社..[41]矩阵分析及其应用.曾祥金,吴华安编.武汉:武汉大学出版社..[42]矩阵理论与应用.张跃辉编.北京:科学出版社..致谢通过一个月来不断的努力,终于完成了这篇毕业论文。

几类特殊矩阵kronecker积

几类特殊矩阵kronecker积

几类特殊矩阵kronecker积Kronecker积是将两个矩阵A和B乘积,也就是向量积(outer product或tensor prodct)。

它可以理解为“非常大的”网格中每一对元素进行乘积,并将这些乘积汇总到一个新的矩阵中。

具体而言,它的定义如下:Kronecker积:Given two matrices A and B, their Kronecker product is denoted as A#B, and defined by an m×n matrix C of the following form:C_{ij}=A_{i1}B_{1j}+A_{i2}B_{2j}+...+A_{in}B_{nj}Kronecker积有几类特殊的应用:1、向量积矩阵:Kronecker积可以用来表示两个向量的向量积矩阵,即A#B=vec(b)vec(a)T。

其中vec(b)和vec(a)T表示两个向量,另外一个向量作为列,另一个向量作为行,并且转置后形成一个m×n矩阵。

2、数值分解矩阵:Kronecker积可以用来表示一个数字分解矩阵,即A#B=UTV,其中UT和V可以看作是特征向量,它们可以用来分解原矩阵,而T是某个对角矩阵,用来表示特征值。

3、傅里叶变换:Kronecker积也可以用来表示傅里叶变换,即A#B=FDFT,其中FDFT表示两个实矩阵D和F的乘积,它们可以用来将原信号进行快速傅里叶变换。

4、卷积矩阵:Kronecker积也可以用来表示卷积矩阵,即A#B=C,其中C可以看作是一个m×n矩阵,它可以用来表示两个向量的卷积形式。

5、单位阵:Kronecker积也可以用来表示单位阵,即A#B=I,其中I可以看作是一个m×n矩阵,它可以用来表示两个向量的单位阵形式。

矩阵的Kronecker积及其应用

矩阵的Kronecker积及其应用

分类号:学士学位论文矩阵的Kronecker积及其应用学院名称数学与计算机工程学院目 录摘要 ............................................................... 1 关键词 ............................................................. 1 引言 ............................................................... 2 1 矩阵的Kronecker 积的定义 ......................................... 2 2矩阵的Kronecker 积的性质、定理及推论 .............................. 2 3.矩阵的Kronecker 积的特征值、特征向量的性质、推论及定理 ........... 5 4.矩阵的Kronecker 积的应用 .. (6)4.1矩阵的行(列)展开的定义及其相关性质 ........................ 6 4.2利用Kronecker 积解决特殊的矩阵方程 .......................... 7 4.2.1C XB A i si i =∑=1型方程的求解 ................................. 7 4.2.2C XB AX =+型方程的求解 ................................ 8 4.2.3C AXB X =+型方程的求解 ................................ 8 4.3利用Kronecker 积求一些特殊矩阵的特征值和特征向量 ............ 9 小结 .............................................................. 11 参考文献 .......................................................... 11 致谢 .. (12)矩阵的Kronecker 积及其应用刘 阳(西安文理学院 数学与计算机工程学院,陕西 西安, 710065)摘要:本文主要介绍了矩阵理论中的Kronecker 积与它的特征值及特征向量。

矩阵理论 -Kronecker积

矩阵理论 -Kronecker积
( A B)1 A1 B1
返回
(8) 当m n, p q时,
tr( A B) trA• trB
(9) rank(A B) rankA• rankB
(10) 当m n, p q时,
det( A B) (det A) p g(det B)m
证:
1
A
P 1
2
O
P
P 1J1 P
a22 L LL
am1 am2 L
a1n
a2n L
amn
记A的列为 Ac1, Ac2 ,K , Acn A ( Ac1, Ac2 ,K , Acn )
Ac1
向量化算符:Vec
A
Ac2 M
Acn
返回
性质1: Vec (kA lB) kVec A lVec B
定理5:设 A Cmn , X Cnr , B Crs , 则 Vec ( AXB) (BT A)Vec X
0
m
返回
1
பைடு நூலகம்
B
Q1
0
2
O
Q
Q 1 J 2Q
p
A B (P1J1P) (Q1J2Q) (P Q)1(J1 J2 )(P Q)
det( A B) det(J1 J2 )
p
p
p
m
p
( 1 j )( 2 j )L ( m j ) ( i ) p ( j )m
(2)当U,V均为酉矩阵时,U V也是酉矩阵;
(3) ( AB)[k] A[k]B[k].
返回
例1:以1或-1为元素的m阶矩阵H,如果有 HH T mEm
则称H 为m阶Hadamard矩阵.设Hm , Hn分别为m, n阶Hadamard矩阵,则 Hm Hn为mn阶Hadamard

drazin逆的kronecker积的基本性质和奇异值分解

drazin逆的kronecker积的基本性质和奇异值分解

drazin逆的kronecker积的基本性质和奇异值分解Drazin 逆的 Kronecker 积是一种常见的矩阵积。

它由三位英国数学家 Peter Lax,Morris Drazin 和 Hector J. S. Wormald 合著,并由 CambridgeUniversity Press 出版于 2001 年。

Drazin 逆的 Kronecker 积被用于展现复杂的矩阵乘法及其局部性质,用来揭示可以表达的一种矩阵乘法的结构。

它可以用于解决复杂的矩阵乘法问题,可以更有效地解决用一组矩阵乘法更新的问题。

首先,我们来看一下Drazin逆的Kronecker积的基本性质。

它是一种形状维度上阶下降而言,采用Kronecker积形式和其逆形式,交换其顺序而形成一种变体,其基本形式如下:A⊗BC−1 =(A⊗B)C−1。

其次,Drazin逆的Kronecker积还可以用来计算矩阵的奇异值分解。

以N×M矩阵X为例,可以把它分为两个N×N矩阵X1和M×M矩阵X2,可以分别在X1和X2的空间中求出其奇异值分解:X1 =U1Σ1V1T,X2 =U2Σ2V2T,那么X的奇异值分解可以通过X=X1⊗X2=(U1⊗U2)(Σ1⊗Σ2)(V1⊗V2)T来表示。

借助于Drazin逆的Kronecker积可以使得奇异值分解中的计算更加简单高效。

Drazin 逆的 Kronecker 积是一种强大的数学工具,通过由多个系数描述的矩阵的局部特性可以更好地理解矩阵的行为,这是极其重要的。

它可以帮助我们发现更多有关矩阵乘法及其局部性质。

另外,Drazin逆的Kronecker积还可以用来求解矩阵的奇异值分解,从而使我们能够更有效地计算出其特征值和特征向量,从而帮助科学家们更好地理解数据,进而发现新的科学现象。

可以看出,Drazin逆的Kronecker积在高校和高等教育中具有重要的意义和应用。

kronecker运算

kronecker运算

kronecker运算(最新版)目录1.Kronecker 运算的定义和符号2.Kronecker 运算的性质3.Kronecker 运算的应用4.Kronecker 运算的示例正文Kronecker 运算是一种矩阵运算,它是由德国数学家 Kronecker 发明的,用来处理矩阵的特殊运算。

Kronecker 运算的定义是:给定两个矩阵 A 和 B,它们的 Kronecker 运算结果是一个新的矩阵 C,其中 C 的元素是 A 和 B 的对应行和列的乘积之和。

Kronecker 运算用符号“⊕”表示。

例如,给定矩阵 A = [[1, 2], [3, 4]] 和矩阵 B = [[a, b], [c, d]],则矩阵 A 和 B 的 Kronecker 运算结果 C 为:C = A ⊕ B = [[(1*a + 3*c), (1*b + 3*d)], [(2*a + 4*c), (2*b + 4*d)]]Kronecker 运算有很多有用的性质。

首先,它满足结合律,即 (A ⊕B) ⊕ C = A ⊕ (B ⊕ C)。

其次,Kronecker 运算满足分配律,即 A ⊕(B + C) = A ⊕ B + A ⊕ C。

此外,Kronecker 运算还满足矩阵乘法的一些基本性质,如行列式、秩、逆等的保持。

Kronecker 运算在很多领域都有应用,如线性代数、概率论、信号处理等。

例如,在信号处理中,Kronecker 运算常用于构造线性时不变系统(LTI)的特性矩阵,从而分析系统的稳定性和因果性。

在机器学习中,Kronecker 运算也常用于计算两个矩阵的相似度,或者用于特征提取和降维等任务。

kronecker积的行列式

kronecker积的行列式

kronecker积的行列式摘要:1.引言2.Kronecker 积的定义3.Kronecker 积的性质4.Kronecker 积的行列式5.应用与实际意义6.总结正文:在线性代数中,我们经常会遇到矩阵的运算,其中一个重要的概念就是Kronecker 积。

Kronecker 积在许多数学和工程问题中都有广泛的应用,尤其是在处理张量运算和计算复杂网络的稳定性时。

本文将详细介绍Kronecker 积的定义、性质、行列式以及其在实际问题中的应用。

首先,我们来了解Kronecker 积的定义。

给定两个矩阵A 和B,Kronecker 积记作AB,是一个新的矩阵,其元素为A 和B 对应元素的乘积。

具体地,设A = [a11, a12, ..., a1n]、B = [b11, b21, ..., bm1],那么AB = [a11b11, a11b21, ..., a1nbm1]。

接着,我们来看Kronecker 积的一些性质。

首先,Kronecker 积满足交换律,即AB = BA。

其次,Kronecker 积也满足结合律,但需要注意的是,结合律仅在特定的条件下成立。

此外,Kronecker 积还满足分配律,即(A + B)C = AC + BC。

在了解了Kronecker 积的定义和性质之后,我们来探讨Kronecker 积的行列式。

设A 和B 是n 阶方阵,C = AB,那么C 的行列式|C|可以表示为n!|A|·|B|,其中|A|和|B|分别是矩阵A 和B 的行列式。

这个结论可以通过矩阵的行列式定义以及代数余子式的方法来证明。

最后,我们来看一下Kronecker 积在实际问题中的应用。

在处理张量运算时,Kronecker 积提供了一种便捷的方式,可以将张量的某些分量相互联系起来。

此外,在计算复杂网络的稳定性时,Kronecker 积可以帮助我们更好地描述网络中的元素关系,从而为分析网络的稳定性提供有力的工具。

kronecker积的行列式

kronecker积的行列式

kronecker积的行列式(实用版)目录1.Kronecker 积的定义2.Kronecker 积的行列式公式3.Kronecker 积行列式的性质4.Kronecker 积行列式的应用正文1.Kronecker 积的定义在矩阵论中,Kronecker 积是一种特殊的矩阵乘积,用于将两个矩阵的元素逐个相乘。

设矩阵 A 是一个 m×n 矩阵,矩阵 B 是一个 p×q 矩阵,则它们的 Kronecker 积是一个 mp×nq 矩阵,表示为 AB。

其中,AB 的元素由 A 的行和 B 的列对应元素相乘得到。

例如,如果 A = [[a11, a12], [a21, a22]],B = [[b11, b12], [b21, b22]],则 AB = [[a11b11, a11b12, a12b11, a12b12], [a21b21, a21b22, a22b21, a22b22]]。

2.Kronecker 积的行列式公式Kronecker 积的行列式是一个重要的概念,它可以通过简单的公式计算。

设 A 是一个 m×n 矩阵,B 是一个 p×q 矩阵,则它们的 Kronecker 积的行列式|AB| = |A|·|B|。

其中,|A|和|B|分别表示矩阵 A 和 B 的行列式。

3.Kronecker 积行列式的性质Kronecker 积行列式具有一些有趣的性质。

首先,它满足交换律,即|AB| = |BA|。

其次,Kronecker 积行列式与矩阵的乘法满足分配律,即|A(BC)| = |A|·|BC|。

此外,Kronecker 积行列式还满足行列式的性质,如行列式的某一行(或列)乘以一个常数 k,则行列式的值也要乘以 k。

4.Kronecker 积行列式的应用Kronecker 积行列式在许多领域都有广泛的应用,如线性代数、概率论、工程学等。

矩阵Kronecker乘积性质及应用

矩阵Kronecker乘积性质及应用

矩阵Kronecker乘积的性质与应用摘要按照矩阵乘法的定义,我们知道要计算矩阵的乘积AB,就要求矩阵A的列数和矩阵B的行数相等,否则乘积AB是没有意义的。

那是不是两个矩阵不满足这个条件就不能计算它们的乘积呢?本文将介绍矩阵的一种特殊乘积BA ,它对矩阵的行数和列数的并没有具体的要求,它叫做矩阵的Kronecker积(也叫直积或张量积)。

本文将从矩阵的Kronecker积的定义出发,对矩阵的Kronecker 积进行介绍和必要的说明。

之后,对Kronecker积的运算规律,可逆性,秩,特征值,特征向量等性质进行了具体的探究,得出结论并加以证明。

此外,还对矩阵的拉直以及矩阵的拉直的性质进行了说明和必要的证明。

矩阵的Kronecker积是一种非常重要的矩阵乘积,它应用很广,理论方面在诸如矩阵方程的求解,矩阵微分方程的求解等矩阵理论的研究中有着广泛的应用,实际应用方面在诸如图像处理,信息处理等方面也起到重要的作用。

本文讨论矩阵的Kronecker积的性质之后还会具体介绍它在矩阵方程中的一些应用。

关键词:矩阵;Kronecker积;矩阵的拉直;矩阵方程;矩阵微分方程Properties and Applications of matrix KroneckerproductAbstractAccording to the definition of matrix multiplication, we know that to calculate the matrix product AB, requires the number of columns of the matrix A and matrix B is equal to the number of rows, otherwise the product AB makes no sense.That is not two matrices not satisfy this condition will not be able to calculate their product do?This article will describe a special matrix product BA , the number of rows and columns of a matrix and its no specific requirements, it is called the matrix Kronecker product (also called direct product or tensor product).This paper will define the matrix Kronecker product of view, the Kronecker product matrix are introduced and the necessary instructions. Thereafter, the operation rules Kronecker product, the nature of reversibility, rank, eigenvalues, eigenvectors, etc. specific inquiry, draw conclusions and to prove it. In addition, the properties of the stretch of matrix and its nature have been described and the necessary proof.Kronecker product matrix is a very important matrix product, its use is very broad, theoretical research, and other matrix solving differential equations, such as solving the matrix equation matrix theory has been widely applied in practical applications such as image processing aspects of information processing, also play an important role. After the article discusses the nature of the matrix Kronecker product it will introduce a number of specific applications in the matrix equation. Keywords:Matrix; Kronecker product; Stretch of matrix; Matrix equation; Matrix Differential Equations目录摘要 .................................................................................................................................................... Abstract ............................................................................................................................................ I 第一章 矩阵的Kronecker 积 01.1 矩阵的Kronecker 积的定义 ........................................................................................... 0 1.2 矩阵的Kronecker 积的性质 ........................................................................................... 0 第二章 Kronecker 积的有关定理及推论 ...................................................................................... 5 第三章 矩阵的拉直 . (8)3.1矩阵的拉直的定义 ............................................................................................................ 8 3.2矩阵的拉直的性质 ............................................................................................................ 8 第四章 矩阵的Kronecker 积与矩阵方程 .. (10)4.1矩阵的Kronecker 积与Lyapunov 矩阵方程 ................................................................ 10 4.2矩阵的Kronecker 积与一般线性矩阵方程 .................................................................. 12 4.3矩阵的Kronecker 积与矩阵微分方程 .......................................................................... 13 参考文献......................................................................................................................................... 15 致谢 (17)符号说明W a W a 属于集合元素nm ij a A ⨯=)( 矩阵的记法列元素的行为以n m j i a ij⨯ij A )( 列的元素行的矩阵j i AT A 的转置矩阵A H A 的共轭转置矩阵A 1-A 的逆矩阵矩阵A→A 按行拉直得到的列向量矩阵AA det 的行列式方阵AtrA 的主对角元素之和的迹,方阵A A)(A rank 的秩矩阵A)(A λ 的特征值方阵An I 阶单位矩阵nR 实数域 C 复数域n C 维复向量的全体n n m C ⨯ 复矩阵全体n m ⨯O 零矩阵B A ⊗ 的和矩阵B A Kronecker 积第一章 矩阵的Kronecker 积1.1 矩阵的Kronecker 积的定义定义1.1设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,定义A 和B 的Kronecker 积(或直积,张量积)B A ⊗为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B a B a B a B a B a B a B a B a B a B A mn m m n n 212222111211 可以看出,其结果是一个)()(nq mp ⨯矩阵,同时也是一个以B a ij 为子块的分块矩阵.例1.1 设⎥⎦⎤⎢⎣⎡-=1201A ,[]31-=B ,则 ⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡-=⊗316200312B B O BB A []⎥⎦⎤⎢⎣⎡---=-=⊗361203013A A A B 由此可见,B A ⊗与A B ⊗具有相同的阶数,但是它们并不相等,也就是说,Kronecker 积不满足交换律.1.2 矩阵的Kronecker 积的性质虽然Kronecker 积不满足交换律,但是具有以下一些性质: 性质1.2.1 设矩阵n m C A ⨯∈,矩阵q p C O ⨯∈,则O O A A O =⊗=⊗(这个O 为)()(nq mp ⨯矩阵).证明:略.性质1.2.2 设k 为任一常数,矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B A k kB A B kA ⊗=⊗=⊗.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n ka ka ka ka ka ka ka ka ka kA 212222111211,根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B kA mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka kB a kB a kB a kB a kB a kB a kB a kB a kB a kB A mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, 即)(B A k B kA ⊗=⊗,)()(B A k kB A ⊗=⊗. 所以)()()(B A k kB A B kA ⊗=⊗=⊗.性质1.2.3 设A ,B 为同阶矩阵(同阶是为了可以做加法),则C B C A C B A ⊗+⊗=⊗+)(,B C A C B A C ⊗+⊗=+⊗)(.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n b b b b b b b b b B 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=+mn mn m m m m n n n n b a b a b a b a b a ba b a b a b a B A221122222221211112121111,根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗+C b a C b a C b a C b a Cb aC b a C b a C b a C b a C B A mn mn m m m m n n n n )()()()()()()()()()(221122222221211112121111(1.1)*,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C a C a C a C a C a C a C a C a C a C A mn m m n n 212222111211 (1.2)*, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C b C b C b C b C b C b C b C b C b C B mn m m n n 212222111211 (1.3)*,由(1.2)*,(1.3)*得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C A mn mn m m m m n n n n 221122222221211112121111 (1.4)*, 由(1.1)*,(1.4)*可得:C B C A C B A ⊗+⊗=⊗+)(.同理设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n c c c c c cc c c C 212222111211可证:B C A C B A C ⊗+⊗=+⊗)(.性质1.2.4 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s r C F ⨯∈,则)()(F B A F B A ⊗⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⊗⊗⊗⊗⊗⊗⊗⊗⊗=⊗⊗)()()()()()()()()()(212222111211F B a F B a F B a F B a F B a F B a F B a F B a F B a F B A mn m m n n)(212222111211F B A F B a B a B a B a B a B a B a B a B a mn m m n n ⊗⊗=⊗⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 得证.性质1.2.5设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s n C F ⨯∈,矩阵t q C D ⨯∈,则)()())((BD AF D F B A ⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=ns n n s s f f f f f f f f f F212222111211, 则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗⊗D f D f D f D f D f Df D f D f D f B a B a B a B a B a B a B a B a B a D F B A ns n n s s mn m m n n212222111211212222111211))(()()()()()()()()()()()(112111112211211121111BD AF BD f a BD f a BD f a BD c a BD f a BD f a BD f a BD f a BD f a nk ks mk n k k mk n k k mk nk ks k n k k k n k k k n k ks k n k k k n k k k ⊗=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑∑∑∑=========得证.性质1.2.6 设矩阵m m C A ⨯∈可逆, 且矩阵n n C B ⨯∈可逆,则B A ⊗可逆,且111)(---⊗=⊗B A B A .证明:mn n m I I I BB AA B A B A =⊗=⊗=⊗⊗----)()())((1111(这里I n 与数的乘法中的1起到相同的作用), 故111)(---⊗=⊗B A B A .性质1.2.7 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则T T T B A B A ⊗=⊗)(H H H B A B A ⊗=⊗)(证明: ij T T T ji ij T B A B a B A ][])[(⊗==⊗ 得证.同理可证:H H H B A B A ⊗=⊗)(.性质1.2.8 两个正交(酉)矩阵的Kronecker 积还是正交(酉)矩阵. 证明:设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈.因为A ,B 都是正交(酉)矩阵,所以有m T T I A A AA ==,n T T I B B BB ==. 由性质1.2.7和性质1.2.5可得:mn n m T T T T T I I I BB AA B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(())((. mn m n T T T T T I I I B B A A B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(()()(.故mn T T I B A B A B A B A =⊗⊗=⊗⊗)()())((. 得证.第二章 Kronecker 积的有关定理及推论定理2.2.2 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B rank A rank B A rank =⊗.证明:设rank A =r ,rank B=s ,A ,B 的标准形分别为:1111--⎥⎦⎤⎢⎣⎡=Q O O O I P A r ,1212--⎥⎦⎤⎢⎣⎡=Q O O O I P B s其中i P ,i Q =i (1,2)均为非奇异矩阵,则由性质1.2.5和1.2.6可以得:`1211211211121112121111)()()()(----------⊗⎥⎦⎤⎢⎣⎡⊗=⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⊗=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡=⊗Q Q O O O I P P Q Q O O O I O O O I P P Q O O O I P Q O O O I P B A rss r s r 所以)()()(B rank A rank s r B A rank =•=⊗ 得证.定理2.2.3 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B A ⊗对应特征值λμ的一个特征向量.证明:因为x ,y 都是非零向量,所以x ⊗y 也是非零向量,由性质1.2.2和性质1.2.5可得:)()()()()())((y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗λμμλ.所以,y x ⊗是B A ⊗对应特征值λμ的一个特征向量.推论2.2.4 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若A 的特征值是1λ,2λ,…,m λ;B 的特征值是1μ,2μ,…,n μ,则B A ⊗的特征值为t s μλ,m s ≤≤1,n t ≤≤1(k 重根算k 个).定理2.2.5 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.证明:由性质1.2.3,性质1.2.5可以得到:)()()()())((y x y x y I Ax y x I A n n ⊗=⊗=⊗=⊗⊗λλ, )()()()())((y x y x By x I y x B I m m ⊗=⊗=⊗=⊗⊗μμ,故))(())(())(())((y x y x B I y x I A y x B I I A m n m n ⊗+=⊗⊗+⊗⊗=⊗⊗+⊗μλ.所以,y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.推论2.2.6 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m s C x ∈和n t C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y ,2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,则B I I A m n ⊗+⊗的n m •个特征值为{t s μλ+}.(s=1,2,…,m ;t=1,2,…,n ).例2.2 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m i C x ∈和n j C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y , 2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,证明:矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量为j i y x ⊗.(i=1,2,…,m ;j=1,2,…,n ).证明:由性质1.2.3和性质1.2.5可得:))(()()()()())((j i j i j j i i j i j i y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗μλμλ,故有:))(1())(()())(()())(())(())](()[(j i j i j i j i j i j i j i j i mn j i j i n m j i n m y x y x y x y x y x I y x B A y x I I y x B A I I ⊗-=⊗-⊗=⊗-⊗=⊗⊗-⊗⊗=⊗⊗-⊗μλμλμλ所以,矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量j i y x ⊗. 定理2.2.7 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则trB trA B A tr •=⊗)(证明:由Kronecker 积和迹的定义可得:trBtrA trB a trB a trB a B a tr B a tr B a tr B A tr nn nn •=+++=+++=⊗ 22112211)()()()(得证.定理2.2.8 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则m n B A B A )(det )(det )det(=⊗证明:设A 的特征值为1λ,2λ,…,m λ,B 的特征值为1μ,2μ,…,n μ, 由推论2.2.4可得:mn m n n m n m m n n nj j m nj j mnji nj j j i B A B A )(det )(det )()()())(())(()()()()()det(21211212111112,11=====⊗∏∏∏∏===μμμλλλμλμλμλμλμλμλμλμλμλμλ得证.第三章 矩阵的拉直3.1矩阵的拉直的定义定义3.1 设n m ij a A ⨯=)(,定义矩阵A 的按行拉直为:T mn m n n a a a a a a A A vec )()(1221111,,,,,,,,, ==→即矩阵A 的拉直是一个mn 元的列向量,它是由矩阵A 所有元素按行顺序依次排成一列得到的.例如:⎥⎦⎤⎢⎣⎡=d c b a A ,则矩阵A 的拉直为T d c b a A )(,,,=→.3.2矩阵的拉直的性质矩阵的拉直具有以下性质:性质 3.2.1 设矩阵n m C A ⨯∈,矩阵n m C B ⨯∈,k 和l 是常数,则)(lB kA +=→→+B l A k .证明:略.性质3.2.2 设n m ij t a t A ⨯=))(()(,则dtt dA )(=dt d)(t A . 证明:左边==))((dtt dA vet ij a vet ((′)))(n m t ⨯ = [(a 11′(t ),…,a n 1′(t ),a 21′(t ),…,a n 2′(t ),…,a 1m ′(t ),…,a mn ′(t ) ]T =[(a 11(t ),…,a n 1(t ),a 21(t ),…,a n 2(t ),…,a 1m (t ),…,a mn (t ) )T ]′ = ))](([t A vet ′=))](([t A vec dtd=右边,得证. 性质 3.2.3设矩阵n m C A ⨯∈,矩阵p n C X ⨯∈,矩阵q p C B ⨯∈,则AXB →⊗=X B A T)(.证明:设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,T n x x X )(1,, =→,其中,T i x 是X 的第i 行=i (1,2,…,)n ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=B x a x a B x a x a AXB T n mn T m Tn n T )()(111111 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=→n x x X 1 所以AXB T Tn mn T m T n n T B x a x a B x a x a ])()[(111111++++= ,, →⊗=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=X B A x x B a B a B a B a x a x a B x a x a B n T mn T m T n T n mn m T n n T )()()()()(11111111111 得证. 推论3.2.4 设矩阵m m C A ⨯∈,矩阵n m C X ⨯∈,矩阵n n C B ⨯∈,则有1.AX →⊗=X I A n )( 2.XB →⊗=X B I Tm )(.3(AX +XB )→⊗+⊗=X B I I A Tm n )(.第四章 矩阵的Kronecker 积与矩阵方程4.1矩阵的Kronecker 积与Lyapunov 矩阵方程设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,矩阵n m C F ⨯∈,解Lyapunov 矩阵方程: AX+XB=F .第一步:将方程两边拉直,由推论3.2.4可得:→→=⊗+⊗C X B I I A Tm n )(. (4.1) 第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程(4.1)有解的充要条件是:Tm n B I I A rank ⊗+⊗(┊)()T m n B I I A rank C ⊗+⊗=→,:有唯一解的充要条件是det(A ⊗I n + I m ⊗B T )≠0,即A 和(-B )没有公共的特征值或者说A 和B 无互为相反数的特征值.例4.1 分别在下2列条件下解矩阵方程AX+XB=C.(1) ⎥⎦⎤⎢⎣⎡-=0112A ,⎥⎦⎤⎢⎣⎡=42-1-3B ,⎥⎦⎤⎢⎣⎡--=1081710C (2) ⎥⎦⎤⎢⎣⎡=3201A ,⎥⎦⎤⎢⎣⎡--=1052B ,⎥⎦⎤⎢⎣⎡--=11353C 解:(1) 首先计算A 和B 的特征值,解0=-A I λ得:121==λλ,解0=-B I μ得:5221==μμ,.观察有无互为相反数的特征值发现,A 和B 没有互为相反数的特征值,所以矩阵方程有唯一解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(. (4.1)设⎥⎦⎤⎢⎣⎡=4321x x x x X ,计算⎥⎦⎤⎢⎣⎡--=4123TB ,将A ,T B ,X ,C 代入(4.1)得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡-108171041231001100101124321x x x x ,计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------108171041102301106101254321x x x x , 根据矩阵的乘法的定义可以求得:21314321-===-=x x x x ,,,. 故矩阵方程AX+XB=C 的唯一解为:⎥⎦⎤⎢⎣⎡--=2131X . (2) 同样先计算A 和B 的特征值,解0=-A I λ得:3121==λλ,, 解0=-B I μ得:1221-==μμ,.通过观察可知:021=+μλ. 一所以矩阵方程的解不唯,即存在通解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(. (4.1)设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡--=1502TB ,将A ,T B ,X ,C 代入(4.1)得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡1135315021001100132014321x x x x , - 计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--113532520050200050034321x x x x ,根据矩阵的乘法的定义可以求得:c x x c x x -=-===3114321,,,. 故矩阵方程AX+XB=C 的通解为:⎥⎦⎤⎢⎣⎡--=c c X 311(c 为任意常数).4.2矩阵的Kronecker 积与一般线性矩阵方程设矩阵n m k C A ⨯∈,矩阵q p C B ⨯∈,矩阵q m C F ⨯=,解一般线性矩阵方程:F XB Ark k k=∑=1(r = 1,2,…).第一步,将矩阵方程两边拉直,由性质3.2.3可以得到:∑=→→=⊗rk T kkF X B A1)][(. (4.2)第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程(4.2)有解的充要条件是:∑⊗)((Tkk B A rank ┊))(()1∑=→⊗=rk Tkk B A rank F . 即∑=⊗rk Tkk B A 1)(的所有特征值均不为0. 例4.2 设A 和C 都是n ⨯n 矩阵,A 的特征值λi (i=0,1,2,…,n )R ∈(实数),求证:矩阵方程C XA A AXA X =++22有唯一解.证明:将两边方程拉直得到:→→=⊗+⊗+⊗C X A A A A I I T T n n ])([(22,化简得到:→→=⊗+⊗+C X A A A A I TTn ])()([22.由定义3.1可知:T A A ⊗的2n 个特征值是=j i j i ,(λλ0,1,2,…,n ). 故:2)()(2T T n A A A A I ⊗+⊗+的2n 个特征值是:22)21(43)()(1j i j i j i λλλλλλ++=++>00(=j i ,,1,2,…,n ). 即2)()(2T T n A A A A I ⊗+⊗+是可逆的,由唯一解的判断方法可知:矩阵方程C XA A AXA X =++22有唯一解.例4.3 在下列条件下解矩阵方程C XB A XB A =+2211.已知:⎥⎦⎤⎢⎣⎡-=20311A ,⎥⎦⎤⎢⎣⎡-=13101B ,⎥⎦⎤⎢⎣⎡-=11022A ,⎥⎦⎤⎢⎣⎡-=01232B ,⎥⎦⎤⎢⎣⎡--=48213C . 解:将矩阵方程两边拉直得到:→→=⊗+⊗C X B A B A T T)(2211. (4.3)*设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡-=11301T B 和 ⎥⎦⎤⎢⎣⎡-=02132TB 代入(4.3)*得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-4821302131102113020314321x x x x .计算化简得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------4821320027313331390564321x x x x . 根据矩阵的乘法的定义可以求得:10214321===-=x x x x ,,,.计算T T B A B A rank 2211(⊗+⊗┊4)()2211=⊗+⊗=TT B A B A rank C , 所以方程有唯一解:⎥⎦⎤⎢⎣⎡-=1021X . 4.3矩阵的Kronecker 积与矩阵微分方程设m m C A ⨯∈矩阵,n n C B ⨯∈矩阵,n m C t X ⨯∈)(,求下列矩阵微分方程初值问题的解:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX (4.3)引理:设m m C A ⨯∈矩阵A ,矩阵n m C B ⨯∈,则n A I A I e e n ⊗=⊗,B m B I e I e m ⊗=⊗. 证明:因为性质1.2.5可得:∑∑∞=∞=⊗⊗=⊗=11)(!1)(!1k k k k kI A I A k I A k enn A k kI e I A k ⊗=⊗=∑∞=1)!1(. 同理可证:B m B I e I e m ⊗=⊗.将矩阵微分方程(4.3)两边拉直,由推论3.2.4可以得到:⎪⎩⎪⎨⎧=⊗+⊗=→0)0()()()(X X t X B I I A dt t X d T m n (4.4)由引理可得:T t B At tB AtB I I A t TT m n e X e X ee X et X )()()(000)(=⊗==→→⊗+⊗,又因为∑∑∞=∞====11!1))(!1()(k Bt k k T k k k T Tt B e t B k t B k eT ,故Bt At e X e t X 0)(= (4.5) 这就是微分方程(4.3)的解.例4.4 求解下列矩阵微分方程的初值问题:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX (4.6)已知:⎥⎦⎤⎢⎣⎡=0011A ,⎥⎦⎤⎢⎣⎡-=0011B ,⎥⎦⎤⎢⎣⎡=10010X . 解:可计算得到:⎥⎦⎤⎢⎣⎡-=101t tAte e e,⎥⎦⎤⎢⎣⎡-=101t t Bte e e .由(4.5)式可以得到: ⎥⎦⎤⎢⎣⎡--==10)1()(220t tBtAt e e eX e t X . 即(4.6)的解为⎥⎦⎤⎢⎣⎡--=10)1()(22t te e t X . 通过本章的学习,我们知道矩阵的Kronecker 积在解矩阵方程领域有很大的作用,利用Kronecker 积的性质,我们可以解决Lyapunov 矩阵方程,一般矩阵方程,矩阵微分方程的初值问题等问题.参考文献[1]矩阵论简明教程(第三版).徐仲等编.北京:科学出版社.2014.1.[2]矩阵论教程(第2版).张绍飞,赵迪编.北京:机械工业出版社.2012.5.[3]矩阵论引论(第2版).陈祖明,周家胜编.北京:北京航空航天大学出版社.2012.10.[4]矩阵论十讲.李乔,张晓东编.合肥:中国科学技术大学出版社.2015.3.[5]矩阵理论及方法.谢冬秀,雷纪刚,陈桂芝编.北京:科学出版社.2012.[6]H-矩阵类的理论及应用.徐仲等编.北京:科学出版社.2013.[7]高等代数教程(上).王萼芳编.北京:清华大学出版社.1997(2008重印).[8]常微分方程(第二版).东北师范大学微分方程教研室.北京:高等教育出版社.2005.4(2012.12重印).[9]矩阵分析与应用(第2版).张贤达编.北京:清华大学出版社.2013(2014.6重印).[10]线性代数及其应用.毛立新,咸美新编.北京:高等教育出版社.2015.8.[11]线性代数(第2版).钟玉泉,周建编.北京:科学出版社.2015.1.[12]矩阵理论与方法(第2版).吴昌悫,魏洪增编.北京:电子工业出版社.2013.8.[13]线性代数学习指导.赵春燕,单净,王麟编.哈尔滨:哈尔滨工程大学出版社.2012.2.[14]矩阵论.张凯院等编.北京:科学出版社.2013.[15]矩阵论导教·导学·导考.张凯院,徐仲编.西安:西北工业大学出版社.2014.8.[16]矩阵函数与矩阵方程.柏兆俊,高卫国,苏仰锋编.北京:高等教育出版社.2015.5.[17]矩阵分析.姜志侠,孟品超,李延忠编.北京:清华大学出版社.2015.[18]矩阵论札论.梁昌洪编.北京:科学出版社.2014.[19]线性代数及其应用.马新顺,王涛,郭燕编.北京:高等教育出版社.2014.7.[20]矩阵论引论.田振际,王永铎,吴德军编.北京:科学出版社.2013.[21]线性代数及其应用(第2版).河北农业大学理学院编.北京:高等教育出版社.2006.11.(2015.2重印).[22]线性代数及其应用.王坤龙编.北京:电子工业出版社.2014.10.[23]线性代数(第2版).许峰,范爱华编.合肥:中国科学技术大学出版社.2013.4.[24]线性代数及其应用.俞方元编.上海:同济大学出版社.2014.8.[25]线性代数学习指导.谢政,陈挚编.北京:清华大学出版社.2012.10.[26]高等线性代数学.黎景辉,白正简,周国晖编.北京:高等教育出版社.2014.9.[27]线性代数讲义.江惠坤,邵荣,范红军编.北京:科学出版社.2013.[28]线性代数.贾屹峰编.上海:上海交通大学出版社.2012.[29]线性代数.侯亚君,艾玲,沙萍,林洪娟编.北京:机械工业出版社.2012.1(2012.7重印).[30]线性代数.郝秀敏,姜庆华编.北京:经济科学出版社.2013.7.[31]线性代数.韩旸,王静宇,周莉编.北京:化学工业出版社.2013.8.[32]线性代数重点难点考点辅导与精析.高淑萍,张剑湖编.西安:西北工业大学出版社.2014.5.[33]线性代数.傅媛编.武汉:武汉大学出版社.2013.2(2013.11重印).[34]跟我学线性代数:导学与习题精解.董晓波编.北京:机械工业出版社.2014.1.[35]线性代数同步学习辅导.陈绍林,唐道远编.北京:科学出版社,2014.7.[36]线性代数及应用.刘三明编.南京:南京大学出版社.2012.8.[37]线性代数.谭福锦,黎进香编.北京.人民邮电出版社.2012.8.[38]工程数学.线性代数(第6版).同济大学数学系编.北京:高等教育出版社.2014.6.[39]矩阵分析与计算.李继根,张新发编.武汉:武汉大学出版社.2013.10.[40]矩阵计算的理论与方法.徐树方编.北京:北京大学出版社.1995.8.[41]矩阵分析及其应用.曾祥金,吴华安编.武汉:武汉大学出版社.2007.8.[42]矩阵理论与应用.张跃辉编.北京:科学出版社.2011.8.致谢通过一个月来不断的努力,终于完成了这篇毕业论文。

关于四元数矩阵Kronecker积的一些性质定理

关于四元数矩阵Kronecker积的一些性质定理

关于四元数矩阵Kronecker积的一些性质定理
郑毓明
【期刊名称】《盐城工学院学报(自然科学版)》
【年(卷),期】2013(026)004
【摘要】矩阵的Kronecker积是一种重要的矩阵乘积,是工程技术中重要的数学工具,有着非常重要的研究内容和成果.由于四元数乘法不满足交换律,使四元数矩阵的Kronecker积与复矩阵的Kronecker积存在较大差异.对几类特殊矩阵的Kronecker积进行了研究,有些结论是实(复)数域上矩阵Kronecker积的推广延伸.【总页数】3页(P19-21)
【作者】郑毓明
【作者单位】盐城生物工程高等学校教务处,江苏盐城224051
【正文语种】中文
【中图分类】O151.21
【相关文献】
1.四元数体上广义正定矩阵的Kronecker积和Hadamard积的一些性质 [J], 刘桂香
2.次酉矩阵的一些性质和Kronecker积 [J], 周立新
3.关于矩阵的Kronecker积的一些性质 [J], 王秀清;陈兆英;于朝霞
4.四元数矩阵的Kronecker积性质 [J], 宋万干;赵礼峰
5.置换矩阵的Kronecker积的一些性质 [J], 庞善起;李新芳;张立;席金彦
因版权原因,仅展示原文概要,查看原文内容请购买。

关于矩阵的Kronecker积的一些性质

关于矩阵的Kronecker积的一些性质
21 0 0年 l 2月
第2 5卷
第 4期
山 东 师 范 大 学 学 报 ( 然 科 学 版) 自 Ju a o S ad n om l n esy N t a Sine or l f hn ogN r a U i ri ( a rl cec ) n v t u
De . 01 c2 0
Hri em t e矩阵等的 K oekr rnc e 积的相关 性质 , 探讨 了关 于 Koekr 的迹数 、 rn ce 积 正定性 、 相似性 、 轭合 同等问题 以及 Koekr 的 共 rnce 积
广 义逆 的运 算 法 则 .
关键 词
Koekr ; 反 H ri 矩阵 ; 共 轭合同 ; 相 似矩 阵 ; 矩 阵的 M o — er e r ce积 n e t me or Pno 逆 e s
1 A A= ) X A, 2 X X = ) A X, 3 ) ( X) = X, 4 A A ) ( ) = A, X
则 称 为 A的 Mor e rs 逆 , 为 . oe—Pnoe 记
定义 4 设 A∈C ~ 的所 有特征值为 A , : …, , 。A , A 则称 A的所有特征值 的和为 A的迹 , 记为 t A) 即 r ( ,
且在工程技术领域 ( 如信号处理 ) 系统 理论 中的随机向量过程分 析等 中也 是一种基 本的数 学工具 . 者将较 系统地 论述一 与 笔
些 矩 阵 的 Koek r 的 运 算 规 则 和 性 质 . rn ce 积
1 预 备知 识
定义 11 设 A=( ∈C , [ 3 n) … B=( ∈C , 称如下的分块矩阵 b) p 则
性质 5 设 A∈C , ~ B∈
性质 6 设 A∈c ~ , : B∈c , A : 则 oB也 是可逆的 , ( o曰) = 1 且 A ~ IoB . 定义 2 设 A=( … ∈C a) ~ , A A, A为幂等矩 阵. 若 = 称

特殊矩阵的kronecker积

特殊矩阵的kronecker积

特殊矩阵的kronecker积Kronecker积(也称为Kronecker乘积或Kronecker叉积)是一种有关数学矩阵乘法的数学概念,由意大利数学家L. Kronecker于1897年提出。

它要求将两个矩阵的每一个元素相乘,然后再将结果矩阵重新排列。

Kronecker积可以产生一系列特殊的矩阵,可以发挥重要的作用,例如,它可以帮助解决一些大型线性系统的复杂问题,是应用于线性代数和多维微积分中的基本概念。

一、Kronecker积的概念Kronecker积是一种矩阵乘法,它要求将矩阵A和矩阵B的每一个元素都相乘,然后将乘积的结果保存在一个新的矩阵中,新矩阵的大小是AB的大小。

它也可以表示为:把矩阵A和矩阵B的每一个元素都带入到AB乘积的公式中,而不是把它们的乘积带入,最后再将乘积的结果保存在新矩阵中。

二、Kronecker积的运算下面介绍Kronecker积的运算要点:1、首先将A和B中的每一个元素都带入到AB乘积的公式中;2、然后将A和B中的每一个元素分别扩展为新的矩阵(新矩阵的大小是AB的大小);3、再把新的矩阵的每一个都相乘,并将运算的结果保存在新的矩阵中;4、最后将这个结果矩阵再重新排列(这步骤非常重要),得到最终的Kronecker积。

三、Kronecker积的应用Kronecker积可以用来指示矩阵的形状,因为它可以将复杂的矩阵拆解成多个比较简单的张成,它还可以帮助解决一些大型线性系统的复杂问题。

Kronecker积还可以根据给定的特殊矩阵生成特殊的新矩阵,这种新矩阵可以解决复杂的矩阵处理问题,此外,Kronecker积还可以在矩阵的多重积分中起到重要作用。

四、特殊矩阵的Kronecker积Kronecker积可以用来生成许多特殊的矩阵,这些特殊的矩阵可以更好地服务多维数学变换,并且可以使用Kronecker积快速地连接而不是展开。

比如,可以使用Kronecker积来计算矩阵的循环操作,如果给定两个特殊矩阵,那么它们的Kronecker积可以被用来表示相似变换(比如,线性变换或变换矩阵)。

关于矩阵的kronecker积的一些性质

关于矩阵的kronecker积的一些性质

关于矩阵的kronecker积的一些性质
矩阵的Kronecker积是一种矩阵乘法的推广,它将两个矩阵的乘积表示为一个更大的矩阵。

1.对于矩阵A和B,它们的Kronecker积记为A ⊗B,是一个(mn) ×(pq)的矩阵,满足以下性质:
2.形式化地,A ⊗B的第i行j列元素为(Ai,j ×B),其中Ai,j是A 的第i行第j列元素,B是B的矩阵。

3.当A和B是同一类型的矩阵时,A ⊗B也是同一类型的矩阵。

例如,如果A和B都是实数矩阵,则A ⊗B也是实数矩阵。

4.Kronecker积的结合律:对于任意三个矩阵A、B、C,有(A ⊗B) ⊗C = A ⊗(B ⊗C)。

5.Kronecker积的分配律:对于任意两个矩阵A、B和任意两个标量c、d,有(cA + dB) ⊗ C = c(A ⊗C) + d(B ⊗C)。

6.对于任意的矩阵A和B,A ⊗B的大小为(mp) ×(nq)。

7.对于任意的矩阵A和B,A ⊗B的行数和列数分别等于A的行数和列数的乘积,和B的行数和列数的乘积。

8.对于任意的矩阵A和B,A ⊗B的每个元素都是A的某个元素和B的某个元素的乘积。

克罗内克积的共轭转置表示

克罗内克积的共轭转置表示

克罗内克积的共轭转置表示1.引言【1.1 概述】在本篇文章中,我们将讨论克罗内克积(Kronecker product)的一个重要表示形式,即克罗内克积的共轭转置表示。

克罗内克积作为一种重要的数学运算,经常应用于矩阵论、向量空间和信号处理等领域。

在第二节中,我们将回顾克罗内克积的定义和一些基本性质,以确保读者对该运算有一个清晰的理解。

接着,我们将详细介绍克罗内克积的共轭转置表示方法,探讨其特点和应用。

共轭转置表示是克罗内克积的一种矩阵表达形式,通过该表示可以更方便地进行计算和分析。

最后,在结论部分,我们将对整篇文章进行总结,并讨论克罗内克积的共轭转置表示对相关领域的研究意义。

通过本文的阐述,希望读者能够全面了解克罗内克积的共轭转置表示,并在实际问题中应用得到提升。

接下来,我们将开始正文的第一节,回顾克罗内克积的定义和性质。

1.2文章结构文章结构部分的内容可以包括以下内容:本文主要分为三个部分进行阐述,具体结构如下:第一部分是引言部分,包括概述、文章结构和目的。

概述部分将简要介绍克罗内克积及其重要性,以及文章将要讨论的问题。

通过引起读者的兴趣和好奇心,概述部分将为后续的阐述打下基础。

文章结构部分将给出整篇文章的组织结构和内容安排。

例如,首先介绍克罗内克积的定义和基本性质,然后详细讨论克罗内克积的共轭转置表示,最后总结研究结果。

这样的结构安排将有助于读者理解文章的逻辑和思路,使整个文章更具条理性。

目的部分将明确说明本文的研究目标和意义。

例如,通过研究克罗内克积的共轭转置表示,可以揭示其在矩阵计算和信号处理等领域的应用价值,为相关学科领域的进一步研究提供指导和参考。

第二部分是正文部分,包括克罗内克积的定义和性质以及克罗内克积的共轭转置表示。

正文部分将详细介绍克罗内克积的定义和基本性质,包括其运算规则、性质和特点等。

然后,重点讨论克罗内克积的共轭转置表示,给出其具体的定义和计算方法,并探讨其在实际问题中的应用。

克罗内克积的特征值

克罗内克积的特征值

克罗内克积的特征值克罗内克积是线性代数中的一个重要概念,用于描述两个矩阵之间的运算。

它的特征值是指克罗内克积所得到的新矩阵的特征值。

在本文中,我们将详细介绍克罗内克积的特征值及其性质。

首先,让我们回顾一下克罗内克积的定义。

对于两个矩阵A和B,它们的克罗内克积记作A ⊗ B。

如果A是一个m×n的矩阵,B是一个p×q的矩阵,那么A ⊗ B就是一个mp×nq的矩阵。

具体而言,A ⊗ B的第(i,j)个元素为A的第(i//p+1,j//q+1)个元素与B的第(i%p+1,j%q+1)个元素的乘积。

接下来,我们来讨论克罗内克积的特征值。

设A和B分别是两个矩阵,它们的特征值分别为λ1, λ2, ..., λm和μ1, μ2, ..., μn。

那么A ⊗ B的特征值为λiμj,其中i = 1, 2, ..., m,j = 1, 2, ..., n。

换句话说,克罗内克积的特征值是由原矩阵的特征值两两相乘得到的。

克罗内克积的特征值具有以下性质:1. 特征值的个数:设A和B分别是两个n×n的矩阵,那么A ⊗ B的特征值个数为n^2,即每个原矩阵的特征值都与另一个原矩阵的特征值相乘。

2. 特征值的大小关系:设λi和λj分别是A的特征值,μk和μl分别是B的特征值,那么λiμk和λjμl之间存在以下关系:如果λi < λj且μk < μl,则λiμk < λjμl。

3. 特殊情况:当A和B都是对角矩阵时,它们的特征值就是它们对角线上的元素。

此时,A ⊗ B也是一个对角矩阵,其特征值为A和B对角线上元素两两相乘得到的。

克罗内克积的特征值在许多领域中都有广泛应用。

例如,在图像处理中,可以利用克罗内克积的特征值来进行图像压缩和图像恢复等操作。

在信号处理中,克罗内克积的特征值可以用于信号分析和滤波等方面。

此外,在量子力学中,克罗内克积的特征值可以描述多粒子系统的能级结构。

克罗内克积的特征值

克罗内克积的特征值

克罗内克积的特征值首先,我们来定义克罗内克积。

对于两个矩阵A和B,其克罗内克积被表示为A ⊗ B。

如果A是m×n矩阵,B是p×q矩阵,则A ⊗ B是mp×nq矩阵。

克罗内克积的每一个元素可以通过以下公式计算得到:(A ⊗ B)_{ij} = A_{kl} * B_{mn}其中,i=(k-1)*p+m,j=(l-1)*q+n。

换句话说,克罗内克积的第(i,j)个元素是矩阵A和矩阵B相应位置元素的乘积。

接下来,我们将讨论克罗内克积的几个重要性质。

首先,克罗内克积满足结合律:(A⊗B)⊗C=A⊗(B⊗C)。

这意味着无论如何加括号,克罗内克积的结果都是一样的。

其次,克罗内克积满足分配律:A⊗(B+C)=A⊗B+A⊗C。

这意味着克罗内克积可以分配到两个矩阵的和上。

最重要的是,克罗内克积的特征值与原矩阵的特征值有着密切的关系。

假设A和B分别是n×n和m×m矩阵,它们的特征值分别是λ_1,λ_2,…,λ_n和μ_1,μ_2,…,μ_m。

那么,A⊗B的特征值是所有可能的乘积λ_i*μ_j,其中i=1,2,…,n,j=1,2,…,m。

为了更好理解克罗内克积的特征值与原矩阵的关系,让我们来看一个具体的例子。

假设A=[1,2;3,4]和B=[5,6;7,8],它们的特征值分别是{5,-1}和{13,-3}。

那么,A⊗B的特征值是{5*13,5*(-3),(-1)*13,(-1)*(-3)}={65,-15,-13,3}。

在实际应用中,我们常常使用克罗内克积来简化复杂的运算和表示。

例如,对于一个线性系统Ax=b,如果A和b的维度很大,我们可以使用克罗内克积来表示它们的特征值问题,从而简化计算过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于矩阵的Kronecker积的一些性质
作者:王秀清, 陈兆英, 于朝霞
作者单位:济南大学理学院,250022,济南
刊名:
山东师范大学学报(自然科学版)
英文刊名:JOURNAL OF SHANDONG NORMAL UNIVERSITY(NATURAL SCIENCE)
年,卷(期):2010,25(4)
1.徐仲;张凯院;陆全矩阵论简明教程 2007
2.陈邦考矩阵Kronecker积的推广[期刊论文]-大学数学 2004(04)
3.杜鹃;范啸涛;杨健康自伴矩阵与Hermite二次型[期刊论文]-成都理工大学学报(自然科学版) 2007(04)
4.Li J S·Kronecker products of positive semidefinite Matrices 1997(03)
5.陈公宁矩阵理论与应用(第二版) 2007
6.Britz T;Olesky D D;Van Den Driessche P The Moore-Penrose inverse of matrices with an acyclic bipartite graph[外文期刊] 2004(0)
7.Berr Israel A;Greville T N E Generalized Inverse:Theory and Applications 2003
8.George V A quantitative version of the Bservation that the Hadam and product is a principal submatrix of the kronecker product 2000
9.James V B Schur majorization inequalities for symmetrized sums with applications to tensor products[外文期刊] 2003(0)
10.樊树平;段五朵亚正定矩阵的Kronecker积[期刊论文]-大学数学 2006(02)
1.王伟贤.王志伟.WANG Wei-xian.WANG Zhi-wei一类逆M矩阵的判定[期刊论文]-曲阜师范大学学报(自然科学版) 2009,35(2)
2.王宏羽.张湘茹.孙燕.李龙芸.李丽庆.宋恕平.周立中.刘基巍盐酸托烷司琼防治NP方案治疗非小细胞肺癌引起恶心呕吐的临床试验研究[期刊论文]-中国肿瘤临床与康复2004,11(4)
3.周金森.ZHOU Jin-sen关于代数张量积的性质研究[期刊论文]-龙岩学院学报2007,25(6)
4.王礼萍.Wang Liping核运算的矩阵构造[期刊论文]-哈尔滨师范大学自然科学学报2000,16(5)
5.杨载朴复亚正定矩阵的一些性质[期刊论文]-数学研究与评论2000,20(1)
6.黄允发.HUANG Yun-fa二阶K-可换矩阵Kronecker积的性质[期刊论文]-高师理科学刊2010,30(2)
7.胥德平.何淦瞳.XU De-ping.HE Gan-tong矩阵块Kronecker积的性质及一些不等式[期刊论文]-贵州大学学报(自然科学版)2004,21(4)
8.杨胜良.YANG Sheng-liang两类下三角形Pascal矩阵的相似性[期刊论文]-数学杂志2011,31(1)
9.贺爱玲.马玉明.刘慧.陈业红.HE Ai-ling.MA Yu-ming.LUI Hui.CHEN Ye-hong关于矩阵相似的一个注记[期刊论文]-山东轻工业学院学报(自然科学版)2005,19(3)
10.周相泉.刘利英.ZHOU Xiang-quan.LIU Li-ying模糊数矩阵及其运算[期刊论文]-山东理工大学学报(自然科学版)2005,19(3)
本文链接:/Periodical_sdsdxb-zrkx201004043.aspx。

相关文档
最新文档