伴随矩阵几个性质的证明

合集下载

伴随矩阵的性质及应用汇总

伴随矩阵的性质及应用汇总

伴随矩阵的性质及应用汇总伴随矩阵,也被称为伴随矩阵、伴随方阵或伴随法方阵,是与一个给定的矩阵相关联的矩阵。

在线性代数中,伴随矩阵的性质及应用非常重要。

下面是对伴随矩阵的性质及应用的汇总。

一、伴随矩阵的基本性质:1.对于任意的n阶矩阵A,它的伴随矩阵存在且唯一2. 伴随矩阵的行列式等于原矩阵A的n次方,即,adj(A), = ,A,^(n-1)。

3. 如果原矩阵A是可逆的,则它的伴随矩阵也是可逆的,并且有逆矩阵的性质,即(adj(A))^(-1) = 1/,A, * adj(A)。

4. 伴随矩阵的转置等于原矩阵的伴随矩阵的转置,即(adj(A))^T = adj(A^T)。

二、伴随矩阵的应用:1. 伴随矩阵在求逆矩阵中的应用:利用伴随矩阵可以很方便地求解矩阵的逆。

对于可逆矩阵A,有A^(-1) = 1/,A, * adj(A)。

通过计算原矩阵的行列式和伴随矩阵,即可得到逆矩阵。

2. 伴随矩阵在线性方程组求解中的应用:对于线性方程组AX = B,如果矩阵A是可逆的,则可以通过左乘伴随矩阵满足(adj(A) * A)* X= adj(A) * B,进而求解出X的解。

3. 伴随矩阵在求解特征值和特征向量中的应用:矩阵A的伴随矩阵adj(A)与矩阵A一样具有相同的特征值,但是特征向量方向相反。

因此,可以通过求解伴随矩阵的特征值和特征向量来得到矩阵A的特征值和特征向量。

4. 伴随矩阵在向量夹角和投影中的应用:对于两个向量A和B,它们的夹角θ可以通过伴随矩阵求解得到,即cosθ = (A・B) / (,A,* ,B,) = (adj(A)・B) / (,A, * ,B,)。

此外,在向量的投影计算中也可以通过伴随矩阵来实现,即投影向量P = A * (adj(A)・B) / (adj(A)・A)。

综上所述,伴随矩阵具有独特的性质和广泛的应用。

它在求逆矩阵、线性方程组求解、特征值和特征向量求解、向量夹角和投影等方面发挥着重要的作用。

伴随矩阵的性质探讨

伴随矩阵的性质探讨

伴随矩阵的性质探讨伴随矩阵的性质探讨第二章伴随矩阵的性质探讨伴随矩阵是线性代数中的一个重要的基本概念,但教材中及大学学习中所给出的主要应用是在求方阵的逆矩阵上,而关于伴随矩阵本身的性质及其与原矩阵之间的关联,没有系统的讨论和研究.本文主要通过查找现有资料,整理归纳出伴随矩阵的一系列性质.主要研究内容:n阶矩阵A的伴随矩阵的行列式与秩;n阶矩阵A的伴随矩阵的可逆性,对称性,正定性,正交性,和同性,特征值,特征向量及其与原矩阵的关联;伴随矩阵之间的运算性质以及各性质在题目中的综合应用.一.伴随矩阵的定义a11a21设Aij是n阶矩阵A...an1a12a22...a22............a1n a2n中元素a的代数余子式,称矩阵...annA11A12 (1)A21A22 (2) (3)为A的伴随矩阵. ...Ann相关内容:《高等代数》(王萼芳石生明版)定义9在一个n阶行列式D中任意选定K行K列(K≤n),当K<n时,在D中划去这K行K列后余的元素按原来的次序组成的n-k级行列式M'称为K级子式M的余子式,其中K级子式M为选定的K行K列(K≤n)上的K2个元素按照原来的次序组成的一个K级行列式.(1)如果在M'前面加上符号......ik)(j1j2......jk)后称作M的代数余子式.二.伴随矩阵的性质a11a21A设...an1a12a22...a22............a1n A11a2nA* A12......ann A1nA21A22 (2) (3)...Ann2.1 伴随矩阵的基本性质定理2.1 n阶矩阵A可逆的充分必要条件是A非退化(即A0),当A可逆时,,其中A*为A的伴随矩阵.设A*为A的伴随矩阵,则AA*A*A AE 证明:由行列式按一行(列)展开的公式0A..................aA kikj A,k1AA AA 0AE...A注:A可逆时,A*AA 1 证毕.2.2 伴随矩阵的行列式A*(i)若A可逆,则A0,由性质1得,AA*AE,两边同时取行列式得即AA*A,又A0, 则A*A(ii)若A不可逆,则A*A0 综上所述,A* A 证毕.2.3伴随矩阵的秩的性质研究矩阵的秩是矩阵的重要特征定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那么D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记做R(r).求矩阵A1解:由A14的秩.84=0,A的一个二阶子式8故R(A)2.定理2.3 n n矩阵A的行列式为零的充分必要条件是A的秩小于n.(《高等代数》王萼芳石生明版)若用R(A)表示矩阵A的秩,则有以下结论:设A是n阶矩阵,则R(A*)1,R(A)n;R(A)n1; R(A)n 1.证明:① R(A)n时,显然A0,由性质2知0,故R(A)n.② R(A)n1时,由定理知A0,性质1知AA*AE0, 即AA*0和A*的列向量全都为方程组AX0的解,又R(A)n1, 则其次方程组AX0的解向量组的和为n(n1) 1. 知A*的列秩为1,即R(A*) 1.i,j1,2,......n)③ R(A)n1,A*中任一元素A(都是0, ij因为A中不存在非零的n1阶子式,故R(A*)0. 证毕.2.4 伴随矩阵的伴随矩阵的性质为n阶矩阵,A*为A的伴随矩阵,则有特别情况有:当n2时,(A*)*证明:()i)当A可逆时,A0;又由性质1AA*A*A AE知(两边同时左乘(A*)1A*(AA1) 1 A*(当A不可逆时,A0,(A*)*0.2.5 n阶矩阵的伴随矩阵的可逆性可逆的定义:n阶矩阵称为可逆的,如果有AB BA E.(E为单位矩阵).伴随矩阵可逆性与原矩阵的可逆性有以下联系:性质5可逆的充分必要条件是A*可逆.证明:必要性.由性质1知,AA*A*A AE.若A可逆,则A非退化,即A0.(两边同时消去A,得由以上的可逆定义可知 A*是可逆的.充分性.即证A*可逆,则A可逆,此命题与其逆否命题"若A不可逆,则A*也不可逆"是等价的.由矩阵不可逆可知A0,则变为证明若A0,则A*0.这里我们用反正法.假设A*0,则A*可逆.由性质1知AA*AE0(两边同时右乘A*)有AA*(A*)10得A=0,所以A*=0,所以A*0与假设的A*0矛盾.故假设不成立,原命题成立.综上所述,A可逆的充分必要条件是A*可逆.证毕.2.6 n阶矩阵A的伴随矩阵的对称性对称定义:矩阵A...an1a12a22...a22............a1n a2n为对称矩阵,如果a a,...anni,j1,2,......n,且有A A性质6.若n阶矩阵A是对阵矩阵,则其伴随矩阵A*也为对称矩阵.证明如下:设为对称矩阵,可知A A,aij aji,且Aij Aji,可知A(A).即证得A*为对称矩阵.证毕.性质7.设A非退化,若A*为对称矩阵,则A也为对称矩阵.即证A A'.证明如下:A*对称可知A*(A*)'. A(A1)1(A [(A A'即A为对称矩阵.证毕.2.7 伴随矩阵 A*与原矩阵A的正定性之间的联系A)]((A))矩阵正定的定义:实对称矩阵A为正定的,如果二次型X'AX正定.又有,实二次型f x1,x2,......xn正定,如果对于任意一组不全为零的实数c2,都有f c1,c2,0性质8若n阶矩阵A是正定的,则A*也是正定的.证明:因为A是正定的,所以存在可逆矩阵B,使得 B'AB E, 则(B'AB)*E*E'***'****'又(BAB)BA(B)BA(B)E由正定的定义知A*也是正定矩阵.证毕.2.8 伴随矩阵A*的正交性与其原矩阵n阶矩阵A的正交性的关系矩阵正交的定义:n 阶实数矩阵A称为正交矩阵,如果A'A E.性质9 若A为正交矩阵,则A*也为正交矩阵.证明:A为正交矩阵,知A'A E, A*(A*)'A*(A')*(A'A)*E* E 由正交的定义知,A*也为正交矩阵.证毕.2.9 伴随矩阵A*的特征值的性质性质10 设为n阶矩阵A(A可逆)的特征值,则其伴随矩阵A*的特征值1与的关系为1证明:设是A的特征值,是A的属于特征值A的特征向量.则有A两边同时左乘A*有A*A A*A*由性质1AA*AE知上式变为A A*得A*由A的特征值的性质可知证毕.即为A*的特征值.推广:性质11 若1,2,......值,则其伴随矩阵的特征值为n为n阶矩阵A(A可逆)的特征,.......(i1,2,......n)是A的特征向量)证明:由题意知有A i i i(i1,2,......n两边左乘A*,知A*A i A*i i 即A i iA i ,得为A*的特征值.,......即A*的特征值是证毕..(i1,2,......n)2.10 伴随矩阵的运算性质性质12 (A')*(A*)'.a21证明:设n阶矩阵A...an1a12a22...a22............a1n a2n则 ...annA11A12 (1)A21A22 (2) (3)An1A11(A*)'21......Ann An1A12A22...An2...............Anna11a12'A (1)a21a22 (2)............an1A11(A')*21......ann An1A12A22...An2...............Ann其Aij(i,j1,2,......n)是A中元素aij的代数余子式,由结果分析知(A')*(A*)'.证毕.性质13 设A为n n1阶方阵,k为任意非零常数,则kA证明设A aij,,可知 kannA. kkn1A11n1性质14 (AB)*B*A* 证明:由性质1知,A*知(AB)*AB(AB)1ABB1A1AB*A1B*A* 证毕.......Am(m2),则推广性质15 n阶矩阵A1,A2,(A1,A2,......Am)(Am)(Am1)......A2A1,证明过程同性质13的过程.推广性质16 (Am)*(A*)m 证明:令A1A2......Am A,则AA1A2......Am(A1A2......Am)(Am)(Am1)......A2A1(A).性质17 上(下)三角矩阵的伴随矩阵仍为上(下)三角矩阵.a11a21a n1a12a22an2,当i j时,aij0.直接计算得,ann证明设A aij n nA0,iA21A220, Ann则A*亦为上三角矩阵.同理可证,若A为下三角矩阵,则A*也为下三角矩阵. 证毕.性质18 若矩阵A与B合同,且A与B可逆,则A*与B*也合同.证明因为A与B合同,所以存在可逆矩阵P使PTAP B.又A与B可逆,则有 ,即CA1CT B 1.其中C P 1.又PTAP PA B,则PC AA1PC BB1,即QTA*Q B*,其中Q PC是可逆矩阵.故A*与B*也合同.三.伴随矩阵的性质在题目中的综合应用41 例3.1 设A00 求(A3E) 1 5040005001300 21 解:A3E0200A3E111 2 又(A3E)0000E1例3.2 设三阶实数矩阵A(A非退化)的特征值为11,24,3 1. 求①2(A1)23A* ②2A*A2的值.此题目应用知识:A1,f(A),A*与A的特征值的关系.解:由题目条件先知为A的特征值,则性质10可知,A*的特征值为为A1特征值,f()为f(A)的特征值.①设x为A的特征向量,则知Ax x,得(2A)x2x,3Ax3则(2(A1)23A*)x(又有A12,31(4)(1) 4. 然后将4代入(),得到式子(将1,2,3分别代入(*)得2(A1)2-3A*的特征向量分别是110,2②设x为A特征向量,则(2A*)x2所以(2A*A2)x(,可知(2A*)的特征值分别为9,14,-7.故,2A*A2914(-7)-882.。

关于伴随矩阵性质的探讨

关于伴随矩阵性质的探讨

关于伴随矩阵性质的探讨1引言矩阵是高等代数的重要组成部分,是许多数学分支研究的重要工具.伴随矩阵作为矩阵中较特殊的一类,其理论和应用有自身的特点.设n 阶矩阵⎪⎪⎪⎭⎫ ⎝⎛=n n n a a a a A 1111,()n j i 2,1,= 是A中元素ij a 的代数余子式,称矩阵⎪⎪⎪⎭⎫ ⎝⎛=nn n n A A A A A 1111*为A 的伴随矩阵[]1(176)P .在大学本科的学习中,伴随矩阵只是作为求解逆矩阵的工具出现的,并没有进行深入的研究.本文分类研究了伴随矩阵的性质,并给出了证明过程,得到一系列有意义的结果.从而使高等代数中的重要概念——伴随矩阵比较完整地呈现在我们面前.2伴随矩阵的性质2.1伴随矩阵的基本性质 性质1[]2(5253)P P - E A AA A A ==**性质2 若0=A ,则0*=AA . 性质3 1*-=n AA .证明 由性质E A AA =*得E A AA =*, 从而 nA A A =*,两边同时左乘1-A得1*-=n AA ,即为所证.2.2可逆性质性质4 若A 可逆,则1*-=A A A (或*11A A A--=).证明 由性质1,E A AA =*两边同时左乘1-A 得E A A AA A 1*1--=,即 *111*A A AA A A ---==.性质5 若A 可逆,则*A 可逆且()A A A11*--=.证明 若A 可逆,即0,01*≠=≠-n AA A ,从而*A 可逆又有性质4得()()A A A A A1111*----==.性质6[3](124)P 若A 可逆,则()A A An 2**-=.证明 由性质1得()E A AA ****=,A 可逆,*A 也可逆,两边同时左乘()1*-A 得()()A AAA AA A A n n 2111****----===.性质7[4](181183)P P - 若A 可逆,则()()*11*--=A A .证明 由性质5得()A A A 11*--=, 由性质1得()E A A A 1*11---=. 两边同时左乘A 得()()1*1*1---==A A A A .2.3运算性质性质8 若A 可逆,k 为非零常数,则()*1*A k kA n -=.证明 由性质1得()()E kA kA kA =*,两边同时左乘()1-kA 得()()()*111111*A k A A k A k A k kA kA kA n n n ------====.性质9 若,A B 均为n 阶可逆方阵,则()***A B AB =.证明 由已知条件可得0≠A ,0≠B .从而可得0≠AB 也就是AB 可逆得()()()*11*11AB BAAB ABAB ----==,又因为()*1*1111A A B B A B AB -----==,由以上可得()***.AB B A =推论 若1321,,,,-t t A A A A A 均为同阶可逆矩阵,则()*1*2*3*1**1321A A A A A A A A A A t t t t --=.2.4特殊矩阵的伴随矩阵的性质性质10 若A 对称,则*A 亦对称.证明 因为A 是对称的,即,TA A =从而可得()()()()()**111*A A A A A A A A A TTTTT=====---,所以*A 是对称的.性质11 A 可逆,若*A 为对称矩阵,则A 为对称矩阵. 证明由题中所给条件可得()()()()T TT A A A A AA AA =⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡===--------11*11*1111.性质12 单位矩阵E 和零矩阵O 的伴随矩阵均为本身,即00,**==E E . 性质13 若A 可逆,则()()TT A A **=.证明 由性质1得()E A A A T T T=*,又由A 可逆,故T A 也可逆,两边同时左乘()1-T A 得()()()()()TTTT T T A A A A A A A A *111*====---.性质14 A 为n 阶反对称矩阵,则当n 为奇数时,*A 是对称矩阵;当n 为偶数时,*A 为反对称矩阵.证明 因()()*1*1A A n --=-,A A T -=由上一性质可知,()()()()*1***1A A A A n T T--=-==,所以,当n 为奇数时,()**A A T=,此时*A 是对称矩阵;当n 为偶数时,()**A A T-=,此时*A 是反对称矩阵.2.5伴随矩阵秩的性质性质14 设A 为n ()2≥n 阶方阵,证明 ⎪⎩⎪⎨⎧-<-===1)(,01)(,1)(,)(*n A r n A r nA r n A r .证明 当秩n A =时,即A 为非奇异时,由于01*≠=-n AA ,故*A 也是非奇异的,即秩 n A =*;当秩1A n =-时,有0A =,于是*0AA A E ==,从而,秩1*≤A .又秩1A n =-,所以至少有一个代数余子式0,ij A ≠ 从而又有秩* 1.A ≥于是,秩*1.A =当秩1A n <-时, 0*=A ,即此时秩*0A =.性质15 设n 阶方阵A 是可逆的,那么*A 可表示为A 的多项式.证明 A 的多项式为()0111a a a f n n n ++++=--λλλλ .因A 可逆,所以()010≠-=A a n由哈密顿-凯莱定理知()0=A f ,即00111=++++--E a A a A a A n n n ,故()E A E a A a A a n n n =+++----12111 , 右乘*A ,得()*1211A E a A a A a A n n n =+++---- , 故()()E a A a AA n n n n 12111*1+++-=---- .2.6伴随矩阵特征值的性质性质16 若λ为n n A ⨯的一个特征值,则1A λ-为*A 的特征值.证明 由条件知,有非零向量X 满足X AX λ=.则111,X A X A X X λλ---==. 从而11A A X A X λ--=,*1A X A X λ-=,也就是1A λ-为*A 的一个特征值. 2.7自伴随矩阵定义 若*A A =,则称A 为自伴随矩阵.性质17[]5()15P 关于自伴随矩阵的性质:(1) 零矩阵,单位矩阵均为自伴随矩阵;(2) 两自伴随矩阵之积为自伴随矩阵的充分条件为两矩阵可换; (3) 若A 为自伴随矩阵,则()21≥=-n A An ;(4) 若A 为自伴随矩阵,则(1,2,)kA k =也为自伴随矩阵;(5) 若A 为非奇异自伴随矩阵,则1A -也为自伴随矩阵;(6) 若A 为自伴随矩阵,则TA 也为自伴随矩阵. 2.8 伴随矩阵的继承性性质18 设,A B 为n 阶矩阵,则有 (1)若A 与B 等价,则*A 与*B 也等价;(2)若A 与B 合同,且A 与B 可逆,则*A 与*B 也合同;证明 因为矩阵A 与B 合同,则存在可逆矩阵P ,使B AP P T =,又A 与B 可逆,则()1111----=B P A P T,即11--=B C A C T ,其中()TP C 1-=,又B A P =2,则()()11**--=B B C P A A CP T,即**B Q A Q T =,其中C P Q =是可逆矩阵,故*A 与*B 也合同.(3)若A 与B 相似,则*A 与*B 也相似;证明 当A 可逆时,因为A 与B 相似,则B A =,且存在可逆矩阵P ,使得B AP P =-1.又A 与B 可逆,上式两边取逆,得111---=B P A P ,则有()111---=BB P A A P,即**1B P A P =-,说明*A 与*B 相似.当A 不可逆时,由B AP P =-1知,B 也不可逆,所以必存在0>δ,当()δ,0∈t 时,使0,0≠+≠+B tE A tE ,令.,11B tE B A tE A +=+=那么0,011≠≠B A ,且()()PA PP A tE PAP P P tE P AP P tE B tE B 1111111-----=+=+=+=+=则又由,*11*1P A P B -=即()()P A tE P B tE *1*+=+-,上式两端矩阵的元素都是关于t 的多项式,由于当()δ,0∈t 时,对应的元素相等,所以对于任意t 上式都成立.取0=t 时,**1B P A P =-,即*A 与*B 相似.(4)若A 能相似对角化,则*A 也能相似对角化; (5)若A 是正交矩阵,则*A 也是正交的.证明 因为A 为正交矩阵,则E A A A T==,12,于是()()()()()()EE AA AA A AA A A A A A A A T T TTT======--------1111211211**故*A 也是正交矩阵.3 相关例题例1设A 为三阶矩阵,A 的特征值为1,3,5.试求行列式*2A E -. 解 因为135,A =⨯⨯由性质16知道,*A 的特征值分别为1553.,, 于是*2A E -的特征值分别为15213523,32 1.-=-=-=, 故*2133139A E -=⨯⨯=.例2 求矩阵A 的伴随矩阵*A ,其中110430103A -=-. 解 矩阵A 的特征多项式为:()25423-+-=-=λλλλλA E f因 020a =-≠,所以A 可逆.由性质知()()11302826541213*---=+--=-E A AA .例3 已知三阶矩阵A 的逆矩阵为1111121113A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,试求伴随矩阵*A 的逆矩阵.解 由性质5得()A A A11*--=,由()11A A --=用伴随矩阵法或初等行变换易求得⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----=2102101121125A ,又因为23111211111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-A,从而可得()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----===---101022125111*A A A A A .例4 若A ,B 均为偶数阶同阶可逆矩阵,且有相同的伴随矩阵,试证A B =.证明 由性质4得,1*-=A A A , 1*-=B B B ,可知11A A B B --=, 也就是11--=B B A A ,11n n A A B B --=, 由11n n AB --=(n 为偶数可得1n -为奇数)从而B A =.例5 已知三阶矩阵()33⨯=ij a A 满足条件:(1)()3,2,1,==j i A a ij ij ,其中ij A 是ij a 的代数余子式;(2)011≠a ,求A .解 由条件(1)和性质3知,T A A =*,则2*A A AA T===,所以0=A 或1=A .又0212132122111112121111≠++++=+++=n n n a a a a A a A a A a A ,故1=A .参考文献:[1] 北京大学数学系几何与代数教研室代数小组.高等代数[M].北京:高等教育出版,1988 [2] 同济大学数学教研室.线性代数3版[M].北京:高等教育出版,1999 [3] 钱吉林,高等代数题解精粹[M].北京:中央民族大学出版社,2002[4] 蔡剑芳,钱吉林,李桃生.高等代数综合题解[M].武汉:湖北科技出版社,1986 [5] 王航平,伴随矩阵的若干性质.中国计量学院学报[J].2004,03 [6] 张禾瑞,高等代数[M].北京:人民教育出版社,1979 [7] 陈景良,陈向晖.特殊矩阵[M].北京:清华大学出版社,2001 [8] 卢刚,线性代数2版[M].北京:高等教育出版社,2004 [9] 王品超,高等代数新方法[M].济南:山东教育出版社,2001 [10] 扬子胥,高等代数习题解[M].济南:山东科学技术出版社,2003 [11] Farkas L,Farkas M.线性代数及其应用[M].北京:人民教育出版社,1981。

伴随矩阵的若干性质

伴随矩阵的若干性质

刊j(T)adj(Qx一0))
以j(X)ad胭)n咖\㈢0。。0/ )嘶(蹦由第5步)
=adj(B)adj(A)
所以adj(AB)一adj(B)adj(A) 证毕
推论:设A,。A∥...A。为仟意咒阶锚阵
万方数据
第3期
王航平:伴随矩阵的若干性质
249
(1)adj(A1A2…A,)
=adj(A,)adj(A,.1)…adj(A1); (2)adj(A+)=(adj(A))‘. 定理6: (1)adj(A叫)=(adj(A))一1; (2)『adj(A)I=』AI一1;(咒≥2)
特别,有adj(adj(A))一IA I”一2A.
证明:(1)可直接由定义计算出,这里只证明
当愚一1时,结论成立,当k=2时:rank(A) =7"1,由定理2有adj(A)一IAIA~,
所以adj‘2](A) 一 adj(adj(A)) = Iadj(A)Iadj-1(A)=I IA IA_1 l(1 A lA叫1)-1 一I A I一2A k=2时,结论成立,
设A为挖(规>1)阶方阵,记
ads‘1(A)为adj(adj(…adj(A)…)),则有 —————了K了————一
(1)adj(kA)=k.-1adj(A);
(2)adjE‘3(A)=

。0


fA
f尘型粤口dj(A)
lAl毕A
对V k∈N.
竺艇:二麓:
rank(A)一咒,志为奇数 rank(A)=,2,k为偶数
adj(P(i(f)))=IP(i(c))IP叫(i(c))
=cP(i(1/c));
adjP(i,J(忌))=lP(i,歹(是))lP一1(i,_f(忌))

谈谈伴随矩阵的性质及其应用

谈谈伴随矩阵的性质及其应用

谈谈伴随矩阵的性质及其应用摘要:线性代数是高等院校理工科学生必学的一门课程,其中矩阵理论在线性代数中占有十分重要的地位,而矩阵的运算也是数值分析领域中具有极其广泛的应用。

然而,在现行的教材中都出现过方阵的伴随矩阵的概念,但是大多编者和教材并没有对伴随矩阵进行过全面的探究。

我们知道矩阵的伴随矩阵是一个十分重要的概念.它有很多重要的性质,并且有及其广泛的应用。

所以系统的去分析伴随矩阵的性质和运算,具有十分重要的意义。

本文对于伴随矩阵常用的性质做了归纳与总结,然后介绍了矩阵的伴随矩阵一些常见的应用。

关键词:伴随矩阵;逆矩阵;矩阵的秩;线性代数在线性代数讨论矩阵的逆时,为了求可逆矩阵的逆矩阵,我们引入了矩阵的伴随矩阵的概念,用伴随矩阵的性质推得了矩阵可逆的充要条件,并由此推出了求逆矩阵的公式。

但由于用定义计算逆矩阵比较繁琐,所以,在实际计算中,通常我们一般利用矩阵的初等变换求它的逆矩阵。

然而,伴随矩阵及其性质的重要性不仅仅在讨论矩阵的逆时用到,它在讨论矩阵的行列式,矩阵的秩以及矩阵的特征值等等,都有其广泛的应用。

下面,我们首先给出矩阵的伴随矩阵的概念,然后讨论一下伴随矩阵的性质,最后,探讨伴随矩阵性质的一些应用。

1.伴随矩阵的概念定义:设是一个n阶方阵,为中元素的代数余子式,称n 阶矩阵为n阶矩阵的伴随矩阵。

1.伴随矩阵的性质性质1. ;注:这是n阶矩阵的伴随矩阵的一个非常重要的性质,一般情况下,只要涉及到有关伴随矩阵的命题,都是从这个性质作为切入点展开讨论。

至于这个性质的证明,只要利用矩阵的乘法即行列式的性质直接验证即可。

由性质1,易推得如下性质2至性质7.性质2. 如果,则;性质3. (1);(2);(3)性质4. 如果为对称矩阵,则也是对称矩阵;性质5. ;性质6. ,(其中为阶方阵)性质7. 如果可逆,则也可逆,且;性质8. 设为n阶方阵,则;证明:如果,则,由性质1可知,在等式两边取行列式可得,由此推得,从而;如果,则,由性质1可知,由此可知得列向量都是齐次线性方程组的解,又由于,可知,齐次线性方程组的基础解系含有个解向量,因此,;如果,则的每一个元素,也即为零矩阵,故。

关于伴随矩阵的几个结论

关于伴随矩阵的几个结论

关于伴随矩阵的几个结论1、伴随矩阵是一种特殊的矩阵,它的元素和原来矩阵的元素具有一定的关系。

如果A是m*n 矩阵,则它的伴随矩阵A~是n*m矩阵,且满足AA~=A~A=|A|I,其中|A| 是行列式,I 是单位矩阵。

2、伴随矩阵的性质及其定义决定了它是要满足AA~=A~A=|A|I这样一系列条件的。

由此,借此原理,当原矩阵 A 不可逆时,它的伴随矩阵A~也必然不存在。

3、由于伴随矩阵是特殊的矩阵,其元素可由原矩阵来推导,也就是说,可以把伴随矩阵看作是原矩阵的变形,它们存在着一定的关系。

4、对任意一个方阵 A,其复数的伴随矩阵A~ = conj(A^T),其中 conj(A^T) 表示矩阵A^T的共轭矩阵,即将A^T的每个元素的复数取其共轭数。

同样的,实数的伴随矩阵A~ =adj(A^T),其中adj(A^T) 表示A^T的伴随矩阵。

5、伴随矩阵和原矩阵的求解有着很大的关系,给定一个方阵A,可以使用它的伴随矩阵A~来求解A,或者可以使用A来求解A~。

同时,对于一个解析式,可以使用它的伴随矩阵来求解。

6、由于伴随矩阵与原矩阵有着一定的关系,所以可以用来分析矩阵是否可逆,可逆矩阵的伴随矩阵与其相等;而不可逆矩阵的伴随矩阵不存在。

7、伴随矩阵的行列式的值与原矩阵的行列式的值具有一定的关系,即|A~|=|A|^(-1)。

因此,如果矩阵A的行列式|A|≠0,那么它的伴随矩阵A~也可以求出,它具有非常重要的解析意义。

8、伴随矩阵可以广泛应用于计算机科学、信息科学、数学建模和模式识别等领域,主要用于矩阵的逆的求解,也可用于解决线性方程组以及复数的代数求解。

伴随矩阵的性质和应用

伴随矩阵的性质和应用

伴随矩阵的性质及其应用摘要:伴随矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具。

伴随矩阵作为矩阵中较为特殊的一类,其理论和应用有自身的特点.而在大学的学习中,伴随矩阵只是作为求解逆矩阵的工具出现的,并没有深入的研究.本文分类研究伴随矩阵的性质,并讨论其证明过程,得到一系列有意义的结论。

(1)介绍伴随矩阵在其行列式、秩等方面的基本性质; (2)研究数乘矩阵、乘积矩阵、分块矩阵的伴随矩阵的运算性质及伴随矩阵在逆等方面的运算性质; (3)研究矩阵与其伴随矩阵的关联性质,主要介绍由矩阵的对称性、正定性、奇异性、正交性推出伴随矩阵的对称性、正定性、奇异性、正交性; (4)研究伴随矩阵间的关系性质,主要研究由两矩阵的相似、合同等关系推出对应的两伴随矩阵之间的关系; (5)研究伴随矩阵在特征值与特征向量等方面的性质; (6)给出m 重伴随矩阵的定义及其一般形式,研究m 重伴随矩阵的相应的性质。

本文的主要创新点在于研究了一类分块矩阵的伴随矩阵的性质。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。

在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。

在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

然而伴随矩阵在矩阵中占据着比较特殊的位置,通过它可以推导出逆矩阵的计算公式,使方阵求逆的问题得到解决,伴随矩阵的性质和应用有着与众不同的特点。

在矩阵计算及讨论中, 常常会遇到伴随矩阵,但对伴随矩阵的一些性质进行系统讨论的却很少, 以下将主要针对伴随矩阵的各种性质及应用讨论。

关键词:伴随矩阵 可逆矩阵 方阵性质1、 伴随矩阵的定义定义 1.设ij A 是矩阵A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a212222111211中元素ij a 的代数余子式,则矩阵A *=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡nn n n n n A A A A A A A A A212222111211称为A 的伴随矩阵。

伴随矩阵的秩和特征值

伴随矩阵的秩和特征值

伴随矩阵的秩和特征值【摘伴随矩阵是矩阵理论和高等代数中的一个基本概念,是许多数学分支研究的重要工具。

伴随矩阵作为矩阵中较为特殊的一类,其理论和应用有其自身的特点。

而在大学的学习中,伴随矩阵只是作为求解逆矩阵的工具出现的,并没有深入研究。

本文将分类研究伴随矩阵的性质,并讨论其证明过程,且对伴随矩阵的秩和矩阵的秩的关系以及伴随矩阵的特征值进行研究。

【关键词】矩阵 可逆矩阵 伴随矩阵 秩 代数余子式 特征值矩阵的伴随矩阵在高等代数当中具有非常重要的地位。

对于一些它的性质的推论,牵涉到线性代数当中许多概念和方法。

一 伴随矩阵的基本概念定义1.1 设矩阵B=,将矩阵B 的元素所在的第i 行第j 列元素划去后,剩余的()21-n 各元素按原来的顺序组成1-n 阶矩阵所确定的行列式称为的余子式,记为ij M ,称().1ij ji M +-为元素的代数余子式,记为,即 ,i,j=1,2,n .定义1.2 假设为矩阵B=中元素的代数余子式,矩阵=称作B 的伴随矩阵。

二 伴随矩阵的秩和矩阵的秩的定义定义2.1 在矩阵B 中,任意选取k 行和k 列元素,位于这k 行k 列交叉点上的元素构成B 的一个k 阶子矩阵,此子矩阵的行列式,称为B 的一个k 阶子式. 定义2.2 一个矩阵B 中不等于零的子式的最大阶数叫做矩阵的秩.定义2.3 一个矩阵B 的伴随矩阵中不等于零的子式的最大阶数叫做伴随矩阵的秩.伴随矩阵的秩和矩阵的秩的关系若B 为n (n) 阶矩阵,为其伴随矩阵,则r ()= ;证明:① 当r(B)=n 时,B 可逆,==因此r ()=n② 当r(B)<n 时,r ()==0 r(B)+ r ()n当r(B)=n-1时,r ()1, 又有至少有一个元素不为0, 即 r ()1, 也就是r ()1当r(B)<n-1时,B 的所有n-1阶式为0,所以=0 ,即r ()1三 伴随矩阵的性质假如是n(n2)阶B的伴随矩阵,因此(1)B=B=E;(2)=;证明:由公式(1),即B=E两边取行列式,得===。

矩阵伴随的公式

矩阵伴随的公式

矩阵伴随的公式摘要:一、矩阵伴随的定义与性质1.矩阵伴随的定义2.矩阵伴随的性质二、矩阵伴随的计算方法1.行列式方法2.代数余子式方法3.扩展行列式方法三、矩阵伴随的应用1.矩阵的逆与行列式2.线性方程组的解四、矩阵伴随与其他矩阵函数的关系1.矩阵的迹2.矩阵的特征值与特征向量正文:矩阵伴随是矩阵理论中的一个重要概念,它在解决许多矩阵问题时具有重要作用。

本文将介绍矩阵伴随的定义、性质、计算方法及其在矩阵中的应用。

一、矩阵伴随的定义与性质矩阵伴随是一个与矩阵行列式相关的矩阵函数,给定一个n 阶方阵A,其伴随矩阵|A|*为其转置矩阵A^T 的行列式,即|A|* = det(A^T)。

伴随矩阵具有以下性质:1.|A| = |A^T|2.|A|* = |A|^(-1)3.(A*B)^T = B^T * A^T二、矩阵伴随的计算方法矩阵伴随可以通过以下三种方法计算:1.行列式方法:利用行列式的性质,将矩阵A 表示为行列式的线性组合,从而求得伴随矩阵。

2.代数余子式方法:将矩阵A 划分为若干子矩阵,利用代数余子式的性质求解伴随矩阵。

3.扩展行列式方法:将矩阵A 扩展为一个更大的矩阵,并求解其行列式,从而得到伴随矩阵。

三、矩阵伴随的应用1.矩阵的逆与行列式:给定一个可逆矩阵A,其伴随矩阵|A|*与其逆矩阵A^-1 的关系为|A|* = |A^-1|。

此外,如果矩阵A 的行列式为0,则A 不可逆,且其伴随矩阵的行列式也为0。

2.线性方程组的解:矩阵伴随在求解线性方程组时具有重要作用。

根据线性方程组系数矩阵的伴随矩阵,可以判断线性方程组的解的情况,如唯一解、无解或无穷多解。

四、矩阵伴随与其他矩阵函数的关系1.矩阵的迹:矩阵的迹等于其主对角线元素之和,与伴随矩阵有密切关系。

给定一个n 阶方阵A,其迹tr(A) 等于其伴随矩阵的迹,即tr(A) =tr(|A|*)。

2.矩阵的特征值与特征向量:矩阵的特征值与特征向量与其伴随矩阵有直接关系。

a伴随矩阵的秩的证明

a伴随矩阵的秩的证明

a伴随矩阵的秩的证明引言在线性代数中,矩阵是一种重要的数学工具,广泛应用于各个领域。

矩阵的秩是一个重要的概念,它可以告诉我们矩阵的线性相关性和方程组的解个数。

本文将探讨a伴随矩阵的秩,并给出其证明过程。

a伴随矩阵的定义首先,我们来定义a伴随矩阵。

对于一个n×n方阵A,它的a伴随矩阵记作adj(A),定义如下:adj(A) = (C1, C2, …, Cn)其中,Ci表示A中第i列对应的余子式乘以(-1)^(i+j),j为任意固定值。

a伴随矩阵与原矩阵之间的关系a伴随矩阵与原矩阵之间有着密切的联系。

事实上,如果A是一个可逆方阵(即det(A)≠0),那么有以下等式成立:A × adj(A) = adj(A) × A = det(A) × I其中I表示单位矩阵。

a伴随矩阵的性质在证明a伴随矩阵的秩之前,我们先介绍一些a伴随矩阵的性质。

1.adj(adj(A)) = det(A)^(n-2) × A这个性质可以通过直接计算来证明。

首先,我们有adj(A) × A = det(A) × I,两边同时乘以adj(A),得到adj(A) × adj(A) × A =det(A) ×adj(A)。

由于A是可逆方阵,所以det(A)≠0,我们可以将上式两边同时除以det(A),得到adj(A) × A = adj(adj(A))。

再次利用adj(A) × A =det(A) × I,我们可以得到adj(adj(A)) = det(A)^(-1) × adj(adj(A)) = det(A)^(-1) × adj(adj(A)) × A。

比较两个等式的右边部分可得det(adj(A))×A=det(adj(adj(A))),即:adj(adj(A))=det(A)(-1)adj(A)A=det(A)(n-2)I A=det(A)^(n-2)*A。

伴随矩阵的性质

伴随矩阵的性质

编号2009011118毕业论文(设计)( 2013 届本科)论文题目:伴随矩阵的性质学院:数学与统计学院专业:数学与应用数学班级:09级本科1班作者姓名:魏瑞继指导教师:俱鹏岳职称:副教授完成日期:2013年 4 月20日目录陇东学院本科生毕业论文(设计)诚信声明 (3)摘要 (4)关键词 (4)0引言 (4)1主要结论 (4)1.1伴随矩阵的基本性质 (4)1.2伴随矩阵的特征值与特征向量的性质 (8)1.3矩阵与其伴随矩阵的关联性质 (9)1.4两伴随矩阵间的关系性质 (10)2应用举例 (11)例1 (11)例2 (11)结束语 (12)参考文献 (12)致谢 (13)陇东学院本科生毕业论文(设计)诚信声明本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明应用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。

对本文的研究做出重要贡献的个人和集体已在文中以明确方式标明。

本人完全意识到本声明的法律结果由本人承担。

作者签名:二〇一二年十二月二十日伴随矩阵的性质魏瑞继(陇东学院 数学与统计学院 甘肃 庆阳 745000)摘要:伴随矩阵是矩阵理论中一个重要的基本概念,我们对几类矩阵的伴随矩阵进行了研究,得到了一些有价值的结论,并给出了部分应用举例. 关键词:伴随矩阵;分块矩阵;正交矩阵;相似矩阵0引言伴随矩阵在高等代数中的作用是极其重要的,在关于伴随矩阵的一些性质可以应用到其他矩阵的计算证明中,在这时候就更需要这一方面的知识了,伴随矩阵的内容深入不仅增加了矩阵的内容,也补充了矩阵计算的不足,在矩阵的证明与应用中也得到广泛的推广.定义1[1] 设矩阵()ij n n A a ⨯=,将矩阵A 的元素ij a 所在的第i 行第j 列元素划去后,剩余的2(1)n -个元素按原来的排列顺序组成的1n -阶矩阵所确定的行列式称为元素ij a 的余子式,记为ij M ,称(1)i j ij M +-为元素ij a 的代数余子式,记为ij A ,即ij A = (1)i jij M +-(i ,j=1,2,……,n).定义2[2] 方阵()ij n n A a ⨯=的各元素的代数余子式ij A 所构成的如下矩阵A *= 112111222212n n nn nn A A A A A A A A A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦称为矩阵A 的伴随矩阵.1主要结论1.1伴随矩阵的基本性质性质1 若A 是n 阶方阵(2)n ≥,那么()r A *= (A)1(A)10(A)1n r n r n r n ⇔=⎧⎪⇔=-⎨⎪⇔<-⎩.证明 (1)⇒)设()r A n *=,设()r A n <,则0A =,AA A E *=0= 由()r A n *=知A *为可逆矩阵,从而推得0A =,即A 为零矩阵. 于是A *也为零矩阵,与()r A n *=矛盾,所以()r A n =;(2) ⇒)如果()1r A *=,则A *中至少有一个元素ij A ≠0,即A 中至少有一个1n - 阶子式不为0,故()1r A n ≥-. 而r(A *) =1<n ,所以()1r A n =-;(3) ⇒)如果()0r A *=,即A *为零矩阵,而A *中元素均为A 中的1n -阶代数余子式,从而A 中的所有1n -阶子式全为0,所以()1r A n <-;性质2[4] 若矩阵A 为非奇异阵,k 为常数(k ≠0),则1()n kA k A *-*=. 证明 由A *=1A A -及111()kA A k--=可得 111()()n kA kA kA k A A k*--==⋅=111n n k A A k A ---*=.性质3 (1)无论A 是奇异阵还是非奇异阵,等式1n A A -*= (2n ≥)成立[5];(2)设A 为n 阶方阵,则2()n A AA -**=[6].证明 (1)当A 是奇异阵时,0A =,因为A *=1A A -0=为零阵. 所以 10A A A *-==,从而等式1n A A-*= (2n ≥)成立.当A 是非奇异阵时,0A *≠,由AA A E *=得nA A A E A *==. 所以 1n A A-*=(2n ≥).(2)当A ≠0时,()A **=111()()n A A A A --*-*==121()n n AA A AA ---=.当A =0时,知()1r A n ≤-,若()1r A n =-,则()11r A n *=<-. 由性质1知r (()A **)=0,从而()A **=0=2n AA -若()1r A n <-,则r(A *)=0,即A *=0 故()A **=0=2n AA -.性质4 设A ,B 为n 阶方阵,则()AB B A ***=. 证明 (1)当0A ≠,B ≠0时,由A *=1A A -可得()AB *=11111()AB AB A B B A B B A A B A -----**===. (2)当0A =,B =0时,令()A x xE A =+,()B x xE B =+只要x 充分大,()A x ,()B x 都可逆,所以(()())(())(())A x B x B x A x ***=上式两端矩阵中的元素都是关于x 的多项式,由于两端对应元素相等,所以对应元素是相等的多项式,即上式对任意的x 都成立. 特别的取x =0,即得()AB B A ***=. 推论 设12,,,s A A A 均为n 阶方阵,则 1221()s s A A A A A A ****= .性质5 设A ,B 均为n 阶可逆矩阵,则有220(1)A B 0A 0(1)A 0n n B B ***⎡⎤-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦⎣⎦. 证明 因为-1-10A 0B 0A0B ⎡⎤⎡⎤⋅⎢⎥⎢⎥⎣⎦⎣⎦=-1-1AA 00B B ⎡⎤⎢⎥⎣⎦=00nn E E ⎡⎤⎢⎥⎣⎦=2n E 所以0A 0B ⎡⎤⎢⎥⎣⎦可逆,且-10A 0B ⎡⎤⎢⎥⎣⎦=-1-10B A 0⎡⎤⎢⎥⎣⎦. 又有220A 0=(1)=(1)A 00An n B B B -- 由-1A =A A *可得0A 0B*⎡⎤⎢⎥⎣⎦=-10A 0A 00B B ⎡⎤⋅⎢⎥⎣⎦=2-1-10B (1)A A0n B ⎡⎤-⎢⎥⎣⎦=22-1-10(1)A B (1)A A 0n n B B ⎡⎤-⎢⎥⎢⎥-⎣⎦=22(1)A B (1)A 0n n B **⎡⎤-⎢⎥⎢⎥-⎣⎦. 推论 设A ,B ,C 均为n 阶可逆矩阵,则有2220(1)A C00A 000(1)A C B000(1)C A 0nn n B B C B ****⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦. 性质6[4] 若A 为n 阶方阵,则()()T T A A **=.证明 (1)当A 为非奇异矩阵时,有A ≠0,T A =A ≠0,10n A A -*=≠即T A ,A *也为非奇异阵.由A *=1A A -可得11()()()T T T A A A A A *--== 又 11(A )=A (A )=A (A )T T T T *--因为11A (A )=A A =T T TT E E --=() 所以1(A )T -=1A T -() 即(A )T *=A T *().(2)当A 为奇异阵时,设A = 111212122212n n n n nn a a a a a a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,则T A 的第i 行第j 列元素为ija ,()T A *的第i 行第j 列元素为ij A ,A *的第i 行第j 列元素为ji A ,()T A *的第i 行第j 列元素为 ij A (i ,j=1,2,……,n ), 所以()T A *= ()T A *.性质7 (1)设A 是n 阶非奇异阵,则111()()A A A A-**-==; (2)设A 是n 阶非奇异阵,则111()()T T T A A A A *--*⎡⎤⎡⎤==⎣⎦⎣⎦. 证明 (1)由A *= 1A A -得 1111111()()()A A A A A A A*-----=== 又11111()()A A A A A -*---==所以11()()A A -**-= =1A A.(2)由性质6得11()()TT A A *--*⎡⎤⎡⎤=⎣⎦⎣⎦ 由(1)得11()()TTA A -**-⎡⎤⎡⎤=⎣⎦⎣⎦.又因为11()()T T T T A A A A E E --===, 所以11()()T T A A --=11()()TT A A -*-*⎡⎤⎡⎤=⎣⎦⎣⎦即1-1()()T TA A *-*⎡⎤⎡⎤=⎣⎦⎣⎦又11111111()()()()T T T T T A A A A A A A *-------⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦ 所以111()()T T T A A A A *--*⎡⎤⎡⎤==⎣⎦⎣⎦. 1.2伴随矩阵的特征值与特征向量的性质性质8 若A 是可逆矩阵,λ是其特征值,α是A 的属于特征值λ的特征向量,则 A *的特征值为Aλ,α是A *的属于特征值Aλ的特征向量.证明 因为A 是可逆矩阵,所以λ≠0,在A αλα=两边左乘A *得A A A αλα**=即 A A A αλα**=.又AA A E *=, 所以 A E A αλα*= 即1AA A E αλααλ*-==.所以Aλ为A *的特征值,α是A *的属于特征值Aλ的特征向量.性质9 设A 是不可逆矩阵,若λ是A 的非零特征值,α是A 的属于λ的特征向量, 则α是A *的属于特征值0的特征向量.证明 由条件可知A αλα=(λ≠0),两边左乘A *得A AA αλα**= 即A E A αλα*=. 由于A =0,λ≠0,所以0A αα*=⋅ 即α是A *的属于特征值0的特征向量.推论 设A 是不可逆矩阵,若λ是A *的非零特征值,α是A *的属于λ的特征向量, 则α是A 的属于特征值0的特征向量. 1.3矩阵与其伴随矩阵的关联性质性质10[7] (1)若A 是n 阶对称矩阵,那么A *也是n 阶对称矩阵;(2)若A 是n 阶反对称矩阵,那么当n 是偶数时,A *也是n 阶反对称矩阵;当n 是奇数时,A *是n 阶对称矩阵.证明 (1)因为A 是n 阶对称矩阵,所以T A =A . 又()()T T A A A ***==,所以A *是n 阶对称矩阵. (2)因为A 是n 阶反对称矩阵,所以T A =A -. 又1()()()(1)T T n A A A A ***-*==-=-当n 是偶数时,有1(1)n A A -**-=-,所以A *也是n 阶反对称矩阵; 当n 是奇数时,有1(1)n A A -**-=,即()T A A **=,所以A *是n 阶对称矩阵. 性质11[8] 若A 是n 阶正定矩阵,则A *也是n 阶正定矩阵 . 证明 若A 正定,则A 为对称矩阵,由性质10知A *也为对称矩阵. 其次可得A 的所有特征值λ均大于0,由性质8知A *的所有特征值也大于0,即A *为正定矩阵.性质12[9] 若A 是正交矩阵,则A *也是正交矩阵 . 证明 设A 是正交矩阵,则有T T A A AA E ==又A *()T A *= 1()()T T A A A A E E E E ****-==== 所以A *也是正交矩阵.性质13 若A 是上(下)三角矩阵,则A *也是上(下)三角矩阵. 证明 设A =()ij a 是上三角矩阵,则当i>j 时,有ij a =0.当i<j 时,ij a 的余子式ij M 为n-1阶的三角行列式,且主对角线上的元素至少有一个为零,所以ij M =0(i<j),即有ij A =0(i<j).故A *也为上三角矩阵.同理可证,若A 是下三角矩阵,则A *也为下三角矩阵. 推论 当A 是对角矩阵时,A *也是对角矩阵. 1.4两伴随矩阵间的关系性质性质14 若方阵A 等价于B ,则A *等价于B * .证明 因为A 等价于B ,则存在可逆矩阵P ,Q 使得PAQ B = 两边取伴随矩阵得()PAQ B **= 即有Q A P B ****=.因为P ,Q 可逆,所以P *,Q *也可逆,因此A *等价于B *. 性质15[10] 若A 与B 相似,则A *与B *也相似.证明 当A 可逆时,因为A 与B 相似,则存在可逆矩阵P ,使得1P AP -=B . 两边取行列式得A B =,所以B 也可逆,即111P A P B ---=. 上式两边分别乘以,A B 得111P A A P B B ---=. 即1P A P B -**=,所以A *与B *相似.性质16 若A 与B 合同,且A 与B 可逆,则A *与B *也合同.证明 因为A 与B 合同,所以存在可逆矩阵P ,使得T P AP B =. 又A 与B 可逆,上式两边取逆,得 1111()T P A P B ----= 即1111()T P A P B ----=.令1()T P -=C ,则1T P C -=,所以11T C A C B --=. 又由1111()T P A P B ----=得 2P A B ⋅=所以211T P A C A C B B --⋅= 即()()T P C A P C B **⋅=. 令Q=P C ,则T Q A Q B **=所以A *与B *合同.2应用举例例1 设A 、B 、C 均为3阶可逆矩阵,且A =3,B =2,C =5A *=110012009-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,B *=400110211⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦,C *=500050001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,求000000A BC*⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦. 解 由性质5的推论可得00000A BC*⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=99900(1)3(2)0(1)350(1)(2)500C B A ***⎡⎤-⋅⋅-⎢⎥-⋅⋅⎢⎥⎢⎥-⋅-⋅⎣⎦=00601501000C B A ***⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦=0000003000000000030000000000600060000000001515000000030151500010100000000010200000000090000000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥--⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦.例2 设A =100130225012⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,A *是A 的伴随矩阵,求1()T A -*⎡⎤⎣⎦. 解 因A =10013225012=14-≠0,所以A 可逆由性质7可得11()T T A A A -*⎡⎤==⎣⎦10040014010242061035022⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥-=--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦⎢⎥⎣⎦.结束语这篇论文在伴随矩阵的基本性质的基础上,较为详细地归纳并讨论了伴随矩阵的性质,尤其是将矩阵与其伴随矩阵的秩之间的关系做成了充要条件,并给出了相应的证明,而关于伴随矩阵秩的其它性质还很多,限于篇幅,在此就不一一赘述.但我的学识有限,所做工作仍有许多不足之处.参考文献[1]李明.伴随矩阵秩的研究[J].陕西理工学院学报,2008.6.7-8.[2]张禾瑞,郝鈵新.高等代数[M].北京:高等教育出版社,2007.6. 第五版. [3]张禾瑞.高等代数同步辅导及习题全解[M].徐州:中国矿业大学出版社,2008.4.[4]陈艳凌,许杰.矩阵A 的伴随矩阵A *的性质[J].齐齐哈尔师范高等专科学校学报,2007年第2期, 2007.2.151-153.[5]肖翔,许伯生.伴随矩阵的性质[J].上海工程技术大学教育研究,2007.3.52-53.[6]郑群珍,封平华.伴随矩阵的性质及应用研究[J].河南教育学院学报(自然科学版),第20卷第3期,2011.9.13-14. [7]王航平.伴随矩阵的若干性质[J].中国计量学院学报,2004.3.246-247.[8]朱焕,关丽杰,范慧玲.有关伴随矩阵的性质[J].高师理科学刊,第28卷 第3期,2008.5.22-23. [9]任化民.伴随矩阵的性质[J].工科数学,第14 卷第1期,1998.2.155-157.[10]孙红伟.伴随矩阵性质的探讨[J].高等函授学报(自然科学版),第20卷第3期,2006.6.37-38.The properties of adjoint matrixWEI Ruiji(School of Mathematics and Statistics,Longdong University Gansu Qingyang 745000) Abstract: Adjoint matrix is an important basic concepts in matrix theory, we studied the several classes of adjoint matrix of the matrix, obtain some valuable conclusions and give some applied examples.Key words: Adjoint matrix; Partitioned matrix; Orthogonal matrix; Similar matrix致谢我的论文是在我的指导老师俱鹏岳副教授悉心指导下完成的,在论文的选题、资料查询及定稿过程中,给予我无私的帮助和悉心的指导,他的教诲将使我终身受益.。

伴随矩阵的性质及其应用

伴随矩阵的性质及其应用

伴随矩阵的性质及其应用摘要:伴随矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具。

伴随矩阵作为矩阵中较为特殊的一类,其理论和应用有自身的特点.而在大学的学习中,伴随矩阵只是作为求解逆矩阵的工具出现的,并没有深入的研究.本文分类研究伴随矩阵的性质,并讨论其证明过程,得到一系列有意义的结论。

(1)介绍伴随矩阵在其行列式、秩等方面的基本性质; (2)研究数乘矩阵、乘积矩阵、分块矩阵的伴随矩阵的运算性质及伴随矩阵在逆等方面的运算性质; (3)研究矩阵与其伴随矩阵的关联性质,主要介绍由矩阵的对称性、正定性、奇异性、正交性推出伴随矩阵的对称性、正定性、奇异性、正交性; (4)研究伴随矩阵间的关系性质,主要研究由两矩阵的相似、合同等关系推出对应的两伴随矩阵之间的关系; (5)研究伴随矩阵在特征值与特征向量等方面的性质; (6)给出m 重伴随矩阵的定义及其一般形式,研究m 重伴随矩阵的相应的性质。

本文的主要创新点在于研究了一类分块矩阵的伴随矩阵的性质。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。

在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。

在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

然而伴随矩阵在矩阵中占据着比较特殊的位置,通过它可以推导出逆矩阵的计算公式,使方阵求逆的问题得到解决,伴随矩阵的性质和应用有着与众不同的特点。

在矩阵计算及讨论中, 常常会遇到伴随矩阵,但对伴随矩阵的一些性质进行系统讨论的却很少, 以下将主要针对伴随矩阵的各种性质及应用讨论。

关键词:伴随矩阵 可逆矩阵 方阵性质1、 伴随矩阵的定义定义 1.设ij A 是矩阵A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a212222111211中元素ij a 的代数余子式,则矩阵A *=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡nn n n n n A A A A A A A A A212222111211称为A 的伴随矩阵。

伴随矩阵的性质与应用_考研必看

伴随矩阵的性质与应用_考研必看

( )
*
证明 (1) 当秩 ( A) = n 时 A A* = A
n
A ≠ 0 ,由于 AA* = A E ,两边同时取行列式,得 故秩 A* = n . A E得AA* = 0
所以 A* ≠ 0
( )
(2) 当秩 ( A) = n − 1时, A = 0 ,由 AA* =
从而可知 A* 的每一列都是方程组 AX = 0 的解向量,故由此可得 A* ≤ n − 秩( A) = 1 , 又因为 所以
-2-
k n −1 A21 k n −1 A22 n −1 k A2 n
k n −1 An1 A11 n −1 k An 2 n −1 A12 =k A k n −1 Ann 1n
A21 An1 A22 An 2 n −1 * =k A A2 n Ann
n −1
(
)
*
(A
−1
−A
* *
)
1 * 1 1− A * = − 1 A* = = − A A A A A
*
*
(A )
* *
1− A = A
n −1
A
n−2
*
1.8 A*
( ) = (A )
T
T *
证明 由于 AA* = A* A = A E 所以 又
(A )
* T
AT AT
* T
( ) = (A )
*
* T
AT E = AT A*
* T T *
( )
T
= A A*
T T *

伴随矩阵求法

伴随矩阵求法

伴随矩阵求法在线性代数中,矩阵是一个重要的概念,它是由数个数排列成的矩形阵列。

在矩阵的运算中,伴随矩阵是一个非常重要的概念,它可以用来求解矩阵的逆矩阵、解线性方程组等问题。

本文将介绍伴随矩阵的定义、性质和求解方法,希望对读者有所帮助。

一、伴随矩阵的定义伴随矩阵是指一个矩阵的每个元素的代数余子式所组成的矩阵的转置矩阵,也就是说,如果矩阵A的元素a[i][j]的代数余子式为A[i][j],则A的伴随矩阵记作adj(A),它的元素为adj(A)[j][i] = A[i][j]。

例如,对于一个3*3的矩阵A,它的伴随矩阵为:adj(A) = |A[1][1] A[2][1] A[3][1]||A[1][2] A[2][2] A[3][2]||A[1][3] A[2][3] A[3][3]|二、伴随矩阵的性质1. 伴随矩阵和原矩阵的乘积等于原矩阵的行列式乘以单位矩阵。

即:A*adj(A) = det(A)*E,其中E为单位矩阵。

证明:根据矩阵的定义,有:A*adj(A) = |a[1][1] a[1][2] ... a[1][n]| * |A[1][1]A[2][1] ... A[n][1]||a[2][1] a[2][2] ... a[2][n]| |A[1][2] A[2][2] ...A[n][2]||... ... ... ... ||a[n][1] a[n][2] ... a[n][n]| |A[1][n] A[2][n] ...A[n][n]|其中,A[i][j]表示矩阵A的元素a[i][j]的代数余子式。

根据代数余子式的定义,有:A[i][j] = (-1)^(i+j) * M[i][j]其中,M[i][j]为矩阵A去掉第i行和第j列后的行列式。

因此有:A*adj(A) = |a[1][1] a[1][2] ... a[1][n]| *|(-1)^(1+1)M[1][1] (-1)^(2+1)M[2][1] ... (-1)^(n+1)M[n][1]||a[2][1] a[2][2] ... a[2][n]| |(-1)^(1+2)M[1][2](-1)^(2+2)M[2][2] ... (-1)^(n+2)M[n][2]||... ... ... ... ||a[n][1] a[n][2] ... a[n][n]| |(-1)^(1+n)M[1][n](-1)^(2+n)M[2][n] ... (-1)^(n+n)M[n][n]|将每一行展开,有:A*adj(A) = (-1)^(1+1)*a[1][1]*M[1][1] +(-1)^(2+1)*a[1][2]*M[2][1] + ... + (-1)^(n+1)*a[1][n]*M[n][1](-1)^(1+2)*a[2][1]*M[1][2] + (-1)^(2+2)*a[2][2]*M[2][2] + ...+(-1)^(n+2)*a[2][n]*M[n][2] ... ... ... ... ... ... ... ... ... ... ... ...(-1)^(1+n)*a[n][1]*M[1][n] + (-1)^(2+n)*a[n][2]*M[2][n] + ... + (-1)^(n+n)*a[n][n]*M[n][n]根据行列式的定义,有:det(A) = a[1][1]*M[1][1] + a[1][2]*M[2][1] + ... +a[1][n]*M[n][1]因此,有:A*adj(A) = det(A)*E2. 如果矩阵A的行列式不等于0,则A的逆矩阵为:A^-1 = (1/det(A))*adj(A)证明:根据矩阵的定义,有:A*A^-1 = E即:A*(1/det(A))*adj(A) = E因此,有:A^-1 = (1/det(A))*adj(A)三、伴随矩阵的求解方法1. 求解伴随矩阵的元素对于一个n*n的矩阵A,求解它的伴随矩阵的元素,需要先求出每个元素的代数余子式,然后将它们组成一个矩阵,并将该矩阵转置得到伴随矩阵。

伴随矩阵证明

伴随矩阵证明

伴随矩阵证明伴随矩阵是一个与给定矩阵A有一定关系的矩阵。

具体地说,对于n阶方阵A,它的伴随矩阵记作adj(A),满足如下性质:1. adj(A)的每个元素,是A的一个代数余子式的对应元素的代数余子式。

即,如果adj(A)的第(i,j)个元素为A的第(j,i)个代数余子式,则adj(A)的第(i,j)个元素为A的第(i,j)个代数余子式。

2. A与adj(A)的乘积为n阶单位矩阵I。

即,A ×adj(A) = adj(A) ×A = I。

下面我们来证明伴随矩阵的性质2。

首先,我们可以将A表示为它的行向量的转置:A = [r1,r2,...,rn],其中ri表示A的第i行。

然后,我们可以将伴随矩阵adj(A)表示为它的列向量的转置:adj(A) = [c1,c2,...,cn],其中ci表示adj(A)的第i列。

我们知道,矩阵乘法的定义是将A的每一行与adj(A)的每一列进行点乘,然后将结果相加。

那么,我们可以将A ×adj(A)求解为:A ×adj(A) = [r1,r2,...,rn] ×[c1,c2,...,cn]根据矩阵乘法的定义,我们有:A ×adj(A) = [(r1·c1) + (r1·c2) + ... + (r1·cn),(r2·c1) + (r2·c2) + ... +(r2·cn),...,(rn·c1) + (rn·c2) + ... + (rn·cn)]其中,(r1·c1),(r1·c2),...,(r1·cn)分别表示r1与c1,r1与c2,...,r1与cn 的点积。

然后,我们知道矩阵A的代数余子式Ak表示将第k行与第k列去掉后,剩下的(n-1)阶矩阵的行列式,记作det(Ak)。

因此,我们可以将点积展开为代数余子式的形式:(r1·c1) = det([r2,r3,...,rn]×[c2,c3,...,cn]) = det(A1),其中A1为A 去掉第1行和第1列后的(n-1)阶矩阵。

伴随矩阵的性质及其应用

伴随矩阵的性质及其应用

伴随矩阵的性质及其应用摘要:伴随矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具。

伴随矩阵作为矩阵中较为特殊的一类,其理论和应用有自身的特点.而在大学的学习中,伴随矩阵只是作为求解逆矩阵的工具出现的,并没有深入的研究.本文分类研究伴随矩阵的性质,并讨论其证明过程,得到一系列有意义的结论。

(1)介绍伴随矩阵在其行列式、秩等方面的基本性质; (2)研究数乘矩阵、乘积矩阵、分块矩阵的伴随矩阵的运算性质及伴随矩阵在逆等方面的运算性质; (3)研究矩阵与其伴随矩阵的关联性质,主要介绍由矩阵的对称性、正定性、奇异性、正交性推出伴随矩阵的对称性、正定性、奇异性、正交性; (4)研究伴随矩阵间的关系性质,主要研究由两矩阵的相似、合同等关系推出对应的两伴随矩阵之间的关系; (5)研究伴随矩阵在特征值与特征向量等方面的性质; (6)给出m 重伴随矩阵的定义及其一般形式,研究m 重伴随矩阵的相应的性质。

本文的主要创新点在于研究了一类分块矩阵的伴随矩阵的性质。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。

在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。

在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

然而伴随矩阵在矩阵中占据着比较特殊的位置,通过它可以推导出逆矩阵的计算公式,使方阵求逆的问题得到解决,伴随矩阵的性质和应用有着与众不同的特点。

在矩阵计算及讨论中, 常常会遇到伴随矩阵,但对伴随矩阵的一些性质进行系统讨论的却很少, 以下将主要针对伴随矩阵的各种性质及应用讨论。

关键词:伴随矩阵 可逆矩阵 方阵性质1、伴随矩阵的定义定义1.设是矩阵A =中元素的代数余子式,则矩阵A =ij A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a212222111211ij a *称为A 的伴随矩阵。

伴随矩阵公式证明

伴随矩阵公式证明

伴随矩阵公式证明伴随矩阵是线性代数中的一个重要概念,咱们今天就来好好聊聊伴随矩阵公式的证明。

咱们先来说说啥是伴随矩阵。

假设咱有一个 n 阶方阵 A,它的伴随矩阵记作 A*。

那这伴随矩阵 A* 中的元素是这样确定的:A* 中第 i 行第 j 列的元素,就是 A 的第 j 行第 i 列元素的代数余子式。

那为啥要研究这伴随矩阵呢?这是因为它在解决矩阵相关的问题时,可有大用处啦!比如说求矩阵的逆。

接下来咱们就正式进入伴随矩阵公式的证明。

先给大家举个小例子感受一下。

比如说有个 2 阶方阵 A = [a b; c d] ,那它的代数余子式分别是:A11 = d ,A12 = -c ,A21 = -b ,A22 = a 。

所以伴随矩阵 A* = [d -b; -c a] 。

那咱们来看看一般情况下的证明哈。

设 A 是一个 n 阶方阵,咱们把 A 的元素 aij 的代数余子式记作 Aij 。

首先呢,咱来看 AA* 这个式子。

根据矩阵乘法的定义,AA* 的第 i 行第 j 列的元素等于 A 的第 i 行元素与 A* 的第 j 列元素对应相乘再相加。

那具体是啥样呢?咱们展开来瞅瞅。

AA* 的第 i 行第 j 列的元素 = ai1Aj1 + ai2Aj2 +... + ainAjn 。

这里面的 Aj1,Aj2,...,Ajn 就是 A 的第 j 列元素的代数余子式。

当 i = j 时,这就变成了一个行列式的展开式,正好等于 |A| 。

当i ≠ j 时,这就相当于把 A 的第 j 列元素替换成第 i 列元素后得到的新矩阵的行列式,由于有两列相同,所以这个行列式等于 0 。

所以 AA* = |A|E 。

同样的道理,咱们再来看看 A*A 。

A*A 的第 i 行第 j 列的元素 = A1i aj1 + A2i aj2 +... + Aniajn 。

当 i = j 时,这也是一个行列式的展开式,等于 |A| 。

当i ≠ j 时,同样是由于有两列相同,行列式等于 0 。

伴随矩阵相似的证明

伴随矩阵相似的证明

伴随矩阵相似的证明证明伴随矩阵相似的步骤:第一步,首先明确什么是相似矩阵。

在矩阵A和B中,如果存在可逆矩阵P,使得$B = P^{-1} A P$,则称矩阵A与B相似。

第二步,利用行列式的性质,我们知道矩阵的行列式值与它的特征值有关。

具体来说,如果矩阵A的特征值为λ1, λ2, ..., λn,那么矩阵A的行列式值为λ1×λ2×...×λn。

第三步,根据伴随矩阵的定义,我们知道伴随矩阵是原矩阵去掉某行和某列后得到的子矩阵的行列式值,再乘以-1的i+j次方(i是行标,j是列标)。

第四步,设矩阵A的特征值为λ1, λ2, ..., λn,那么伴随矩阵A*的特征值为λ1×λ2×...×λn, λ1×λ2×...×λn,..., λ1×λ2×...×λn。

第五步,利用相似矩阵的定义,如果存在可逆矩阵P,使得B = P^{-1} A P,则称矩阵A与B相似。

因此,要证明伴随矩阵与原矩阵相似,只需证明伴随矩阵的特征值与原矩阵的特征值相同。

第六步,根据第四步的结果,伴随矩阵的特征值与原矩阵的特征值相同,因此存在可逆矩阵P,使得A* = P^{-1} A P。

所以,我们证明了伴随矩阵与原矩阵相似。

证明过程至此结束。

通过以上步骤,我们证明了伴随矩阵与原矩阵相似。

这一结论在许多领域都有着广泛的应用,例如在解决线性方程组、优化问题、机器学习等领域中,我们常常需要用到相似矩阵的性质来简化问题。

因此,掌握证明伴随矩阵相似的方法对于深入理解和应用线性代数知识非常重要。

为了更好地理解和应用这一结论,建议读者进一步探索伴随矩阵的其他性质和应用场景。

例如,伴随矩阵与行列式的关系、伴随矩阵与特征值的关系等都可以深入探讨。

此外,在实际问题中如何运用伴随矩阵相似的性质来解决具体问题也是值得关注的重点。

通过不断的实践和应用,相信读者能够在掌握这一知识的基础上获得更多的启发和收获。

伴随矩阵的性质及其应用

伴随矩阵的性质及其应用

伴随矩阵的性质及其应用张平平(重庆邮电大学理学院,重庆400065)摘要:伴随矩阵在矩阵中占有重要地位,因此,总结伴随矩阵的性质及其相关应用对学习线性代数有很大帮助。

本文就是带着这个目的出发,首先总结一下伴随矩阵的性质,然后用例子的形式来说明伴随矩阵的相关应用。

关键词:伴随矩阵;逆矩阵;行列式中图分类号:O151.2文献标志码:A 文章编号:1674-9324(2015)36-0195-02设n 阶方阵A=a ij ()的行列式A 的各个元素的代数余子式A ij 所构成的如下矩阵:A *=A 11A 21…A n1A 12A 22…A n2A 1n A 2n …A nn ⎛⎝⎜⎜⎜⎜⎜⎜⎞⎠⎟⎟⎟⎟⎟⎟称为矩阵A 的伴随矩阵,简称伴随阵。

这个定义可以在文献[1]中找到。

由伴随矩阵的定义及转置矩阵的定义,很容易得到下面的性质:(A *)T =(A T )*,其中,A T 表示矩阵A 的转置矩阵。

由于矩阵kA 的(i ,j )元的代数余子式为:(-1)i+j ka 11…ka 1,j-1ka 1,j+1…ka 1n ka i-1,1…ka i-1,j-1ka i-1,j+1…ka i-1,n ka i+1,1…ka i+1,j-1ka i+1,j+1…ka i+1,n ka n1…ka n ,j-1ka n ,j+1…ka nn =k n-1A ij ,因此,(kA )*=k n-1A *.由伴随矩阵的定义及矩阵的乘法运算马上有下面的性质成立:AA *=A *A=A E n (1)其中E n 为n 阶单位矩阵。

若n 阶方阵A 是非奇异的,即A ≠0,此时矩阵A 是可逆的。

由(1)得A A *A =A*A A=E n 结合逆矩阵的定义,有A -1=A *A ,即A *=A A -1,其中A -1表示矩阵A 的逆矩阵。

若n 阶方阵A 是非奇异的,此时矩阵A 是可逆的,由(1)得A A A *=A *AA =E n由矩阵逆的定义知:(A *)-1=AA (2)同时对(1)两边同时取逆,根据逆矩阵的性质有:(A *)-1A -1=E nA即有(A *)-1=A A (3)结合(2)、(3)得到伴随矩阵的如下性质:(A *)-1=(A -1)*若对(1)两边同时取行列式,由行列式的相关性质可得:A A *=AE n =A n (4)对于(4)式,若A ≠0,则有A *=A n-1若A =0,由(1)得,AA *=O(5)此时假设A *≠0,则矩阵A *可逆,在等式(5)两边同时右乘(A *)-1得A=O.由伴随矩阵的定义得A *=O ,从而有A *≠0矛盾,于是有,若A =0必有A *=0.居于以上分析,我们很容易得到下面的性质:A *=A n-1.设矩阵A 为一n 阶方阵,现总结其伴随矩阵的性质如下:(1)(A *)T =(A T )*;(2) (kA )*=k n-1A *;(3) AA *=A *A=A E n ; (4) A *=A n-1.此外,若A 还是可逆矩阵,则有如下性质成立:基金项目:国家自然科学基金资助项目(11201507)作者简介:张平平,女,讲师,研究方向为数值线性代数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档