(完整word版)多项式的练习题

合集下载

多项式的练习题二

多项式的练习题二

整式的乘法练习题(一)填空1.a8=(-a5)______.2.a15=( )5.3.3m2·2m3=______.4.(x+a)(x+a)=______.5.a3·(-a)5·(-3a)2·(-7ab3)=______.6.(-a2b)3·(-ab2)=______.7.(2x)2·x4=( )2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(-mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x-3)中x3项的系数是______.12.m是x的六次多项式,n是x的四次多项式,则2m-n是x的______次多项式.14.(3x2)3-7x3[x3-x(4x2+1)]=______.15.{[(-1)4]m}n=______.16.-{-[-(-a2)3]4}2=______.17.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是______.18.若10m=a,10n=b,那么10m+n=______.19.3(a-b)2[9(a-b)n+2](b-a)5=______(a-b)n+9.20.已知3x·(x n+5)=3x n+1-8,那么x=______.21.若a2n-1·a2n+1=a12,则n=______.22.(8a3)m÷[(4a2)n·2a]=______.23.若a<0,n为奇数,则(a n)5______0.24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.25.(4+2x-3y2)·(5x+y2-4xy)·(xy-3x2+2y4)的最高次项是______.26.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于______.(二)选择27.下列计算最后一步的依据是[ ]5a2x4·(-4a3x)=[5×(-4)]·a2·a3·x4·x (乘法交换律)=-20(a2a3)·(x4x) (乘法结合律)=-20a5x5.( )A.乘法意义;B.乘方定义;C.同底数幂相乘法则;D.幂的乘方法则.28.下列计算正确的是[ ]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[ ]B.y3m+n;C.y3(m+n);D.y3mn.30.下列计算错误的是[ ]A.(x+1)(x+4)=x2+5x+4;B.(m-2)(m+3)=m2+m-6;C.(y+4)(y-5)=y2+9y-20;D.(x-3)(x-6)=x2-9x+18.31.计算-a2b2·(-ab3)2所得的结果是 [ ]A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.下列计算中错误的是[ ]A.[(a+b)2]3=(a+b)6;B.[(x+y)2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y)m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[ ]A.-6x6y7;B.-8x27y64;C.-8x9y12;D.-6xy10.34.下列计算正确的是[ ]A.(a3)n+1=a3n+1;B.(-a2)3a6=a12;C.a8m·a8m=2a16m;D.(-m)(-m)4=-m5.35.(a-b)2n·(b-a)·(a-b)m-1的结果是[ ]A.(a-b)2n+m;B.-(a-b)2n+m;C.(b-a)2n+m;D.以上都不对.36.若0<y<1,那么代数式y(1-y)(1+y)的值一定是 [ ]A.正的;B.非负;C.负的;D.正、负不能唯一确定.37.(-2.5m3)2·(-4m)3的计算结果是 [ ]A.40m9;B.-40m9;C.400m9;D.-400m9.38.如果b2m<b m(m为自然数),那么b的值是[ ]A.b>0;B.b<0;C.0<b<1;D.b≠1.39.下列计算中正确的是[ ]A.a m+1·a2=a m+2;D.[-(-a)2]2=-a4.40.下列运算中错误的是[ ]A.-(-3a n b)4=-81a4n b4;B.(a n+1b n)4=a4n+4b4n;C.(-2a n)2·(3a2)3=-54a2n+6;D.(3x n+1-2x n)·5x=15x n+2-10x n+1.41.下列计算中,[ ](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)b x-y=b x-b y,(4)2164=(64)3,(5)x2n-1y2n-1=xy2n-2.A.只有(1)与(2)正确;B.只有(1)与(3)正确;C.只有(1)与(4)正确;D.只有(2)与(3)正确.42.(-6x n y)2·3x n-1y的计算结果是[ ]A.18x3n-1y2;B.-36x2n-1y3;C.-108x3n-1y;D.108x3n-1y3.[ ]44.下列计算正确的是[ ]A.(6xy2-4x2y)·3xy=18xy2-12x2y;B.(-x)(2x+x2-1)=-x3-2x2+1;C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;45.下列计算正确的是[ ]A.(a+b)2=a2+b2;B.a m·a n=a mn;C.(-a2)3=(-a3)2;D.(a-b)3(b-a)2=(a-b)5.[ ]47.把下列各题的计算结果写成10的幂的形式,正确的是[ ]A.100×103=106;B.1000×10100=103000;C.1002n×1000=104n+3;D.1005×10=10005=1015.48.t2-(t+1)(t-5)的计算结果正确的是[ ]A.-4t-5;B.4t+5;C.t2-4t+5;D.t2+4t-5.49.使(x2+px+8)(x2-3x+q)的积中不含x2和x3的p,q的值分别是[ ]A.p=0,q=0;B.p=-3,q=-9;C.p=3,q=1;D.p=-3,q=1.50.设xy<0,要使x n y m·x n y m>0,那么[ ]A.m,n都应是偶数;B.m,n都应是奇数;C.不论m,n为奇数或偶数都可以;D.不论m,n为奇数或偶数都不行.51.若n为正整数,且x2n=7,则(3x3n)2-4(x2)2n的值为[ ]A.833;B.2891;C.3283;D.1225.(三)计算52.(6×108)(7×109)(4×104).53.(-5x n+1y)·(-2x).54.(-3ab)·(-a2c)·6ab2.55.(-4a)·(2a2+3a-1).58.(3m-n)(m-2n).59.(x+2y)(5a+3b).60.(-ab)3·(-a2b)·(-a2b4c)2.61.[(-a)2m]3·a3m+[(-a)5m]2.62.x n+1(x n-x n-1+x).63.(x+y)(x2-xy+y2).65.5x(x2+2x+1)-(2x+3)(x-5).67.(2x-3)(x+4).70.(-2a m b n)(-a2b n)(-3ab2).74.(m-n)(m5+m4n+m3n2+m2n3+mn4+n5).75.(2a2-1)(a-4)(a2+3)(2a-5).76.2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3).77.(0.3a3b4)2·(-0.2a4b3)3.78.(-4xy3)·(-xy)+(-3xy2)2.80.(5a3+2a-a2-3)(2-a+4a2).81.(3x4-2x2+x-3)(4x3-x2+5).83.(3a m+2b n+2)(2a m+2a m-2b n-2+3b n).86.[(-a2b)3]3·(-ab2).87.(-2ab2)3·(3a2b-2ab-4b2).91.(-2x m y n)3·(-x2y n)·(-3xy2)2.92.(0.2a-1.5b+1)(0.4a-4b-0.5).93.-8(a-b)3·3(b-a).94.(x+3y+4)(2x-y).96.y[y-3(x-z)]+y[3z-(y-3x)].97.计算[(-a)2m]3·a3m+[(-a)3m]3(m为自然数).(四)化简(五)求值104.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.105.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=106.光的速度每秒约3×105千米,太阳光射到地球上需要的时间约是5×102秒.问地球与太阳的距离约是多少千米?(用科学记数法写出来)107.已知ab2=-6,求-ab(a2b5-ab3-b)的值.108.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.110.已知(x-1)(x+1)(x-2)(x-4)≡(x2-3x)2+a(x2-3x)+b,求a,b的值.111.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.112.若x3-6x2+11x-6≡(x-1)(x2+mx+n),求m,n的值.113.已知一个两位数的十位数字比个位数字小1,若把十位数字与个位数字互换,所得的新两位数与原数的乘积比原数的平方多405,求原数.114.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.115.比较2100与375的大小.116.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).118.求不等式(3x+4)(3x-4)>9(x-2)(x+3)的正整数解.119.已知2a=3b=6c(a,b,c均为自然数),求证:ab-cb=ac.120.求证:对于任意自然数n,n(n+5)-(n-3)×(n+2)的值都能被6整除.121.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,求证:x3n y3n-1z3n+1-x=0.122.已知x=b+c,y=c+a,z=a+b,求证:(x-y)(y-z)(z-x)+(a-b)(b-c)(c-a)=0.123.证明(a-1)(a2-3)+a2(a+1)-2(a3-2a-4)-a的值与a无关.124.试证代数式(2x+3)(3x+2)-6x(x+3)+5x+16的值与x的值无关.125.求证:(m+1)(m-1)(m-2)(m-4)=(m2-3m)2-2(m2-3m)-8.1、2、若2x + 5y-3 = 0 则=3、已知a = 355 ,b = 444 ,c = 533则有( )A.a < b < c B.c < b < a C.a < c < b D.c < a < b4、已知,则x =5、21990×31991的个位数字是多少6、计算下列各题(1)(2)(3)(4)7、计算(-2x-5)(2x-5)8、计算9、计算,当a6 = 64时, 该式的值。

解多项式方程综合练习题

解多项式方程综合练习题

解多项式方程综合练习题题目1:已知多项式方程 $3x^3 - 5x^2 - 2x + 4 = 0$,求其根。

解答:我们可以使用综合除法来分解这个多项式。

首先我们尝试使用有理根定理来找到可能的根。

根据有理根定理,多项式的有理根可以由其首项系数和常数项的约数确定。

在本题中,首项系数是3,常数项是4。

所以我们需要考虑3和4的约数。

通过列举3和4的约数,我们发现可能的有理根为$\pm 1,\pm2, \pm4$。

我们可以逐个尝试这些值,使用综合除法来验证是否为根。

首先,我们尝试$x=1$:使用综合除法,我们执行以下步骤:3| 3 -5 -2 4- 3 -6 -4---------------0 -8 -8我们发现$x=1$是方程的一个根。

现在,我们将方程进行综合除法,将其因式分解为$(x-1)(3x^2-8x-8)$。

接下来,我们需要解二次方程$3x^2-8x-8=0$。

我们可以使用求根公式或者配方法来解这个方程。

解得$x \approx -0.73$ 和 $x\approx 3.40$。

所以多项式方程 $3x^3 - 5x^2 - 2x + 4 = 0$ 的根为 $x = 1, x\approx -0.73, x \approx 3.40$。

题目2:已知多项式方程 $2x^4 - 7x^3 + 3x^2 + 2x - 1 = 0$,求其根的个数。

解答:根的个数可以由多项式方程的次数确定。

在本题中,多项式的次数为4。

根据代数基本定理,一个n次多项式可以有最多n个不同的根。

所以多项式方程 $2x^4 - 7x^3 + 3x^2 + 2x - 1 = 0$ 的根的个数不超过4个。

2.1.2_多项式 2014年最新版

2.1.2_多项式         2014年最新版
2 3
单项式集合: { 5a c xy z,
3a 2b 3 c 多项式集合: , { 4 3
2 3
3
5
…} … }
a 1 , 5 pq 3m 2 n 2
3a 2b 3 c a 1 整式集合: { , 5a 2c 3 xy3 z , , 5 pq 3m 2 n, 5 … 4 3 2
次数
项数
2
4、多项式 2 x 3 3 x 2 5 x 1 是 三 次
四 项式,其中二
次项系数是
-3
,一次项系数是
5
,常数项是 -1

5、指出下列多项式的项和次数。
3x y 5xy x 6
2 2 2 5
s 2s t 6t
2 2 2
2
5
五次四项式
4
四次三项式
互动探究
当R=15cm,r=10cm时,圆 环的面积(单位cm2)是 πR2- πr2=3.14×152-3.14 ×102 =392.5 .
答:圆环的面积是392.5cm2.
讲讲 & 练练 1、规定:单项式与多项式统称为整式。 想想 & 讲讲
1、探究整式、单项式多项式三者之间的联系与 区别 单项式
答:
整式
③在多项式中,每个单项式叫做多项式的项
④多项式中不含字母的项 叫做常数项。
读读 & 想想
1 ab π 3x+5y+2 , 1、多项式 t-5,
2
x2+2x+18 ,
想一想它们的项分别是什么,常数项分别是 什么?
答:①t ②3x
, -5 ; -5 , +5y , +2 ; +2

单项式和多项式练习题(含答案)

单项式和多项式练习题(含答案)

单项式和多项式练习题一、填空题1. 与_字母_的积组成的代数式。

单独的一个_数_或_字母_也是单项式。

2. ,对应单项式中的数字(包括数字符号)部分。

如x 3,π, ab ,2.6h ,-m 它们都是单项式,系数分别为_1,π,1,2.6,-1_3. 单项式次数:一个单项式中,_所有字母_的指数的和叫这个单项式的次数。

只与字母指数有关。

如x 3,ab ,2.6h ,-m, 它们都是单项式,次数分别为_3,2,1,1_分别叫做三次单项式,二次单项式,一次单项式。

7. 一个多项式含有几项,就叫几项式。

8.当a =-1时,3a 4.9. 单项式21xy 2z 是_4_次单项式;若单项式-2x 3y n -3是一个关于x ,y 的5次单项式,则n=_5_.10.单项式:32y x 34-22005xy 311.多项式:y y x 5xy 3x 43223+-+12.y 3x 42-13.多项式a 2-21ab 2-b 2有_3_项,其中-21ab 214.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:(1(215.x 3y 2-2xy 2-3xy 4-9是_5_次_4_项式,16.多项式x 2y +xy -xy 2-53中的三次项是;当a=__1_时,整式x 2+a -1是单项式.17.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则18. 若多项式(m+2)12-m x y 2-3xy 3是五次二项式,则m=__2__.19. 写出一个关于x 的二次三项式,使得它的二次项系数为21-,则这个二次三项式是__________。

20. 请写出一个关于x 的二次三项式,使二次项的系数为1,一次项的系数为-3,常数项是2,则这个二次三项式是__x ²-3x+2__.21. 若(m -1)xy n +1是关于x 、y 的系数为-2的三次单项式,则m =__-1__,n =__1__.二、选择题1. 在下列代数式:1,212,3,1,2122+-++++x x b ab ab ππ中,多项式有( A ) A. 2个 B. 3个 C. 4个 D. 5个2. 下列多项式次数为3的是( C )A -5x 2+6x -1 B. πx 2+x -1 C. a 2b +ab +b 2 D. x 2y 2-2xy -13. 下列说法中正确的是( B )A.代数式一定是单项式B. 单项式一定是代数式C. 单项式x 的次数是0D. 单项式-π2x 2y 2的次数是64. 下列语句正确的是( D )A. x 2+1是二次单项式B. -m 2的次数是2,系数是1C. 21x 是二次单项式 D. 32abc 是三次单项式 5. 2a 2-3ab +2b 2-(2a 2+ab -3b 2)的值是( D )A2ab -5b 2 B. 4ab +5b 2 C. -2ab -5b 2 D. -4ab +5b 26.下列说法正确的是( C )A. 8-z2是多项式 B. -x 2yz 是三次单项式,系数为0 C. x 2-3xy 2+2 x 2y 3-1是五次多项式 D. xb 5-是单项式 7.下列结论中,正确的是( C )A. 单项式52ab 2的系数是2,次数是2 B. 单项式a 既没有系数,也没有指数 C. 单项式-ab 2c 的系数是—1,次数是4 D. 没有加减运算的代数式是单项式8. 单项式-x 2yz 2的系数、次数分别是( C )A. 0,2B. 0,4C. -1,5D. 1,49.下列说法正确的是( C )A. 没有加、减运算的式子叫单项式B. 35πab 的系数是35,次数是3 C. 单项式―1的次数是0 D. 2a 2b -2ab+3是二次三项式10.如果一个多项式的次数是5,那么这个多项式的任何一项的次数( D )A .都小于5 B. 都等于5 C.都不小于5 D.都不大于511.在y 3+1,m 3+1,―x 2y ,cab ―1,―8z ,0中,整式的个数是( C ) A. 6 B.3 C.4 D.5解答题1.如果多项式3x m -(n―1)x+1是关于x 的二次二项式,试求m ,n 的值。

七年级(上册)_单项式及多项式专项练习试题

七年级(上册)_单项式及多项式专项练习试题

WORD 文档下载可编辑第七周单项式和多项式专题复习一、基本练习:1.单项式: 由____与____的积组成的代数式。

单独的一个___或_____也是单项式。

2.练习:判断下列各代数式哪些是单项式?(1) x 3 (2)abc; (3) 2.6h (4) a+b+c (5)y (6)-3a 2b (7)-5 。

3.单项式系数: 单项式中的___因数叫这个单项式的系数,对应单项式中的数字(包括数字符号)部分。

如x 3,π,ab ,2.6h ,-m 它们都是单项式,系数分别为____________________________________4、单项式次数:一个单项式中,______的指数的和叫这个单项式的次数。

只与字母指数有关。

如x 3,ab ,2.6h ,-m, 它们都是单项式,次数分别为______分别叫做三次单项式,二次单项式,一次单项式。

5、判断下列代数式是否是单项式。

如不是,请说明理由;如是,请指出它的系数和次数。

-m mn π a+3 b - a πx+ y 5x+16、请你写出三个单项式:(1)此单项式含有字母x 、y ; (2)此单项式的次数是5;二、巩固练习1、单项式-a 2b 3c ( )A.系数是0次数是3B.系数是1次数是5C.系数是-1次数是6D.系数是1次数是6 2.判断下列代数式是否是单项式。

如不是,请说明理由;如是,请指出它的系数和次数。

-3, a 2b ,, a 2-b 2yx 42 , 2x 2+3x+5 πR 23.制造一种产品,原来每件成本a 元,先提价5%,后降价5%,则此时该产品的成本价为( )A.不变B.a(1+5%)2C.a(1+5%)(1-5%)D.a(1-5%)24.(1)若长方形的长与宽分别为 a 、b ,则长方形的面积为_________. (2)若某班有男生x 人,每人捐款21元,则一共捐款__________元.(3)某次旅游分甲、乙两组,已知甲组有a 名队员,平均门票m 元,乙组有b 名队员,平均门票n 元,则一共要付门票_____元.5.某公司职员,月工资a 元,增加10%后达到_____元.6.如果一个两位数,十位上数字为x ,个位上数字为y ,则这个两位数为_____.7.有一棵树苗,刚栽下去时,树高2米,以后每年长0.3米,则n 年后树高___米_ 三、多项式1、___________________________________叫做多项式2、____________________________叫做多项式的项3、_______________________叫做常数项4、一个多项式含有几项,就叫几项式.______________多项式的次数.5、指出下列多项式的项和次数: (1);(2).6、指出下列多项式是几次几项式:(1);(2)7、__________________________统称整式练习:1、判断(1)多项式a 3-a 2b+ab 2-b 3的项为a 3、a 2b、ab 2、b 3,次数为12;( )(2) 多项式3n 4-2n 2+1的次数为4,常数项为1。

七年级数学上册《多项式》同步练习题(附答案解析)

七年级数学上册《多项式》同步练习题(附答案解析)

七年级数学上册《多项式》同步练习题(附答案解析)课前练习1. 像ab ,a 2,-m ,12x 这些式子都是数或字母的积,这样的式子叫做_______.单独的一个数或一个字母也是__________.单项式中的数字因数叫做这个单项式的________.一个单项式中,所有字母的指数的和叫做这个单项式的_______.2. 1.3x +5y +2z ,212ab r π-,x 2+2x −18都可以看成几个单项式的和,像这样几个单项式的和,叫做________.其中,每个单项式叫做多项式的________,不含字母的项叫做________.多项式里,次数最高项的次数,叫做这个多项式的_______.例如:x 2+2x −18的项分别为________,常数项是_________,最高次项的次数是_______,因此x 2+2x −18是___次___项式.3. 单项式和多项式统称为__________.4. 多项式xy 2-9xy +5x 2y -25的二次项系数是_____________.5. 多项式4x 2y ﹣5x 3y 2+7xy 3﹣ 67 的次数是________,最高次项是________,常数项是________.6. 一个关于字母x 的二次三项式的二次项系数为4,一次项系数为1,常数项为7,则这个二次三项式为___.7. 多项式(x +3)a y b +12ab 2−5是关于a 、b 的四次三项式,且最高次项的系数为-2,则x =______,y = ___.课前练习参考答案1. ①. 单项式 ②. 单项式 ③. 系数 ④. 次数2. ①. 多项式 ②. 项 ③. 常数项 ④. 次数 ⑤. 2x ,2x ,-18, ⑥. -18,2 ⑦. 2x ⑧. 二 ⑨. 三3.整式【解析】根据整式的定义即可解答.【详解】单项式和多项式统称为整式.故答案是:整式.【点睛】本题考查了整式的定义,理解定义是关键.4. -95. ①. 5 ②. ﹣5x 3y 2③. ﹣676. 4x 2+x +77. ①. -5 ②. 3课堂练习1.下列整式中,单项式是________________;多项式是 ________________.a,25x −by 3,−13x 2y,2πr,x 2+xy +y 2,2x −1. 2.在代数式12x ﹣y ,5a ,x 2﹣y +23,1π,xyz ,−5y ,x+y+z 3中,有( )A .5个整式B .4个单项式,3个多项式C .6个整式,4个单项式D .6个整式,单项式与多项式的个数相同 3.在整式:3x −2y ,−8b 9,b−3y 36,0.2,5mn −n −7,6+a 2−b 中,有_____个单项式,_____个多项式,多项式分别是_______.4.−2xy 23+3xy −4是_______次_______项式.5.下列说法正确的是( )A .−3xy 5系数是-3B .x 2+x-1的常数项为1C .22ab 3的次数是6次D .2x-5x 2+7是二次三项式 6.多项式3232486xy x y x y y ----是____次_____项式,最高次项是______,常数项是_______.7.把多项式7x -12x 2+9按字母x 做降幂排列为___.8.把多项式442239235x y xy x y -+-按y 的降幂排列:______9.已知多项式x 2−3xy 2−4的次数是a ,二次项系数是b ,那么a +b 的值为( )A .4B .3C .2D .110.若A 是一个五次多项式,B 也是一个五次多项式,则A +B 一定是( )A .五次多项式B .不高于五次的整式C .不高于五次的多项式D .十次多项式11.四次三项式2x +5x 2yz -3y 2中,二次项的系数为______.12.多项式−2x −3x 3+4x 2+1,按x 的升幂排列为__________________.13.指出下列代数式中的单项式、多项式和整式.2πx 2, 1x , ﹣5,a ,π2, 0,n+m 2, 1﹣1a , 3ab ﹣2a ﹣1.课堂练习参考答案1.a,−13x 2y,2πr ; 25x −by 3,x 2+xy +y 2,2x −1【解析】单项式的定义:表示数或字母的积的式子叫做单项式.多项式的定义:若干个单项式的和组成的式子叫做多项式,再结合题目即可得出答案.【详解】根据单项式与多项式的定义可知:单项式有:a,−13x 2y,2πr ,多项式有:25x −by 3,x 2+xy +y 2,2x −1,故填a,−13x 2y,2πr ;25x −by 3,x 2+xy +y 2,2x −1.【点睛】本题考查多项式和单项式的定义,解题的关键是熟悉多项式和单项式的定义.2.D【分析】根据整式、单项式、多项式的概念即可判断.【详解】解:12x ﹣y ,5a ,x 2﹣y +23,1π,xyz ,x+y+z 3是整式, 其中式12x ﹣y ,x 2﹣y +23,x+y+z 3是多项式, 5a ,1π,xyz 是单项式,故选:D .【点睛】本题主要考查整式的概念及单项式与多项式,熟练掌握整式及单项式、多项式的概念是解题的关键.3.2 4 3x −2y 、b−3y 36、5mn −n −7、6+a 2−b【分析】根据单项式与多项式的概念即可求出答案.【详解】解:单项式有2个:−8b 9,0.2,,多项式有4个:3x −2y ,b−3y 36,5mn −n −76+a 2−b【点睛】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型.4.三三【分析】直接利用多项式的次数与项数确定方法分析得出答案.【详解】解:−2xy23+3xy−4是三次三项式,故答案为:三,三.【点睛】此题主要考查了多项式,正确把握多项式的次数与项数确定方法是解题关键.5.D【分析】根据单项式和多项式的相关概念逐一求解即可得到答案.【详解】解:A.−3xy5的系数是−35,故本选项错误;B.x2+x−1的常数项是−1,故本选项错误;C.22ab3的次数是4次,故本选项错误;D.2x−5x2+7的次数是二次三项式,故本选项正确.故选:D【点睛】本题考查了单项式、多项式的相关基本概念等知识点,熟练掌握相关知识是解题的关键.6.五五 -x3y2 -6【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】解:多项式xy3-8x2y-x3y2-y4-6是五次五项式,最高次项是:-x3y2,常数项是-6.故答案为:五,五,-x3y2,-6.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.7.−12x2+7x+9【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】解:多项式7x-12x2+9的项为7x,-12 x2,9,按字母x降幂排列为−12x2+7x+9,故答案为:−12x2+7x+9.【点睛】本题考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.8.423242539y x y xy x --++【分析】多项式的项的概念和降幂排列的概念,可知多项式的项为:9x 4,−2y 4,+3xy 2,−5x 2y 3将各项按y 的指数由大到小排列为−2y 4,−5x 2y 3,+3xy 2,9x 4.【详解】解:把多项式442239235x y xy x y -+-,按y 的指数降幂排列后为423242539y x y xy x --++. 故答案是423242539y x y xy x --++.【点睛】本题考查了多项式的项的概念和降幂排列的概念.(1)多项式中的每个单项式叫做多项式的项;(2)一个多项式的各项按照某个字母指数从大到小或者从小到大的顺序排列,叫做降幂或升幂排列.在解题时要注意灵活运用.9.A【分析】根据多项式的有关定义得到a 、b 的值,然后计算它们的和即可.【详解】解:根据题意得a=3,b=1,所以a+b=3+1=4.故选:A .【点睛】本题考查了多项式:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.10.B【解析】几个多项式相加后所得的多项式可能增加项数,但不会增加次数.【详解】A 是五次多项式,B 也是五次多项式,∵几个多项式相加后所得的多项式可能增加项数,但不会增加次数,故A+B 的次数不高于五次.故选:B .【点睛】本题考查多项式的知识,难度不大,掌握多项式相加的特点是关键.11.-3【分析】先把多项式按降幂排列,找出二次项,再确定系数即可.【详解】解:四次三项式2x +5x 2yz -3y 2中进行降幂排列5x 2yz -3y 2+2x ,二次项为-3y 2,二次项的系数为-3,故答案为:-3.【点睛】本题考查多项式中二次项系数问题,掌握多项式的定义,项,项数,某项系数,常数项的区别与联系是解题关键.12.2312+43x x x--【分析】按照x的指数从小到大的顺序把各项重新排列即可.【详解】解:多项式−2x−3x3+4x2+1,按x的升幂排列为231243x x x-+-.故答案为:1-2x+4x2-3x3.【点睛】本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.13.2πx2是单项式,是整式;1x 是分式;﹣5是单项式,是整式;a是单项式,是整式;π2是单项式,是整式;0是单项式,是整式;n+m2是多项式,是整式;1﹣1a是分式;3ab﹣2a﹣1是多项式,是整式.【分析】根据整式,单项式,多项式的概念进行分类即可.单项式是字母和数的乘积,多项式是若干个单项式的和,单项式和多项式统称为整式.【详解】解:2πx2是单项式,是整式;1x是分式;﹣5是单项式,是整式;a是单项式,是整式;π2是单项式,是整式;0是单项式,是整式;n+m2是多项式,是整式;1﹣1a是分式;3ab﹣2a﹣1是多项式,是整式.【点睛】主要考查了整式的概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.课后练习1.在下列说法中,正确的是()A.多项式ax2+bx+c是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.−ab2,−x都是单项式,也都是整式D.−4a2b,3 ab,5是多项式2435a b ab-+-中的项2.多项式x2﹣3xy2﹣4的次数和常数项分别是()A.2和4 B.2和﹣4 C.3和4 D.3和﹣43.已知x m−1+3x−1是关于x的三次三项式,那么m的值为()A.3 B.4 C.5 D.64.将多项式6a2b+3b3−2ab2−a3按字母b的降幂排列正确的是()A.−a3+3b3−2ab2+6a2b B.3b3−2ab2+6a2b−a3C.3b3−a3+6a2b−2ab2D.−a3+6a2b−2ab2+3b35.在式子:2a , a3, 1x+y, −12, 1−x−5xy2,−x,6xy+1,a2−b2中,其中多项式有____个.6.多项式2x3−x2y2−3xy+x−1是______次______项式,常数项是______.7.若多项式25x3m y+1是四次多项式,m=______.8.若已知3a2−2ab3−7a n−1b2与−32π2x3y5的次数相等,则(−1)n+1=_______.9.指出下列各式中,哪些是单项式、哪些是多项式、哪些是整式?填在相应的横线上:①22m n+;②-x;③a+b3;④10;⑤6xy+1;⑥1x;⑦17m2n;⑧2x2-x-5;⑨a7;⑩2x+y单项式:____________________________;多项式:________________________;整式:________________________;10.已知多项式3x3−y3−5x2y−x2+1.(1)求次数为3的项的系数和.(2)当x=−1,y=−2时,求该多项式的值.11.已知整式(a−1)x3−2x−(a+3).(1)若它是关于x的一次式,求a的值并写出常数项;(2)若它是关于x的三次二项式,求a的值并写出最高次项.12.已知关于x,y的多项式x4+(m+2)x n y﹣xy2+3.(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?课后练习参考答案1.C【分析】直接利用单项式的次数与系数以及多项式的定义、次数与系数分别分析得出答案.【详解】解:A、多项式ax2+bx+c,当a≠0时是二次多项式,故此选项不合题意;B、多项式中次数最高项的次数叫多项式的次数,故此选项不合题意;C、数与字母的积叫单项式,单项式和多项式统称整式,−ab2,−x都是单项式,也都是整式,正确,符合题意;D、−4a2b,3ab,5-是多项式2a b ab-+-中的项,故此选项不合题意.435故选C.【点睛】此题主要考查了多项式以及单项式有关定义,正确把握相关定义是解题关键.2.D【分析】根据多项式的次数和项的定义得出选项即可.【详解】解:多项式x2﹣3xy2﹣4的次数是3,常数项是﹣4,故选:D.【点睛】此题主要考查多项式的次数和项的判定,解题的关键是熟知多项式的次数和项的定义.3.B【分析】式子要想是三次三项式,则x m−1的次数必须为3,可得m的值.【详解】∵x m−1+3x−1是关于x的三次三项式∴x m−1的次数为3,即m-1=3解得:m=4故选:B.【点睛】本题考查多项式的概念,注意,多项式的次数指的是组成多项式的所有单项式中次数最高的那个单项式的次数.4.B【分析】按照字母b的次数由高到低进行排列得到答案.【详解】解:根据题意,6a2b+3b3−2ab2−a3按字母b的降幂排列正确的是3b3−2ab2+6a2b−a3;故选:B.【点睛】本题考查了多项式:几个单项式的和叫多项式.多项式中每个单项式都是多项式的项,这些单项式的最高次数,就是这个多项式的次数.5.3【分析】几个单项式的和为多项式,根据这个定义判定.【详解】2a ,1x y,分母有字母,不是单项式,也不是多项式;a 3,−12,−x,是单项式,不是多项式; 1−x−5xy2,6xy+1,a2−b2都是单项式相加得到,是多项式故答案为:3【点睛】本题考查多项式的概念,在判定中需要注意,当分母中包含字母时,这个式子就既不是单项式也不是多项式了.6.四五 -1【分析】根据多项式的次数、项数判断即可.【详解】解:多项式2x3−x2y2−3xy+x−1最高次项是四次,一共有五项,常数项是-1.故答案为:四,五,-1.【点睛】本题考查了多项式的有关概念,解题关键是熟记多项式的相关概念,注意:每一项都包括它的符号.7.1【分析】由多项式25x3m y+1是四次多项式,可得3m+1=4,解方程可得答案.【详解】解:∵多项式25x3m y+1是四次多项式,∴3m+1=4,∴3m=3,∴m=1.故答案为:1.【点睛】本题考查的是多项式的次数,掌握多项式的次数的概念是解题的关键.8.1【分析】先根据多项式与单项式的次数的定义求出n的值,再代入计算有理数的乘方即可得.【详解】单项式−32π2x3y5的次数为3+5=8,∵3a2−2ab3−7a n−1b2与−32π2x3y5的次数相等,∴n−1+2=8,解得n=7,则(−1)n+1=(−1)7+1=(−1)8=1,故答案为:1.【点睛】本题考查了多项式与单项式的次数、有理数的乘方运算,熟练掌握多项式与单项式的次数的概念是解题关键.9.②④⑦⑨;①③⑤⑧;①②③④⑤⑦⑧⑨.【分析】1x ,2x+y的分母中含有字母,所以它们既不是单项式,也不是多项式,再根据单项式、多项式和整式的概念来分类.【详解】解:单项式有:-x,10,17m2n,a7;多项式有:22m n+,a+b3,6xy+1,2x2-x-5;整式有:22m n+,-x,a+b3,10,6xy+1,17m2n,2x2-x-5,a7.【点睛】本题主要考查了整式的定义,掌握单项式、多项式和整式的概念和关系是解答此题的关键,注意分式与整式的区别在于分母中是否含有字母.10.(1)3;(2)15【分析】(1)先得到次数为3的项,再得到它们的系数,再相加;(2)将x和y值代入计算即可.【详解】解:(1)多项式3x3−y3−5x2y−x2+1中,次数为3的项是3x3,−y3和−5x2y,系数分别是3,-1,-5,∴和为3-1-5=-3;(2)当x=−1,y=−2时,3x3−y3−5x2y−x2+1=15.【点睛】本题考查了多项式的次数和系数,有理数的加法,代数式求值,重点掌握多项式的相关概念是解题的关键.11.(1)1a=,常数项为-4;(2)a=−3,最高次项为−4x3【分析】(1)已知多项式是一次式,则x的最高次数是1,由此可得a-1=0,据此可得a的值,求出常数项−(a+3)的值即可;(2)根据多项式是三次二项式,结合多项式的概念可得到a-1≠0且a+3=0,求解的a的值,再求出(a−1)x3即可解答此题.【详解】解:(1)若它是关于x的一次式,则a−1=0,∴1a=,常数项为−(a+3)=−4;(2)若它是关于x的三次二项式,则a−1≠0,a≠1,a+3=0,∴a=−3,所以最高次项为−4x3.【点睛】本题考查多项式的知识,需要根据多项式次数和项数的定义来解答.12.(1)n=4,m≠﹣2;(2)m=﹣2,n为任意实数【分析】(1)根据多项式是五次四项式可知n+1=5,m+2≠0,从而可求得m、n的取值;(2)根据多项式是四次三项式可知:m+2=0,n为任意实数.【详解】解:(1)∵多项式是五次四项式,∴n+1=5,m+2≠0,∴n=4,m≠﹣2;(2)∵多项式是四次三项式,∴m+2=0,n为任意实数,∴m=﹣2,n为任意实数.【点睛】本题主要考查的是多项式的定义,掌握多项式的定义是解题的关键.第11页共11页。

单项式和多项式练习题

单项式和多项式练习题

单项式和多项式练习题### 单项式和多项式练习题1. 单项式系数的确定:给定单项式 \( 3x^2y \),确定其系数。

2. 单项式次数的计算:计算单项式 \( 5a^3b^2 \) 的次数。

3. 同类项的识别:在下列单项式中找出同类项:\( 4x^2, 7x^2, -3x^2 \)。

4. 合并同类项:将下列单项式合并:\( 2x^2 + 3x^2 - 5x^2 \)。

5. 多项式的构成:给定多项式 \( 4x^3 - 7x^2 + 9x - 2 \),确定其项数和次数。

6. 多项式项的识别:在多项式 \( 3x^4 - 2x^3 + 5x^2 - 3x + 1 \) 中,找出所有三次项。

7. 多项式系数的求和:求多项式 \( 5x^3 - 4x^2 + 2x + 7 \) 的系数之和。

8. 多项式次数的确定:确定多项式 \( 2x^5 - 3x^4 + 6x^3 - 5x^2 + 9x - 11 \) 的次数。

9. 多项式的加减:计算 \( (3x^2 + 4x - 5) + (2x^2 - x + 3) \) 的结果。

10. 多项式的减法:计算 \( (4x^3 - 2x^2 + 3x - 1) - (2x^3 + 3x^2 - 4x + 5) \) 的结果。

11. 多项式乘以单项式:计算 \( (2x^2 + 3x - 5) \cdot (3x) \) 的结果。

12. 多项式乘以多项式:计算 \( (x^2 + 2x + 1) \cdot (x - 1) \) 的结果。

13. 多项式的除法:将多项式 \( 3x^3 - 6x^2 + 9x - 12 \) 除以 \( x - 3 \)。

14. 多项式因式分解:对多项式 \( x^3 - 6x^2 + 11x - 6 \) 进行因式分解。

15. 多项式中的公因式提取:从多项式 \( 4x^3 - 12x^2 + 20x \) 中提取公因式。

16. 多项式与单项式的比较:比较多项式 \( 5x^3 - 3x^2 + 2x \) 和单项式 \( 2x \) 的不同之处。

苏科版七年级数学下册 多项式的因式分解填空专题训练(Word版含答案)

苏科版七年级数学下册 多项式的因式分解填空专题训练(Word版含答案)

苏科版七年级数学下册《9-5多项式的因式分解》填空专题训练(附答案)1.分解因式:n2﹣100=.2.若x2+2x﹣5=0,则x3+3x2﹣3x﹣5的值为.3.运用公式“a2﹣b2=(a+b)(a﹣b)”计算:9992﹣1=,99982=.4.已知xy=,x+y=5,则2x3y+4x2y2+2xy3=.5.已知关于x的三次三项式2x3+3x﹣k有一个因式是2x﹣5,则另一个因式为.6.已知x≠y,且满足两个等式x2﹣2y=20212,y2﹣2x=20212,则x2+2xy+y2的值为.7.若a+b﹣2=0,则代数式a2﹣b2+4b的值等于.8.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.9.已知:a2+b2+c2﹣ab﹣ac﹣bc=0,则a、b、c的大小关系为.10.已知m2+2mn=384,3mn+2n2=560,那么2m2+13mn+6n2﹣444的值是.11.已知ab=2,a﹣2b=﹣3,则a3b﹣4a2b2+4ab3的值为.12.若m2=n+2021,n2=m+2021(m≠n),那么代数式m3﹣2mn+n3的值.13.代数式15ax2﹣15a与10x2+20x+10的公因式是.14.分解因式:m3(x﹣2)+m(2﹣x)=.15.分解因式:a2+4+4a﹣b2=.16.因式分解:y(2x﹣y)﹣x2+z2=.17.分解因式:=.18.因式分解:x2﹣2xy+y2﹣2x+2y+1=.19.计算:=20.正方形甲的周长比正方形乙的周长多96cm,它们的面积相差960cm2,则正方形甲的边长为cm,正方形乙的边长为cm.21.若a3+2a2+2a+1=0,则a2021+a2022+a2023=.22.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是(写出一个即可).参考答案1.解:n2﹣100=(n﹣10)(n+10),故答案为:(n﹣10)(n+10).2.解:∵x2+2x﹣5=0∴x2+2x=5,x2=5﹣2xx2=5﹣2x等式两边等式乘以x得:x3=5x﹣2x2,将其代入则x3+3x2﹣3x﹣5∴x3+3x2﹣3x﹣5=5x﹣2x2+3x2﹣3x﹣5=x2+2x﹣5=5﹣5=0.故答案为:03.解:9992﹣1=9992﹣12=(999+1)(999﹣1)=1000×998=998000;99982=99982﹣4+4=99982﹣22+4=(9998+2)(9998﹣2)+4=10000×9996+4=99960004.故答案为:998000,99960004.4.解:2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2,∵xy=,x+y=5,∴原式=﹣25.故答案为﹣25.5.解:设另一个因式为x2+ax+b,则2x3+3x﹣k=(2x﹣5)(x2+ax+b)=2x3+(2a﹣5)x2+(2b﹣5a)x﹣5b,所以,解得:a=2.5,b=,即另一个因式为x2+2.5x+,故答案为:x2+2.5x+.6.解:,①﹣②得x2﹣y2+2x﹣2y=0,(x+y)(x﹣y)+2(x﹣y)=0,(x﹣y)(x+y+2)=0,∴x+y+2=0,即x+y=﹣2,∴x2+2xy+y2=(x+y)2=4.故答案为:4.7.解:∵a+b﹣2=0,∴a+b=2.∴a2﹣b2+4b=(a+b)(a﹣b)+4b=2(a﹣b)+4b=2a﹣2b+4b=2a+2b=2(a+b)=2×2=4.故答案为4.8.解:设另一个因式为x+a,则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,∴﹣m=﹣3+a,n=﹣3a,∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9,故答案为:9.9.解:∵a2+b2+c2﹣ab﹣bc﹣ac=0,∴2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=0,a2+b2﹣2ab+b2+c2﹣2bc+a2+c2﹣2ac=0,即(a﹣b)2+(b﹣c)2+(c﹣a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,故答案为a=b=c10.解:∵2m2+13mn+6n2﹣444=2m2+4mn+9mn+6n2﹣444=2(m2+2mn)+3(3mn+2n2)而m2+2mn=384,3mn+2n2=560,∴2m2+13mn+6n2﹣444=2×384+3×560﹣444故答案为:2004.11.解:∵ab=2,a﹣2b=﹣3,∴a3b﹣4a2b2+4ab3=ab(a2﹣4ab+4b2)=ab(a﹣2b)2=2×(﹣3)2=18.故答案为18.12.解:将两式m2=n+2021,n2=m+2021相减,得m2﹣n2=n﹣m,(m+n)(m﹣n)=n﹣m,(因为m≠n,所以m﹣n≠0), m+n=﹣1,解法一:将m2=n+2021两边乘以m,得m³=mn+2021m①,将n2=m+2021两边乘以n,得n³=mn+2021n②,由①+②得:m³+n³=2mn+2021(m+n),m³+n³﹣2mn=2021(m+n),m³+n³﹣2mn=2021×(﹣1)=﹣2021.故答案为﹣2021.解法二:∵m2=n+2021,n2=m+2021(m≠n),∴m2﹣n=2021,n2﹣m=2021(m≠n),∴m3﹣2mn+n3=m3﹣mn﹣mn+n3=m(m2﹣n)+n(n2﹣m)=2021m+2021n=2021(m+n)=﹣2021,故答案为﹣2021.13.解:∵15ax2﹣15a=15a(x2﹣1)=15a(x+1)(x﹣1), 10x2+20x+10=10(x2+2x+1)=10(x+1)2,∴15ax2﹣15a与10x2+20x+10的公因式是5(x+1),故答案为:5(x+1).14.解:原式=m3(x﹣2)﹣m(x﹣2)=m(x﹣2)(m+1)(m﹣1),故答案为:m(x﹣2)(m+1)(m﹣1)15.解:原式=(a+2)2﹣b2=(a+2+b)(a+2﹣b).故答案为:(a+2+b)(a+2﹣b).16.解:y(2x﹣y)﹣x2+z2,=2xy﹣y2﹣x2+z2,=﹣(x﹣y)2+z2,=(z+x﹣y)(z﹣x+y).17.解:原式=(a2﹣a+)﹣b2=(a﹣)2﹣b2=(a﹣b﹣)(a+b﹣).故答案为:(a﹣b﹣)(a+b﹣).18.解:x2﹣2xy+y2﹣2x+2y+1==(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.故答案为:(x﹣y﹣1)2.19.解:原式==123 454 321.20.解:设正方形甲的边长为x,乙的边长为y(x>y)则由①式得x﹣y=24,③由②式得x2﹣y2=(x+y)(x﹣y)=960,即24(x+y)=960,∴x+y=40,④由③④解得x=32,y=8.故答案为32,8.21.解:∵a3+2a2+2a+1=0,∴(a+1)(a2+a+1)=0,∴a+1=0或a2+a+1=0,当a+1=0时,a2021+a2022+a2023=﹣1+1+(﹣1)=﹣1;当a2+a+1=0时,a2021+a2022+a2023=a2021(1+a+a2)=0.故答案为:﹣1或0.22.解:9x3﹣xy2=x(9x2﹣y2)=x(3x+y)(3x﹣y),当x=10,y=10时,密码可以是104020或102040等等都可以,答案不唯一。

【新】七年级-数学-人教版-单项式和多项式讲义(知识点+练习题)【精编版】

【新】七年级-数学-人教版-单项式和多项式讲义(知识点+练习题)【精编版】

单项式和多项式☆☆☆知识讲解1、代数式:用基本的运算符号(包括加、减、乘、除、乘方、开方)把数、表示数的字母连结而成的式子叫做代数式,单独一个数或一个字母也是代数式。

2、单项式:只含有数字或字母的乘积的式子叫做单项式.①定义中的“积”是对数与字母而言的,只能是乘法或乘方运算,而不能是加、减、除等其他运算. 如ab 2+2,32y x -,mn2等都不是单项式. ②单独的一个数或一个字母也是单项式.(1)单项式的系数:单项式中的数字因数叫做这个单项式的系数.(2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项数的次数.3、多项式:几个单项式的和叫做多项式.(1)多项式的项:是指在多项式中,每个单项式叫做多项式的项.多项式的项包括它前面的性质符号。

(2)多项式的项数:一个多项式中有几个单项式就有几项,这个多项式就叫几项式。

(3)常数项:在多项式中,不含有字母的项叫做多项式的常数项。

(4)多项式的次数:一个多项式中,次数最高的项的次数,叫做这个多项式的次数.(5)降(升)幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降(升)幂排列.4、整式:单项式与多项式统称为整式.注意:分母中含有字母的代数式是分式1. 对单项式、多项式、整式进行判断例1 判断下列各代数式,哪些是单项式,哪些是多项式,哪些不是整式.(1)-3xy 2;(2)2x 3+1;(3)21(x +y +1); (4)-a 2; (5)0;(6)yx 2; (7)32xy; (8)x21;(9)x 2+x 1-1; (10)11+x ;2、单项式、多项式的次数和项例2 指出下列各单项式的系数与次数:(1);832ab (2)-mn 3; (3)3432yx π (4)-3;例3 填空:(1)多项式2x 4-3x 5-2π4是次项式,最高次项的系数是,四次项的系数是,常数项是,补足缺项后按字母x 升幂排列得; (2)多项式a 3-3ab 2 +3a 2b-b 3是 次项式,它的各项的次数都是,按字母b 降幂排列得.例1、 用代数式表示:一个两位数,个位数字是a ,十位数字是b ,则这个两位数可表示为___________。

(完整word版)单项式乘多项式练习题(含),文档

(完整word版)单项式乘多项式练习题(含),文档

单项式乘多项式练习题一.解答题〔共 18 小题〕1.先化简,再求值: 2〔 a 2b+ab 2〕﹣ 2〔 a 2b ﹣ 1〕﹣ ab 2﹣2,其中 a=﹣ 2, b=2.2.计算:〔 1〕 6x 2 2〕〔﹣ 2b 〕?3xy 〔2〕〔 4a ﹣ b 3.〔 3x 2y ﹣2x+1 〕〔﹣ 2xy 〕4.计算:2 222_________ ;〔 1〕〔﹣ 12a b c 〕 ?〔﹣ abc 〕 = ( 2〕〔 3a 2b ﹣4ab 2﹣ 5ab ﹣1〕 ?〔﹣ 2ab 2〕 = _________ .5.计算:﹣ 6a?〔﹣﹣ a+2〕6.﹣ 3x?〔2x 2﹣ x+4〕7.先化简,再求值2 2 8.〔﹣ 2 2〕3a 〔 2a ﹣ 4a+3〕﹣ 2a 〔 3a+4〕,其中 a=﹣ 2 a b 〕〔 b ﹣ a+ 9.一条防洪堤坝,其横断面是梯形,上底宽 a 米,下底宽〔 a+2b 〕米,坝高 米.〔 1〕求防洪堤坝的横断面积;〔 2〕若是防洪堤坝长 100 米,那么这段防洪堤坝的体积是多少立方米?2.10. 2ab 〔 5ab+3a b 〕11.计算:12.计算: 2x 〔 x 2﹣ x+3〕13.〔﹣ 4a 3+12a 2b ﹣ 7a 3b 3〕〔﹣ 4a 2〕 =_________ .14.计算: xy 2〔 3x 2y ﹣ xy 2+y 〕15.〔﹣ 2ab 〕〔 3a 2﹣ 2ab ﹣ 4b 2〕16.计算:〔﹣ 2a 2b 〕3 〔3b 2﹣ 4a+6〕17.某同学在计算一个多项式乘以﹣3x 2时,因抄错运算符号,算成了加上﹣ 3x 2,获取的结果是 x 2﹣ 4x+1 ,那么正确的计算结果是多少?18.对任意有理数 x 、 y 定义运算以下: x △ y=ax+by+cxy ,这里 a 、 b 、c 是给定的数,等式右边是平时数的加法及乘法运算,如当 a=1, b=2,c=3 时, l △ 3=1×l+2 ×3+3×1×3=16 ,现所定义的新运算满足条件,1△ 2=3,2△ 3=4 ,并且有一个不为零的数 d 使得对任意有理数 x △ d=x ,求 a 、b 、 c 、 d 的值.参照答案与试题解析一.解答题〔共 18 小题〕1.先化简,再求值: 2〔 a 2b+ab 2〕﹣ 2〔 a 2b ﹣ 1〕﹣ ab 2﹣2,其中 a=﹣ 2, b=2.考点 : 整式的加减 —化简求值;整式的加减;单项式乘多项式.解析: 先依照整式相乘的法那么进行计算,尔后合并同类项,最后将字母的值代入求出原代数式的值.解答: 解:原式 =2a 2b+2ab 2﹣ 2a 2b+2 ﹣ ab 2﹣22 2 2 2=〔 2a b ﹣ 2a b 〕 +〔 2ab ﹣ ab 〕 +〔 2﹣ 2〕2=0+ab2当 a=﹣ 2,b=2 时,原式 =〔﹣ 2〕 ×22=﹣2×4 =﹣ 8.议论: 此题是一道整式的加减化简求值的题,观察了单项式乘以多项式的法那么,合并同类项的法那么和方法.2.计算:( 1〕 6x 2?3xy( 2〕〔 4a ﹣b 2〕〔﹣ 2b 〕考点 : 单项式乘单项式;单项式乘多项式.解析: 〔 1〕依照单项式乘单项式的法那么计算;( 2〕依照单项式乘多项式的法那么计算.解答: 解:〔 1〕 6x 2?3xy=18x 3y ;( 2〕〔 4a ﹣b 2〕〔﹣ 2b 〕 =﹣ 8ab+2b 3.议论: 此题观察了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法那么是解题的要点.3.〔 3x 2y ﹣2x+1 〕〔﹣ 2xy 〕考点 : 单项式乘多项式.解析: 依照单项式乘多项式的法那么,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答: 解:〔 3x 2y ﹣ 2x+1 〕〔﹣ 2xy 〕 =﹣ 6x 3y 2+4x 2y ﹣ 2xy .议论: 此题观察单项式乘多项式的法那么,熟练掌握运算法那么是解题的要点,此题必然要注意符号的运算.4.计算:〔 1〕〔﹣ 12a 2b 2c 〕 ?〔﹣abc 2 〕2=﹣a 4b 4c 5;( 2〕〔 3a 2b ﹣4ab 2﹣ 5ab ﹣1〕 ?〔﹣ 2ab 2〕 = ﹣6a 3b 3+8a 2b 4+10a 2b 3+2ab 2.考点 : 单项式乘多项式;单项式乘单项式.解析: 〔 1〕先依照积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法那么计算;〔 2〕依照单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法那么计算即可.解答:2 22 2,解:〔 1〕〔﹣ 12a b c 〕 ?〔﹣ abc 〕=〔﹣ 12a 2b 2c 〕 ?,=﹣;故答案为:﹣a 4b 4c 5;2 2 2〕,〔 2〕〔 3a b ﹣4ab ﹣ 5ab ﹣1〕 ?〔﹣ 2ab 2222 2 2 =3a b?〔﹣ 2ab 〕﹣ 4ab ?〔﹣ 2ab 〕﹣ 5ab?〔﹣ 2ab 〕﹣ 1?〔﹣ 2ab 〕,故答案为:﹣ 3 3 2 4 2 3 2.6a b +8a b +10a b +2ab 议论: 此题观察了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意运算符号的办理.5.计算:﹣ 6a?〔﹣﹣ a+2〕考点 : 单项式乘多项式.解析: 依照单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣ 6a?〔﹣﹣ a+2〕=3a 3+2a 2﹣ 12a .议论: 此题主要观察单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意运算符号.6.﹣ 3x?〔2x 2﹣ x+4〕考点 : 单项式乘多项式.解析: 依照单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答: 解:﹣ 3x?〔 2x 2﹣ x+4〕,2=﹣ 3x?2x ﹣ 3x?〔﹣ x 〕﹣ 3x?4,议论: 此题主要观察单项式与多项式相乘的运算法那么,熟练掌握运算法那么是解题的要点,计算时要注意运算符号.7.先化简,再求值3a 〔 2a 2﹣ 4a+3〕﹣ 2a 2〔 3a+4〕,其中 a=﹣ 2考点 : 单项式乘多项式.解析: 第一依照单项式与多项式相乘的法那么去掉括号,尔后合并同类项,最后代入的数值计算即可.解答: 解: 3a 〔 2a 2﹣ 4a+3〕﹣ 2a 2〔 3a+4〕32322=6a ﹣ 12a +9a ﹣6a ﹣ 8a =﹣20a +9a ,当 a=﹣ 2 时,原式 =﹣20×4﹣9×2=﹣ 98.议论: 此题观察了整式的化简.整式的加减运算实质上就是去括号、合并同类项,这是各地中考的常考点.8.计算:〔﹣ a 2b 〕〔 b 2﹣ a+ 〕考点 : 单项式乘多项式.专题 : 计算题.解析: 此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法那么计算即可.解答:解:〔﹣ a 2b 〕〔 b 2﹣ a+ 〕,=〔﹣a 2b 〕 ? b 2+〔﹣ a 2b 〕〔﹣ a 〕 +〔﹣ a 2b 〕? ,=﹣ a 2 b 3+ a 3b ﹣ a 2 b .议论: 此题观察单项式乘以多项式的运算,熟练掌握运算法那么是解题的要点.9.一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽〔 a+2b 〕米,坝高 米.( 1〕求防洪堤坝的横断面积;( 2〕若是防洪堤坝长 100 米,那么这段防洪堤坝的体积是多少立方米?考点 : 单项式乘多项式.专题 : 应用题.解析: 〔 1〕依照梯形的面积公式,尔后利用单项式乘多项式的法那么计算;〔 2〕防洪堤坝的体积 =梯形面积 ×坝长.解答:解:〔 1〕防洪堤坝的横断面积 S= [a+〔 a+2b 〕 ]× a= a 〔2a+2b 〕= a 2+ ab .故防洪堤坝的横断面积为〔2a + ab 〕平方米;〔 2〕堤坝的体积 V=Sh= 〔2 2.a + ab 〕×100=50a +50ab 故这段防洪堤坝的体积是〔 50a 2+50ab 〕立方米.议论: 此题主要观察了梯形的面积公式及堤坝的体积=梯形面积 ×长度,熟练掌握单项式乘多项式的运算法那么是解 题的要点.10. 2ab 〔 5ab+3a 2b 〕考点 : 单项式乘多项式.解析: 依照单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解: 2ab 〔 5ab+3a 2b 〕 =10a 2b 2+6a 3b 2;2232故答案为: 10a b +6a b .议论: 此题观察了单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.11.计算:.考点 : 单项式乘多项式.解析: 先依照积的乘方的性质计算乘方,再依照单项式与多项式相乘的法那么计算即可.解答:22 2解:〔﹣ xy 〕 〔 3xy ﹣4xy +1〕= x 3y 5﹣ x 3y 6+ x 2y 4.议论: 此题观察了积的乘方的性质,单项式与多项式相乘的法那么,熟练掌握运算法那么是解题的要点,计算时要注意运算序次及符号的办理.12.计算: 2x 〔 x 2﹣ x+3〕考点 : 单项式乘多项式.专题 : 计算题.解析: 依照单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解: 2x 〔 x 2﹣ x+3 〕=2x ?x 2﹣ 2x?x+2x ?332议论: 此题观察了单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.13.〔﹣ 4a 3+12a 2b ﹣ 7a 3b 3〕〔﹣ 4a 2〕 =16a 5﹣ 48a 4 b+28a 5b 3 .考点 : 单项式乘多项式.专题 : 计算题.解析: 依照单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可. 解答: 解:〔﹣ 4a 3 +12a 2b ﹣ 7a 3b 3〕〔﹣ 4a 2〕 =16a 5﹣ 48a 4b+28a 5b 3.545 3议论: 此题观察了单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.14.计算: xy 2〔 3x 2y ﹣ xy 2+y 〕考点 : 单项式乘多项式.解析: 依照单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.22222解答: 解:原式 =xy 〔 3x y 〕﹣ xy ?xy +xy ?y议论: 此题观察了单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.15.〔﹣ 2ab 〕〔 3a 2﹣ 2ab ﹣ 4b 2〕考点 : 单项式乘多项式.解析: 依照单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:〔﹣ 2ab 〕〔 3a 2﹣ 2ab ﹣ 4b 2〕22〕=〔﹣ 2ab 〕?〔 3a 〕﹣〔﹣ 2ab 〕?〔 2ab 〕﹣〔﹣ 2ab 〕 ?〔 4b =﹣ 6a 3b+4a 2b 2+8ab 3.议论: 此题观察了单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.16.计算:〔﹣ 2a 2b 〕3 〔3b 2﹣ 4a+6〕考点 : 单项式乘多项式.解析: 第一利用积的乘方求得〔﹣ 2a 2b 〕 3的值,尔后依照单项式与多项式相乘的运算法那么:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:〔﹣ 2a 2b 〕 3〔 3b 2﹣4a+6〕 =﹣ 8a 6b 3?〔 3b 2﹣4a+6〕 =﹣24a 6b 5+32a 7b 3﹣48a 6b 3.议论: 此题观察了单项式与多项式相乘.此题比较简单,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.17.某同学在计算一个多项式乘以﹣3x 2时,因抄错运算符号,算成了加上﹣ 3x 2,获取的结果是 x 2﹣ 4x+1 ,那么正确的计算结果是多少?考点 : 单项式乘多项式. 专题 : 应用题.解析: 用错误结果减去多项式,得出原式,再乘以﹣3x 2得出正确结果.解答: 解:这个多项式是〔 x 2﹣ 4x+1〕﹣〔﹣ 3x 2〕 =4x 2﹣4x+1 ,〔 3 分〕正确的计算结果是: 〔 4x 2﹣ 4x+1〕 ?〔﹣ 3x 2〕 =﹣12x 4+12x 3﹣3x 2.〔 3 分〕议论: 此题利用奇特的题目观察了单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.18.对任意有理数 x 、 y 定义运算以下: x △ y=ax+by+cxy ,这里 a 、 b 、c 是给定的数,等式右边是平时数的加法及乘法运算,如当 a=1, b=2,c=3 时, l △ 3=1×l+2 ×3+3×1×3=16 ,现所定义的新运算满足条件, 1△ 2=3,2△ 3=4 ,并且有一个不为零的数d 使得对任意有理数 x △ d=x ,求 a 、b 、 c 、 d 的值.考点 : 单项式乘多项式.专题 : 新定义.解析:由 x △ d=x ,得 ax+bd+cdx=x ,即〔 a+cd ﹣ 1〕x+bd=0 ,得 ① ,由 1△ 2=3,得 a+2b+2c=3 ② ,2△ 3=4 ,得 2a+3b+6c=4 ③ ,解以上方程组成的方程组即可求得a 、b 、c 、d 的值.解答: 解: ∵ x △ d=x , ∴ ax+bd+cdx=x ,∴ 〔 a+cd ﹣ 1〕 x+bd=0 ,∵ 有一个不为零的数 d 使得对任意有理数 x △ d=x ,那么有① ,∵ 1△ 2=3 ,∴ a+2b+2c=3 ② ,∵ 2△ 3=4 ,∴ 2a+3b+6c=4 ③ ,又 ∵ d ≠0, ∴ b=0 ,∴ 有方程组解得.故 a 的值为 5、 b 的值为 0、 c 的值为﹣ 1、d 的值为 4.议论: 此题是新定义题, 观察了定义新运算, 解方程组.解题要点是由一个不为零的数d 使得对任意有理数x △ d=x ,得出方程〔 a+cd ﹣ 1〕x+bd=0 ,获取方程组,求出 b 的值.。

第一章 多项式 练习题

第一章  多项式  练习题

第一章 多项式一.填空题1、当p(x)是 多项式时,由p(x)| f(x)g(x)可推出p(x)|f(x)或p(x)|g(x)。

2、当f(x)与g(x) 时,由f(x)|g(x)h(x)可推出f(x)|h(x)。

3、设f(x)=x 3+3x 2+ax+b 用x+1除余数为3,用x-1除余数为5,那么a= b= 。

4、设f(x)=x 4+3x 2-kx+2用x-1除余数为3,则k= 。

5、如果(x 2-1)2|x 4-3x 3+6x 2+ax+b ,则a= b= 。

6、f(x)没有重根的充分必要条件是 。

7、如果f(x)=x 3-3x+k 有重根,那么k= 。

8.若不可约多项式()p x 是()f x 的k 重因式,则()p x 是(1)()k f x -的 因式9、a 是f(x)的根的充分必要条件是 。

10、以l 为二重根,2,1+i 为单根的次数最低的实系数多项式为f(x)= 。

11.艾森施坦因判别法是判断多项式在有理数域上不可约的一个 条件。

答案1、不可约2、互素3、a=0,b=14、k=35、a=3,b=-76、(f(x),f’(x))=17、k=±28. 单因式 9、x-a|f(x) 10、x 5-6x 4+15x 3-20x 2+14x-4 11. 充分二.判断并说明理由1、若f(x)|g(x)+h(x),f(x)|g(x),则f(x)|h(x) ( )2、若f(x)|g(x)h(x),则f(x)|g(x)或f(x)|h(x) ( )3. 设()[]f x P x ∈,且(1)(1)0f f -==,则21()x f x -. ( )4、设p(x)是数域p 上不可约多项式,如果p(x)是f(x)的k 重因式,则p(x)是()f x '的k-1重因式。

( )5.任何两个多项式的最大公因式不因数域的扩大而改变。

6.若一整系数多项式()f x 有有理根,则()f x 在有理数域上可约。

小学五年级多项式练习题

小学五年级多项式练习题

小学五年级多项式练习题题一:填空题(每题2分,共10分)1. 同一个多项式中,次数最高的项的指数称为多项式的________。

2. 如果一个多项式的各项系数都是0,那么它是________。

3. 5x + 2y + 3z - 4x - y + 2z 的合并同类项结果是________。

4. 3x^2 + 4x + 2 的最低项的指数是________。

5. (x + 2)(x - 3) 的展开式结果是________。

题二:选择题(每题2分,共10分)1. 多项式 3x^2 + 2x - 1 不包含以下哪个项?A. 3x^2B. -1C. 2xD. x2. 多项式展开 (3x - 2)(5x + 1) 结果中,x 的最高次是多少?A. 1B. 2C. 3D. 43. (x + 3)(x - 2) 的展开式结果是:A. x^2 + 3B. x^2 - 5x - 6C. x^2 + x - 6D. x^2 - 64. (2x + 3)(x - 1) 的展开式结果是:A. 2x^2 + 5x - 3B. 2x^2 - 2x - 3C. 2x^2 + x - 3D. 2x^2 + 5x + 35. (3x - 1)(4x + 2) 的展开式结果中,x 的最低次是多少?A. 1B. 0C. -2D. -3题三:计算题(每题5分,共20分)1. 计算以下多项式的和:(3x^2 - 2x + 4)+(-5x^2 + 3x - 1)2. 计算以下多项式的差:(5x^2 + 3x - 4)-(2x^2 - 5x + 2)3. 计算以下多项式的积:(2x - 1)×(3x + 4)4. 计算以下多项式的商:(6x^2 + 4x - 3)÷ 25. 若多项式A(x) = 3x^2 + 2x - 1,求 A(2)的值。

题四:综合应用题(每题10分,共20分)1. 某人有两个数相加,第一个数的平方加上第二个数的平方等于25,且两个数的积等于12。

判断多项式的次数和系数练习题

判断多项式的次数和系数练习题

判断多项式的次数和系数练习题一、判断多项式的次数和系数多项式是一个由若干项组成的代数式,每一项都有一个系数和一个幂次。

判断多项式的次数和系数是我们在学习多项式的基础知识时需要掌握的重要内容。

下面是一些判断多项式的次数和系数的练习题,帮助你深入理解。

1. 判断以下多项式的次数和系数:(1) 3x^4 + 5x^3 - 2x^2 + 7x - 1(2) 2x^2y^3 - 3xy^2 + 4y(3) 5a^2b^3c^4 - 2ab + 3c^2 - 12. 判断以下多项式的次数和系数:(1) 4x^3y^2z + 2xy^3z - 3xyz^4(2) 7a^5b^4c^3 - 2a^3b^2c + 5ab(3) 3x^2y^3z^4 - xy^2z^3 + 2xyz二、解析和解答1. 多项式 (1) 3x^4 + 5x^3 - 2x^2 + 7x - 1 的次数为4,系数为3、5、-2、7和-1。

x的4次方,所以次数为4。

系数是指幂次前面的数字,分别为3、5、-2、7和-1。

2. 多项式 (2) 2x^2y^3 - 3xy^2 + 4y 的次数为3,系数为2、-3和4。

分析:次数是多项式中幂次的最高次数,此多项式中最高的幂次是x的2次方和y的3次方,所以次数为3。

系数是指幂次前面的数字,分别为2、-3和4。

3. 多项式 (3) 5a^2b^3c^4 - 2ab + 3c^2 - 1 的次数为4,系数为5、-2、3和-1。

分析:次数是多项式中幂次的最高次数,此多项式中最高的幂次是a的2次方、b的3次方和c的4次方,所以次数为4。

系数是指幂次前面的数字,分别为5、-2、3和-1。

4. 多项式 (1) 4x^3y^2z + 2xy^3z - 3xyz^4 的次数为4,系数为4、2、-3。

分析:次数是多项式中幂次的最高次数,此多项式中最高的幂次是x的3次方、y的3次方和z的4次方,所以次数为4。

系数是指幂次前面的数字,分别为4、2和-3。

多项式因式分解练习题(展开法)

多项式因式分解练习题(展开法)

多项式因式分解练习题(展开法)题目一已知多项式 $f(x) = 2x^3 - 4x^2 - 5x + 6$,求 $f(x)$ 的因式分解(展开法)。

解析:首先,我们可以尝试使用展开法将多项式$f(x)$ 进行因式分解:$$f(x) = 2x^3 - 4x^2 - 5x + 6$$观察该多项式的系数以及常数项,我们可以猜测它可能有一个根为 $x = 1$。

因此,我们可以进行试除法来验证猜测:2 -4 -5 6-----------------1| 2 -2 -7 -1我们发现,当 $x = 1$ 时,试除法的结果为 0,即 $f(1) = 0$。

这意味着 $x = 1$ 是多项式 $f(x)$ 的一个根。

因此,可以使用一元一次因式 $(x - 1)$ 来进行因式分解:$$f(x) = (x - 1)(2x^2 - 2x - 7)$$接下来,我们再对二次函数 $2x^2 - 2x - 7$ 继续进行因式分解。

题目二已知多项式 $g(x) = 3x^4 - 5x^3 + 2x^2 + 9x - 6$,求 $g(x)$ 的因式分解(展开法)。

解析:我们可以使用展开法来对多项式 $g(x)$ 进行因式分解:$$g(x) = 3x^4 - 5x^3 + 2x^2 + 9x - 6$$我们可以尝试使用试除法来找出 $g(x)$ 的一个根,然后再使用多项式的因式定理进行因式分解。

经过试除法的尝试,我们发现 $x = 1$ 是多项式 $g(x)$ 的一个根:3 -5 2 9 -6------------------------1| 3 -2 4 13 7-3 3 1 14 8------------------------0 1 5 27 15因此,可以使用一元一次因式 $(x - 1)$ 进行因式分解:$$g(x) = (x - 1)(3x^3 - 2x^2 + 4x + 13)$$然后,继续对三次函数 $3x^3 - 2x^2 + 4x + 13$ 进行因式分解。

多项式的因式分解同步练习题

多项式的因式分解同步练习题

多项式的因式分解一、选择题(共7小题)1. 现有一列式子:①552−452;②5552−4452;③55552−44452;⋯,则第⑧个式子的计算结果用科学记数法可表示为( )A. 1.1111111×1016B. 1.1111111×1027C. 1.111111×1056D.1.1111111×10172. 下列多项式能用完全平方公式分解的有( )①a2+ab+b2;②a2−a+14;③9a2−24ab+4b2;④−a2+8a−16.A. 1个B. 2个C. 3个D. 4个3. 下列因式分解中,正确的有( )①4a−a3b2=a(4−a2b2);②x2y−2xy+xy=xy(x−2);③−a+ab−ac=−a(1−b−c);④9abc−6a2b=3abc(3−2a);⑤23x2y+23xy2=23xy(x+y).A. 0个B. 1个C. 2个D. 5个4. 把多项式x2−6x+9分解因式,结果正确的是( )A. (x−3)2B. (x−9)2C. (x+3)(x−3)D. (x+9)(x−9)5. 分解因式:16−x2=( )A. (4−x)(4+x)B. (x−4)(x+4)C. (8+x)(8−x)D. (4−x)26. 把8a3−8a2+2a进行因式分解,结果正确的是( )A. 2a(4a2−4a+1)B. 8a2(a−1)C. 2a(2a−1)2D. 2a(2a+1)27. a,b为任何实数,a2+b2−2a−4b+8的值总是( )A. 负数B. 正数C. 0D. 非负数二、填空题(共5小题)8. 若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是(写出一个即可).9. 分解因式:4ax2−ay2=.10. 将m3(x−2)+m(2−x)分解因式的结果是.11. 分解因式:49(a−b)2−25(a+b)2=.12. 若(2x)n−81=(4x2+9)(2x+3)(2x−3),则n的值是.三、解答题(共6小题)13. 因式分解:(1)(2a+b)2−(a+2b)2;(2)(m+1)(m−9)+8m.14. 利用分解因式法计算.(1)43×3.14+72×3.14−15×3.14;(2)9992−1.15. (1)(a+b)2−12(a+b)+36;(2)(x−y)2−2x+2y+1.16. 已知a,b,c是△ABC的三边且满足a2−b2+c(a−b)=0,请判断△ABC的形状.17. 下面是某同学对多项式(x2−4x+2)(x2−4x+6)+4进行因式分解的过程.解:设x2−4x=y,原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2−4x+4)2(第四步)请问:(1)该同学第二步到第三步运用了因式分解的( )A. 提公因式法B. 平方差公式C. 两数和的完全平方公式D. 两数差的完全平方公式(2)该同学因式分解的结果是否彻底? (填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2−2x)(x2−2x+2)+1进行因式分解.18. 设y=kx是否存在实数k,使得代数式(x2−y2)(4x2−y2)+3x2(4x2−y2)能化简为x4?若能,请求出所有满足条件的k值,若不能,请说明理由.答案1. D【解析】根据题意得:第⑧个式子为5555555552−4444444452=(555555555+444444445)×(555555555−444444445)= 1.1111111×1017.2. B3. B【解析】在① 中,还能继续运用平方差公式,最后结果为 a (2+ab )(2−ab ); 在 ② 中,显然漏了一项,最后结果应为 xy (x −1);在 ③ 中,注意各项符号的变化,最后结果应为 −a (1−b +c );在 ④ 中,显然两项的公因式应为 3ab ;在 ⑤ 中,正确运用了提公因式法.4. A5. A6. C【解析】8a 3−8a 2+2a=2a (4a 2−4a +1)=2a (2a −1)2.7. B【解析】a 2+b 2−2a −4b +8=(a 2−2a +1)+(b 2−4b +4)+3=(a −1)2+(b −2)2+3≥3,则原式的值总是正数.8. −1(答案不唯一)【解析】x 2 与 ky 2 没有公因式,要使 x 2+ky 2 能分解因式,只能考虑平方差公式,而要在有理数范围内因式分解,则 k 一定是负数,且它的绝对值是一个完全平方数或一个分数的平方,所以 k 可以是 −1,−4,−9,⋯ 或 −14,−49,⋯.9. a (2x +y )(2x −y )【解析】原式=a (4x 2−y 2)=a (2x +y )(2x −y ).10. m (x −2)(m −1)(m +1)【解析】原式=m (x −2)(m 2−1)=m (x −2)(m −1)(m +1).11. 4(6a −b )(a −6b )【解析】分别把 (a −b ) 与 (a +b ) 看做整体,利用平方差公式进行分解. 49(a −b )2−25(a +b )2=(7a −7b )2−(5a +5b )2=(7a −7b +5a +5b )(7a −7b −5a −5b )=(12a −2b )(2a −12b )=4(6a −b )(a −6b ).12. 4【解析】∵(4x 2+9)(2x +3)(2x −3)=(4x 2+9)⋅(4x 2−9)=(4x 2)2−92=(2x )4−81, ∴(2x )n −81=(2x )4−81,∴n =4.13. (1) 原式=(2a +b +a +2b )(2a +b −a −2b )=3(a +b )(a −b ).(2) (m +1)(m −9)+8m=m 2−9m +m −9+8m =m 2−9=(m +3)(m −3).14. (1) 原式=3.14×(43+72−15)=3.14×100=314.(2) 原式=(999+1)×(999−1)=1000×998=998000.15. (1) 原式=(a +b )2−2×6(a +b )+62=(a +b −6)2.(2) (x −y )2−2x +2y +1=(x −y )2−2(x −y )+1=(x −y −1)2.16. 原方程可变为 (a −b )(a +b +c )=0.因为 a +b +c 不可能为 0,所以 a −b =0,即 a =b ,所以 △ABC 是等腰三角形.17. (1) 2(2) 不彻底;(x −2)4【解析】原式=(x 2−4x +4)2=(x −2)4.(3) 设 x 2−2x =y ,原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2−2x+1)2=(x−1)4.18. 能;(x2−y2)(4x2−y2)+3x2(4x2−y2)=(4x2−y2)(x2−y2+3x2)=(4x2−y2)2.当y=kx时,原式=(4x2−k2x2)2=(4−k2)2x4.令(4−k2)2=1,解得k=±√3或±√5.即当k=±√3或±√5时,原代数式可化简为x4。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多项式的练习题
1、下列代数式中,哪些是单项式?哪些是多项式?哪些是整式?。

,,,,,π
222
2
3111r R n m y x x b a -----
2、指出下列多项式是几次几项式,并写出每一项。

① ;x x 3122
-+ ②;2452
2
3+-+-ab b a b a ③4432
2
34642
14y xy y x y x y x +--
+ 3、若()12322
+---x n y x m 是关于y x 、的三次二项式,求()2
n m +的值。

4、多项式
()722
1++-x m x m
是关于x 的二次三项式,则m= 。

5、已知67533321
2--++xy y x y x m m 是七次四项式,求12-+m m 的值。

6、若单项式4
8-m xy 的次数为3次,多项式356
-+b a
n 的次数为8,求n m 的值。

7、若多项式2
3
6721
+---+x y x y x m m 是关于y x 、的五次四项式,求()1542+--m m 的值。

8、多项式()
()433323++-+-x m x x m 是关于x 的二次三项式,则m= 。

9、如果()112+-+x m x n
为三次二项式,求2
2n m -的值。

10、已知关于x 的多项式()()()31222
3
4
-+---++ax x a x b x b a 不含2
3x x 和项,试求当1-=x 时
这个多项式的值。

11、若多项式()k y xy k x -+-+2
2
12不含xy 的值,求k 的值。

12、一个只含字母a 的二次三项式,它的二次项、一次项的系数都是-1,常数项是2,你能写出这个二次三项式吗?当2
1
-
=a 时,这个二次三项式的值为多少?
13、一个关于y x 、的二次三项式,除常数项-2外,其余各项的系数都是1,你能写出这个二次三项式吗?
14、一个只含字母x 的三次四项式,它的三次项系数为-2,一次项和二次项的系数都是-1,常数项为9,你能写出这个三次四项式吗?。

相关文档
最新文档