(完整版)像质评价方法

合集下载

像质评价

像质评价

ray fanray fan表示是光学系统的综合误差。

它的横坐标是光学系统的入瞳标量,因此总是从-1到+1之间。

显然0的位置对应就是光轴在入瞳中心的焦点。

纵坐标则是针对主光线(发光点直穿光阑中心点的那条光线)在像面上的位置的相对数值。

由于我们在计算光路的时候,通常仅仅考虑两类光线,子午面和弧矢面。

这样对于不同的面,就有两种不同rayfan显示要概念上理解ray fan图,我们假设有一个薄透镜的光学系统。

光阑就在这个薄透镜上。

有一个在子午面上的轴外点,发出一束光线射向这个透镜,那么它在子午面的ray fan图将是这样绘制的:首先,这一束光线会射向光学系统的入瞳(同时也是光阑)上,会在子午面上有一个光束的分布。

因此他们每个对应点都将在未来的rayfan图上显示-1到+1的横坐标。

显然主光线的位置是光阑的中点,就是0的位置。

然后这一束光线继续穿过光学系统,最后折射到像面上。

由于由像差的存在;在像面的子午面上将形成由无数光点形成的光线。

(对于理想的光学系统,还是应该形成一个点),这个线上一定会有一个点,是由主光线形成的。

这个点就作为整个像差的参考原点。

其他的各个点到这个点的位置差值就是在ray fan中对应于各个横坐标入瞳位置的纵坐标值!这样,一系列的点就可以在这个下xy的坐标系统中表示出来。

只要有足够的点,就能连接绘制一个完整的ray fan图。

这就是ray fan图的含义,它表示的是这个光学系统参照入瞳位置的像差综合值。

需要指出的是:由于有子午和弧矢两个面,因此对于每个视场的ray fan都有两个。

一个子午T(对应于PY和EY),和一个弧矢S(对应于PX和EX)。

又由于系统选择的光线不同,在每个视场的ray fan中可能会显示多个光线的不同ray fan。

zemax将会给每个视场都绘制一个ray fan图。

ray fan缺省的位置是IMA面位置,缺省的采样点是20个点等等都可以在setting 中进行重新设置。

图像质量评价标准

图像质量评价标准

图像质量评价标准|一、评价参数(一)对比度1、客观对比度:物体本身的差异,由被检体的密度和厚度决定。

2、x线对比度:穿过人体后,x线强度上的差异。

3、图像对比度:x线照片上所表现出的密度差。

客观对比度是成像的基础,图像对比度是图像的最基本特征。

下图很好的说明了以上三个对比度:1、客观对比度:骨骼、软组织、气体存在密度上的差别。

2、X线对比度:透过不同组织形成的X线强度上的差别。

3、图像对比度:图像上形成的黑白差别。

对比度分辨率是指将客观对比度转换成图像对比度的能力。

分辨率高的成像装置可将低对比的组织区分开;分辨率低的成像装置只能将高对比的组织区分开。

例如:CT与平片。

左图是普通平片,属于分辨率低的装置(X线机)摄取的片子;右图是胸部CT横断片,属于高分辨率的装置(CT机)摄取的片子。

对低对比的组织的区分能力,CT高于平片(即分辨率高的成像装置可将低对比的组织区分开),而平片只能区分差别较大组织(即分辨率低的成像装置只能将高对比的组织区分开)。

(二)模糊1、指物体的边界不清楚。

2、原因:每个物点的像向周围有不同程度的扩展。

3、影响:降低了图像的清晰度。

空间分辨率:区分相互靠近的两个物体细节的能力。

用LP/mm表示。

是评价影像设备性能优劣的重要指标。

以下是电影《神话》的一幅海报,表现的是图像的模糊。

下图是一幅分辨率较高的图片,图像较清晰。

(三)噪声1、定义:图像中可随机观察到的光密度变化。

2、表现为:斑点、雪花、网纹等。

3、原因:x线光子的随机分布。

4、描述:信噪比(SNR)。

SNR越大,图像质量越好。

(四)伪影1、定义:指图像中出现的被检体不存在的虚假信息。

2、影响:干扰正常结构,造成误诊。

(五)畸变定义:指物体的形态、大小和位置不同程度的改变。

(1)因观察角度不同,圆柱体的上面成为了椭圆。

(2)射线方向不同,产生了两种不同效果。

左图垂直照射,两个物体的形态基本不变;右图斜射,使两个原本分离的物体,看起来象是一体的。

光学测试技术-第6章-光学系统成像性能评测1

光学测试技术-第6章-光学系统成像性能评测1
围绕新型光电一体化成像系统性能评测的一系列问题, 本章将首先介绍成像质量问题评测的基本理论,包括检测 与评价方法概述,其后将分别介绍基于空域的星点检测、 分辨率测试和畸变测量等,及基于频率域的光学传递函数。
武汉大学 电子信息学院
2
§6.1 成像性能评测的基本理论
一、像质评价研究方法
成像光学系统可以看作是一个信息传递或信息转换系统:
PSF(u, v) h(u, v) / h(u, v)dudv
其傅里叶变换即为光学系统的传递函数:
OTF(r,s) PSF(u, v)exp[i2 (ru sv)]dudv
武汉大学 电子信息学院
10
§6.1 成像性能评测的基本理论
定义了光学系统的传递函数后,可以把成像过程在频率域中表 达为:
把物方信息按一定的要求传递或转换至像方。在传递或转换过 程中,伴随着信息的变化及附加的背景或其它衍生信息,因此 输出像与输入物之间仅存在相似性,不存在完全的一致性。
输入物信息
光学成像系统
输出像信息
利用等效于电学与通信系统的方法,一个光学或光电系统 可以被描述成是一个时间/空间滤波器。对于静态的成像光学系 统,通常可以用一个等效的空间滤波器来描述。对于成像系统, 最关心的是其物与像的辐照度分布一致性,以及光度或辐射度 性能和色度性能等三个基本问题。
武汉大学 电子信息学院
11
§6.1 成像性能评测的基本理论
4、复合系统的成像关系
对于由光学系统和光电传感器共同构成的复杂光电成像系统, 可以把整个成像系统视为若干子系统,成像特性既要考虑初始目 标的形状、漫反射特征、景深及光谱成份,也要考虑传输特性、 成像特性、光电传感器的光谱响应特征、噪声、各单元器件的响 应一致性、动态范围等,对完全相干耦合成像,可按光线追击和 光波传播衍射理论,做瞳函数的振幅连乘和波差代数叠加:

03像质评价

03像质评价

四、点列图
五、光程差曲线
波像差: 实际波面和理想波面之间的光程差。
光程差曲线(Optical Path Difference, OPD )
对像差比较小的光学系统,波像差比几何像差 更能反映系统的成像质量。
一般认为: 最大波像差小于四分之一波长,则 实际光学系统的质量与理想光学系统没有显著差别, 这是长期以来评价高质量光学系统的一个经验标准, 称为瑞利标准。
▪ 垂轴像差曲线
▪ 纵坐标: 像平面主光线同当前光线的距离 ▪ 横坐标: 光线在孔径光阑上的相对高度(或入
瞳、出瞳)
像差总结-球差
轴向球差曲线
垂轴球差曲线
垂直球差所产生的弥散斑:
像差总结-球差
两点的连 线与EY的 交点代表
彗差
彗差很 大
像差总结-慧差
像差总结-慧差
彗差很小, 此时的主要 像差是像散
1、基于衍射理论的方法 适合于小像差系统
2、基于几何光学的方法 光路追迹计算
3.综合评价的方法 光学传递函数
一、 像差的图形输出
▪ 几何像差曲线 -球差曲线 -彗差曲线 -像散和场曲曲线 -畸变曲线 -垂轴像差曲线
几何像差曲线
▪ 球差曲线
▪ 彗差曲线
▪ 像散和场曲
▪ 畸变
▪ 位置色差
▪ 倍率色差
几何光学中, 把任意物平面的强度分辨, 看做是由无数 个发光点组成的, 也就是把物平面上的强度分布分解为无
数个点, 从数学上来说就是把强度分布分解为无数个
函数 在傅立叶分析光学中, 把任意的强度分布函数, 分解为 无数个不同频率, 不同振幅, 不同初位相的余弦函数, 称为余弦基元
假设物平面输入的余弦基元为 I(y) 1 a cos(2y)

应用光学:第八章 光学系统的像质评价 和像差

应用光学:第八章 光学系统的像质评价 和像差

1、光学系统成像:
n
-u A
n’
umax’
A’
2、衍射成像:
通常把实际光学系统与理想光学系统的衍射分辨率的差作为评 价实际光学系统成像质量的指标。
如果用望远镜观 察到在视场中靠得 很近的四颗星星恰 能被分辨。
若将该望远镜的 物镜孔径限制得更小, 则可能分辨不出这是 四颗星星。
3、理想光学系统的衍射分辨率公式:
M+
B
Z B
B
M-
-K’T
B’t
B’T -δL’
-( XT’- xt’) -xt’
-XT’
XT’称为子午场曲, KT’称为子午彗差, xt’称为细光束子午场曲, δLT’=XT’- xt’为宽光束和细光束子午场曲之差,与轴上点球差类似,也称为轴外子午球差。
2、弧矢像差
M+
B
B
B
Z
M-
-K’S
B’s
2. 影响
• 由于象散的存在,使得轴外视场的象质显著下降,即 使光圈开得很小,在子午和弧矢方向均无法同时获得 非常清晰的影象。
• 象散的大小仅与视场角有关,而与孔径大小无关。因 此,在广角镜头中象散就比较明显,在拍摄时应尽量 使被摄体处于画面的中心。
3. 校正方法
• 正负透镜象散相反,胶合后可消除;
4.当光学系统是小视场,由于像高本身较小,慧差很小, 用慧差的绝对值不足以说明系统的慧差特征,此时用慧差 与像高的比值来描写这种像差,故慧差变成了正弦差,此 时初级慧差和初级正弦差之间的关系为:
SC
'
lim
K
' s
y'0 y '
正弦差计算式:
物体无限远时:

光学系统像质评价 [自动保存]

光学系统像质评价  [自动保存]

xts xt xs
细光束像散曲线
轴外像点的单色像差
实际光学系统所成的像即使子午像差和弧矢像差都为零,但对应的 像高并不一定和理想像高一致,这种像对物的变形像差称为畸变。
' ' ' ' ' ' Ao Bp ( yz ) 是光束的实际像高,Ao Bo ( yo ) 是理想像高,两者之差即 为畸变
光学传递函数的评价方法
• 用MTF曲线评价成像质量(所有频率) • 用特征频率传递函数值评价光学系统的质量(根据光 学系统使用目的)
• 用MTF阈值进行成像质量评价(分辨率)
• 用MTF曲线的积分值来评价成像质量(中心点亮度) • 用MTF曲线族来进行成像质量评价(焦深)
光学特性参数
孔径光阑或入瞳位置
它是限制轴上物点成像光束立体角(锥角)的光阑
入瞳的位置用从第一面顶点到入瞳面的距离lz表示,符 号规则同样是向右为正,向左为负
光学特性参数
渐晕
由于轴外点成像光束部分被遮挡,造成像的边缘部分亮度比像平 面中心暗,这种现象叫渐晕。
入窗
入瞳
O
A1
A2
A3
像差
实际成像的典型表现是,一个物点发出的光束经光学系统后不能聚焦成 一点而形成弥散斑,垂轴平面的物体也不可能成理想的垂轴平面像而发 生像面弯曲,同时物体成像还会产生变形,此外,还有不同波长光源之 间的成像差异。 实际像与理想像的差异称为像差。 像差包括:球差、彗差、像散、场曲、畸变和色差。其中,前五种是单 色像差,色差分为垂轴色差和位置色光学特性
成像质量
焦距、物距、像距、放大率、 入瞳位置、入瞳距离等
光学系统所包含的像应该足 够清晰,并且物像相似,变 形要小

像质评价

像质评价

第七章像质评价7.1 引言在前面中,我们讲述了光线计算和光学系统中的像差。

根据前面所学到的知识,基本上就可以进行光学仪器中的光路设计了,但设计的结果怎么样?质量如何?是否满足使用要求就不得而知了。

这就需要有一套评价光学系统质量优劣的方法和手段。

由光线追迹知道,由点目标发出的一束光线经过光学系统后,这些光线并不都相交于像面上一点。

如果我们选定某一点作为参考点,那么这些光线的交点与参考点的偏差就是像差。

我们还可以这样说,从几何光学观点看,如果一个光学系统是理想的,那么光学系统对点目标所成的像也是一个点。

也就是说,目标点和所成的像点是一一对应的。

但是,由于绝大多数光学系统均有像差存在,这种一一对应的关系就被破坏了,点目标所成的像不再是一个点,而是有一定几何尺寸的弥散斑。

实际上,点目标的像是成像光线在像面上交点的集合。

从物理光学观点看,即使光学系统是没有任何像差的理想光学系统,那么一个点目标通过该系统所成的像也不是一个点像,而是和光学系统口径有直接关系的、具有一定尺寸的衍射图样。

如果光学系统的通光孔径是圆形的,那么点目标的衍射图样便是以中心亮盘为中心,周围环绕以亮度逐渐减弱的、明暗交替的环,其形状便是著名“爱里斑”。

由上面的分析知道,光学系统对点目标所成的像并非一个“点”,而是具有一定几何尺寸的弥散斑。

弥散斑的尺寸取决丁光学系统的通光口径、波长和光学系统的像差。

我们可以把目标看做是由大量的点元组成的集合体。

目标中的每一个点通过光学系统成像后均为一个弥散斑,这些弥散斑的集合就构成了目标的图像。

因此,详细讨论点目标(包括轴上点和轴外点)的成像特件,并对其成像质量进行评价是十分有意义的。

我们现在面对的事实是:一个光学系统对点目标所成的像,即弥散斑的尺寸有多大,它是衍射效应占主导,还是几何像差占主导,多大尺寸的弥散斑是可以接受的,弥散斑内的能量是如何分布的,图像的对比度降低了多少,该系统的整体质量如何,这些问题集中起来就是像质评价要解决的主要内容。

光学设计第12章像质评价

光学设计第12章像质评价

第十二章 像质评价光学设计必须校正光学系统的像差,但既不可能也无必要把像差校正到完全理想的程度,因此选择像差校正的最佳方案,也需要确定校正到怎样的程度才能满足使用要求,即确定像差容限。

一个光学系统对点目标所成的像,即弥散斑的尺寸有多大,它是衍射效应占主导地位还是几何像差占主导,多大尺寸的弥散斑是可以接受的,弥散斑内的能量是如何分布的,图像的对比度降低了多少,该系统的整体质量如何,这些问题集中起来就是像质评价要解决的主要问题。

任何物体可以分解为物点,也可以分解为各种频率的谱,两种不同的分解方法构成两类评价光学系统的方法。

第一类以物点所发出的光能在像空间的分布状况作为质量评价的依据。

事实上,即使理想光学系统也会由于衍射使物点不能成点像而形成一个衍射光斑。

点像的衍射图样中,光斑主要集中在中央亮斑中,这一亮斑称为艾里斑,而像差的存在使衍射光斑的能量比无像差的时候更为分散。

属于这一类的像质评价方法有斯特列尔判断、瑞利判断和分辨率。

对于大像差系统,通常用几何光线的密集度来表示,与此对应的评价方法有点列图。

第二类方法是仿效电讯系统而得到的。

大多数情况下,可把光学系统看成是线性系统,并用傅氏分析法将物体分解为一系列不同频率的正弦分布,它们经线性系统传递到像方时频率不变,但对比度要下降,要发生相移,并截止于某一频率。

对比度的降低和相移与频率之间的函数关系称为光学传递函数,它与像差有关,因此光学传递函数是评价光学系统的像质的更全面、客观的一项指标。

§1 典型光学系统的像差公差光学系统的像差公差的制定是一个十分复杂的问题,不仅要考虑光学系统本身的质量,还要考虑目标特征、探测器的情况以及具体的使用要求等。

对于小像差系统,以瑞利判断为依据:如果实际波前与参考波前的光程差在λ/4范围内,则认为成像是理想的。

望远镜、显微镜为小像差系统,要求这类物镜的像差控制在瑞利极限之内,至少球差是如此。

有些系统,比如照相物镜、投影物镜、以及各种摄像机所使用的镜头等大像差系统,是无法把像差控制在瑞利极限以内的,实际上也没有必要,以几何像差来评价其成像质量就可以了。

像质评价方法分析

像质评价方法分析

像质评价方法分析光学系统的主要作用是把目标光线,按要求改变其传播方向,最终送入仪器接收器,而整个过程的主要目的是让我们得到目标光线的各种我们所需的信息,因此,成像质量的评价就反映了这个光学系统对目标信息的还原能力,譬如光学系统所成的像应该足够清晰,并且物像相似,变形要小。

像质评价大致可分为检测阶段和设计阶段的评价,检测阶段的像质评价指标常用星点检测和分辨率检测来评价,设计阶段的像质评价指标常用几何像差,垂轴像差,波像差,光学传递函数,点列图,点扩散函数,包围圆能量等来评价。

星点检验是观察点光源通过光学系统所得到的像斑形状。

光学系统没有几何像差时,像斑为标准的艾里圆,有几何像差或离焦时,光强分散。

分辨率法比较简单、方便、意义明确,能够用数量表示。

但它只能表述细节能不能分辨的界限,对于较粗线条的成像质量,不能作出定量的评价。

基于几何像差的概念,用米字形光阑模拟光线,测量除畸变、倍率色差外的其它五种几何像差。

其优点是§测量结果可直接与光线追踪结果相比较。

但它没考虑衍射,且测量工作量大。

此外还有阴影法、干涉法,它们比较适用于非成像光学系统,对于成像光学系统主要用于测量轴上点成象质量,测量范围受限制。

.常见的像质评价方法由于课上及课件中我们对于分辨率法,瑞利判断等的推导,对原理都已经有了一定的了解,并且掌握了一些判定技巧,在这里就不再进行赘述。

下面我们对常见的几种评价方式的优缺点分别进行简单的分析与概括:1瑞利判断和中心点亮度1.1瑞利判断定义:实际波面与参考球面波之间的最大波像差不超过4 /入时,此波面可看作是无缺陷的。

优点:便于实际应用缺点:不够严密。

适用范围:是一种较为严格的像质评价方法,适用于小像差光学系统。

1.2中心点亮度1 )中心点亮度:光学系统存在像差时,其成像衍射斑的中心亮度和不存在像差时衍射斑的中心亮度之比S. D来表示光学系统的成像质量。

2)斯托列尔准则:当S. D > 0.8 ,认为光学系统的成像质量是完善的。

(完整版)像质评价方法

(完整版)像质评价方法

像质评价方法一、几何像差曲线1、球差曲线:球差曲线纵坐标是孔径,横坐标是球差(色球差),使用这个曲线图,一要注意球差的大小,二要注意曲线的形状特别是代表几种色光的几条曲线之间的分开程度,如果单根曲线还可以,但是曲线间距离很大,说明系统的位置色差很严重。

2、轴外细光束像差曲线这一般是由两个曲线图构成图中左边的是像散场曲曲线,右边的是畸变,不同颜色表示不同色光,T和S分别表示子午和弧矢量,同色的T和S间的距离表示像散的大小,纵坐标为视场,右图横坐标是场曲,左图是畸变的百分比值,左图中几种不同色曲线间距是放大色差值。

二、点列图——光束的光亮度由一点发出的许多光线经光学系统后,因像差使其与像面的交点不再集中于同一点,而形成了一个散布在一定范围的弥散图形,称为点列图。

,点列图是在现代光学设计中最常用的评价方法之一。

图中的几个图分别表示给定的几个视场上不同光线与像面交点的分布情况。

使用点列图,一要注意下方表格中的数值,值越小成像质量越好。

二根据分布图形的形状也可了解系统的几何像差的影响,如,是否有明显像散特征,或彗差特征,几种色斑的分开程度如何,有经验的设计者可以根据不同的情况采取相应的措施。

RMS RADIUS:均方根半径值;GEO RADIUS:几何半径(最大半径)三、传递函数调制传递函数MTF:一定空间频率下像的对比度与物的对比度之比。

能反映不同空间频率、不同对比度的传递能力。

一般而言,高频传递函数反映了物体细节传递能力,低频传递函数反映物体轮廓传递能力,中频传递函数反映对物体层次的传递能力。

1、MTF曲线图图中不同色的曲线表示不同视场的复色光(白光)MTF曲线,T和S分别表示子午和弧矢方向,最上方黑色的曲线是衍射极限。

横坐标是空间频率lp/mm(每毫米线对),纵坐标是对比度,最大是1。

曲线越高,表明成像质量越好。

[返回本章要点]2、传函与离焦关系曲线图此图表明对设定空间频率不同视场的子午、弧矢MTF与离焦量的关系,图中横坐标是离焦量,纵坐标是对比度,通过此图可以看出各视场的最佳焦面是否比较一致,MTF是否对离焦比较敏感。

第九章像质评价与像差公差

第九章像质评价与像差公差

优点:便于实际应用。只要计算出几何像差曲线,再对其 积分就可得到波像差,即可判断成像的优劣。同时还可用 它求出几何像差的公差。 缺点:不够严密,没有考虑局部缺陷在整个波面面积中的 分量。 适用范围:是一种较为严格的像质评价方法,适用于小像 差光学系统,如显微镜、望远镜等对像质要求较高的系统。
二、中心点亮度
18
②加工精度与安装精度方面
为避免出现对误差特别敏感的情况,在设计时应通过光 路追迹进行仿真分析。 如微弱改变一个或几个折射面的曲率半径(等效于加工 误差),观察像差是否急剧变化;微弱改变一个或几个 元件的位置(相当于安装误差),观察像差是否急剧变 化。 还可通过分析各误差对成像质量的影响,反过来对加工
8
利用点列图法来评价像质时,通常是利用集中30%以上的 点或光线所构成的图形区域作为其实际有效弥散斑,其直 径的倒数即为系统的分辨率。 优点:简便易行,形象直观。 缺点:计算量大,需借助计算机。 适用范围:大像差光学系统。
光瞳面上 面元选取 方法
9
§9-4 光学传递函数
不管是瑞利判断、中心点亮度还是分辨率、点列图法来评价 像质,都是基于将物体看作是发光点,并以一点成像时的能 量集中程度来表征光学系统的成像质量。 利用光学传递函数来评价像质,是基于把物体看作是由各种 频率的谱组成的,即把物体的光场分布函数分解为付氏级数 或付氏积分的形式。 物体经光学系统成像,可认为物体传递效果是频率不变,但 对比度和相位发生改变。这种对比度的降低和相位推移是随 频率不同而不同的,其函数关系称为光学传递函数。 该函数既与光学系统的像差有关,又与光学系统的衍射效果 有关,因此用该法来评价像质更客观、更可靠。
L
m

n sin 2 umຫໍສະໝຸດ 20②彗差公差 根据经验取: ③色差公差

第九章 光学系统的像质评价

第九章  光学系统的像质评价

2、波前图
用现代计算机软件绘制而得的实际波面的变形程度图。
图9-1 望远物镜波像差计算实例 不同视场物点在出瞳位置的波像差。上为灰度图,下为等高线表示。 设计者既能了解波面变形程度,也能了解变形的面积大小。
第二节、中心点亮度和能量包容图 1、中心点亮度
瑞利判断是根据成像波面的变形程度来判断成像质量的,而中心点亮度
2、点扩散函数(point spread function)
光学系统输入物为一点光源时其输出像的光场分布,称为点扩散函 数。在数学上点光源可用δ 函数(点脉冲)代表,输出像的光场分布叫 做脉冲响应,所以点扩散函数也就是光学系统的脉冲响应函数。可反映 能量的集中或分散程度以判断系统成像质量。
图9-6 点扩散函数三维与截面图
二、利用MTF曲线的积分值来评价成像质量
上述方法只能反映MTF曲线上的少数几个点处的情况,而没有反映MTF曲
线的整体性质。理论证明,像点的中心点亮度值等于MTF曲线所围的面积, MTF所围的面积大表明光学系统所传递的信息量多,成像质量好。因此在光 学系统的接收器截止频率范围内,利用MTF曲线所围面积的大小来评价光学 系统的成像质量是非常有效的。在一定的截止频率范围内,只有获得较大的 MTF值,光学系统才能传递较多的信息。
是依据光学系统存在像差时,其成像衍射斑的中心亮度和不存在像差时衍射
斑的中心亮度之比来表示光学系统的成像质量的,比值用 S.D 来表示。当 S.D≥0.8时,认为光学系统的成像质量是完善的,称斯托列尔准则。
瑞利判断和中心点亮度是从不同角度提出来的像质评价方法,但研究
表明,对一些常用的像差形式,当最大波像差为λ/4时,其中心点亮度约等 于0.8,这说明上述二种评价成像质量的方法是一致的。 斯托列尔准则同样是一种高质量的像质评价标准,它也只适用于小像差 光学系统。但由于其计算相当复杂,在实际中不便应用。

9 第九章 像质评价方法

9 第九章 像质评价方法
系统的成像质量的方法。 ★ 方法:通过在入瞳(物空间)处划分面元选择入射光
线,追迹各光线在成像面上的像点,通过对像点密集 程度的分析判断实际像的光强分布。
1)光线选择
2)评价标准: 利用集中30%以上的点或光线构成的图形区域
作为其实际有效弥散斑,弥散斑直径的倒数即为系 统的分辨率。
3)优缺点: 优点:原理简单、方可易行, 适用于大像差系统,如大像差照相物镜的设计。 缺点:需要大量的光路计算。
一、理想光学系统成像
1、几何光学:物点 高斯像点
2、波动光学:物点 衍射高斯像面上的衍射斑(艾里斑)
★ 两物点的间距逐渐变小时,对应像点的位置变化:
(a)
(b)
(c)
★系统的分辨率:光学系统能分开两个像点的最小距离。
二、瑞利判据 :等亮度的两个物点,其一衍射图样的中央 极大与另一衍射图样的第一级极小重合时, 认为刚好能分辨这两个物点。
第四节 光学传递函数
前面四种成像质量评价方法:
1、物体——发光点的集合 2、一点成像时能量的集中程度——表征光学系统的成像质量
光学传递函数:
1、物体——各种频率的谱组成 2、物体的光场分布函数——展开为傅里叶级数(积分) 3、光学系统——线性不变的系统
物体经光学系统成像,可视为物体不同频率的成分经 光学系统传递。其传递效果体现为:各成分的对比度降低 和相位推移因频率不同而异——光学传递函数。
S.D 0.8
优图样中艾里斑的能 量变化,比较严格、可靠
缺点
不够严密,未考虑缺 陷部分在整个波面面 积上所占的比重。
计算复杂,需借助现代光学 设计软件。
适用 小像差光学系统:如望远物镜、显微物镜、微缩物 性 镜等对成像质量要求较高的系统。

(完整版)像质评价方法

(完整版)像质评价方法

像质评价方法一、几何像差曲线1、球差曲线:球差曲线纵坐标是孔径,横坐标是球差(色球差),使用这个曲线图,一要注意球差的大小,二要注意曲线的形状特别是代表几种色光的几条曲线之间的分开程度,如果单根曲线还可以,但是曲线间距离很大,说明系统的位置色差很严重。

2、轴外细光束像差曲线这一般是由两个曲线图构成图中左边的是像散场曲曲线,右边的是畸变,不同颜色表示不同色光,T和S分别表示子午和弧矢量,同色的T和S间的距离表示像散的大小,纵坐标为视场,右图横坐标是场曲,左图是畸变的百分比值,左图中几种不同色曲线间距是放大色差值。

二、点列图——光束的光亮度由一点发出的许多光线经光学系统后,因像差使其与像面的交点不再集中于同一点,而形成了一个散布在一定范围的弥散图形,称为点列图。

,点列图是在现代光学设计中最常用的评价方法之一。

图中的几个图分别表示给定的几个视场上不同光线与像面交点的分布情况。

使用点列图,一要注意下方表格中的数值,值越小成像质量越好。

二根据分布图形的形状也可了解系统的几何像差的影响,如,是否有明显像散特征,或彗差特征,几种色斑的分开程度如何,有经验的设计者可以根据不同的情况采取相应的措施。

RMS RADIUS:均方根半径值;GEO RADIUS:几何半径(最大半径)三、传递函数调制传递函数MTF:一定空间频率下像的对比度与物的对比度之比。

能反映不同空间频率、不同对比度的传递能力。

一般而言,高频传递函数反映了物体细节传递能力,低频传递函数反映物体轮廓传递能力,中频传递函数反映对物体层次的传递能力。

1、MTF曲线图图中不同色的曲线表示不同视场的复色光(白光)MTF曲线,T和S分别表示子午和弧矢方向,最上方黑色的曲线是衍射极限。

横坐标是空间频率lp/mm(每毫米线对),纵坐标是对比度,最大是1。

曲线越高,表明成像质量越好。

[返回本章要点]2、传函与离焦关系曲线图此图表明对设定空间频率不同视场的子午、弧矢MTF与离焦量的关系,图中横坐标是离焦量,纵坐标是对比度,通过此图可以看出各视场的最佳焦面是否比较一致,MTF是否对离焦比较敏感。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
像质评价方法
一、几何像差曲线
1、球差曲线:
球差曲线纵坐标是孔 径,横坐标是球差 (色 球差),使用这个曲 线图,一要注意球差 的大小,二要注意曲 线的形状特别是代表 几种色光的几条曲线 之间的分开程度,如 果单根曲线还可以, 但是曲线间距离很 大,说明系统的位置 色差很严重。
2、轴外细光束像 差曲线
此图表明对设定 空间频率不同视 场的子午、弧矢 MTF与离焦量的关 系,图中横坐标是 离焦量, 纵坐标是 对比度, 通过此图 可以看出各视场 的最佳焦面是否 比较一致, MTF是 否对离焦比较敏 感。此图在光学设 计后期, 精细校正 时很有用。
四、波像差
1、光程差曲线
图中几个曲线图分 别是不同视场子午 和弧矢方向上的光 程差,不同颜色表 示不同色光。下方 表格的数据为纵坐 标(光程差)的最 大值,单位一般用 波长。
1、ቤተ መጻሕፍቲ ባይዱTF曲线图
图中不同色的曲 线表示不同视场 的复色光(白光) MTF曲线, T 和 S 分别表示子午和 弧矢方向, 最上方 黑色的曲线是衍 射极限。 横坐标是 空间频率 lp/mm (每毫米线对), 纵坐标是对比度, 最大是 1。曲线越 高,表明成像质量 越好。
[ 返回本章要点 ]
2、传函与离焦关 系曲线图
由一点发出的许多光线经光学系统后,因像差使其与像面的交点不再集 中于同一点,而形成了一个散布在一定范围的弥散图形,称为点列图。, 点列图是在现代光学设计中最常用的评价方法之一。
图中的几个图分 别表示给定的几 个视场上不同光 线与像面交点的 分布情况。使用点 列图,一要注意下 方表格中的数值, 值越小成像质量 越好。二根据分布 图形的形状也可 了解系统的几何 像差的影响,如, 是否有明显像散 特征,或彗差特 征,几种色斑的分 开程度如何,有经 验的设计者可以 根据不同的情况 采取相应的措 施。
RMS RADIU:S均方根半径值; GEO RADIU:S几何半径(最大半径)
三、传递函数
调制传递函数 MTF:一定空间频率下像的对比度与物的对比度之比。能反 映不同空间频率、不同对比度的传递能力。一般而言,高频传递函数反映 了物体细节传递能力,低频传递函数反映物体轮廓传递能力,中频传递函 数反映对物体层次的传递能力。
2、波面三维图
此图是设定视场和 色光的波像差三维 分布图,下方表格 中的数字给出了波 差的大小
PEAK TO VALLEY 波差的峰谷值 (最 大最小) RMS波差均方根 值
3、干涉图
这是模拟系统波差 在干涉仪上测出的 干涉图图形。图中 给出的是设定视场 和色光的干涉图。
这一般是由两个 曲线图构成图中 左边的是像散场 曲曲线,右边的 是畸变,不同颜 色表示不同色 光,T 和 S 分别表 示子午和弧矢 量,同色的 T 和 S 间的距离表示像 散的大小,纵坐 标为视场,右图 横坐标是场曲, 左图是畸变的百 分比值,左图中 几种不同色曲线 间距是放大色差 值。
二、点列图 —— 光束的光亮度
相关文档
最新文档