复变函数试题与答案

合集下载

(完整版)《复变函数》考试试题与答案(二)

(完整版)《复变函数》考试试题与答案(二)

《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续.( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( ) 6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f . ( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f i z ________.3. =-⎰=-1||00)(z z n z z dz _________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=ii z z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求 dz z z z ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×.二. 填空题1.1,2π-, i ;2. 3(1sin 2)i +-;3. 2101i n n π=⎧⎨≠⎩; 4. 1; 5. 1m -. 6. 2k i π,()k z ∈. 7. 0; 8. i ±; 9. R ; 10. 0.三. 计算题1. 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑. 2. 解 令i z re θ=.则22(),(0,1)k i f z k θπ+===.又因为在正实轴去正实值,所以0k =.所以4()i f i e π=.3. 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤.所以22222i i i i z dz de e i ππθθππ---===⎰⎰.4. 解 dz z zz ⎰=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0.四. 证明题.1. 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-. (12,c c 为实常数). 令12(,),(,)u x y c v x y c ==-. 则0x y y x u v u v ====. 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析. (充分性) 令()f z u iv =+, 则 ()f z u iv =-,因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-. 比较等式两边得 0x y y x u v u v ====. 从而在D 内,u v 均为常数,故()f z 在D 内为常数.2. 即要证“任一 n 次方程 101100(0)n n n n a z a z a z a a --++⋅⋅⋅++=≠ 有且只有 n 个根”.证明 令1011()0n n n n f z a z a z a z a --=++⋅⋅⋅++=, 取10max ,1n a a R a ⎧⎫+⋅⋅⋅+⎪⎪>⎨⎬⎪⎪⎩⎭, 当z 在:C z R =上时, 有 111110()()n n n n n n z a R a R a a a R a R ϕ---≤+⋅⋅⋅++<+⋅⋅⋅+<. ()f z =.由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++⋅⋅⋅++= 与 00n a z = 有相同个数的根. 而 00n a z = 在 z R < 内有一个 n 重根 0z =. 因此n 次方程在z R <内有n 个根.。

西交《复变函数》答案

西交《复变函数》答案

二、填空题1.设C 是0z =到1z i =+的直线段,则z ce dz =⎰____1(1)i i e --_____________.2.方程1ze -+=0的全部解是_______(2)i k k Z ππ+∈_______________;3.幂级数1in nn ez π+∞=∑的收敛半径是__________1____________;4.函数21()(1)z f z z e =-的全部奇点是_______2kik Z π∈_______________.三、证明:若iv u z f +=)(在区域D 内解析,并且2v u =,则)(z f 在D 内为常数.(8分)证: 因为 ()f z u iv =+ 在区域D 内解析,且2u v =从而yv v y u x v y vx u x v v∂∂-=∂∂-=∂∂∂∂=∂∂=∂∂2,2 (50)所以 2020v v v x y v v v xy ∂∂⎧-=⎪∂∂⎪⎨∂∂⎪+=⎪∂∂⎩系数行列式 22141012v v v-=+≠所以0v v x y∂∂==∂∂,同理 0u u x y ∂∂==∂∂1()0v vf z x i y∂∂'=+=∂∂ 即 在D 内()f z 为常数.四、已知调和函数(,)(1)u x y x y =+,求解析函数iv u z f +=)(,且满足条件0)1(=f .(8分) 解()()u v u u f z i i x x x y ∂∂∂∂'=+=+-∂∂∂∂ (1)y x i xi i y =+--=--+()x yi i i zi i =-+-=--2()()2if z z i i d z z z i c ∴=--=--+⎰由 3(1)022i f i c i c =--+=-+= 得 32c i =23()22i f z z zi i ∴=--+五、求函数231)(2++=z z z f 在20=z 处的泰勒展开式,并指出它的收敛半径.(10分) 解 : 21111()32(1)(2)12f z z z z z z z ===-++++++ 而,)2(31)1(321131)2(311101n n n n z z z z --=-+=-+=+∑∞=+ 3|2|<-z4|2|,)2(41)1(421141211<---=-+=+∑+z z z z n n n所以nnn n n nnn nnn n nz z z z f )2)(4131()1()2(41)1()2(31)1()(010---=-----=∑∑∑∞=∞=+∞=级数的收敛半径为3=R六、将函数2)1(1)(z z z f -=在圆环域:011z <-<内展开成洛朗级数.(10分) 解: 因为 011(1)(1)(|1|1),11n nn z z z z +∞===---<+-∑所以 22011()(1)(1)(|1|1),(1)(1)n nn f z z z z z z +∞===---<--∑2(1)(1)(|1|1),n n n z z +∞-==---<∑七、计算下列各积分.(圆周均取正向)(每小题6分,共24分)(1)23cos3(2)z z dz z z =-⎰ ; (2)32(1)(2)zz e dz z z =-+⎰(3)2523()14z z dz z z i =+++⎰; (4)222(1)z z ze dz z =-⎰ (1) 解 : 在||3z =内,10z =是二级极点,22z =是一级极点220cos3Re [(),0]lim[](2)z zs f z z z z →'=-203(2)sin 3cos31lim(2)4z z z z z →---==--22c o s 3c o s 6R e [(),2]l i m 2z z s f z z→== 23cos3cos612()(cos61)(2)442z z idz i z z =π=π-=--⎰ (2)解: 13322222(1)(2)123zzzz z z e e e z dz dz i e i z z z z ===+==π⋅=π-+-+⎰⎰(3) 解 : 在||5z =内,,4z i z i =±=-均为函数的一级极点225552323()1414z z z z z dz dz dz z z iz z i ===+=+++++⎰⎰⎰ 22222[]32(1)(1)z i z izz i i z z ==-=π++⋅π''++10i =π(4)解:2211 222()2()(1)zzz zzzedz if z i zez== =''=π=π-⎰22212(2)6z zzi e ze ie==π+=π。

复变函数试题及答案

复变函数试题及答案

复变函数试题及答案一、选择题(每题5分,共20分)1. 复数 \( z = a + bi \) 的共轭复数是()。

A. \( a - bi \)B. \( a + bi \)C. \( -a - bi \)D. \( -a + bi \)答案:A2. 若 \( z_1 = 3 + 4i \),\( z_2 = 1 - 2i \),则 \( z_1 \cdot z_2 \) 的结果是()。

A. \( 5 - 10i \)B. \( 5 + 10i \)C. \( 11 - 10i \)D. \( 11 + 10i \)答案:D3. 复变函数 \( f(z) = u(x, y) + iv(x, y) \) 在点 \( z_0 \) 处可微,则以下说法正确的是()。

A. \( u \) 和 \( v \) 在 \( z_0 \) 处连续B. \( u \) 和 \( v \) 在 \( z_0 \) 处可导C. \( u \) 和 \( v \) 在 \( z_0 \) 处偏导数存在D. 以上说法都不对答案:B4. 若 \( f(z) \) 在区域 \( D \) 内解析,则 \( f(z) \) 在 \( D \) 内()。

A. 连续B. 可导C. 可微D. 以上都对答案:D二、填空题(每题5分,共20分)1. 复数 \( z = 2 - 3i \) 的模长 \( |z| \) 等于 ________。

答案:\( \sqrt{13} \)2. 若 \( f(z) = z^2 \),则 \( f(1 + i) \) 的值为 ________。

答案:\( 2i \)3. 复变函数 \( f(z) = \frac{z}{z^2 + 1} \) 的奇点为 ________。

答案:\( \pm i \)4. 若 \( f(z) \) 在 \( z = z_0 \) 处解析,则 \( f(z) \) 在\( z_0 \) 处的洛朗级数展开中不包含 ________。

《复变函数》考试试题与答案各种总结

《复变函数》考试试题与答案各种总结

《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(一)参考答案一. 判断题1.×2.√ 3.√ 4.√ 5.√ 6.√ 7.×8.×9.×10.× 二.填空题 1. 2101i n n π=⎧⎨≠⎩; 2. 1; 3. 2k π,()k z ∈; 4. z i =±; 5. 16. 整函数;7. ξ;8. 1(1)!n -; 9. 0; 10. ∞.三.计算题.1. 解 因为01,z << 所以01z <<111()(1)(2)12(1)2f z z z z z ==-----001()22nn n n z z ∞∞===-∑∑.2. 解 因为22212Re ()limlim 1cos sin z z z z s f z z z ππππ→→=+===--, 22212Re ()limlim 1cos sin z z z z s f z z zππππ→-→-=--===-. 所以22212(Re ()Re ()0cos z z z dz i s f z s f z z πππ==-==+=⎰. 3. 解 令2()371ϕλλλ=++, 则它在z 平面解析, 由柯西公式有在3z <内, ()()2()c f z dz i z z ϕλπϕλ==-⎰.所以1(1)2()2(136)2(613)z i f i i z i i i πϕππ=+''+==+=-+. 4. 解 令z a bi =+, 则 222222122(1)2(1)211111(1)(1)(1)z a bi a bw z z a b a b a b -+-+==-=-=-+++++++++. 故 2212(1)Re()11(1)z a z a b -+=-+++, 2212Im()1(1)z bz a b -=+++. 四. 证明题.1. 证明 设在D 内()f z C =.令2222(),()f z u iv f z u v c =+=+=则.两边分别对,x y 求偏导数, 得 0(1)0(2)x x yy uu vv uu vv +=⎧⎨+=⎩因为函数在D 内解析, 所以,x y y x u v u v ==-. 代入 (2) 则上述方程组变为00x x x x uu vv vu uv +=⎧⎨-=⎩. 消去x u 得, 22()0x u v v +=. 1) 若220u v +=, 则 ()0f z = 为常数.2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =. 所以12,u c v c ==. (12,c c 为常数).所以12()f z c ic =+为常数. 2.证明()f z =0,1z =. 于是割去线段0Re 1z ≤≤的z 平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支.由于当z 从支割线上岸一点出发,连续变动到0,1z = 时, 只有z 的幅角增加π. 所以()f z =2π. 由已知所取分支在支割线上岸取正值, 于是可认为该分支在上岸之幅角为0, 因而此分支在1z =-的幅角为2π,故2(1)i f e π-==.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×. 二. 填空题1.1,2π-, i ; 2. 3(1sin 2)i +-; 3. 2101i n n π=⎧⎨≠⎩; 4. 1; 5. 1m -. 6. 2k i π,()k z ∈. 7. 0; 8. i ±; 9. R ; 10. 0. 三. 计算题1. 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑.2. 解 令i z re θ=.则22(),(0,1)k if z k θπ+===.又因为在正实轴去正实值,所以0k =.所以4()if i eπ=.3. 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤.所以22222ii i iz dz de ei ππθθππ---===⎰⎰.4. 解dz z zz ⎰=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0.四. 证明题.1. 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-. (12,c c 为实常数). 令12(,),(,)u x y c v x y c ==-. 则0x y y x u v u v ====. 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析. (充分性) 令()f z u iv =+, 则 ()f z u iv =-, 因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-.比较等式两边得 0x y y x u v u v ====. 从而在D 内,u v 均为常数,故()f z 在D 内为常数.2. 即要证“任一 n 次方程 101100(0)n n n n a z a z a z a a --++⋅⋅⋅++=≠ 有且只有 n 个根”.证明 令1011()0nn n n f z a z a z a z a --=++⋅⋅⋅++=, 取10max ,1n a a R a ⎧⎫+⋅⋅⋅+⎪⎪>⎨⎬⎪⎪⎩⎭, 当z 在:C z R =上时, 有 111110()()n n nn n n z a R a R a a a R a R ϕ---≤+⋅⋅⋅++<+⋅⋅⋅+<.()f z =.由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++⋅⋅⋅++= 与 00na z = 有相同个数的根. 而 00na z = 在 z R < 内有一个 n 重根 0z =. 因此n 次方程在z R <内有n 个根.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( ) 8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数试题及答案解析

复变函数试题及答案解析

复变函数试题及答案解析一、选择题(每题3分,共15分)1. 若复数z满足|z|=1,则z的辐角的取值范围是()。

A. [0, 2π)B. [0, π]C. [0, π/2]D. [π/2, 3π/2]答案:A解析:复数z的模长|z|=1表示z在复平面上位于单位圆上,因此其辐角可以取遍[0, 2π)范围内的所有值。

2. 函数f(z)=1/z在z=0处()。

A. 可导B. 不可导C. 连续D. 间断答案:B解析:函数f(z)=1/z在z=0处没有定义,因此不可导。

3. 函数f(z)=z^2在z=i处的导数为()。

A. 2iB. -2iC. -2D. 2答案:A解析:根据复变函数的导数定义,f'(z)=2z,代入z=i得到f'(i)=2i。

4. 若f(z)是解析函数,则以下哪个选项是正确的()。

A. f(z)的实部和虚部都是调和函数B. f(z)的实部和虚部都是解析函数C. f(z)的实部和虚部都是连续函数D. f(z)的实部和虚部都是可导函数答案:A解析:解析函数的实部和虚部都是调和函数,这是解析函数的基本性质之一。

5. 以下哪个函数不是解析函数()。

A. f(z)=sin(z)B. f(z)=e^zC. f(z)=z^2D. f(z)=|z|答案:D解析:解析函数在其定义域内处处可导,而函数f(z)=|z|在z=0处不可导,因此不是解析函数。

二、填空题(每题4分,共20分)6. 复数z=3+4i的共轭复数为______。

答案:3-4i解析:复数z=a+bi的共轭复数为a-bi,因此z=3+4i的共轭复数为3-4i。

7. 若f(z)=u(x,y)+iv(x,y),则f(z)的实部为______,虚部为______。

答案:u(x,y);v(x,y)解析:根据复变函数的表示,f(z)=u(x,y)+iv(x,y),其中u(x,y)为实部,v(x,y)为虚部。

8. 若f(z)在区域D内解析,则f(z)满足柯西-黎曼方程,即______。

大学复变函数试题及答案

大学复变函数试题及答案

大学复变函数试题及答案一、单项选择题(每题3分,共15分)1. 复数z=1+i的共轭复数是()。

A. 1-iB. 1+iC. -1+iD. -1-i答案:A2. 对于复数z=a+bi,其模长|z|等于()。

A. √(a²+b²)B. a²+b²C. a+biD. a²-b²答案:A3. 以下哪个函数是解析函数()。

A. f(z)=|z|B. f(z)=z²C. f(z)=√zD. f(z)=z/|z|答案:B4. 函数f(z)=sin(z)的导数是()。

A. cos(z)B. -sin(z)C. cos(z)D. -cos(z)答案:A5. 复变函数f(z)=1/z的极点是()。

A. z=0B. z=1C. z=-1D. z=i答案:A二、填空题(每题4分,共20分)6. 复数z=3+4i的模长|z|等于_________。

答案:57. 函数f(z)=z³+1的导数f'(z)等于_________。

答案:3z²8. 函数f(z)=e^z的导数f'(z)等于_________。

答案:e^z9. 函数f(z)=1/(z-1)的极点是_________。

答案:z=110. 函数f(z)=z²的零点是_________。

答案:z=0三、计算题(每题10分,共30分)11. 计算复数z=2+3i的共轭复数,并求其模长。

解:z的共轭复数为2-3i,模长|z|=√(2²+3²)=√13。

12. 计算函数f(z)=z³-3z²+2z-1在z=1处的导数值。

解:f'(z)=3z²-6z+2,代入z=1,得到f'(1)=3(1)²-6(1)+2=-1。

13. 计算函数f(z)=1/(z²+1)的极点,并判断极点的性质。

复变函数试题及答案

复变函数试题及答案

复变函数试题及答案一、选择题(每题4分,共40分)1. 下列哪个函数在全平面上是解析的?A. f(z) = |z|^2B. f(z) = e^zC. f(z) = ln(z)D. f(z) = 1/z答案:B2. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。

下列哪个条件是解析函数的充分必要条件?A. u满足柯西-黎曼方程B. v满足柯西-黎曼方程C. u和v满足柯西-黎曼方程D. u和v的一阶偏导数满足柯西-黎曼方程答案:C3. 设f(z) = u(r, θ)是解析函数,其中r和θ是极坐标系下的变量。

下列哪个条件是解析函数的充分必要条件?A. u满足极坐标下的柯西-黎曼方程B. f(z)在全平面上是解析的C. f(z)在圆心附近是解析的D. f(z)在正实轴上是解析的答案:A4. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。

若u和v满足柯西-黎曼方程,则A. f(z)在全平面上是解析的B. f(z)在实轴上是解析的C. f(z)在虚轴上是解析的D. f(z)在解析的那部分上满足柯西-黎曼方程答案:A5. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。

若f(z)在实轴上是解析的,则A. u(x, y)在全平面上是解析的B. v(x, y)在全平面上是解析的C. u(x, y)和v(x, y)满足柯西-黎曼方程D. u(x, y)和v(x, y)处处可微分答案:C二、填空题(每空5分,共30分)1. 若f(z) = x^2 - y^2 + 2xyi是解析函数,则它的共轭函数为________。

答案:f*(z) = x^2 - y^2 - 2xyi2. 设f(z) = u(x, y)是解析函数,且满足柯西-黎曼方程的实部形式,则函数f(z)可表示为f(z) = ________。

复变函数14套题目和答案

复变函数14套题目和答案

《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1.=-⎰=-1||00)(z z n z z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)1、 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dz z zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________. 4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数)6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 复数与复变函数 一、 选择题 1.当iiz11时,5075100zzz的值等于( ) (A)i (B)i (C)1 (D)1

2.设复数z满足3)2(zarc,65)2(zarc,那么z( )

(A)i31 (B)i3 (C)i2321 (D)i2123

3.复数)2(taniz的三角表示式是( ) (A))]2sin()2[cos(seci (B))]23sin()23[cos(seci

(C))]23sin()23[cos(seci(D))]2sin()2[cos(seci

4.若z为非零复数,则22zz与zz2的关系是( ) (A)zzzz222 (B)zzzz222 (C)zzzz222 (D)不能比较大小 5.设yx,为实数,yixzyixz11,1121且有1221zz,则动点),(yx的轨迹是( )

(A)圆 (B)椭圆 (C)双曲线 (D)抛物线

6.一个向量顺时针旋转3,向右平移3个单位,再向下平移1个单位后对应的复数为i31,则原向量对应的复数是( ) (A)2 (B)i31 (C)i3 (D)i3

7.使得22zz成立的复数z是( ) (A)不存在的 (B)唯一的 (C)纯虚数 (D)实数

8.设z为复数,则方程izz2的解是( ) (A)i43 (B)i43 (C)i43 (D)i4

3 9.满足不等式2iziz的所有点z构成的集合是( ) (A)有界区域 (B)无界区域 (C)有界闭区域 (D)无界闭区域

10.方程232iz所代表的曲线是( ) (A)中心为i32,半径为2的圆周 (B)中心为i32,半径为2的圆周

(C)中心为i32,半径为2的圆周 (D)中心为i32,半径为2的圆周

11.下列方程所表示的曲线中,不是圆周的为( ) (A)221zz (B)433zz

(C))1(11aazaz (D))0(0ccaazazazz

12.设,5,32,1)(21izizzzf,则)(21zzf( ) (A)i44 (B)i44 (C)i44 (D)i44 13.00)Im()Im(lim0zzzzxx( ) (A)等于i (B)等于i (C)等于0 (D)不存在

14.函数),(),()(yxivyxuzf在点000iyxz处连续的充要条件是( )

(A)),(yxu在),(00yx处连续 (B)),(yxv在),(00yx处连续 (C)),(yxu和),(yxv在),(00yx处连续(D)),(),(yxvyxu在),(00yx处连续

15.设Cz且1z,则函数zzzzf1)(2的最小值为( ) (A)3 (B)2 (C)1 (D)1

二、填空题 1.设)2)(3()3)(2)(1(iiiiiz,则z 2.设)2)(32(iiz,则zarg 3.设43)arg(,5izz,则z 4.复数22)3sin3(cos)5sin5(cosii的指数表示式为 5.以方程iz1576的根的对应点为顶点的多边形的面积为 6.不等式522zz所表示的区域是曲线 的内部

7.方程1)1(212ziiz所表示曲线的直角坐标方程为 8.方程iziz221所表示的曲线是连续点 和 的线段的垂直平分线

9.对于映射zi,圆周1)1(22yx的像曲线为 10.)21(lim421zziz 三、若复数z满足03)21()21(zizizz,试求2z的取值范围. 四、设0a,在复数集C中解方程azz22. 五、设复数iz,试证21zz是实数的充要条件为1z或0)(zIM. 六、对于映射)1(21zz,求出圆周4z的像. 七、试证1.)0(0221zzz的充要条件为2121zzzz; 2. )),,2,1,,,0(021njkjkz

z

z

j的充要条件为

nnzzzzzz2121. 八、若0)(lim0Azfxx,则存在0,使得当00zz时有Azf21)(. 九、设iyxz,试证yxzyx2. 十、设iyxz,试讨论下列函数的连续性: 1.



0,00,2)(22zz

yx

xy

zf 2.0,00,)(223zzyxyxzf. 第二章 解析函数 一、选择题: 1.函数23)(zzf在点0z处是( ) (A)解析的 (B)可导的 (C)不可导的 (D)既不解析也不可导 2.函数)(zf在点z可导是)(zf在点z解析的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充分必要条件 (D)既非充分条件也非必要条件

3.下列命题中,正确的是( ) (A)设yx,为实数,则1)cos(iyx (B)若0z是函数)(zf的奇点,则)(zf在点0z不可导 (C)若vu,在区域D内满足柯西-黎曼方程,则ivuzf)(在D内解析

(D)若)(zf在区域D内解析,则)(zif在D内也解析 4.下列函数中,为解析函数的是( ) (A)xyiyx222 (B)xyix2

(C))2()1(222xxyiyx (D)33

iyx

5.函数)Im()(2zzzf在0z处的导数( ) (A)等于0 (B)等于1 (C)等于1 (D)不存在

6.若函数)(2)(2222xaxyyiyxyxzf在复平面内处处解析,那么实常

数a( ) (A)0 (B)1 (C)2 (D)2 7.如果)(zf在单位圆1z内处处为零,且1)0(f,那么在1z内)(zf( )

(A)0 (B)1 (C)1 (D)任意常数

8.设函数)(zf在区域D内有定义,则下列命题中,正确的是 (A)若)(zf在D内是一常数,则)(zf在D内是一常数 (B)若))(Re(zf在D内是一常数,则)(zf在D内是一常数 (C)若)(zf与)(zf在D内解析,则)(zf在D内是一常数 (D)若)(argzf在D内是一常数,则)(zf在D内是一常数 9.设22)(iyxzf,则)1(if( ) (A)2 (B)i2 (C)i1 (D)i22

10.ii的主值为( ) (A)0 (B)1 (C)2e (D)2

e

11.ze在复平面上( ) (A)无可导点 (B)有可导点,但不解析

(C)有可导点,且在可导点集上解析 (D)处处解析 12.设zzfsin)(,则下列命题中,不正确的是( ) (A))(zf在复平面上处处解析 (B))(zf以2为周期

(C)2)(izizeezf (D))(zf是无界的 13.设为任意实数,则1( ) (A)无定义 (B)等于1 (C)是复数,其实部等于1 (D)是复数,其模等于1

14.下列数中,为实数的是( ) (A)3)1(i (B)icos (C)iln (D)ie23 15.设是复数,则( ) (A)z在复平面上处处解析 (B)z的模为z

(C)z一般是多值函数 (D)z的辐角为z的辐角的倍

二、填空题 1.设iff1)0(,1)0(,则zzfz1)(lim0 2.设ivuzf)(在区域D内是解析的,如果vu是实常数,那么)(zf

在D内是

3.导函数xvixuzf)(在区域D内解析的充要条件为 4.设2233)(yixyxzf,则)2323(if 5.若解析函数ivuzf)(的实部22yxu,那么)(zf 6.函数)Re()Im()(zzzzf仅在点z 处可导 7.设zizzf)1(51)(5,则方程0)(zf的所有根为 8.复数ii的模为 9.)}43Im{ln(i 10.方程01ze的全部解为 三、设),(),()(yxivyxuzf为iyxz的解析函数,若记)2,2()2,2(),(izzzzivizzzzuzzw,则0zw.

四、试证下列函数在z平面上解析,并分别求出其导数 1.;sinhsincoshcos)(yxiyxzf

2.);sincos()sincos()(yixyyieyyyxezfxx

五、设023zezww,求22,dzwddzdw.

六、设0,00,)()(422zzyxiyxxyzf试证)(zf在原点满足柯西-黎曼方程,但却不可导. 七、已知22yxvu,试确定解析函数ivuzf)(.

相关文档
最新文档