几何光学基本定律_图文.

合集下载

大学物理--几何光学

大学物理--几何光学

B
B
B
ndl n dl
A
A
而由公理:两点间直线距离最短 A
B
dl 的极小值为直线AB A
所以光在均匀介质中沿直线传播
2.光的反射定律
Q点发出的光经 反射面Σ到达P点
P’是P点关于Σ 面的对称点。
P,Q,O三点 确定平面Π。
直线QP’与反射 面Σ交于O点。
nQO OP
则易知当i’=i时,QO + OP为光程最短的路径。
•直接用真空中的光速来计算光在不同介质中通过一定 几何路程所需要的时间。
t nl ct cc
•光程表示光在介质中通过真实路程所需时间内,在真空
中所能传播的路程。
分区均匀介质:
k
nili
i 1
,
t
c
1 c
k i 1
nili
连续介质:
ndl (l)
二、费马原理
1.表述:光在空间两定点间传播时,实际光程为一特 定的极值。
'
nl
nl '
n r 2 r s 2 2 r r s cos
n
r 2
s '
2
r
2
r s '
r cos
A
l
i -i` l '
P
-u
-u`
C
P` -s` O
-r
-s
对给定的物点,不同的入射点,对应着不同
的入射线和反射线,对应着不同的 。
由费马原理可知 :当 d PAP' 0 时,
2. 光的折射反射定律:
(1) 光的反射定律:反射线位于入射面内,反射线和 入射线分居法线两侧,反射角等于入射角,即

PPT_第一章—几何光学基本定律与成像概念

PPT_第一章—几何光学基本定律与成像概念
1. 基本概念
光波——光是一种电磁波 波长范围:1mm~10nm 可见光:380~760nm 红外光:波长>760nm 紫外光:波长<400nm 光速: . m/s (真空) 介质中都小于
一、几何光学的基本定律和原理
1. 基本概念
准单色光的获取 可以通过棱镜、光栅、激光器、滤光片由复色光得 到单色光。
7 2013~2014学年《几何光学》课件 yanglp@
一、几何光学的基本定律和原理
2. 几何光学的基本定律
——入射光线; ——入射角 ——反射光线; ——反射角 ——折射光线; ——折射角 ——法线
光的反射定律: ① 入射光线、法线、反射光线在同一平面内; ② 入射光线和反射光线位于法线两侧,且

数学表达——一阶微分为零,即:

理解:实际光路取极值是指与邻近光路相比较取极小(经 平面反射或经平面折射的两点间)、极大(凹球面镜)或 稳定值(完善成象光学系统的物象点之间)
2013~2014学年《几何光学》课件 yanglp@ 20
, ,0
, 0,0
19
2013~2014学年《几何光学》课件

光的折射定律: 入射光线、法线、折射光线在同一平面内; 折射角的正弦与入射角的正弦之比与入射角的大小 无关,只与两种介质的折射率有关。即 sin 或 sin sin sin
9 2013~2014学年《几何光学》课件 yanglp@ 10
由于 ,所以 空气的折射率为 . ,介质相对于空气的折射 率称为相对折射率,简称折射率 光密介质——分界面两边 折射率高的介质 光疏介质——分界面两边 折射率低的介质
全反射棱镜
用以代替平面反射镜,减少反射时的光能损失

§14-1 几何光学中的基本定律和原理

§14-1 几何光学中的基本定律和原理

(b)图:A1 、 A2点在椭球面上,镜面上的另一点A2 不在椭球面上。所以,有图可知:PA1P’是实际光线。
P A 2 ' A 2 'P ' P A 239;最 小 光 程
(C)图:同样道理,PA1P’是实际光线,最大光程。
P A 3 ' A 3 'P ' P A 3 A 3 P ' P A 1 A 1 P '最 大 光 程 12
线在真空中传播的距离。
5
2、费马原理 光程的概念对几何光学的重要意义 体现在费马原理中,几何光学的基础本来是三个实 验定律,费马用光程的概念高度概括地把它们归结 成一个统一的原理。
费马原理的表述:光在指定两点间的传播,实际的 光程总是一个极值。也就是说,光沿光程为最小值、 最大值或恒定值的路程传播。
在一般情况下,实际光程大多是取极小值的。 费马本人最初提出的也是最短光程。
数学表达式:
Q n d l 极 值 ( 极 小 值 、 极 大 值 或 恒 定 值 ) P 6
3、由费马原理推导几何光学三定律
1)在均匀媒质中光的直线传播定律是费马原理的 显然推论(两点之间直线距离最短)。
2)反射定律:
考虑由Q出发,经 反射面Σ到达P的光 线,相对于Σ取P的 对称点P’(如图所 示),从Q到P任一可 能路径QM’P的长度 与QM’P’相等。显 然,直线QMP’是其
dx
(xx1)2 y12 (x2 x)2 y22
n1A'Cn2CB' AC CB
n1sini1 n2 sini2 0
费马原理在其他几个例子中的应用:
镜面M是旋转椭球面,通过一个焦
点P的入射光线被球面上的任一点
Ai(i=1,2,3…)反射后总是通过另

1.1_几何光学的基本定律

1.1_几何光学的基本定律

1.1_几何光学的基本定律第一节几何光学的基本定律几何光学是以光线的概念为基础,采用几何的方法研究光在介质中的传播规律和光学系统的成像特性按几何光学的观点,光经过介质的传播问题可归结为四个基本定律:光的直线传播定律、光的独立传播定律、光的反射定律和折射定律ref: 几何光学的发展先秦时代《墨经》330-260BC 欧几里德《反射光学》965-1038AD 阿勒·哈增《光学全书》十七世纪开普勒、斯涅尔、笛卡儿、费马折射定律的确立,使几何光学理论得到很快的发展。

1.光波、光线、光束light waves、raysand beams·光波光波是一种电磁波,是一定频率范围内的电磁波,波长比一般的无线电波的短可见光:400nm-760nm紫外光:5-400nm红外光:780nm-40μm近红外:780nm-3μm中红外:3μm-6μm远红外:6μm-40μm·光源light sources光源:任何能辐射光能的的物体点光源:无任何尺寸,在空间只有几何位置的光源实际中是当光源的大小与其辐射光能的作用距离相比可忽略不计,则视为点光源光学介质optical mediums光学介质:光从一个地方传至另一个地方的空间。

空气、水、玻璃?各向同性介质:光学介质的光学性质不随方向而改变各向异性介质:单晶体(双折射现象)均匀介质:光学介质的不同部分具有相同的光学性质均匀各向同性介质·波前wave front波前:某一瞬间波动所到达的位置构成的曲面波面:传播过程中振动相位相同的各点所连结成的曲面在任何的时刻都只能有一个确定的波前;波面的数目则是任意多的?球面波:波面为球面的波,点光源平面波:无穷远光源柱面波:线光源光线:传输光能的有方向的几何线在各向同性介质中,光沿着波面的法线方向传输,所以波面的法线就是光线光束光束:具有一定关系的光线的集合同心光束:同一个发光点发出或相交于同一点平行光束:发光点位于无穷远,平面光波像散光束:既不相交于一点,又不平行,但有一定关系的光线的集合,与非球面的高次曲面光波相对应同心光束平行光束ref: 像散光束·光线既不平行,又不相交,波面为曲面。

几何光学基本定律球面反射和折射成像

几何光学基本定律球面反射和折射成像

11-1-4 全反射
n1sinin2sinr
当 n1 n2 有 r i
临界角 ic :相应于折射角 为90°的入射角.
r
n2
i
ic ic
n1
全反射:当入射角 i 大于临界角时,将不会出现折射 光,入射光的能量全部反射回原来介质的现象.
sin ic
n2 n1
§11-2 平面反射和平面折射成像
i i v1 n1
n2
r v2
⑵ 入射角 i 的正弦与折射角 r 的正弦之比为一个常数
sin i sin r n 21
n21称为第二种介质对第 一种介质的相对折射率
n21
sin i sinr
v1 v2
绝对折射率:一种介质相对于真空的折射率 n c v 。

c n1 v1
c n2 v2
n 21
虚像
m y 1 y
像正立
例2.点光源P位于一玻璃球心点左侧25 cm处.已知玻璃球半径 是10 cm,折射率为1.5,空气折射率近似为1,求像点的位置.
解: p1 15cm
P2
R10cm
n1 1
P1
n2 1.5
n1 P p1
p 1 p2
n2
C
P2
p 2
n1 n2 n2 n1
p1 p1
R
R
2
C
P
P
R
C P
P
会聚光入射凹镜:虚物成实像
p0
p' 0
R0
f
R 2
0
发散光入射凸镜: 实物成虚像
p 0 p' 0 R0
f R 0 2
R
P
P

1几何光学的基本定律

1几何光学的基本定律
光的反射定律: ①入射光线、法线和反射光线在同一平面内; ②入射光线与反射光线在法线的两侧,且有
I" I
光的折射定律: ①折射光线与入射光线和法线在同一平面内; ②折射角与入射角的正弦之比与入射角的大小无关,仅由两介质的性 质决定,当温度、压力和光线的波长一定时,其比值为一常数,等于 前一介质与后一介质的折射率之比,即
sin I' nsin I / n' 总存在
当光密——>光疏,及n>n’时,sin I'
可能大于1,此时全反射。
当sin I'1 时,I ' 900 ,此时的 I Im
称为临界角
全反射的应用
①等腰直角棱镜
– 当2U在某范围内 时,斜面上发生全反射,则 透明介质界面上不需要 镀反射膜
②光导纤维
I>Im时全反射,用于 传像和传光
二、光的独立传播定律:以不同的途径传播的光同时在空间某 点通过时,彼此互不影响,各路光好像其他光线不存在似地独 立传播。而在各路光相遇处,其光强度是简单地相加,总是增 强的。
屏上被两发光点同时照亮区 域的照度等于二发光点产生 的照度之和。
三、反射定律与折射定律
AO——入射光线 I ——入射 OC——反射光线 I” ——反射 OB——折射光线 I’——折射 NN’——法线
5. 实物(像)点——实际光线的交点(屏上可接收到) 虚物(像)点——光线的延长线的交点(屏上接收不到,人眼可感受
6. 物(像)空间——物(像)所在的空间,可从-∞到+∞ 实物(像)空间——实物(像)可能存在的空间 虚物(像)空间——虚物(像)可能存在的空间
二、完善成像条件
一球面波在某时刻t1形成一波面,该波面经光学系统仍 为一球面波,它在某一时刻t2形成一波面。波面之间的 光程总是相等的,等光程条件。

(完美版)几何光学基本定律与成像概念演示文稿.PPT文档

(完美版)几何光学基本定律与成像概念演示文稿.PPT文档
在几何光学中,发光体与发光点概念与物理学中完全不同。
无论是本身发光或是被照明的物体在研究光的传播时统称 为发光体。在讨论光的传播时,常用发光体上某些特定的 几何点来代表这个发光体。在几何光学中认为这些特定点 为发光点,或称为点光源。
3、光线
当光能从一两孔间通过,如果孔径与孔距相比可 以忽略则称穿过孔间的光管的正透镜见图(a)所示;发散透镜或负 透镜,特点是心薄边厚,如图(b)所示。
正透镜的成 像:如图所 示
物点和像点:
像散光束:
二、完善成像的概念
发光物体可以被分解为无穷多个发光物点,每个物点发 出一个球面波,与之对应的是以物点为中心的同心光束。经 过光学系统之后,该球面仍然是一球面波,对应的光束仍是 同心光束,那么,该同心光束的中心就是物点经过光学系统 后所成的完善像点。
1.光的直线传播定律
在各向同性的均匀介质中,光线按直线 传播。例子:影子的形成、日食、月蚀等。
2.光线的独立传播定律 不同的光线以不同的方向通过某点时,
彼此互不影响,在空间的这点上,其效果 是通过这点的几条光线的作用的叠加。
利用这一规律,使得对光线传播情况 的研究大为简化。
3.光的折射定律和反射定律
几何光学基本定律与成像概念演示文稿
第一章:几何光学基本定律与 成像概念
第一节 几何光学的基本定律和原理 一、光波与光线
1、光的本质
光和人类的生产、生活密不可分; 人类对光的研究分为两个方面:光的本性,以此来研究各种光学现象, 称为物理光学;光的传播规律和传播现象称为几何光学。 1666年牛顿提出的“微粒说” 1678年惠更斯的“波动说” 1871年麦克斯韦的电磁场提出后,光的电磁波 1905年爱因斯坦提出了“光子”说 现代物理学认为光具有波、粒二象性:既有波动性,又有粒子性。

几何光学三定律PPT课件

几何光学三定律PPT课件

第8页/共23页
讨论:
(1)当 i (0即光线接近法线的方向入射),则
x' x n' n
(5)
这时x’与入射角无关,即折射光线延长线近似交于一点s’。
(2)当n ' ,1即由介质射入空气时,(4)(5)式分别为:
x ' x 1 n2 sin2 i n cos i
即为教材中P8的例1。
x' x/n
sin i ' y
(3)
x '2 y2
将(2)、(3)带入(1),解出x’
第7页/共23页
x' n' n
x2
(1
n2 n '2
)
y
2
x
n 'cosi ' n cosi
x n ' 1 n2 sin2 i / n '2 n cosi
(4)
可见当 x不变时,x’ 随 y 或 i 而变。即由给定位置的发光点发出的光束,由于 其中不同光线在分界面上具有不同的入射角 i 或高度 y,所以相应的折射光线延 长线跟光束的光轴ox的交点S’ 均不重合。
f0 f
n 0

0
n
n > 1,介质中的波长变短了!
第6页/共23页
例1 n 求n折' 射光线延长线与x轴交点S’的位置(x’与入射角
i的关系)
y
M i'
解: 由折射定律:
i
y
s s' i'
x x' o
n n'
n sin i n 'sin i ' (1)
x sin i y
(2)

第一讲 几何光学

第一讲 几何光学
(1)若已知A和B的折射率分别为 与 。求被测流体F的折射率 的表达式。
(2)若 、 和 均为未知量,如何通过进一步的实验以测出 的值?
分析光线在光纤中传播时,只有在纤芯A与包层B的分界面上发生全反射的光线才能射出光纤的端面,据此我们可以作出相应的光路图,根据光的折射定律及几何关系,最后可求出 。
解:(1)由于光纤内所有光线都从轴上的O点出发,在光纤中传播的光线都与轴相交,位于通过轴的纵剖面内,图1-2-20为纵面内的光路图。设由O点发出的与轴的夹角为α的光线,射至A、B分界面的入射角为i,反射角也为i,该光线在光纤中多次反射时的入射角均为i,射至出射端面时的入射角为α。若该光线折射后的折射角为 ,则由几何关系和折射定可得
解:当最内侧光的入射角α大于或等于反射临界角时,入射光线可全部从B表面射出而没有光线从其他地方透出。
即要求

所以


点评对全反射问题,掌握全反射产生的条件是基础,而具体分析临界条件即“边界光线”的表现是解决此类问题的关键。
例7.普通光纤是一种可传输光的圆柱形细丝,由具有圆形截面的纤芯A和包层B组成,B的折射率小于A的折射率,光纤的端面与圆柱体的轴垂直,由一端面射入的光在很长的光纤中传播时,在纤芯A和包层B的分界面上发生多次全反射。现在利用普通光纤测量流体F的折射率。实验方法如下:让光纤的一端(出射端)浸在流体F中。令与光纤轴平行的单色平行光束经凸透镜折射后会聚在光纤入射端面的中心O。经端面折射进入光纤,在光纤中传播。由于O点出发的光束为圆锥形,已知其边缘光线和轴的夹角为 ,如图1-2-18所示。最后光从另一端面出射进入流体F。在距出射端面 处放置一垂直于光纤轴的毛玻璃屏D,在D上出现一圆形光斑,测出其直径为 ,然后移动光屏D至距光纤出射端面 处,再测出圆形光斑的直径 ,如图1-2-19所示。

大学物理第十一章光学第14节 几何光学

大学物理第十一章光学第14节 几何光学
O
M
ni

Q
p
Q2
nL n0 ni nL nL d r1 r2 p1´ n0 1 1 1 物方焦距 f nL n0 ni nL p p f r1 r2 1 ' 当ni=no1 f f 1 1 磨镜者公式 ( nL 1) r1 r2
镜头(相当于凸透镜)在物和底片之间移动 光阑——影响底片接受的光通量和景深 光阑直径大,曝光量大,但景深短; 光阑直径小,曝光量小,但景深长;
第十一章 光学
第十一章 光学
物理学
第五版
11-7 单缝衍射 11-14 几何光学
2.平面的折射成像 ' n sin i sin i ' 2 2 sin i cos i 1 n sin i ' y y y x cot i ' sini cosi n cosi ' ' y x cot i
x
r2 0 r1
r1 0, r2 0 r1 r2
凹透镜中央薄,边缘薄厚;像方焦距为负; 像方焦点在入射区,物方焦点在折射区。
第十一章 光学
物理学
第五版
凹透镜成像图
1 2 F´ hi
11-14 11-7 单缝衍射 几何光学
1
pI´
2
凹透镜成像的三条特殊光线: 经过物方焦点的光线折射后平行于主光轴前进 平行于主光轴的光线折射后为指向像方焦点的光线 经过光心的光线不改变方向 实物经薄凹透镜成的像总是正立,缩小的虚像,且与 实物在凹透镜同侧;虚物经薄凹透镜成的像总是倒立, 放大的实像,与虚物在凹透镜同侧。
第十一章 光学
物理学
第五版
11-7 单缝衍射 11-14 几何光学

几何光学基本定律_图文.

几何光学基本定律_图文.

§1 几何光学的基本定律1.1 几何光学三定律折射定律的斯涅耳(W. Snell, 1621公式 1.2 全反射1.3 棱镜与色散1.4 光的可逆性原理定义:撇开光的波动本性,仅以光的直线传播、反射折射定律为基础,研究光在透明介质中的传播问题。

适用范围:尺度远大于波长,是应用光学的基础特点:原理简单、计算复杂,计算软件(追迹的发展替代了复杂的计算§1 几何光学的基本定律光线 (rayof light :用一条表示光传播方向的几何线来代表光,称这条几何线为光线1.1 几何光学三定律1. 直线传播定律:在均匀介质中光沿直线传播2. 独立传播定律:不同方向的光线相交,不影响每一光线的传播3. 反射 (reflection、折射 (refraction定律:在两种媒质的界面发生反射、折射夏日机场跑道上方温度梯度较大,导致空气折射率发生变化:例:机场跑道能看多远?n y (=n 01+βy(β≈1.5⨯10-6/m人站在跑道的一端,最远能看多远?例:全反射棱镜光纤发展历史✧~1840, D Colladon 和 J Babinet提出可以依靠光折射现象来引导光线的传播。

✧1854, J Tyndall在英国皇家学会的一次演讲中用实验证实:光线能够沿盛水的弯曲管道传输。

✧1927, JL Baird利用光纤阵列传输图像。

✧1957, Hirschowitz 在美国胃镜学会上展示了研制的光导纤维内窥镜。

✧1961, E Snitzer完成了单模光纤的理论工作。

✧1963,西泽润一提出了使用光纤进行通信的概念。

✧1964,西泽润一他发明了渐变折射率光学纤维 (gradedindex fiber,GIF 。

✧1970,美国康宁玻璃 (Corning Glass根据高锟的设想,制造出当时世界上第一根超低损耗光纤,得到 30米光纤样品,首次迈过了“20dB/km” 的门槛。

✧1972,4dB/km。

第一章几何光学基本定律与成像概念

第一章几何光学基本定律与成像概念
❖ ② 垂直于光轴的平面物所成的共轭平面像的几何形状完 全与物相似。即在整个物平面上无论哪一部分,物与像的 大小比例等于常数,即垂直于光轴的同一平面上的各部分 具有相同的放大率。
❖ ③ 一个共轴理想光学系统,如果已知两对共轭面的位置 和放大率,或者一对共轭面的位置和放大率,以及轴上的 两对共轭点的位置,则其它一切物点的像点都可以根据这 些已知的共轭面和共轭点来表示。
仪器科学与光电工程学院
基本概念
波面(波阵面):光波向周围传播,在某一瞬时, 其振动相位相同的点所构成的曲面称为波面。光 的传播即为光波波面的传播,即沿着波面法线方 向传播。
平面波(在距发光点无限远处),对应平行光束 波面分: 球面波(以发光点为中心的同心球面),对应同心光束
任意曲面波(像差作用实际光学系统使同心光束不同心)
仪器科学与光电工程学院
几何光学基本定律
❖ 实验证明: (1) 反射光线和折射光线都在入射面内, 它们与入射光分别在法线两侧。
(2)反射角等于入射角。 II
II
(3)折射角的正弦与入射角的正弦比与
入射角无关,仅由两种介质的性质决定。
即 nsiIn nsiIn
当n’=-n时,折射定律就转化为反射定律

L2 B’
A1
A
A’
B1
对于L1而言,A1B1是AB的像;
对L2而言,A1B1是物,A’B’是像,则A1B1称为中 间像
仪器科学与光电工程学院
※物所在的空间为物空间,像所在的空间为 像空间,两者的范围都是(-∞,+∞)
※ 通常对于某一光学系统来说,某一位置 上的物会在一个相应的位置成一个清晰的像, 物与像是一一对应的,这种关系称为物与像 的共轭。
仪器科学与光电工程学院

几何光学基本定律

几何光学基本定律

1n 34
例2: 用作图法求任意入射线在球面上的折射线.
证:
(1)正弦定律于△HCM
CH CM ,即 r sin i sin sin i sin
sin i n
sin n
(2)三角形相似, △HCM和△MCH’
i n sin i nsin i
1.2 全反射定律
➢ 当光线从光密媒质射向光疏媒质时,折射 角大于入射角;当入射角增大到某一临界值时, 折射光线消失,光线全部反射,此现象叫全反 射。
i2 i2'
求其最小值: i1 i1'

d 0
di1
且有
d 2
di12
0
A
i1 E
F
i2 i2'
i1'
n
B
C
三棱镜的偏向角
可以得到:当 i1 i1' , i2 i2' 时, m
此时有:
i1
m
2
i2 / 2
带入折射定律: sin i1 / sin i2 n2 / n1 有:
n2 n n3 n4
n5 n6
n=1
光线在梯度折射率介质中的弯曲
海市蜃楼:沙漠中 海面上
z n=1 n
海市蜃楼(mirage)是一种折光现象,由于靠 近表面竖直方向上空气密度的剧烈变化,使 得一些远处的物体在一定区域形成图像以代 替其真实位置。这些图像是扭曲的,倒转的 或是摇摆的。
空气密度与气压、温度和水蒸气含量密切相关。
n c 梯度折射率型光纤
三种主要光纤类型的折射率分布及传光特性
➢ 光纤的传光条件 子午光线:始终位于过光纤轴线的子午面内的光线 弧矢光线:不过子午面,且呈螺旋形的光线 传光条件:光线在纤芯与包层分界面处的入射角为i1

1-1几何光学的基本定律和费马原理

1-1几何光学的基本定律和费马原理

由 i1, i2都是锐角, n1 0, n2 0 , 由图 x1 0, x2 0 ,
要使等式成立,i1, i2都是正,因此,x 在 x1, x2 之间,即入
过去表述:光沿所需时间为极值的路径传播。
现在表述:光沿光程取极值的路径传播。
[注]极值:极小值、极大值、恒定值
每一可能路径都是空间的 坐标函数,而光程又随路
数学表述:(由变分原理)
ò d
[l]
=
d
B
òA
n dl
=
0
或dt
=
1 c
B
ndl = 0
A
径而变化,是函数的函 数——泛函*,其改变称为 变分,数学过程是相应的 求导。 *泛函与复合函数(附录4)
度较低比如40度)进入光疏介质(地表空气薄层,低折光指数,
温度较高比如80度),发生的全反射。
29
3、日食、月食
30
31
附录3:利用费马原理证明折射定律
A,B是xoy平面内的两个固定点,且在不同的介质中,则光
线的轨道如何?
y A(x1,y1,o)
由A经C到B的光程为: z
i
1
D(x,0,0) C(x,0,zi)2
波面
光线
波面
光线
球面波
平面波
在各向同性介质中,光线总是与波面法线方向重合。
即光线与波面总是垂直的。
4
二、几何光学的基本实验定律
1、光的直线传播定律:光在各向同性的均匀介质 中沿直线传播。
实例:物体的影子、针孔成 象、日食、月食
[注]:非均匀介质中, 光以曲线传播,向折射率 增大方向弯曲
实例:夏日柏油路上的 倒影、海市蜃楼
5

2.1,几何光学的四大定律

2.1,几何光学的四大定律
能应用于平行光路中
消旋仪
道维棱镜
Φ
Φ/2
双反射镜跟踪经纬仪的消旋补偿
w w
双反射镜跟踪经纬仪的消旋补偿
112电影经经纬仪(小毒蛇)
w w
应用 实例
周视瞄准仪
2w











w

周视瞄准镜 结构图
采用差动齿轮系实 现直角棱镜与道威 棱镜同轴旋转,两 者速比为1:2,转 动过程中速比不变
几何光学的四大基本定律
1. 光的直线传播定律(局限性:衍射) 2. 光的独立传播定律(局限性:干涉) 3. 光的反射定律 4. 光的折射定律
为什么要学几何光学?
• 光的本质是一种电磁波 • 几何光学是一门经典的课程 • 目前我所从事的光学工程(光学系统所组
成的光学仪器)绝大部分是用几何光学的 知识来完成的 • 光学仪器的设计很多还是采用几何光学方 法进行的。
平面反射镜与棱镜
在光路中的作用几乎是一样的, 但是他们之间在采用何种零件还是有差别的。 • 棱镜的各个固定角度稳定,而反射镜与反射镜之间的角度 容易变化;反射镜面易变形,而棱镜表面较为稳定。
• 棱镜反射面形成全反射,没有光能损失,而反射镜面损失 较大;
• 反射镜镀层容易损坏,而棱镜的镀层容易保护; • 棱镜容易安装与固定。
• 不存在镜像(偶次反射) • 装调方便; • 转向角与入射角的倾斜不敏感。这一点在许
多自准直瞄准系统中特别有用。
三次反射棱镜
斯密特棱镜:
1,奇次反射成镜像 2,折叠光路,使得
仪器紧凑
屋脊棱镜:
由一整块光学玻璃制成,从原理上看,是一种直角棱镜叠加在

几何光学的基本定律

几何光学的基本定律

第一节几何光学的基本定律1、当半径为r 的不透明圆盘被照亮时,在其后l 处的屏上,得到半径为1r 的全影和半径为的半影。

光源也是圆盘形的而且由其中心到不透明圆盘中心的2r 连线垂且两圆盘和屏面,求光源的尺寸和光源矩被照亮圆盘的距离。

解:距离,光源半径r r r rl x 2221−+=rr r r r r y 2)(2112−+−=2、太阳光球的直径等于1390000千米,太阳与地球之间的距离变化不大,平均为150000000千米,月球中心到地球表面的距离在357000至390000千米之间变动。

若月球直径为3480千米,那么何时能有日全蚀?何时能有日环蚀?解:当月球中心到地球表面的距离小于376000千米时.常发生日全蚀,当距离大于此值时,常发生日环蚀。

3、由光源发出的光通过孔之后,在孔后的屏上成象:试解释为什么当孔小时,成光源的象,而孔大时却成孔的象。

解:(略)4、太阳光照射到不大的正方形平面镜上,反射后又照射到屏上,屏上照亮的部分是什么形状?它将如何随着平面镜和屏之间的距离的改变而改变?解:若屏离镜面近,则被照亮的部分为四边形,着屏离镜面远则太阳成椭圆形的象。

5、在竖直的正方形金属网前放一水平的长狭缝。

用强的扩展光源照亮狭缝,光通过缝和网射到远处屏上,试描述在屏上得到什么样的图象,当继绕网平面的垂线旋转90度和45度时,将发生什么现象?研究如图l-a 和图1-b 所示的图。

解:屏上得到水平的明、暗条纹系。

将缝旋转90度时,条纹变成竖直的。

将其转45度时,在图la 所示格子的情况下,条纹消失,如图1b 所示格子的情况下,呈现与水平成45度角的条纹。

在后一种情况下,条纹间距是水平(或竖直)条纹的间距的分之一。

在所有情况下,条纹皆与缝平行。

26、上题中,若交换缝和网的位置,屏上图形将发生什么变化?解:图像的特性不变,然而条纹已经变得不很多了。

7、两平面镜彼此倾斜,形成二面角а。

光线在垂直于角棱的平面内射到镜上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1 几何光学的基本定律
1.1 几何光学三定律
折射定律的斯涅耳(W. Snell, 1621公式 1.2 全反射
1.3 棱镜与色散
1.4 光的可逆性原理
定义:撇开光的波动本性,仅以光的直线传播、反射折射定律为基础,研究光在透明介质中的传播问题。

适用范围:尺度远大于波长,是应用光学的基础
特点:原理简单、计算复杂,计算软件(追迹的发展替代了复杂的计算
§1 几何光学的基本定律
光线 (rayof light :用一条表示光传播方向的几何线
来代表光,称这条几何线为光线
1.1 几何光学三定律
1. 直线传播定律:在均匀介质中光沿直线传播
2. 独立传播定律:不同方向的光线相交,不影响每一光线的传播
3. 反射 (reflection、折射 (refraction定律:在两种媒质的界面发生反射、折射
夏日机场跑道上方温度梯度较大,导致空气折射率发生变化:例:机场跑道能看多远?
n y (=n 01+βy
(β≈1.5⨯10-6/m
人站在跑道的一端,最远能看多远?
例:全反射棱镜
光纤发展历史
✧~1840, D Colladon 和 J Babinet提出可以依靠光折射现象来引导光线的传播。

✧1854, J Tyndall在英国皇家学会的一次演讲中用实验证实:光线能够沿盛水的弯曲管道传输。

✧1927, JL Baird利用
光纤阵列传输图像。

✧1957, Hirschowitz 在美国胃镜学会上展示了研制的
光导纤维内窥镜。

✧1961, E Snitzer完成了单模光纤的理论工作。

✧1963,西泽润一提出了使用光纤进行通信的概念。

✧1964,西泽润一他发明了渐变折射率光学纤维 (gradedindex fiber,GIF 。

✧1970,美国康宁玻璃 (Corning Glass根据高锟的设想,制造出当时世界上第一根超低损耗光纤,得到 30米光纤样品,首次迈过了“20dB/km” 的门槛。

✧1972,
4dB/km。

✧1974, 1.1dB/km。

✧1979, 0.2dB/km(1.5微米。

✧1990, 0.14dB/km,已经接近石英光纤损耗的理论极限值 0.1dB/km。

✧1976,美国贝尔实验室在亚特兰大到华盛顿间建立了世界上第一条实用化的光纤通信线路,速率为 45Mb/s,采用的是多模光纤,光源用的是发光管 LED ,波长是0.85微米,中继距离为 10公里。

✧1980,多模光纤通信系统商用化(140Mb/s,并着手单模光纤通信系统的现场试验工作。

✧1990,单模光纤通信系统进入商用(565Mb/s,并陆续制定了数字同步体系(SDH 的技术标准。

✧1995, 2.5Gb/s的 SDH 产品进入商用。

✧1996, 10Gb/s的 SDH 产品进入商用。

✧1997,采用零色散移位光纤和波分复用技术(WDM 的 20Gb/s和 40Gb/s SDH 产品试验取得重大突破。

此外,在光弧子通信、超长波长通信和相干光通信方
面也正在取得巨大进展。

光缆光纤及接头
光纤的制造 Fibers can be drawn
directly from melts of
silica in crucibles.
Vapor phase oxidation.1 prepare the preform
2 draw the fiber from the preform 22242Cl SiO O SiCl heat
+−−→−+
塑料光纤—熔体挤出
铺设光通信光缆
2014 全球海底光缆分布图
中国国际海底光缆网络
§1 几何光学的基本定律1.3
棱镜与色散
晕 (halo 22°晕:六角柱状冰晶横躺着缓慢下降,光在冰晶中的折射最小偏向角为 22°左右,由于不同波长的光波折射率不
同,引起色散,在太阳下方的观测者观测到内红外紫的 22
°晕。

46°晕:六角柱体状冰晶竖着缓慢下降,则阳光折射的最小偏向角为 46°左右,形成 46
°晕。

§1 几何光学的基本定律
1.4 光的可逆性 (reversibility原理
当光线的方向反转时,光将逆着同一路径传播。

§2 惠更斯原理
2.1 波的几何描述
2.2 惠更斯(C. Huggens, 1678原理 2.3 对反射定律和折射定律的解释 2.4 对直线传播定律的解释
第一章:几何光学 §3 费马原理
3.1 光程
3.2 费马(P. de Fermat, 1679原理
3.3 费马原理与几何光学光线传播的基本定律第一章:几何光学
§3 费马原理
3.1 光程 (Optical path
相同时间内光线在真空中传播的距离

=
P
Q
ndl
QP (L
L 为传播路径c
QP QP / (= τ
作业
p.22-24: 1, 3,4, 7, 11, 12
p.32-33: 1, 4,5
p.38-39: 1,2
补充:作图法求任意入射光在球面上的折射推导棱镜的最小偏向角公式。

相关文档
最新文档