基础统计学笔记统计学基础笔记整理

合集下载

统计学 笔记

统计学 笔记

以下是统计学中的一些基本概念和知识,供参考:
统计学基本概念
总体与样本:总体是研究对象全体的集合,样本是从总体中抽取的一部分元素的集合。

变量:用来描述数据的名称或符号。

数值变量与分类变量:数值变量是可度量的数据,如身高、体重等;分类变量是定性数据,如性别、血型等。

参数与统计量:参数是描述总体特征的指标,如总体均值、总体方差等;统计量是从样本中计算出来的指标,如样本均值、样本方差等。

描述性统计
频数分布表:将数据分为若干个组,统计每个组内的数据个数。

直方图:用直条矩形面积代表各组频数,矩形的面积总和代表频数的总和。

平均数:描述数据集中趋势的指标,计算方法有算术平均数、几何平均数、调和平均数等。

标准差:描述数据离散程度的指标,表示数据分布的宽窄程度。

概率与概率分布
概率:描述随机事件发生的可能性大小的数值。

概率分布:描述随机变量取值的概率规律的函数。

常见的概率分布有二项分布、泊松分布、正态分布等。

参数估计与假设检验
点估计:用单一的数值估计未知参数的值。

区间估计:用一定的置信水平估计未知参数的范围。

假设检验:根据样本数据对未知参数进行检验,判断假设是否成立。

常见的假设检验方法有t检验、卡方检验、F检验等。

相关分析与回归分析
相关分析:描述两个变量之间的线性关系的强度和方向。

回归分析:基于自变量和因变量之间的相关关系建立数学模型,用于预测因变量的值。

常见的回归分析方法有线性回归、逻辑回归等。

统计学原理笔记

统计学原理笔记

统计学原理笔记
一、统计学的基本概念
- 统计学的定义与目的
- 数据的类型:定性数据与定量数据
- 统计学的两个主要分支:描述统计学与推断统计学
二、数据的搜集与整理
- 数据来源:调查、实验、观察等
- 数据搜集方法
- 数据整理与清洗:缺失值处理、异常值处理、数据转换等
三、描述统计学
- 数据的集中趋势度量:均值、中位数、众数
- 数据的离散程度度量:极差、方差、标准差
- 数据的分布形态:偏态与峰态
四、概率与概率分布
- 概率的基本概念与性质
- 随机变量与概率分布
- 常见的概率分布:正态分布、二项分布、泊松分布等
五、抽样与抽样分布
- 抽样的基本原理
- 抽样误差的来源与控制
- 抽样分布与中心极限定理
六、统计推断
- 点估计与区间估计
- 假设检验的基本概念与步骤
- 常见的假设检验方法:t检验、χ²检验等
七、相关与回归分析
- 相关分析的概念与方法
- 简单线性回归分析的原理与应用
- 多元线性回归分析的原理与应用
八、统计学在实际问题中的应用
- 市场调查与营销分析中的应用
- 财务与投资分析中的应用
- 医学与生物统计学中的应用
九、统计软件的应用
- 常用的统计软件介绍与使用
- 数据分析与结果解释的演示分析
十、统计学的限制与误用
- 统计学的限制与局限性
- 统计学误用的情况与注意事项
- 如何正确应用统计学方法进行数据分析。

自考王瑞卿主编的统计学基础笔记及练习题

自考王瑞卿主编的统计学基础笔记及练习题

统计学基础 第一章,绪 论 1统计的包含三个含义:1统计工作2统计资料3统计学.统计工作的概念:统计工作也是统计实践,是对社会经济现象和自然现象的总体数量的搜集 、整理、分析的活动过程。

也就是说是针对数量表现,数量关系,数量变化进行描述分析的一项计量活动。

.统计工作有四个环节也就是统计工作的过程:统计设计,统计调查,统计整理,统计分析 .统计设计:是按照统计研究的目的和现象的性质与特点,对统计工作的各方面、各环节预先做通盘的考虑和安排。

.统计调查:也就是统计资料的收集。

是对所要研究的总体的各个单位进行观察、登记、准确、及时、系统、完整的搜集原始资料的过程。

.统计整理:也就是统计数据的整理和显示。

对收集而来的资料进行科学的汇总和整理。

使之条理化,系统化。

注意。

通过统计整理的资料而不在是显示各个单位的现象特征,而是显示总体的综合特征 .统计分析: .统计资料:也是统计数据,是统计工作过程中所取得的能反映社会经济实际情况和变化过程的数字资料,是社会经济信息的主体,也是国家制定政策、计划和实行科学管理的重要依据。

统计资料不是单个的事物的个别数据,而是对大量同类现象的个别数据经过统计汇总后的综合数据。

.统计学:是研究统计工作理论与方法的一门方法论科学。

是长期统计工作实践和相关理论的科学概括和总结。

.统计的三种含义的联系: 统计资料是统计工作的实践成果,统计学来源于统计工作。

是统计工作理论的概括。

又用理论和方法指导统计工作。

二者是理论和实践关系,由于统计工作、统计资料、统计学联系紧密,所以习惯上对以上三者通称统计社会客观现象总体的数量关系。

正是因为统计学的这一研究的特殊矛盾,使它 领域,客观现象总体的数量方1.数量性:通过数量研究来揭示自然现象和社会现象的本质和发展规律。

通俗的理解:利用数字说明某些现象或者规律 2.总体性:就是从个体的实际表现研究过渡到对总体的数量表现的研究。

通俗理解:母体的某些规律和现象是通过子体的数据研究分析而来的 3.变异性:构成统计研究对象的总体各单位,除了在某一方面必须是同质的以后,在其它方面又要有差异,而这些差异又并不是由某种特定的原因事先给定的。

统计学基础所有知识点总结

统计学基础所有知识点总结

统计学基础所有知识点总结统计学是一门研究数据收集、分析、解释和展示的学科。

它为我们理解概率和变异性提供了工具和技术。

对于许多领域,包括商业、科学和社科,统计学都是至关重要的。

在本篇文章中,我们将总结统计学的基础知识,包括概率、描述统计、推断统计和实验设计等。

我们还将讨论一些常见的统计学概念和技术,例如概率分布、置信区间和假设检验。

最后,我们将介绍一些统计学的应用,包括回归分析和数据挖掘。

1. 概率概率是统计学的基础。

它是用来描述随机事件发生的可能性的数学工具。

在概率的世界中,我们用数值来表示事件发生的可能性,这个数值的范围在0和1之间。

0表示事件绝对不会发生,1表示事件一定会发生。

在介绍概率的时候,我们需要了解一些基本的概率公式和概念,例如事件的相互独立性、条件概率、贝叶斯定理等。

2. 描述统计描述统计是用来总结和展示数据的一种方法。

它包括了测量数据的中心趋势和数据的分散程度。

描述统计的指标包括均值、中位数、众数和标准差等。

这些指标可以帮助我们更好地理解数据的特征和分布。

3. 推断统计推断统计是用于推断总体特征的一种方法。

它通过从样本中获取信息来对总体的特征进行估计。

推断统计的技术包括了置信区间估计和假设检验等。

这些技术可以帮助我们从样本中获取关于总体的信息,并对这些信息进行推断。

4. 概率分布概率分布是用来描述随机变量的分布的一种方法。

常见的概率分布包括了正态分布、泊松分布、均匀分布等。

每一种概率分布都有自己的特征和性质,并且在不同的情况下有不同的应用。

5. 置信区间置信区间是用来描述参数估计的不确定性范围的一种方法。

置信区间是在统计的意义下对总体参数估计提供一个区间,该区间内的真实参数值具有一定的概率。

置信区间可以帮助我们了解参数估计的不确定性,以及对总体特征进行推断时所需要考虑的范围。

6. 假设检验假设检验是用来进行统计推断的一种方法。

它是用来检验总体假设的有效性的一种统计技术。

在假设检验中,我们对总体特征提出一个假设,然后通过对样本数据进行分析来检验这一假设的有效性。

大一统计学笔记整理

大一统计学笔记整理

大一统计学笔记整理1. 统计学导论- 统计学的定义:统计学是一门研究如何收集、整理、分析和解释数据的科学- 统计学的应用领域:从商业到医学、社会科学到自然科学等各个领域都需要统计学的应用- 统计学的基本概念:总体、样本、参数和统计量- 统计学的研究方法:描述统计和推断统计- 数据的收集方式:观察法和试验法- 数据的分类:定量数据和定性数据- 描述统计的主要指标:频数、频率、平均数、中位数、众数、标准差和方差2. 数据的整理与呈现- 数据的整理:数据表、频数分布表和频数分布图- 数据的呈现:直方图、饼图、折线图、散点图和箱线图- 数据的处理:缺失数据的处理、异常值的处理和数据的变换3. 正态分布与抽样分布- 正态分布的性质:钟形曲线、对称性、均值和标准差的关系- 标准正态分布:Z分数和Z表的使用- 中心极限定理:大样本时抽样分布近似服从正态分布- 抽样分布的概念:样本均值的抽样分布、样本比例的抽样分布等- 样本均值的抽样分布:抽样误差、标准误和置信区间4. 统计推断与假设检验- 统计推断的基本思想:从样本推断总体- 参数估计:点估计和区间估计- 假设检验:零假设和备择假设、显著性水平、P值和拒绝域- 单样本检验:均值的假设检验和比例的假设检验- 双样本检验:两个独立样本均值的假设检验和配对样本均值的假设检验5. 回归与相关分析- 简单线性回归:回归方程、回归系数的估计和拟合优度- 多重线性回归:多元回归方程、多重共线性和变量选择- 相关分析:皮尔逊相关系数、斯皮尔曼等级相关系数和点双相关系数注意:以上内容仅为大一统计学的基础知识,详细内容和推导公式可参考相关教材和课堂讲义。

统计学笔记

统计学笔记
总体均数的(1-α )可信区间计算公式
当样本含量较大时,例如n>60,t分布近似标准正
态分布,此时可用u分布代替t分布
两均数之差的区间估计
服从自由度为ν=n1+n2-2的t分布
正确理解可信区间
可信度为95%的CI的涵义
从同一总体中重复抽取100个样本含量为n的样
本,按上述方法计算95%的CI,则在这100个可
小于或大于某个数值
资料的分布不清
直接法(例数较少,先将变量值由小到大顺
序排列)
n为奇数时
n为偶数时
频率表法(例数较多)
先从累计频率找出M所在的组段,然后按
公式计算,式中L为中位数所在组段的下
限,i为该组段的组距,fm为该组段的频
数,ΣfL为小于L的各组段累计频数
描述离散趋势的统计指标:极差、四分位数间
察单位的全体。
同质与变异
同质:研究对象具有的相同的状况或属性
变异:同质的各观察单位,其某变量值之间的
差异
参数与统计量
参数:总体的统计指标,如总体均数、总体标
准差,分别用希腊字母记为µ、σ。固定的常数
样本的统计指标,如样本均数、标准差,采用
拉丁字母分别记为X-、S。 参数附近波动的随
机变量
定量资料的统计描述
用β表示
要同时减小α和β,唯一的方法就是增加样本含量n。
不可能同时犯I型错误和II型错误。
拒绝H0时,只可能犯I型错误;不拒绝H0时,只可
能犯II型错误。
影响 β 错误的因素
1. 总体参数的真值
随着假设的总体参数的减少而增大
2. 显著性水平 α
当 α 减少时增大
3. 总体标准差 σ
当 σ 增大时增大

统计学基础知识点总结

统计学基础知识点总结

统计学基础知识点总结统计学是研究数据收集、分析和解释的科学。

它提供了一种用来了解和解释各种数据的方法和工具。

统计学的基础知识点是学习统计学的基础,下面是一些重要的基础知识点总结:1. 数据类型:统计学中的数据可以分为两类:定量数据和定性数据。

定量数据是可以量化的,例如身高、温度等,而定性数据是描述性质和特征的,例如性别、颜色等。

2. 数据收集:数据收集是统计学的基础,它包括设计问卷、调查、实验等方法来收集数据。

收集数据时需要注意样本的代表性,并尽量避免抽样偏差。

3. 描述性统计:描述性统计是用来总结和描述数据的方法。

常用的描述性统计包括计算平均数、中位数、范围和标准差等指标来衡量数据的集中趋势和离散程度。

4. 概率:概率是研究随机事件发生可能性的数学工具。

它可以用来计算事件发生的概率,从而预测未来事件的可能性。

概率可以分为古典概率和条件概率等不同类型。

5. 概率分布:概率分布是描述随机变量的分布规律的数学模型。

常见的概率分布包括均匀分布、正态分布和泊松分布等。

概率分布可以用来计算随机变量的期望、方差等统计指标。

6. 假设检验:假设检验是统计学中用来验证关于总体参数的假设的方法。

通过对样本数据进行统计分析,可以得出关于总体参数是否符合假设的结论。

假设检验包括设定假设、选择检验统计量、计算显著性水平和做出决策等步骤。

7. 相关分析:相关分析是用来研究两个变量之间关系的方法。

它可以通过计算相关系数来衡量两个变量之间的相关性,并判断相关性是否显著。

常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。

8. 回归分析:回归分析是研究因果关系的统计方法。

它通过建立数学模型来描述自变量和因变量之间的关系,并可以用来预测因变量的取值。

常见的回归分析包括线性回归和多元回归等。

9. 抽样分布:抽样分布是指统计量在不同样本中的分布情况。

它可以用来计算统计量的置信区间和显著性水平等,从而对总体参数进行推断。

10. 统计软件:统计软件是进行统计分析的工具。

统计学笔记

统计学笔记

统计学笔记
《统计学笔记》
一、什么是统计学
统计学是一门多学科而又多方面的学科,它主要是用数量分析、观察和描述社会、经济、文化的发展状况,以及研究不同社会群体的分布及其变化趋势,因此,统计学也可以看作是统计工作的一个分支。

二、统计学的基本原理
1.观测:统计学是通过收集、汇总、分析、解释社会经济现象和变化趋势,以及利用数据来研究社会变迁的科学。

2.计数:统计学依靠对某一特征的计数活动,来观察和评价社会的现状,比如,人口的数量、分布及变化趋势;经济的数量、分布及变化趋势等。

3.分类:统计学分为初步统计、定性统计和定量统计三大分类。

初步统计是按照某种规律对原始数据进行整理,定性统计是通过对现有数据进行定性研究,定量统计是通过对原始数据进行定量研究来获取信息。

三、统计学的基本方法
1.抽样:抽样是统计学中最重要的方法之一,它是定性统计中的有效手段,它可以概括一类特定的群体,从而提高统计学的准确性。

2.统计算法:统计算法是统计学手段中的一部分,它使用计算机来分析大量的数据,求出结果的准确度和可靠性。

3.图表:图表是统计学工具中最常用的一种,它可以多种类型的
数据进行归纳和综合,从而清晰地描述一类信息的特点和变化趋势。

四、统计学的应用
统计学在社会经济发展方面有着重要的应用。

第一,它可以反映社会的发展状况;第二,它可以作为经济规划和政策制定的重要依据;第三,它可以作为科学研究的重要工具;第四,它可以作为政府部门间预测及推理的基础;第五,它可以作为企业决策的工具,等等。

统计学初步知识点归纳总结

统计学初步知识点归纳总结

统计学初步知识点归纳总结统计学是一门研究数据收集、分析、解释和演绎的学科,它在实践中被广泛应用于各个领域。

在统计学的学习过程中,我们掌握了一系列基础知识和概念,本文将对统计学初步知识点进行归纳总结。

下面将从数据集的描述、概率与统计分布、参数估计与假设检验以及回归分析四个方面介绍统计学的基础知识。

一、数据集的描述在统计学中,我们首先需要对数据进行描绘和描述。

数据可以分为定量数据和定性数据两种类型。

对于定量数据,我们通常可以计算其均值、中位数、标准差和方差等统计量。

而定性数据则可以通过频数表、条形图和饼图等方式进行描述和展示。

此外,我们还可以使用直方图和箱线图来展示数据的分布情况和异常值。

二、概率与统计分布概率是统计学的重要概念之一,它用于描述随机事件的可能性。

在概率的基础上,我们可以引入随机变量和概率分布两个概念。

常见的离散概率分布包括二项分布、泊松分布和几何分布,而连续概率分布则包括正态分布和指数分布等。

对于这些概率分布,我们可以计算其期望值和方差,从而更好地理解和分析数据。

三、参数估计与假设检验参数估计和假设检验是统计学中的两个重要问题。

在参数估计中,我们通过样本数据来估计总体参数的值,常用的方法包括点估计和区间估计。

点估计可以通过计算样本均值或比例来估计总体参数的值,而区间估计则可以提供一个范围来估计总体参数的值。

假设检验则用于对某个总体参数提出假设,并根据样本数据来检验这个假设是否成立。

常见的假设检验包括单样本均值检验、两样本均值检验和卡方检验等。

四、回归分析回归分析是统计学中的一种重要分析方法,它用于研究自变量和因变量之间的关系。

简单线性回归分析通过一个自变量来预测一个因变量,并可以计算出回归方程的系数和拟合优度。

多元线性回归分析则可以同时考虑多个自变量对一个因变量的影响。

此外,我们还可以进行回归诊断来检验模型是否符合统计假设,常见的诊断方法包括残差分析和离群值检验等。

综上所述,统计学初步知识点归纳总结包括数据集的描述、概率与统计分布、参数估计与假设检验以及回归分析等方面。

初级统计复习笔记整理—统计学基础知识

初级统计复习笔记整理—统计学基础知识

第一章统计学和数据第一节统计学的含义及其应用统计学:关于数据的一门学问所关注的是大量可重复事物现象数量特征总体:研究的全部个体或数据的集合往往只有一个,特征唯一确定的,但未知的样本:从总体中抽取的一部分元素构成的集合不唯一,不确定,特征已知的样本量n:构成样本的元素的数目统计方法:描述统计:搜集、处理和描述推断统计:利用样本数据推断总体特征(参数估计和假设检验)第二节统计学发展简史古典统计学:国势学派—H·康令“显著事项”、有统计学之名,无统计学之实政治算术学派—威廉·配第(统计学创始人),有统计学之实,无统计学之名近代统计学:A·凯特勒(统计学之父)现代统计学:哥塞特—推断统计学先驱者费雪—推断统计学建立者第三节变量与数据观察数据:客观现象....观测得到无人为控制和条件约束实验数据:科学实验环境下得到的数据第四节数据的搜集↓↓↓直接来源(一手数据/原始数据):统计调查(观测数据)实验(实验数据):实验组和对照组的产生是随机的,匹配的。

间接来源(二手数据/次级数据):由其他人搜集和整理得到的统计数据公开出版的数据未公开发表的数据网络爬取的数据搜集数据方式:1.询问(访谈):面访(面对面交谈)、邮寄、计算机辅助电话调查、座谈会、个别深入访谈2.观察实验:观察法(调查对象没有意识到的情况下)、实验法第五节数据的误差↓抽样误差:不可避免,概率抽样中能计量并控制......总体内部差异越大,误差越大样本容量越大,误差越小重复抽样误差大于不重复抽样,分层抽样误差小于其他抽样非抽样误差:不能通过增大样本量加以控制抽样框误差,应答误差,无回答误差,计量误差(登记错误)第二章 数据描述第一节用统计量描述数据集中趋势平均数...①② 受极端值影响 主用于数值型数据 数据对称分布时应用 中位数...③/分位数...④ 不受极端值影响.......主用于顺序数据....... 数据分布偏斜程度较大时应用众数..⑤ 主用于分类数据中位数不能用于分类数据...........众数、中位数和平均数的关系:均值在哪边就是往哪边偏众数中位数均值对称分布众数中位数均值 左偏分布....众数中位数均值右偏分布....公式① 算术平均数简单平均数(未分组):x =x 1+x 2+ ···+x nn =∑x in i=1n加权平均数(分组):x=x 1f 1+x 2f 2+ ···+x k f kf 1+f 2+ ···+f k=∑x i f i k i=1∑f ik i=1有分组取组中值为平均数,若有开口组, 上开口组....:组中值=该组上限-(下组上限-下组下限)/2 下开口组....:组中值=该组下限-(上组上限-上组下限)/2② 几何平均数简单(每个数据只出现一次):G =√x 1·x 2·… ·x n n=√∏x n加权(每个数据出现不止一次):G =√x 1f 1·x 2f 2·… ·x n f n f 1+f 2+···+f n =√∏x f ∑f x③ 中位数 n 是奇数:M e=x n+12n 是偶数:M e =12[x(n 2)+x (n 2+1)]下限公式:M e=L +∑f2−S m−1f m·dL :中位数所在组上限 ∑f :各组频数之和 S m−1:中位数所在组以前各组的累计频数 d :中位数所在组组距 上限公式....:M e =U −∑f2−S m+1f m·dU :中位数所在组下限 f m :中位数所在组的频数 S m+1:中位数所在组以后各组的累计频数④ 分位数:Q L =(n +1)/4 Q M =2(n +1)/4 Q U =3(n +1)/4⑤ 众数下限公式:M 0=L +∆1∆1+∆2·d 上限公式:M 0=U −∆2∆1+∆2·d∆1:众数所在组的频数与前一组频数之差 ∆2:众数所在组的频数与后一组频数之差公式⑥异众比率V r=1−f0∑f i(f0:众数组的频数)⑦极差/全距R=max(x i)−min (x i)⑧四分位距:Q d=Q U−Q L⑨平均差未分组:MAD=∑|x i−x|n已分组:MAD=∑|x i−x|f∑f⑪离散系数总体:Vσ=σx̅样本:V s=sx̅⑫标准分数z i=x i−x̅sz的均值=0 标准差s=1(z=1.2,说明观察值比平均值大1.2倍s)偏态系数(SK)⑬峰值系数(K)⑭SK=0对称SK<0左偏SK>0右偏正态分布K<0扁平分布K>0尖峰分布公式⑬偏态系数未分组:SK=n∑(x i−x̅)3 (n−1)(n−2)s3已分组:SK=n∑(M i−x̅)3f ins3⑭峰态系数未分组:K=n(n+1)∑(x i−x̅)4−3[∑(x i−x̅)2]2(n−1) (n−1)(n−2)(n−3)s4已分组:K=∑(M i−x̅)4f ins4−3第二节用表格描述数据频数分布表分组→频数分组数K=1+log(n) log(2)K:组数n:数据个数2K>n组距=全距/组数各组组距=上限-下限各组组中值=(上限+下限)/2等距数列:每一组距相等,研究的现象变动比较均匀...........不等距/异距数列:每一组距不全相等,研究的对象变动分布均匀,波动幅度很大......“上限不在内”原则第三节用图形描述数据1.直方图用矩形面积表示各组频数分布(面积之和...)....=.总频数对于不等距分组,纵轴必须表示为频数密度(频数..)......../.组距2.箱线图找5个特征点:最大值、最小值、中位数、两个四分位数3.茎叶图类似横置直方图,既反映数据分布,又保留原始数据大致信息4.折线图5.气泡图6.雷达图(蜘蛛图):总的绝对值与图形所围成的区域成正比.................Array 7.散点图:观.察两个变量之间的相关程度和类型最直观的方法.....................8.条形图9.饼图:主要用于结构性问题研究10.环形图:反映多个样本(或总体)之间的结构差异11.帕累托图:双直接坐标系表示,左边纵坐标表示频数,右边纵坐标表示频率,分析线表示累计频率按各类别数据出现的频率排序(降序),并画出累计百分比双直角坐标系表示第三章参数估计第一节统计量与抽样分布一、统计量的抽样分布统计量:对样本数量特征的概括性度量不含任何未知参数的样本的函数是一个随机变量不同样本可算出不同的统计量值抽样分布:样本统计量的概率分布仅仅是一种理论分布提供了样本统计量长远而稳定的信息,构成推断总体参数的理论基础点估计:用样本统计量的某个实际取值作为相应的总体参数的估计值的过程常用——用样本均值x̅估计总体均值μ用样本比例p估计总体比例π用样本方差s2估计总体方差σ2总体参数是未知的,但可以利用样本信息来推断。

基础统计学笔记 统计学基础笔记整理

基础统计学笔记 统计学基础笔记整理

一、统计学概论分理论统计和应用统计应用统计分为描述统计学和推断统计学。

描述统计为一组数据的中(位置均值、中位数)、散(极差、方差、标准差)、形|(偏度)描述。

推断统计分为参数估计和假设检验。

技能1、经验——数据收集加工——画成图形——数理(规律)(数据不等于数字)PPT 原则用图不用表、用表不用栏、用栏不用字实际问题5M1E ——组成过程——产品(结果)——属性(包括几何(形位方尺)、物理、生化、人文)——集合统计问题——(构成)总体——样本——数据——类型分计数型(离散性)和计量型(连续性),即概率分布为计量型分布和技术型分布)——规律分描述和推断。

1、总体与样本中间有一种学问抽样验收抽样、统计抽样样本量2、样本和数据中间有一门测量技术MSA3、分布规律总体参数平均值() 标准差() 总位数() 比例(p )样本统计量的特点随机变化,不要轻易用样本下结论。

拉丁字母在数学上用于总体参数阿拉伯字母表示样本统计量希腊字母表示计算总体参数统计分参数统计和非参数统计。

推断统计分估计总体总体某参数未知,用对应的样本统计量去猜测。

检验假设总体某参数已知,用对应的样本统计量去验证。

二统计数据收集与整理1、数据不等于数字2、数据的两种类型描述性分类——响应变量(因变量)和预报因子(独立变量)如性别叫因子,男女叫水平。

四种尺度定类、定序、定距、定比3.数据管理的7个层次无假不乱浅深系4.软件每一列表示一个变量,每一行表示一个样本鱼骨图只适用于一个为什么,变量程序图IPO 适用于多个为什么。

I (变量)P O 水质烧开水色香味器皿材质火燃料风压强目的要抓住关键的变量。

2、统计数据的表现形式绝对数——时期数和时点数相对数——比例部分比总体比率部分比部分统计的数据来源直接来源和间接来源。

1、数据收集分被动收集(利用历史和现场)和主动收集(DOE 试验设计)现场收集数据是被动收集,分临时数据和常态数据。

试验是临时数据。

数据好的特征。

统计分析学基础知识点总结

统计分析学基础知识点总结

统计分析学基础知识点总结一、统计学的基本概念1.总体和样本总体是指研究对象的全部个体或事物的集合,样本是从总体中抽取的部分个体或事物的集合。

在统计学中,我们通常通过对样本进行分析来进行总体的推断。

2.变量和数据类型变量是指在研究中所测量的特定属性或属性,它可以是数量变量(比如身高、体重)也可以是分类变量(比如性别、职业)。

数据类型包括定量数据和定性数据,定量数据是指其取值可以进行数值运算,定性数据是指其取值为某种类别或符号。

3.测度尺度在统计学中,我们通常将变量分为不同的测度尺度,包括名义尺度(仅仅表示事物标识的意义)、顺序尺度(表示顺序关系)、区间尺度(表示等距关系)和比率尺度(表示等比关系),不同的尺度对于统计分析的方法和技术有重要的影响。

4.概率概率是描述不确定事件发生可能性的一种数值。

在统计学中,我们通过概率来对随机事件进行描述和预测,并且使用统计概率来进行统计推断。

5.统计量统计量是指从样本数据中计算得到的数值指标,比如均值、方差、标准差等。

统计量可以帮助我们从样本数据中获取总体特征的信息,并且在假设检验、参数估计等统计推断中起到重要的作用。

6.概率分布在统计学中,我们通常通过概率分布来描述随机变量的取值概率规律。

常见的概率分布包括正态分布、均匀分布、指数分布等,它们在统计分析中都有重要的应用。

7.统计推断统计推断是指根据样本数据对总体特征进行推断的一种方法。

它包括参数估计和假设检验两种基本方法,通过这些方法,我们可以对总体参数进行估计和推断。

8.统计学的应用统计学在科学研究、社会调查、市场调查、生物医学等领域都有重要的应用,它可以帮助我们从数据中获取信息,揭示事物规律,为决策提供依据。

二、常用的统计方法和分析技术1.描述统计描述统计是指通过对数据的整理和描述来获取数据特征的一种方法。

常见的描述统计方法包括均值、中位数、众数、标准差、方差等指标,它们可以帮助我们了解数据的集中趋势和离散程度。

统计学基础知识点总结

统计学基础知识点总结

统计学基础知识点总结1.数据与变量数据是指收集到的一组数字或符号,而变量是指可以变化的数值。

在统计学中,常用的变量类型有两种:定量变量和定性变量。

定量变量是用数字表示的,如身高、体重等;而定性变量是用非数字表示的,如性别、血型等。

2.数据的描述在统计学中,常用的描述性统计方法有中心趋势度量和离散程度度量。

中心趋势度量包括均值、中位数和众数,用来衡量数据的集中程度;离散程度度量包括极差、方差和标准差,用来衡量数据的分散程度。

3.概率与概率分布概率是指在一定条件下某事件发生的可能性,它是统计学中的重要概念。

概率分布是用来描述随机变量可能取值的分布情况的概率分布函数,常见的概率分布有正态分布、均匀分布、二项分布和泊松分布等。

4.统计推断统计推断是指根据样本数据对总体特征进行推断的方法,它包括点估计和区间估计两种方法。

点估计是通过样本数据估计总体参数的数值,而区间估计是通过样本数据估计总体参数的范围。

5.假设检验假设检验是统计学中用来检验总体参数假设的方法,它包括参数假设检验和非参数假设检验两种。

参数假设检验是对总体参数的假设进行检验,常用的方法有t检验、F检验等;非参数假设检验是对总体分布形式的假设进行检验,常用的方法有卡方检验、秩和检验等。

6.相关性与回归分析相关性是指两个变量之间的关系程度,常用的相关性指标有Pearson相关系数和Spearman秩相关系数;回归分析是用来分析自变量与因变量之间的关系的方法,常用的回归分析方法有一元线性回归分析和多元线性回归分析。

7.贝叶斯统计学贝叶斯统计学是一种基于贝叶斯定理的统计学方法,它与频率统计学有所不同。

在贝叶斯统计学中,统计推断是基于先验概率和似然函数进行的,而不是基于频率分布进行的。

8.实验设计实验设计是指在统计实验中如何设计实验方案,以达到准确、可靠、有效地进行统计分析的目的。

常用的实验设计方法有完全随机设计、区组设计和受试者设计等。

以上就是统计学基础知识点的总结,通过学习这些知识点,可以帮助人们更好地理解和应用统计学在各种领域中的实际问题。

统计学重点知识归纳总结

统计学重点知识归纳总结

统计学重点知识归纳总结统计学是一门研究数据收集、分析、解释和呈现的学科。

它在各个领域都有广泛的应用,包括经济学、医学、社会科学等。

本文将对统计学的重点知识进行归纳总结,帮助读者更好地理解和应用统计学。

一、概率论基础概率论是统计学的基础,它研究的是随机现象发生的概率。

在概率论中,我们常用到以下几个重要的概念和定理:1. 事件与概率:事件是指试验的某种结果,概率是该事件发生的可能性大小。

概率的基本性质包括非负性、规范性和可列可加性。

2. 条件概率与独立性:条件概率是指事件A在另一事件B已经发生的条件下发生的概率。

两个事件A和B是独立的,当且仅当它们的联合概率等于各自的概率的乘积。

3. 随机变量与概率分布:随机变量是指随机试验结果的数值表示。

离散随机变量的概率分布通过概率质量函数来描述,连续随机变量的概率分布则通过概率密度函数来描述。

4. 期望和方差:随机变量的期望是其取值与其概率的乘积的总和。

方差衡量了随机变量离其期望值的偏离程度。

二、抽样与估计抽样是指从总体中选择一部分个体进行观察和测量的过程。

统计学中,我们常使用的抽样方法包括简单随机抽样、系统抽样和分层抽样等。

1. 抽样分布和抽样误差:当样本容量足够大时,样本的统计量(如均值和比例)的分布接近正态分布。

抽样误差是样本统计量与总体参数之间的差异。

2. 置信区间:置信区间是对总体参数的一个范围估计。

一般情况下,置信区间使用样本统计量和抽样分布来计算。

3. 抽样分布的中心极限定理:中心极限定理指出,当样本容量足够大时,样本均值的分布接近正态分布,且均值的期望等于总体均值。

4. 参数估计:利用样本数据来估计总体参数的值。

常用的参数估计方法包括最大似然估计和最小二乘估计。

三、假设检验与推断假设检验是统计学中的一种方法,用于判断总体参数是否符合某个特定的假设。

推断统计学是基于样本数据对总体特征进行推断的过程。

1. 假设检验的步骤:假设检验的步骤包括建立原假设和备择假设、选择显著性水平、计算检验统计量和进行决策。

统计基础知识点总结

统计基础知识点总结

统计基础知识点总结一、统计学基本概念统计学是一门研究数据的科学,它包括描述统计和推论统计两个方面。

描述统计是对数据进行总结和描述,包括数据的中心趋势、离散程度和分布形态等内容;推论统计则是从部分观测数据推断出整体数据的性质。

1.总体与样本总体是指研究对象的全部个体或观察值的集合,样本是从总体中抽取出来的一部分个体或观察值。

通过对样本的研究,可以得出一些对总体的推断。

2.参数与统计量参数是总体的特征值,如总体均值、标准差等;统计量是样本的特征值,如样本均值、标准差等。

通过对统计量的研究,可以对参数进行估计。

3.变量与数据类型变量是研究对象中的一个特征,它可以是定量型变量(如身高、体重)或定性型变量(如性别、学历);数据类型包括定量数据和定性数据。

定量数据是可以进行数值比较的数据,定性数据是以性质或类别来表示的数据。

4.测量尺度测量尺度包括名义尺度、顺序尺度、间距尺度和比例尺度。

名义尺度是用于分类的尺度,没有顺序或大小关系;顺序尺度是用于分类,但有顺序关系;间距尺度是用于度量距离和大小关系,但没有绝对零点;比例尺度是度量距离和大小关系,并且有绝对零点。

对于不同的测量尺度,需要选择不同的统计方法进行分析。

二、数据的描述性统计描述性统计是统计学中的基础知识,它包括数据的中心趋势、离散程度和分布形态等内容。

1.中心趋势中心趋势是指数据集中的位置,包括均值、中位数和众数。

均值是所有数据值的平均数,中位数是数据值按大小排列后处于中间位置的数,众数是数据中出现次数最多的数。

2.离散程度离散程度反映了数据集合的分散程度,包括极差、方差和标准差。

极差是最大值和最小值之间的差值,方差是各数据值与均值的离差平方和的平均数,标准差是方差的平方根。

3.分布形态分布形态是指数据分布的形状,包括对称分布、偏态分布和峰态分布等。

对称分布是指数据集中的数据值分布呈现出对称形状,偏态分布是指数据集中的数据值分布不是对称的,峰态分布是指数据集中的数据值分布的尖度情况。

统计学专业学习笔记分享

统计学专业学习笔记分享

统计学专业学习笔记分享近些年,在我国统计学专业的大力发展下,越来越多的人选择了这个行业作为自己的职业方向。

作为一个统计学专业的学生,在不断进步的学习阶段中,笔记是必不可少的纪录方式。

今天,我想分享自己的统计学专业学习笔记,希望对大家有所帮助。

一、前置知识在学习统计学的过程中,首先需要了解的是概率论、高等数学、线性代数等基础学科。

概率论是统计学的基础,其主要研究随机事件的概率规律;高等数学则包括微积分、多元函数等数学工具,对建立统计学模型和数学证明有重要作用;线性代数主要研究线性方程组、向量空间等,对于建立多元线性回归模型和主成分分析等有很大帮助。

二、统计学基础1. 统计学基本概念统计学是一门研究数据收集、整理、分析和解释的学科,主要包括描述性统计和推断性统计。

而统计学的基本概念包括总体和样本、频数分布表、频率分布图、直方图等。

2. 描述性统计描述性统计是指对数据集进行概括性的描述,主要包括测量中心与散布程度、分布形态和位置参数等。

其中,测量中心包括均值、中位数和众数;散布程度包括极差、方差和标准差;分布形态包括对称、左偏和右偏等。

3. 推断性统计推断性统计是指根据样本数据对总体进行推断的方法,主要包括点估计、区间估计和假设检验等。

其中,点估计是通过对样本数据进行分析,估计总体的参数值;区间估计则利用样本数据和统计学原理,对总体的参数进行估计;假设检验则是对一种假设进行检验并得出结论的方法。

三、统计分析方法1. 单因素方差分析单因素方差分析是一种用于分析不同水平下总体均值差异的方法,其基本思路是比较不同水平下的样本均值是否存在显著差异。

在实际应用中,可以通过F检验来判断不同水平下总体均值是否存在显著差异。

2. 多元回归分析多元回归分析是一种用于建立多因素影响下的总体变量之间关系的方法,其基本思路是通过建立多元线性回归方程来描述变量之间的关系。

在实际应用中,可以通过检验回归系数是否显著,来判断模型的可靠性和解释变量之间的影响程度。

《统计学》(第8版)笔记和课后习题详解

《统计学》(第8版)笔记和课后习题详解

《统计学》(第8版)笔记和课后习题详解统计学 (第8版) 笔记和课后题详解
1. 简介
本文档为《统计学》第8版的笔记和课后题详解。

主要内容包括统计学的基本概念、统计学的应用和解决问题的方法等。

2. 章节概述
第一章:统计学导论
该章节介绍了统计学的基本定义和应用领域,以及统计学在科学研究中的作用。

第二章:数据描述
该章节重点介绍了统计学中常用的数据描述方法,包括数据的图形展示、数据的中心趋势和数据的离散程度等。

第三章:概率与概率分布
该章节讲解了概率的概念和性质,以及常见的概率分布如二项分布、正态分布等。

第四章:统计推断的基本原理
该章节介绍了统计推断的基本原理,包括参数估计和假设检验等内容。

第五章:单因素方差分析
该章节讲解了单因素方差分析的原理和应用,以及一些统计学中常见的假设检验方法。

第六章:相关与回归分析
该章节重点介绍了相关与回归分析的原理和应用,包括线性回归和多元回归等内容。

3. 课后题详解
本文档还包含了每章的课后题详解,帮助读者巩固所学知识。

针对题中的难点和常见错误,给出了详细的解答和解题思路。

4. 结语
通过阅读本文档的《统计学》笔记和课后题详解,读者将更好地理解统计学的基本概念和方法,掌握统计分析的基本技能。

以上是《统计学》(第8版)笔记和课后习题详解的概述。

希望对您有所帮助!。

统计基础的知识点总结

统计基础的知识点总结

统计基础的知识点总结统计学是一门研究数据收集、分析、解释和展示的科学。

它是各种学科中的重要基础,如经济学、医学、社会学、心理学等。

统计学广泛应用于各种领域,从商业到政府,从科学研究到医学诊断。

本文将对统计学的基础知识点进行总结,包括数据类型、数据收集、描述统计、概率、推断统计等内容。

一、数据类型1. 根据变量的性质,数据可以分为定量数据和定性数据。

定量数据是用数字表示,并且可以进行各种数学运算,如年龄、身高、成绩等;定性数据是用描述性词语表示的,如性别、颜色、好坏等。

2. 根据数据的测量尺度,数据可以分为名义数据、序数数据、区间数据和比率数据。

名义数据是表示对象不同之处的,仅表明事物的种类,如性别、颜色等;序数数据是数据的排列顺序有意义的,如学历、职位等;区间数据表示数据之间的间隔是有意义的,但没有零点,如温度;比率数据是有意义的零点,可以进行比较的,如比率、百分数等。

二、数据收集1. 数据的收集方式主要包括调查、实验和观察。

调查是采用问卷、访谈等方式获取信息;实验是通过控制变量来观察和测量影响结果的因素;观察是直接观察对象的状态和行为来获取数据。

2. 数据的收集过程中需要考虑样本的选择、样本量的确定、数据的准确性和可靠性等因素。

三、描述统计描述统计是研究数据分布的综合统计分析方法,主要包括中心趋势和离散程度两个方面。

1. 中心趋势主要包括均值、中位数和众数。

均值是所有数据的平均值,具有良好的代表性;中位数是将数据按大小排序后位于中间的数值;众数是数据集中出现频率最高的值。

2. 离散程度主要包括极差、方差和标准差。

极差是最大值与最小值之差;方差是各个数据与均值的差的平方和的平均值;标准差是方差的平方根,用来度量数据的波动程度。

四、概率概率是统计学中的一个重要概念,用来描述事物发生的可能性。

概率的计算方法主要包括古典概率、几何概率和条件概率。

1. 古典概率是指事件发生的概率等于有利事件的数量除以样本空间的数量,即P(A) =n(A)/n(S)。

统计学基础必学知识点

统计学基础必学知识点

统计学基础必学知识点1. 数据的类型:数据可以分为定量数据和定性数据。

定量数据是以数字形式表示的数据,可以进行运算和统计分析,例如身高、体重等;定性数据是以非数字形式表示的数据,通常是描述性的,例如性别、颜色等。

2. 数据的分布:数据的分布描述了数据的值在取值上的分布情况。

常见的数据分布有正态分布、均匀分布、偏态分布等。

3. 描述统计学:描述统计学是研究如何使用统计方法来描述和总结数据的学科。

常用的描述性统计方法包括测量中心趋势的平均数、中位数、众数,以及测量数据分散程度的标准差、方差等。

4. 统计推断:统计推断是研究如何利用样本数据对总体进行推断的学科。

常用的统计推断方法包括参数估计和假设检验。

参数估计是利用样本数据估计总体参数的值,例如利用样本均值估计总体均值;假设检验是对总体参数假设进行推断的方法,例如检验总体均值是否等于某个特定值。

5. 概率:概率是描述事件发生可能性的数值,介于0和1之间。

概率论是研究随机现象的数学理论。

常用的概率计算方法包括计数法、频率法、几何法等。

6. 抽样方法:抽样是从总体中选择部分个体进行观察和分析的方法。

常用的抽样方法包括随机抽样、系统抽样、整群抽样等。

7. 参数和统计量:参数是指总体的某种特征值,例如总体均值、总体方差等;统计量是根据样本数据计算得到的总体参数的估计值,例如样本均值、样本方差等。

8. 假设检验:假设检验是通过比较样本数据与给定假设之间的差异来判断假设是否成立的方法。

常用的假设检验方法有正态总体均值的检验、两个总体均值的检验、总体方差的检验等。

9. 相关分析:相关分析是研究两个或多个变量之间关系的方法。

常用的相关分析方法包括皮尔逊相关系数、斯皮尔曼相关系数等。

10. 回归分析:回归分析是研究变量之间关系的方法,可以用于预测和解释变量之间的关联关系。

常用的回归分析方法包括简单线性回归分析、多元线性回归等。

以上是统计学基础中的一些必学知识点,通过学习和掌握这些知识点,可以帮助我们理解和分析数据,从而做出科学的统计推断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础统计学笔记统计学基础笔记整理
一、统计学概论:
分理论统计和应用统计:
应用统计分为描述统计学和推断统计学。

描述统计为一组数据的中(位置:均值、中位数)、散(极差、方差、标准差)、形|(偏度)描述。

推断统计分为参数估计和假设检验。

技能:
1、经验——数据收集加工——画成图形——数理(规律) (数据不等于数字)
PPT 原则:用图不用表、用表不用栏、用栏不用字实际问题:
5M1E ——组成过程——产品(结果)——属性(包括:几何(形位方尺)、物理、生化、人文)——集合统计问题:
——(构成)总体——样本——数据——类型:分计数型(离散性)和计量型(连续性),即概率分布为计量型分布和技术型分布)——规律分描述和推断。

1、总体与样本中间有一种学问:抽样:验收抽样、统计抽样样本量
2、样本和数据中间有一门测量技术:MSA
3、分布规律
总体参数:平均值() 标准差() 总位数() 比例(p )
样本统计量的特点:随机变化,不要轻易用样本下结论。

拉丁字母在数学上用于总体参数阿拉伯字母表示样本统计量希腊字母表
示计算
总体参数统计分参数统计和非参数统计。

推断统计分
估计:总体总体某参数,用对应的样本统计量去猜测。

检验:假设总体某参数已知,用对应的样本统计量去验证。

二:统计数据收集与: 1、数据不等于数字
2、数据的两种类型:
描述性分类——响应变量(因变量)和预报因子(独立变量)如性别叫因子,男女叫水平。

四种尺度:定类、定序、定距、定比
3.数据管理的7个层次:无假不乱浅深系 4.软件每一列表示一个变量,每一行表示一个样本鱼骨图只适用于一个为什么,
变量程序图IPO 适用于多个为什么。

I (变量) P O 水质烧开水色香味器皿材质火燃料风压强
目的要抓住关键的变量。

2、统计数据的表现形式:绝对数——时期数和时点数相对数——比例:部分比总体比率:部分比部分
统计的数据:直接和间接。

1、数据收集:分被动收集(利用历史和现场)和主动收集(DOE 试验设计)现场收集数据是被动收集,分临时数据和常态数据。

试验是临时数据。

数据好的特征:。

数据不好的7个陷阱:缺少假混窄异病
缺:缺失(数据表中类型有N (计数型)\T(文本类型)\D(时间类型)少:样本量少假:不真实
混:混杂(没有可比性)
窄:x 的水平设计过窄。

因子的范围过窄,没有相关性。

异:夹杂异常数据。

病:病态(变异系数太小),变异系数:λ=σ/υ(
注意:
连续数据:非偶尔发生的问题的计数最好当作连续数据
离散数据:包括百分数,技术,数据分析的前提条件:
1、判测:MSA
2、判异常
3、判独(效果独立性:标识该变量还受到其它原因的干扰)
4、判量:求样本量。

统计抽样(非验收抽样)。

5、判形:分布的识别——正态性验证
6、判散:
黑带工具:
MSA CPK SPC 假设检验试验设计(DOE ) (主动研究) (静态被动研究)(动态被动研究)(被动研究)(主动研究)
MSA ——过程现状水平评估——统计分析——改善后的效果验证。

QC 老7大工具:直排散分鱼查图 QC 新7大工具:P 箭双阵关系亲 P :PDPC 过程决策程序图、箭:箭条图(统筹法):计算关键
路劲。

阵:矩阵图:数字矩阵图、一半矩阵图关:关联图
系:系统图(树图)亲:亲和图:归纳、
统计描述:
1、图示化:用图形(表)描述数据的分布规律。

2、求统计量(数值量度:中(位置):均值:算数平均。

缺点:对偏态分布没有代表性。

中位数:具有稳健性、抗干扰性。

众数:数量最多的一个数,一般用于计数型数据的平均值。

但不一定唯一,不
一定在中心。

散:极差(R )=max-min,适合于两本量不多的情况下,一般NC10 方差:
标准差
形偏度:分右偏分布(正偏)和左偏(负偏)
峰度:尖峰>0、正态=0、平峰<0
求统计量路径:
1、一次求一个:计算——列统计量
2、一次求多个:统计——基本统计量——显示描述性统计
工具一、直方图
1、用途、目的:用来揭示一组数据的分布状态,并识别异常。

2、条件:长用于计量型数据
也可用于大概率计数型数据。

3、统计路径:图形——直方图
4、结构:图形由点、线、柱、框、轴组成。

直方图为两轴多柱结构。

5、解读:中散形异比(比:和规格比,和两两比。


6、拓展(注意事项):统计——基本统计——显示描述性统计。

两图比较——选择右键选平铺和
工具二:点图
用途、目的:用来揭示一组数据的分布状态,并识别异常。

条件:长用于计量型数据
也可用于大概率计数型数据。

适合于小样本。

统计路径:图形——点图结构:两轴多点
解读:中散形异比(比:和规格比,和两两比。

)能够抓捕异常点——点右键——笔刷——框异常点。

拓展(注意事项):统计——基本统计——显示描述性统计。

两图比较——选择两个列
三、箱线图:
用途、目的:用来揭示一组数据的分布状态,并识别异常。

条件:长用于计量型数据
也可用于大概率计数型数据。

统计路径:图形——箱线图结构:两轴一筐三线若干点
解读:中散形异比(比:和规格比,和两两比。

)中位线、上4分:Q3、下4分位Q1 Max (minQ1-1.5(Q3-Q1))
点:可等于最大点或小于做大点,如大于最大点则能够抓捕异常点——点右键——笔刷——框异常点。

拓展(注意事项):
了解变化的工具:——时序图——控制图
——频率:以上三种均属于——排列图
工具四、柏拉图:
1、用途:用来识别关键少数,28原则。

2、条件:XY 都是计数型数据,常常用于分类的。

偶尔Y 可以用于计量型
3、路径:统计——质量工具——pareto
4、结构:三轴多柱一线
5、解读:看高低,判主次。

原始数据格式:汇总格式列联表指示变量
6、注意事项:
——每一个柱子不能太相近,近乎等概率——其它不能太高,没有分解完。

——排列图一定要有时效性——确保相对高度如果等概率:解决方法 1、换一种分类方法 2、调整Y 轴分类方法 3、把Y 的同规格放大。

(数据规范化)
工具五:条形图(柱状图) 1、用途:用来比较各自的权重 2、条件:XY 都是计数型数据 3、路径:图形——条形图 4、结构:两轴多柱
5、解读:看到底看轻重
知识——学来的,搜索能力(术:工具技能——练来的(法:观念——解放,靠修悟(道:
工具六:散点图
1、用途:揭示两个变量相互关系用的
2、条件:XY 两个计量
3、路径:图形——散点图
4、解读:看分布,判相关:强正、强负、弱正、弱负、不相关、完全相关
5、结构:
6、扩展:两个X 一个是计数、一个是计量
截止上面的图均为静态图。

以下静态图:
工具七:时间序列图(时序图) 1、用途:按时间的顺序的数据图形 2、条件:要求时间,时效型数据 3、结购:两轴多点线
4、解读:看趋势判异常(聚类、混合等)或判独力性
5、拓展:
工具八:运行图(链条图)
1、用途:按时间的顺序的数据图形
2、条件:要求时间,时效型数据
3、路径:统计——质量工具——运行图 3、结购:两轴多点一线
4、解读:看趋势判异常(聚类、混合等)或判独力性中位数的游程个数, 如果少很多,为少聚多混。

期望游程个数
检验聚类性的近似P 值<0.5 混合近似P 值<0.5,
向上或向下的游程个数:期望游程个数
检验趋势性的近似P 值<0.5 检验振动性的近似P 值<0.5, 5、拓展:
总结:
二、推断统计:
概率与概率分布:当无限量由频率成概率。

计量型数据没有点概率,有概率密度(即PDF )计数型数据有点概率
随机变量及其分布:离散:
——二项分布——超几何分布——泊松分布连续
1、正态分布:
用途:1、自然界中大部分现象服从正态分布,
2、多次抽样的样本均值所构成的分布往往近似正态分布(即中心极限定理)
3、其它分布在某种条件下可转化为正态分布。

条件:1、计量型
2、大概率计数型
3、决定参数:μσ
4、学会模拟仿真:数据和图形学图纸:形位方尺
学分布:形状位置阈值尺度路径:图形——概率分布图
1、会求概率P (计数型)
2、会概率密度PDF (计量型)
3、会累计概率密度CDF (计数和计量)
4、分位数Z 或P (计数和计量)已知XZ 求Y (PDF )已知XZ 求CDF (左面积)已知左面积求X 或Z
内容仅供参考。

相关文档
最新文档