方格网_土方计算规则

合集下载

方格网及断面法计算土方

方格网及断面法计算土方
—新建/剪切/生成
先操作完成面里程,保存后重新打开CASS,重复以上 操作完成原始面设计里程。
三、断面法计算土方
三、断面法计算土方
三、断面法计算土方
三、断面法计算土方
3、断面法计算过程
1)生成原始地面土方断面
工程应用——断面法土方计算——场地断面——选择 原始面里程文件(.hdm)——选择原始面里程数据文 件(.dat)——绘图参数修改——绘制纵断面图比 例——确定——图纸空白处点击出断面图
•Байду номын сангаас目录
一、计算准备 二、方格网计算土方 三、断面法计算土方
一、计算准备
• 土方计算由三个要素组成:
土方计 算
1.计算范围 2.原地面标高数据文件
3.完成面标高数据文件
一、计算准备
1、计算范围 用复合线(PL)画计算范围
注:一定要闭合,按C闭合
2、标高数据文件 要将标高生成高程点坐标数据文件(*.dat),
注:有可能回车后看不到计算结果,这时要重新设定窗口范围, 命令栏输入zoom—— a 。
二、方格网计算土方
二、方格网计算土方
三、断面法计算土方
1、导入坐标(针对没有电子版图纸) 绘图处理——展高程点——导入已有坐标数据文件 (*.dat)
2、生成里程文件(先完成面后原始面) 1)绘制纵断面线 2)工程应用——生成里程文件——由纵断面生成—
方法有两种: 1)文本输入
2)图纸获取
一、计算准备
1)文本输入 对有坐标数据(X,Y,H)的,直接在记事本上按以
下格式(序号,,Y,X,H)操作: 1,,Y,X,H 2,,Y,X,H ……….
另存为*.dat文件 例如:
一、计算准备

方格网计算土方量原理

方格网计算土方量原理

方格网计算土方量原理方格网法是一种用于测量土地表面不规则形状的土方量的方法。

它是一种简单而有效的方法,可以帮助工程师和土木工程师快速准确地计算土地表面的土方量。

接下来,我们将介绍方格网法的原理和计算步骤。

方格网法的原理是将土地表面划分为一个个小方格,并通过对每个小方格的测量来计算土方量。

首先,需要在土地表面建立一个方格网,网格的大小可以根据实际情况来确定,一般情况下,网格大小为1米×1米或2米×2米。

然后,对每个小方格的高程进行测量,可以使用全站仪或其他测量仪器来进行高程测量。

通过对每个小方格的高程测量,可以得到土地表面的高程数据。

在进行高程测量之后,需要对每个小方格的面积进行测量。

可以通过测量每个小方格的边长来计算出每个小方格的面积。

在测量完所有小方格的高程和面积之后,就可以利用这些数据来计算土方量了。

土方量的计算公式为,土方量 = Σ(高程差×面积)。

其中,Σ表示对所有小方格进行求和,高程差表示每个小方格的最大高程和最小高程之差,面积表示每个小方格的面积。

通过对所有小方格的高程差和面积进行求和,就可以得到土地表面的土方量。

在实际应用中,方格网法可以帮助工程师和土木工程师快速准确地计算土地表面的土方量,特别是对于不规则形状的土地表面,方格网法可以更加方便地进行土方量的计算。

通过合理设置方格网的大小和密度,可以得到更加精确的土方量计算结果。

总之,方格网法是一种简单而有效的土方量计算方法,通过对土地表面进行方格划分和测量,可以快速准确地得到土方量的计算结果。

在工程实践中,方格网法可以帮助工程师和土木工程师更加方便地进行土方量的计算,为工程设计和施工提供重要的参考依据。

用方格网法计算土方步骤

用方格网法计算土方步骤

用方格网法计算土方步骤方格网法是一种常用的土方计算方法,可以用于计算土方的体积和步骤。

方格网法的基本原理是将土地划分为一系列方格,并测量每个方格的高程差。

然后,通过计算每个方格的体积,并将其累加,即可得到土方的总体积。

下面将详细介绍方格网法的计算步骤。

第一步:测量区域边界首先,需要准确测量土地或施工场地的边界线,并在各个角点处标记测量点。

这些测量点将作为方格网中每个方格的角点。

第二步:确定网格间距根据实际情况,确定方格网的间距。

间距的选择应该根据场地尺寸和地形的复杂程度进行合理调整。

通常情况下,间距可以选择为1米或更小。

第三步:建立方格网使用测量点确定的位置,可以使用绳子或钉子等工具在地面上建立方格网。

确保方格网的边缘和角点都严格平行和垂直。

第四步:测量高程差使用水准仪或其他测量工具,对方格网中的每个角点进行高程测量。

记录每个位置的高程数值。

第五步:计算体积根据高程差测量结果,可以计算每个方格的土方体积。

通常情况下,每个方格的土方体积计算公式为:V=(A1+A2+A3+A4)/4*h,其中A为方格四个角点的高程数值,h为方格中心点的高程数值。

第六步:累加体积将每个方格的土方体积累加,即可得到整个土地或施工场地的土方体积。

如果方格网是等距的,可以直接将每个方格的体积相加。

如果方格网是非等距的,需要按照实际情况进行体积调整。

方格网法可以用于计算多个区域的土方体积。

例如,可以将场地划分为不同的区域,然后按照上述步骤逐个计算每个区域的土方体积,并将结果累加得到总体积。

需要注意的是,方格网法只适用于地形平坦的场地。

如果场地地形复杂或存在斜坡等情况,则需要使用其他方法进行土方计算,如三角测量法或通过地形测量仪器获取高程数据。

总结起来,方格网法是一种简单而实用的土方计算方法,适用于平坦的场地。

通过将场地划分为一系列方格,并测量各个角点的高程数值,然后计算每个方格的土方体积并累加,可以得到土方的总体积。

网格法土方量计算公式

网格法土方量计算公式

网格法平整场地土方量计算公式:1、方格四个角点全部为填土式挖方,其土方量:2a)h?h?(h?h?Vh,h,h,h为角点填方高度,为绝对值。

)(注:4321432142、方格的相邻两角点为挖方,另两角点为填方。

其挖方部分工程量:21)??(V4h?hh?h3214222hha其222hha填方部分工程量:34)(?V?4h?hh?h3421h,hhh,为需填方角点填方高度。

皆为绝对值。

(注:为需挖方角点挖方高度,)43213、方格的三个角点为挖方,另一个角点为填方。

其填方部分工程量:4?V46(h?h)(h?h)43142a其挖方32ha部分工程量:V?h)??2hh?2hV?(4143,1,2326hhh,h,为需填方角点填方高度。

皆为绝对值。

)(注:为需挖方角点挖方高度,43124、方格的一个角点为挖方,相对的角点为填方。

另两个角点为零点时2a(零线为方格的对角线),其挖填方工程量为:hV?b4/ 142 /常用方格网计算公式2.计算公式项目图示一点填方或挖方(三角形)当时,二点填方或挖方(梯)形三点填方或挖方(五角形)四点填方正(或挖方方形)4/ 3注:1)a——方格网的边长,m;b、c——零点到一角的边长,m;h,h,h,h方格网四角点的施工高程,m,用绝对值代入;Σh——填方或挖方施工高程的——1423)本表公式是按各计算图形底面积乘以平均施工高程而得出的。

2。

挖方或填方体积,用绝对值代入; ,m总和——,m4/ 4。

土方方格网计算方法

土方方格网计算方法

土方方格网计算方法土方方格网是土方工程中常用的一种计算方法,通过将土地分割成方格网,对每个方格内的土方进行计算,可以更精确地评估土地的开挖量和填方量。

本文将介绍土方方格网的计算方法,包括方格网的划分、土方量的计算等内容。

1. 方格网的划分。

在进行土方计算之前,首先需要对土地进行方格网的划分。

一般来说,可以根据土地的实际情况确定方格的大小,通常情况下,方格的大小可以选择为10米×10米或20米×20米。

在确定了方格的大小后,可以利用测量工具对土地进行划分,确保每个方格都能够清晰地被划分出来。

2. 土方量的计算。

一旦完成了方格网的划分,接下来就是对每个方格内的土方进行计算。

土方量的计算可以通过以下步骤进行:(1)测量每个方格的高程。

首先,需要对每个方格的高程进行测量。

可以利用测量仪器对方格内的几个关键点进行高程测量,然后通过插值法计算出整个方格的平均高程。

(2)计算土方量。

在得到了每个方格的平均高程后,可以通过以下公式计算出每个方格内的土方量:土方量 = 方格面积×(挖方高程填方高程)。

其中,方格面积可以直接通过方格的大小得到,挖方高程和填方高程分别为该方格内的地面高程和设计高程。

3. 土方量的累加。

完成了每个方格内土方量的计算后,就可以将所有方格内的土方量进行累加,得到整个土地的总土方量。

通过这种方法,可以更准确地评估土地的开挖量和填方量,为土方工程的施工提供重要参考。

4. 注意事项。

在进行土方方格网计算时,需要注意以下几点:(1)方格网的划分应当尽量均匀,确保每个方格内的土方量计算准确;(2)测量方格内的高程时,应当选择代表性的点进行测量,确保计算结果的准确性;(3)在进行土方量累加时,需要对累加的结果进行核对,确保计算结果的准确性。

总之,土方方格网计算方法是土方工程中常用的一种计算方法,通过对土地进行方格网的划分,可以更精确地评估土地的土方量。

在实际应用中,需要严格按照计算步骤进行操作,并注意各项计算的准确性,以确保土方计算结果的准确性和可靠性。

方格网法计算土方工程量

方格网法计算土方工程量

方格网法计算土方工程量方格网法是一种常用于土方工程量计算的方法。

它通过将工程区域划分成等大的方格,然后通过计算方格中的土方高差来确定土方的开挖或填方量。

方格网法的主要步骤如下:第一步:确定工程区域首先,确定需要计算土方工程量的区域范围。

这个区域可以是整个工程场地,也可以是工程场地的一个部分。

第二步:划分方格根据实际情况,将工程区域划分成等大的方格。

方格的大小可以根据实际情况来确定,通常根据工程的尺寸和要求来选择合适的大小。

第三步:测量高程在每个方格的四个角或者中心点测量地面高程。

可以使用水准仪、全站仪或者GPS等仪器进行测量。

第四步:计算高差计算每个方格的高差。

可以通过将每个方格的最高和最低高程相减来得到高差。

第五步:计算土方量根据每个方格的高差,可以计算出每个方格的土方开挖或填方量。

如果高差为正值,则表示需要填方;如果高差为负值,则表示需要开挖。

第六步:汇总计算将每个方格的土方量累加起来,得到整个工程区域的土方工程量。

方格网法的优点是简单、直观、易于计算。

它不需要复杂的测量和计算,只需测量每个方格的高程,然后根据高差来计算土方量。

此外,方格网法还可以应用于各种不同类型的工程场地,无论是平坦的地势还是复杂的地形,都可以使用方格网法来计算土方工程量。

然而,方格网法也有一些限制。

首先,方格网法假设每个方格内的土方高差是均匀分布的,可能忽略了地势的复杂性。

其次,方格网法适用于土方高差相对较小的情况,如果土方高差差异较大,可能需要其他更精确的方法来计算土方工程量。

总之,方格网法是一种简单、直观且常用的方法,用于计算土方工程量。

通过将工程区域划分成等大的方格,并测量每个方格的高程,可以计算出每个方格的土方量,最后汇总计算出整个工程区域的土方工程量。

然而,在应用方格网法时,需要考虑实际情况,并根据实际需求选择合适的方格大小和其他计算方法。

方格网法计算土方工程量

方格网法计算土方工程量

补充:方格网法计算土方工程量在进行土方工程量计算之前,将绘有等高线的现场地形图,分为若干数量的方格(或根据测绘的方格网图),然后按设计高程和自然高程,求出挖填高程,进行土方量的计算。

适用于地形平缓或台阶宽度较大的地段采用。

其计算步骤为:1、方格的划分常用的方法是在1/500的地形图上,以20×20或40×40m 划分成若干个方格,将设计标高和地面标高分别标在方格点的右上角和右下角,将自然地面标高与设计地面标高的差值,即各角点的施工高度(挖或填),填在方格网的左上角,挖方为(+)填方为(-)。

2、计算零点位置:在一个方格网内同时有填方或挖方时,要先算出方格边的零点位置,并标注于方格网上,连按零点就得零线,它是填方区与挖方区的分界线。

零点的位置按下式计算:a h h h ⨯+=2111χ a h h h ⨯+=2122χ 式中、—角点至零点的距离(m )、—相邻两角点的施工高度(m )均用绝对值—方格网的边长(m )在实际工作中,为省略计算,常采用图解法直接求出零点。

方法是用尺在各角上标出相应比例,用尺相连,与方格相交点即为零点位置。

3、计算土方工程量按方格网底面积图形和表7-10所列公式计算每个方格法内的挖方或填方量或用查表法计算。

4、计算土方总量将挖方区(或填方区)所有方格计算土方量汇总,即得到该场地挖方和填方的总土方量。

例:某建筑场地方格网的一部分如图所示,方格边长为20×20m ,试用公式法计算挖填土方总量。

解:(1)划分方格网计算方格各点的施工高度(2)计算零点位置:从图7-3(b )中知,8~13,9~14,14~15三条方格边两端的施工高度符号不同,说明在此方格边上有零点存在。

a h h h ⨯+=2111χ 8-13线)(6.72026.016.016.01m =⨯+=χ9-14线)(0.112021.026.026.01m =⨯+=χ 14-15线)(2.162005.021.021.01m =⨯+=χ 将各零点标于图上,并将零点线连接起来。

方格网计算土方量

方格网计算土方量

方格网计算土方量
在土建工程中,计算土方量是非常重要的一个环节。

而计算土方量的方法也有很多,其中一种方法就是通过方格网来计算。

方格网计算法通常适用于分块比较规则的场地。

下面将详细介绍如何使用方格网来计算土方量。

步骤一:绘制方格网
首先,需要绘制方格网,即把场地按照一定的比例划分成小块。

具体的比例应该根据场地大小和地形情况来确定。

划分好方块之后,可以用绳子或者直尺来把方块连接起来,形成方格网。

步骤二:测量地形高度
接着,需要在方格网的交点处,即每个小块的四个角落处进行地形高度测量。

可以使用测高仪等工具来进行测量。

在测量时,需要保证精度,以确保计算的土方量准确无误。

步骤三:计算每个小块的体积
有了每个小块的高度数据之后,就可以计算每个小块的体积。

计算公式如下:体积 = 面积 × 平均高度
其中,面积可以通过方格网的尺寸来直接计算,平均高度则是该小块四个角高度的平均值。

步骤四:计算总体积
所有小块体积计算完毕之后,需要把它们加起来,得到场地的总体积。

为了便于计算,可以把各个小块的体积逐个列出来,然后进行累加,最终得到总体积。

步骤五:检查计算结果
计算出总体积之后,需要对结果进行检查。

可以再次对各个小块的高度进行测量,以确保计算结果的准确性。

另外,也需要检查方格网的划分是否准确,以及每个小块的面积是否计算正确。

方格网计算法是一种简单易行的土方量计算方法,适用于场地比较规则且地形比较平缓的情况。

在进行方格网计算时,需要注意测量高度的精度,以及对结果进行检查。

最新《方格网法》计算土方工程量

最新《方格网法》计算土方工程量

最新《方格网法》计算土方工程量《方格网法》是一种常用的土方工程量计算方法,它基于土方工程中的工作量估算原理,能够准确地计算土方工程的数量。

下面将详细介绍最新的《方格网法》计算土方工程量的步骤和注意事项。

第一步:确定工程区域和方格网大小在进行土方工程量计算之前,首先需要确定工程的具体区域。

通常,将工程区域划分为一个个较小的网格,以便更精确地进行计算。

方格网的大小应根据实际情况进行选择,通常考虑到土方工程的复杂程度和区域的大小。

第二步:测量方格网内的地面高程在确定了方格网大小之后,需要在每个方格网内测量地面的高程。

可以使用全站仪或水准仪等测量设备进行测量,将每个方格网内的地面高程记录下来。

根据测量得到的地面高程数据,可以计算每个方格网内的土方工程量。

通常,计算的方法可以根据实际情况进行选择,常用的有填土量和挖土量的计算方法。

填土量计算方法:填土量=方格网内土方块体积×(填方高程-地面高程)挖土量计算方法:挖土量=方格网内土方块体积×(地面高程-挖方高程)根据实际情况,可以选择填方高程为设计高程或者其他需要的高程,挖方高程同理。

将每个方格网内的土方工程量相加,即可得到总的土方工程量。

根据实际情况,可以进行单位转换,例如将立方米转换为立方米或立方千米。

需要注意的是,方格网法计算土方工程量的精度受到方格大小、测量误差以及地形复杂度等因素的影响。

因此,在进行计算时,要注意选择合适的方格网大小,尽量减小误差,以获取更准确的土方工程量。

此外,方格网法还可以进行三维土方工程量计算,即在上述步骤的基础上考虑土方的几何形状。

这样可以更准确地计算土方工程量,并适用于复杂的地形情况。

综上所述,最新的《方格网法》计算土方工程量是一种准确、实用的方法。

通过合理选择方格网大小,并根据高程数据进行计算,可以得到准确的土方工程量。

在实际工程中,可以结合其他方法进行综合分析,以获取更全面的土方工程量数据。

方格网计算土方量原理

方格网计算土方量原理

方格网计算土方量原理
方格网计算土方量原理即通过在地面上划分方格网,并计算每个方格中的土方体积,进而得出总的土方量。

具体原理可分为以下几步:
1. 划分方格网:首先在待测量区域的地面上进行方格网的划分,通常使用水平标杆和粉笔线等工具,将地面划分为等大的方格。

2. 计算单个方格的土方体积:对每个方格进行土方体积的计算。

土方体积的计算可以通过以下公式进行:
土方体积 = 方格面积 ×层高
其中,方格面积为方格的水平投影面积,层高为该方格内土
方堆积的高度,可以通过测量或估算得出。

3. 累加各个方格的土方体积:将所有方格内的土方体积累加起来,得到总的土方体积。

可以通过逐个方格计算土方体积,并将其累加到总体积中的方法来实现。

4. 随机抽查方格:为了验证计算结果的准确性,可以随机抽取部分方格进行测量和计算,然后与计算结果进行对比。

需要注意的是,在进行方格网计算土方量时,应当注意以下几点:
- 方格的大小应根据实际情况进行选择,一般应适当缩小,以
提高计算精度。

- 方格网的划分应在待测量区域的整个范围内进行,确保所有
区域被覆盖。

- 土方体积计算中的方格面积和层高都应该准确测量或者经过合理估算。

- 测量时要确保准确性,避免误差的产生,可选用高精度的测量工具,并进行多次测量取平均值。

综上所述,方格网计算土方量原理是通过划分方格网,计算每个方格内的土方体积,累加得到总的土方体积。

该方法可以提高土方量计算的准确性和效率。

方格网土方计算

方格网土方计算

方格网土方计算平时我们在施工时,难免在土方施工时遇到方量确认的难题。

我们在实际生产中,主要采用的方量计算方法为断面法土方计算。

然而当某个区域不规则,断面法测出的方量是前后两个断面填挖量的平均值,比如某个废弃土堆要进行场地平整,断面数据不具有代表性,与事实存在出入。

这将对我们确认方量造成勿扰。

1、方格网土方计算原理方格网土方计算原理是将一个不规则的施工区域划分为n个规则的柱体,再由该柱体的上下标高之差算出该柱体的体积。

再将这n个体积进行叠加汇总便得到我们需要的较为精确的土方量。

2、方格网土方计算现场测量2.2.1原始地貌测量(前期数据收集)在现场施工前,我们得对原始地貌进行一次测量,并保存好数据。

原始地貌测量时,点与点之间距离不可过大,在5-10m范围内较为合适。

而且遇到特征点(地形明显起伏地段)得加密测量。

比如说,遇到一个1m高的土埂,应在土埂上下均测一点,顺着土埂只需在5-10m测一次便可;遇到一个半径5m,高差2m的土堆,此时应围绕土堆测一圈,在土堆顶部测一圈。

2.2.2 设计面代入或施工后复测(后期数据收集与处理)原始地貌测量后,我们可根据设计面生成数据文件,该面可为平面,斜面等。

对于后期数据为不规则面,我们无法判断时,可后期复测。

后期数据的处理。

这里介绍两种情况:1、后期为平面,整体场地处于同一个标高的平面。

2、后期为不规则面,此时应将复测后的数据生成三角网。

2.2.3 cass7.0方格网计算土方的步骤计算步骤主要分为4个步骤,首先是根据要求确定计算区域,并用pline绘制闭合折线。

然后是填写计算数据。

最后是数据处理,调整自动生成的字体、大小等,以及删除部分边角重叠字体,使其清晰,明了。

2.2.3.1 前期数据展高程点与CAD中。

图2.1展高程点2.2.3.2 选择cass7.0中工程应用-方格网土方应用菜单。

图2.2 选取方格网计算菜单2.2.3.3 选择区域边线。

现场原始地貌测量边缘线应大于后期土方边线,选择的边线应为后期土方边线。

最全方格网_土方计算规则

最全方格网_土方计算规则

1.读识方格网图方格网图由设计单位(一般在1:500的地形图上)将场地划分为边长a=10~40m的若干方格,与测量的纵横坐标相对应,在各方格角点规定的位置上标注角点的自然地面标高(H)和设计标高(Hn),如图1-3所示.图1-3 方格网法计算土方工程量图二、场地平整土方计算(1)考虑的因素:① 满足生产工艺和运输的要求;② 尽量利用地形,减少挖填方数量;③争取在场区内挖填平衡,降低运输费;④有一定泄水坡度,满足排水要求.⑤场地设计标高一般在设计文件上规定,如无规定:A.小型场地――挖填平衡法;B.大型场地――最佳平面设计法(用最小二乘法,使挖填平衡且总土方量最小)。

\(2)初步标高(按挖填平衡)场地初步标高:H0=S(H11+H12+H21+H22)/4MH11、H12、H21、H22 ——一个方格各角点的自然地面标高;M——方格个数.或:H0=(∑H1+2∑H2+3∑H3+4∑H4)/4MH1--一个方格所仅有角点的标高;H2、H3、H4--分别为两个、三个、四个方格共用角点的标高.(3)场地设计标高的调整按泄水坡度、土的可松性、就近借弃土等调整.按泄水坡度调整各角点设计标高:①单向排水时,各方格角点设计标高为: Hn = H0 ±Li②双向排水时,各方格角点设计标高为:Hn = H0± Lx ix± L yi y3.计算场地各个角点的施工高度施工高度为角点设计地面标高与自然地面标高之差,是以角点设计标高为基准的挖方或填方的施工高度.各方格角点的施工高度按下式计算:式中hn------角点施工高度即填挖高度(以“+”为填,“-”为挖),m;n------方格的角点编号(自然数列1,2,3,…,n).Hn------角点设计高程,H------角点原地面高程.4.计算“零点”位置,确定零线方格边线一端施工高程为“+”,若另一端为“-”,则沿其边线必然有一不挖不填的点,即“零点”(如图1-4所示).图1-4 零点位置零点位置按下式计算:式中x1、x2 ——角点至零点的距离,m;h1、h2 ——相邻两角点的施工高度(均用绝对值),m;a —方格网的边长,m.确定零点的办法也可以用图解法,如图1-5所示.方法是用尺在各角点上标出挖填施工高度相应比例,用尺相连,与方格相交点即为零点位置。

方格网计算土方范文

方格网计算土方范文

方格网计算土方范文
1.划分方格网:根据实际需要,将土地按照一定间隔划分为一系列的方格。

方格的尺寸可以根据具体情况确定,一般为10米×10米或20米×20米。

2.观察土方的高差:在每个方格的角落或中心位置,使用测高仪或测量工具测量土方的高差。

高差表示地表相对于参考平面的垂直距离,即土体的升高或下沉程度。

3.计算方格体积:根据测得的高差和方格尺寸,计算每个方格内土方的体积。

可以使用以下公式进行计算:
土方体积=方格面积×(最高高差+最低高差)/2
其中,方格面积为方格的长×宽,最高高差和最低高差分别为方格内土方的最高高差和最低高差。

4.累加方格体积:将所有方格内土方的体积累加得到总体积。

通过累加方格体积,可以得到土方的开挖量和填方量。

然而,方格网计算土方也存在着一些限制和不足。

首先,方格网计算土方需要划分大量的方格,因此在土地面积较大时,计算量较大,耗时较长。

其次,在土方地表不规则或存在大范围的高差时,方格网计算土方可能会导致较大的误差。

因此,在进行方格网计算土方时,需要根据土地的实际情况进行合理的划分和计算,以提高计算结果的准确性。

总之,方格网计算土方是一种简单有效的土方计算方法,可以准确地计算土方的开挖量和填方量。

通过方格网计算土方,可以为土方工程、道路工程等提供可靠的工程量数据,为工程设计和施工提供重要参考。

方格网自动计算土石方公式

方格网自动计算土石方公式

方格网自动计算土石方公式一、简介方格网自动计算土石方公式是一种常用的土木工程计算工具,通过使用方格网的原理和土石方体积计算公式,可以快速准确地计算土石方的体积。

本文将介绍方格网自动计算土石方公式的原理、步骤和应用场景,帮助读者更好地理解和应用这一工具。

二、原理方格网自动计算土石方公式的原理基于方格网的思想。

方格网是由许多等大的正方形格子组成的网格,每个格子都有一定的边长。

对于土石方计算来说,我们可以将工程现场划分为一个个的方格,然后通过对方格的计数和测量,可以得出土石方的体积。

三、步骤具体的方格网自动计算土石方公式的步骤如下:1. 将工程现场划分为一个个等大的方格。

方格的边长应根据具体工程的要求来确定。

如果工程现场较大,可以将现场进一步划分为多个区域,每个区域再进行方格划分。

2. 对每个方格进行计数。

在方格的角点或边界处使用杆尺进行测量,并记录下每个方格的尺寸。

3. 根据方格的尺寸计算每个方格的体积。

土石方的体积计算可以使用公式:体积 = 面积×高度,其中面积可以通过方格的尺寸计算得出,高度则需要根据具体工程的要求进行测量或估算。

4. 将每个方格的体积相加,得出整个工程现场土石方的总体积。

四、应用场景方格网自动计算土石方公式广泛应用于土木工程领域。

以下是几个常见的应用场景:1. 土路坡面修建:在修建土路坡面时,通过使用方格网自动计算土石方公式,可以准确计算土方和石方的体积,从而帮助工程师合理规划施工,并控制工程成本。

2. 土地整理和平整:在土地整理项目中,使用方格网自动计算土石方公式可以帮助工程师计算土方的准确体积,从而合理安排土壤的处理和利用。

最全方格网_土方计算规则

最全方格网_土方计算规则

1.读识方格网图方格网图由设计单位(一般在1:500的地形图上)将场地划分为边长a=10~40m的若干方格,与测量的纵横坐标相对应,在各方格角点规定的位置上标注角点的自然地面标高(H)和设计标高(Hn),如图1-3所示.图1-3 方格网法计算土方工程量图二、场地平整土方计算(1)考虑的因素:①满足生产工艺和运输的要求;②尽量利用地形,减少挖填方数量;③争取在场区挖填平衡,降低运输费;④有一定泄水坡度,满足排水要求.⑤场地设计标高一般在设计文件上规定,如无规定:A.小型场地――挖填平衡法;B.大型场地――最佳平面设计法(用最小二乘法,使挖填平衡且总土方量最小)。

\(2)初步标高(按挖填平衡)场地初步标高:H0=S(H11+H12+H21+H22)/4MH11、H12、H21、H22 ——一个方格各角点的自然地面标高;M——方格个数.或:H0=(∑H1+2∑H2+3∑H3+4∑H4)/4MH1--一个方格所仅有角点的标高;H2、H3、H4--分别为两个、三个、四个方格共用角点的标高.(3)场地设计标高的调整按泄水坡度、土的可松性、就近借弃土等调整.按泄水坡度调整各角点设计标高:①单向排水时,各方格角点设计标高为: Hn = H0 ±Li②双向排水时,各方格角点设计标高为:Hn = H0± Lx ix± L yi y3.计算场地各个角点的施工高度施工高度为角点设计地面标高与自然地面标高之差,是以角点设计标高为基准的挖方或填方的施工高度.各方格角点的施工高度按下式计算:式中hn------角点施工高度即填挖高度(以“+”为填,“-”为挖),m;n------方格的角点编号(自然数列1,2,3,…,n).Hn------角点设计高程,H------角点原地面高程.4.计算“零点”位置,确定零线方格边线一端施工高程为“+”,若另一端为“-”,则沿其边线必然有一不挖不填的点,即“零点”(如图1-4所示).图1-4 零点位置零点位置按下式计算:式中x1、x2 ——角点至零点的距离,m;h1、h2 ——相邻两角点的施工高度(均用绝对值),m;a —方格网的边长,m.确定零点的办法也可以用图解法,如图1-5所示.方法是用尺在各角点上标出挖填施工高度相应比例,用尺相连,与方格相交点即为零点位置。

方格网土方量计算

方格网土方量计算

方格网土方量计算
1.划定方格网区域:首先,需要在土方工程区域进行合适的划分,划
定出方格网的范围。

根据项目需要,可以根据工程地形和土方工程的特点,适当调整方格网的大小和形状。

2.设置基准点:在方格网的角点或中点位置确定基准点。

基准点的设
置应考虑方便测量高程和进行坐标计算。

3.进行高程测量:在每个方格的角点或中点位置,使用高程测量仪或
水准仪进行高程的测量。

测量时要保证仪器的准确性和稳定性。

可以使用
给定点的高程作为参考,或进行相对高程测量。

4.记录测量数据:将每个方格点的高程测量数据记录下来。

可以使用
表格进行整理记录,对每个方格点的坐标和高程进行标注。

5.计算方格网土方量:根据方格网的高程测量数据,可以计算出每个
方格内的土方量。

一般可以使用体积计算公式进行计算,即土方量等于方
格的面积乘以平均高程。

土方量=方格面积×平均高程
平均高程=(四个角点高程之和)/4
6.汇总计算结果:将每个方格的土方量进行汇总,得到整个方格网区
域的土方量。

可以使用表格或图表进行数据记录和结果汇总,方便后续的
土方计划和施工安排。

此外,方格网土方量计算还可以通过三维建模软件进行自动计算。


过将方格网的高程数据导入三维建模软件,可以自动生成方格区域内土方
的量,并进行可视化展示和分析。

总之,方格网土方量计算是一种实用的土方计算方法,可以准确快速
地计算出方格网区域内的土方量,为土方工程提供有效的测量和计算支持。

方格网法土方量计算及测量

方格网法土方量计算及测量

方格网法土方量计算及测量方格网法(Grid Method)是土方工程计算和测量中非常常用的方法之一、它适用于各种复杂地形和不规则土方形状的情况。

下面将详细介绍方格网法的原理及其应用。

方格网法的原理是将土方区域按照一定的尺寸进行网格化划分,然后在网格交叉点上进行土方的高程测量,逐个点进行面积计算,最后通过累加得到总土方量。

该方法的精度较高,并且适用于不同规模的土方工程。

方格网法的具体步骤如下:1.确定测量范围:首先,需要确定需要测量的土方区域的范围,并对其进行界定。

通常可以使用地图或者现场测量工具进行范围的界定。

2.网格划分:将测量范围按照一定的尺寸进行网格划分。

尺寸的选择应根据实际情况进行调整,一般是根据土方区域的大小和复杂程度来确定。

较小的尺寸可以提高精度,但需要测量的点较多,较大的尺寸可以减少测量点的数量,但精度可能有所降低。

3.测量高程:在网格交叉点上进行土方的高程测量。

可以使用各种测量工具,如水准仪、全站仪等。

测量时要注意测点的准确性和高程的精度。

4.计算面积:通过已测量的高程数据,计算每个网格的面积。

一般情况下,可以使用面积计算公式进行计算,如正方形的面积可以通过边长的平方来计算,其他形状可以使用对应的公式。

5.累加土方量:将每个网格的面积累加起来,得到总土方量。

可以根据需要将土方量进行单位转换,如从平方米转换为立方米或者其他单位。

方格网法的应用非常广泛,尤其在土方工程中被广泛使用。

它可以应用于各种不规则形状的土方区域,如山坡、堤坝等。

同时,方格网法还可以与其他测量方法结合使用,如全站仪、测量软件等,进一步提高测量的精度和效率。

方格网法的优势在于能够快速有效地对复杂土方区域进行测量和计算。

它不需要对整个土方区域进行完整的测量,而是通过网格划分和高程测量,将复杂的土方区域分解为简单的网格,从而减少了测量的工作量和时间。

在使用方格网法时需要注意的问题有:1.网格尺寸的选择:网格尺寸的选择要根据实际情况进行调整,既要考虑精度的要求,也要考虑测量的效率。

方格网挖填方量的计算公式

方格网挖填方量的计算公式

方格网挖填方量的计算公式在土方工程中,挖填方量是一个非常重要的参数,它直接影响着工程的施工进度和成本。

方格网挖填法是一种常用的土方量计算方法,通过将工程现场划分成等大小的方格网,然后对每个方格内的土方量进行测量和计算,最终得到整个工程的挖填方量。

本文将介绍方格网挖填法的计算公式和具体步骤。

方格网挖填法的计算公式如下:挖方量 = ∑(A×h)。

填方量 = ∑(A×h)。

其中,A为每个方格的面积,h为每个方格的高度,∑表示对所有方格进行求和。

具体步骤如下:1. 划分方格网。

首先,需要对工程现场进行测量,确定整个工程的范围和边界。

然后,将工程现场划分成等大小的方格网,每个方格的大小可以根据实际情况确定,一般为1米×1米或2米×2米。

2. 测量高程。

对每个方格内的土方进行高程测量,可以使用水准仪或全站仪进行测量。

将每个方格的高程记录下来,作为后续计算的数据。

3. 计算挖方量。

对每个方格的面积和高程进行计算,得到每个方格的挖方量。

然后将所有方格的挖方量进行求和,得到整个工程的挖方量。

4. 计算填方量。

同样的方法,对每个方格的面积和高程进行计算,得到每个方格的填方量。

然后将所有方格的填方量进行求和,得到整个工程的填方量。

通过以上步骤,就可以得到整个工程的挖填方量。

这种方法相对简单直观,适用于一些较小规模的土方工程。

但需要注意的是,方格网挖填法只能得到整个工程的总挖填方量,无法得到每个方格内的不均匀挖填情况,因此在实际应用中需要结合实际情况进行分析和调整。

除了方格网挖填法,还有一些其他常用的土方量计算方法,比如横断面法和三角测量法等。

每种方法都有其适用的场景和局限性,需要根据实际情况选择合适的方法进行计算。

总之,挖填方量的计算是土方工程中非常重要的一环,直接影响着工程的进度和成本。

方格网挖填法是一种常用的计算方法,通过简单的公式和步骤就可以得到整个工程的挖填方量。

希望本文对大家了解方格网挖填法有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.读识方格网图
方格网图由设计单位(一般在1:500的地形图上)将场地划分为边长a=10~40m的若干方格,与测量的纵横坐标相对应,在各方格角点规定的位置上标注角点的自然地面标高(H)和设计标高(Hn),如图1-3所示.
图1-3 方格网法计算土方工程量图
二、场地平整土方计算
(1)考虑的因素:
① 满足生产工艺和运输的要求;
② 尽量利用地形,减少挖填方数量;
③争取在场区内挖填平衡,降低运输费;
④有一定泄水坡度,满足排水要求.
⑤场地设计标高一般在设计文件上规定,如无规定:
A.小型场地――挖填平衡法;
B.大型场地――最佳平面设计法(用最小二乘法,使挖填平衡且总土方量最小)。

\
(2)初步标高(按挖填平衡)
场地初步标高:
H0=S(H11+H12+H21+H22)/4M
H11、H12、H21、H22 ——一个方格各角点的自然地面标高;
M——方格个数.
或:
H0=(∑H1+2∑H2+3∑H3+4∑H4)/4M
H1--一个方格所仅有角点的标高;
H2、H3、H4--分别为两个、三个、四个方格共用角点的标高.
(3)场地设计标高的调整
按泄水坡度、土的可松性、就近借弃土等调整.
按泄水坡度调整各角点设计标高:
①单向排水时,各方格角点设计标高为: Hn = H0 ±Li
②双向排水时,各方格角点设计标高为:Hn = H0± Lx ix± L yi y
3.计算场地各个角点的施工高度
施工高度为角点设计地面标高与自然地面标高之差,是以角点设计标高为基准的挖方或填方的施工高度.各方格角点的施工高度按下式计算:
式中 hn------角点施工高度即填挖高度(以“+”为填,“-”为挖),m;
n------方格的角点编号(自然数列1,2,3,…,n).
Hn------角点设计高程,
H------角点原地面高程.
4.计算“零点”位置,确定零线
方格边线一端施工高程为“+”,若另一端为“-”,则沿其边线必然有一不挖不填的点,即“零点”(如图1-4所示).
图1-4 零点位置
零点位置按下式计算:
式中 x1、x2 ——角点至零点的距离,m;
h1、h2 ——相邻两角点的施工高度(均用绝对值),m;
a —方格网的边长,m.
确定零点的办法也可以用图解法,如图1-5所示.
方法是用尺在各角点上标出挖填施工高度相应比例,用尺相连,与方格相交点即为零点位置。

将相邻的零点连接起来,即为零线。

它是确定方格中挖方与填方的分界线。

图1-5 零点位置图解法
5.计算方格土方工程量
按方格底面积图形和表1-3所列计算公式,逐格计算每个方格内的挖方量或填方量.
表1-3 常用方格网点计算公式
6.边坡土方量计算
场地的挖方区和填方区的边沿都需要做成边坡,以保证挖方土壁和填方区的稳定。

边坡的土方量可以划分成两种近似的几何形体进行计算:
一种为三角棱锥体(图1-6中①~③、⑤~⑾);
另一种为三角棱柱体(图1-6中④).
图1-6 场地边坡平面图
A 三角棱锥体边坡体积
式中l1——边坡①的长度;
A1 ——边坡①的端面积;
h2——角点的挖土高度;
m——边坡的坡度系数,m=宽/高.
B 三角棱柱体边坡体积
两端横断面面积相差很大的情况下,边坡体积
式中l4——边坡④的长度;
A1、A2、A0——边坡④两端及中部横断面面积.
7.计算土方总量
将挖方区(或填方区)所有方格计算的土方量和边坡土方量汇总,即得该场地挖方和填方的总土方量.
8.例题
【例1.1】某建筑场地方格网如图1-7所示,方格边长为20m×20m,填方区边坡坡度系数为1.0,挖方区边坡坡度系数为0.5,试用公式法计算挖方和填方的总土方量.
图1-7 某建筑场地方格网布置图
【解】(1)根据所给方格网各角点的地面设计标高和自然标高,计算结果列于图1-8中.
由公式1.9得:
h1=251.50-251.40=0.10m h2=251.44-251.25=0.19m
h3=251.38-250.85=0.53m h4=251.32-250.60=0.72m
h5=251.56-251.90=-0.34m h6=251.50-251.60=-0.10m
h7=251.44-251.28=0.16m h8=251.38-250.95=0.43m
h9=251.62-252.45=-0.83m h10=251.56-252.00=-0.44m
h11=251.50-251.70=-0.20m h12=251.46-251.40=0.06m
图1-8 施工高度及零线位置
(2)计算零点位置.从图1-8中可知,1—5、2—6、6—7、7—11、11—12五条方格边两端的施工高度符号不同,说明此方格边上有零点存在.
由公式1.10求得:
1—5线 x1=4.55(m)
2—6线 x1=13.10(m)
6—7线 x1=7.69(m)
7—11线 x1=8.89(m)
11—12线 x1=15.38(m)
将各零点标于图上,并将相邻的零点连接起来,即得零线位置,如图1-8.
(3)计算方格土方量.方格Ⅲ、Ⅳ底面为正方形,土方量为:
VⅢ(+)=202/4×(0.53+0.72+0.16+0.43)=184(m3)
VⅣ(-)=202/4×(0.34+0.10+0.83+0.44)=171(m3)
方格Ⅰ底面为两个梯形,土方量为:
VⅠ(+)=20/8×(4.55+13.10)×(0.10+0.19)=12.80(m3)
VⅠ(-)=20/8×(15.45+6.90)×(0.34+0.10)=24.59(m3)
方格Ⅱ、Ⅴ、Ⅵ底面为三边形和五边形,土方量为:
VⅡ(+)=65.73 (m3)
VⅡ(-)=0.88 (m3)
VⅤ(+)=2.92 (m3)
VⅤ(-)=51.10 (m3)
VⅥ(+)=40.89 (m3)
VⅥ(-)=5.70 (m3)
方格网总填方量:
∑V(+)=184+12.80+65.73+2.92+40.89=306.34 (m3)
方格网总挖方量:
∑V(-)=171+24.59+0.88+51.10+5.70=253.26 (m3)
(4)边坡土方量计算.如图1.9,④、⑦按三角棱柱体计算外,其余均按三角棱锥体计算, 可得:
V①(+)=0.003 (m3)
V②(+)=V③(+)=0.0001 (m3)
V④(+)=5.22 (m3)
V⑤(+)=V⑥(+)=0.06 (m3)
V⑦(+)=7.93 (m3)
图1-9 场地边坡平面图
V⑧(+)=V⑨(+)=0.01 (m3)
V⑩=0.01 (m3)
V11=2.03 (m3)
V12=V13=0.02 (m3)
V14=3.18 (m3)
边坡总填方量:
∑V(+)=0.003+0.0001+5.22+2×0.06+7.93+2×0.01+0.01=13.29(m3)
边坡总挖方量:
∑V(-)=2.03+2×0.02+3.18=5.25 (m3)
三、土方调配
土方调配是土方工程施工组织设计(土方规划)中的一个重要内容,在平整场地土方工程量计算完成后进行.编制土方调配方案应根据地形及地理条件,把挖方区和填方区划分成若干个调配
区,计算各调配区的土方量,并计算每对挖、填方区之间的平均运距(即挖方区重心至填方区重心的距离),确定挖方各调配区的土方调配方案,应使土方总运输量最小或土方运输费用最少,而且便于施工,从而可以缩短工期、降低成本.
土方调配的原则:力求达到挖方与填方平衡和运距最短的原则;近期施工与后期利用的原则.进行土方调配,必须依据现场具体情况、有关技术资料、工期要求、土方施工方法与运输方法,综合上述原则,并经计算比较,选择经济合理的调配方案.
调配方案确定后,绘制土方调配图如图1.10
.在土方调配图上要注明挖填调配区、调配方向、土方数量和每对挖填之间的平均运距.图中的土方调配,仅考虑场内挖方、填方平衡.A为挖方,B为填方.。

相关文档
最新文档