第一章晶体的结构
第一章晶体的结构
![第一章晶体的结构](https://img.taocdn.com/s3/m/8921202dbcd126fff7050bb8.png)
求晶面指数的方法
OA1 ra1, OA2 sa2 , OA3 ta3
h1 : h2 : h3 1 1 1 : : r s t
n
N
a3
O
d
a2
A2 A1
a1
设 a 1 , a 2 , a 3的末端上的格点分别在离原点距离h1d、h2d、
h3d的晶面上,这里 h1、h2、h3为整数 。 基矢
格点只在顶角上,内部和面上都不包含其他格点,整个原胞 只包含一个格点。
3、晶胞
原胞往往不能反映晶体的对称性
晶胞:能反映晶体对称性的最小结构重复单元
是原胞的数倍。晶胞的基矢用 a b c
原胞:
表示
a1 a2 a3
*几种典型晶体结构的原胞和晶胞
每种原子都各自构成一种相同的Bravais格子,这些Bravais 格子相互错开一段距离,相互套构而形成的格子。即复式 格子是由若干相同的Bravais格子相互位移套构而成的。
*几种典型的复式晶格
NaCl结构(Sodium Chloride structure ) 复式面心立方
例:MgO、KCl、AgBr 等
用来描述晶体中原子排列的紧密程度,原子排 列越紧密,配位数越大
简单立方(简立方)(simple cubic, sc)
配位数
6
晶胞内有 1 个原子
体心立方( body-centered cubic, bcc )
排列:ABABAB……
配位数
8
晶胞内有 2 个原子 具有体心立方结构的金属晶体:LI、Na、K、Fe等
重复周期为二层。形成AB AB AB· · · · · · 方式排列。
具有六角结构的金属: Mg,Co,Zn等
第一章 晶体结构(Crystal Structure)
![第一章 晶体结构(Crystal Structure)](https://img.taocdn.com/s3/m/314c7642a98271fe910ef974.png)
基元( basis)
构成晶体的基本结构单元。 基元是化学组成、空间结构、排列取向、周 围环境相同的原子、分子、离子或离子团的集 合。 可以是一个原子(如铜、金、银等),可以是 两个或两个以上原子(如金刚石、氯化钠、磷化 镓等),有些无机物晶体的一个基元可有多达 100个以上的原子,如金属间化合物NaCd2的基 元包含1000 多个原子,而蛋白质晶体的一个基 元包含多达10000 个以上的原子。
六角密堆积晶格结构是一个复式晶格
基元为两个原子 2 1 1 (0,0,0)、( , , ) 3 3 2
c
a
b
三、致密度
反映粒子排列的紧密程度,或也称堆积因 子。 定义: 晶胞内所有粒子的体积与晶胞体积之比。
例1:计算简单立方晶胞的致密度
解: 3 简单立方晶胞的体积为 a,
晶胞内有一个原子,原 子半径为 0 .5 a
a ( a a ) 1 2 3
就是布拉菲格子的晶胞。 晶胞基矢的选取使得平行六面体有尽可能多的相等的棱和 角,有尽可能多的直角,尽可能地反映空间点阵的对称性。 ,一般 晶胞体积为 。 a ( b c )
c构成的最小的平行六面体 以不共面的晶胞基矢 a 、b 、
如果将A、B两个原子看作为一 个基元,则点阵结构就如前页所示 ,格子就是布拉菲格子了。
二维蜂窝格子 (非布拉菲格子)
二、布拉菲格子的原胞与晶胞 a3 以不共面的原胞基矢 a 、 、 a 1 2 构成的最小的平行六面体就是
布拉菲格子的原胞。其体积为:
基矢的取法不唯一,故原胞的取法也不唯一。 无论如何选取,原胞均有相同的体积。 对于布拉菲格子,原胞只含有一个基元(格点)。
原胞体积为:
第一章 晶体结构
![第一章 晶体结构](https://img.taocdn.com/s3/m/28207502de80d4d8d15a4f74.png)
1.点对称操作
点对称操作:对称操作前后空间中至少保持一个不动的点的操作.
(1)n度旋转对称 2 n度旋转对称轴:晶体绕旋转 后仍能复原的轴. n 晶体只具有1、2、3、4、6度对称轴. (2)中心反演 中心反演的对称元素是一个点,中心反演操作用i表示. i操作作用 于(x,y,z)使之变换为(-x,-y,-z). 目录
(3)镜像(m,对称素为面) 镜像操作常用m表示,镜像的操作的对称元素是平面. 若选z=0为对称面,该操作使点(x,y,z)变换为(x,y,-z) (4)n度旋转反演对称 该操作由n度旋转对称和中心反演两个操作组成.晶体先绕一固定轴 旋转 2 n后,再经过中心反演,晶体能与自身重合.该轴称为n度旋 转反演轴. 晶体n度旋转反演对称中n只能取1,2,3,4,6中的数值,通常用 n 表示n度旋转反演轴. 注: a.1度旋转反演对称与中心反演i实质是同一操作. b. 2度旋转反演对称与镜像m实质是同一操作.
a
ak
a1 a 2 a j
a3
目录
ai
a-Fe的晶体结构
固体物理学原胞的体积: 3.面心立方(fcc)结构
Ω a1 (a2 a3 ) a
3
2
每个晶胞包含4个 格点.基矢为:
a a1 ( j k ) 2 a a2 ( k i ) 2 a a3 (i j ) 2
abc
900
5.四角系: a b c 900 (正方晶系) 6.六角晶系: 900 1200
abc
7.立方晶系: 900
abc
简立方(12),体心立方(13), 面心立方(14) 目录
晶体结构.01
![晶体结构.01](https://img.taocdn.com/s3/m/32ef122ccfc789eb172dc8f3.png)
1.1 几种常见的晶体结构
一、晶体的定义
晶 体: 组成固体的原子(或离子)在微观上的 排列具有长程周期性结构
非晶体:组成固体的粒子只有短程序(在近邻或 次近邻原子间的键合:如配位数、键长 和键角等具有一定的规律性),无长程 周期性 准 晶: 有长程的取向序,沿取向序的对称轴方向 有准周期性,但无长程周期性
第一章 晶体结构(crystal structure)
1-1 几种常见的晶体结构 1-2 晶格的周期性 1-3 晶向、晶面和它们的标志 1-4 对称性和Brawais点阵
1-5 倒点阵及其基本性质
1-6 晶体衍射物理基础
1
1-1几种常见的晶体结构
主要内容
1.1简立方晶格结构(cubic)
1) NaCl晶体的结构 氯化钠由Na+和Cl-结合而成 —— 一种典型的离子晶体 Na+构成面心立方格子;Cl-也构成面心立方格子
20
2) CsCl晶体的结构 CsCl结构 —— 由两个简单立方子晶格彼此沿立方体空间对 角线位移1/2 的长度套构而成
21
CsCl晶体
22
3) ZnS晶体的结构 —— 闪锌矿结构 立方系的硫化锌 —— 具有金刚石类似的结构 化合物半导体 —— 锑化铟、砷化镓、磷化铟
六角密排晶格的原胞基矢选取 —— 一个原胞中包含A层 和B层原子各一个 —— 共两个原子 k
定义:
i
j
原胞基矢为:
a1 , a2 , a3
a1 a2 a3
(四)晶格周期性的描述 —— 布拉伐格子
Bravais lattices
由于组成晶体的组分和 组分的原子排列方式的 多样性,使得实际的晶 体结构非常复杂。
第一章晶体结构
![第一章晶体结构](https://img.taocdn.com/s3/m/920e15d7a0c7aa00b52acfc789eb172ded6399db.png)
第一章晶体结构1 布喇菲点阵和初基矢量晶体结构的特点在于原子排列的周期性质。
布喇菲点阵是平移操作112233R n a n a n a =++所联系的诸点的列阵。
布喇菲点阵是晶体结构周期性的数学抽象。
点阵矢量112233R n a n a n a =++,其中,1n ,2n 和3n 均为整数,1a ,2a 和3a 是不在同一平面内的三个矢量,叫做布喇菲点阵的初基矢量,简称基矢。
初基矢量所构成的平行六面体是布喇菲点阵的最小重复单元。
布喇菲点阵是一个无限的分立点的列阵,无论从这个列阵中的哪个点去观察,周围点的分布和排列方位都是完全相同的。
对一个给定的布喇菲点阵,初级矢量可以有多种取法。
2 初基晶胞(原胞)初基晶胞是布喇菲点阵的最小重复单元。
初基晶胞必定正好包含布喇菲点阵的一个阵点。
对于一个给定的布喇菲点阵,初基晶胞的选取方式可以不只一种,但不论初基晶胞的形状如何,初基晶胞的体积是唯一的,()123c V a a a =⋅⨯。
3 惯用晶胞(单饱)惯用晶胞是为了反映点阵的对称性而选用的晶胞。
惯用晶胞可以是初基的或非初基的。
惯用晶胞的体积是初基晶胞体积的整数倍,c V nV =。
其中,n 是惯用晶胞所包含的阵点数。
确定惯用晶胞几何尺寸的数字叫做点阵常数。
4 维格纳—赛兹晶胞(W-S 晶胞)维格纳—赛兹晶胞是另一种能够反映晶体宏观对称性的晶胞,它是某一阵点与相邻阵点连线的中垂面(或中垂线)所围成的最小体积。
维格纳—赛兹晶胞是初基晶胞。
5 晶体结构当我们强调一个实际的晶体与布喇菲点阵的抽象几何图案的区别时,我们用“晶体结构”这个名词[1]。
理想的晶体结构是由相同的物理单元放置在布喇菲点阵的阵点上构成的。
这些物理单元称为基元,它可以是原子、分子或分子团(有时也可以指一组抽象的几何点)。
将基元平移布喇菲点阵的所有点阵矢量,就得到晶体结构,或等价地表示为基元十点阵=晶体结构[2]当选用非初基的惯用晶胞时,一个布喇菲点阵可以用带有基元的点阵去描写。
第一章 晶体结构(Crystal Structure)
![第一章 晶体结构(Crystal Structure)](https://img.taocdn.com/s3/m/314c7642a98271fe910ef974.png)
§1.3 晶格的周期性
一、布拉菲(Bravais)格子
布喇菲(A. Bravais),法国学者,1850年提出。 定义: 各晶体是由一些基元(或格点)按一定规则, 周期重 复排列而成。任一格点的位矢均可以写成形式 R n a n a n a n 1 n 2 n 3 、 、 a1 a2 。其中, 、 、 取整数, n 1 1 2 2 3 3 a Rn 为基矢, 为布拉菲格子的格矢,或称 正格矢。 3 能用上式表示的空间点阵称为布拉菲点阵,相应的 空间格子称为布拉菲格子.
§1.2 空间点阵
空间点阵定义: 晶体的内部结构可以概括为是由一些相同的 点子在空间有规则地作周期性的无限分布,这 些点子的总体称为点阵。 X射线衍射技术从实验上证明。
1、格点与基元 如果晶体是由完全相同的一种原子所组成 的,则格点代表原子或原子周围相应点的位置, 如铜的晶体结构。 点阵(lattice) 在空间任何方向 上均为周期排列的无 限个全同点的集合。
基元( basis)
构成晶体的基本结构单元。 基元是化学组成、空间结构、排列取向、周 围环境相同的原子、分子、离子或离子团的集 合。 可以是一个原子(如铜、金、银等),可以是 两个或两个以上原子(如金刚石、氯化钠、磷化 镓等),有些无机物晶体的一个基元可有多达 100个以上的原子,如金属间化合物NaCd2的基 元包含1000 多个原子,而蛋白质晶体的一个基 元包含多达10000 个以上的原子。
复式晶格:
如果晶体的基元中包含两种或两种以上的原 子。显然,每一种等价原子各构成与晶体基元代表 点的空间格子相同的网格 , 称为晶体的 子晶格 . 每 一种等价原子的子晶格具有相同的几何结构,整 个晶格可视为,子晶格相互位移套构而成。该晶 体晶格称为复式晶格. 例如:氯化钠晶体
第一章晶体结构
![第一章晶体结构](https://img.taocdn.com/s3/m/6390b231ff00bed5b9f31d73.png)
第一章晶体结构1-1. 试述晶态、非晶态、准晶、多晶和单晶的特征性质。
解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。
非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。
准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。
1-2. 晶格点阵与实际晶体有何区别和联系?解:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。
当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。
晶格点阵与实际晶体结构的关系可总结为:晶格点阵+基元=晶体结构1-3. 晶体结构可分为Bravais格子和复式格子吗?解:晶体结构可以分为Bravais格子和复式格子,当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表该原子,这种晶体结构就称为简单格子或Bravais格子;当基元包含2个或2个以上的原子时,各基元中相应的原子组成与格点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。
心四方解:(a)“面心+体心”立方不是布喇菲格子。
从“面心+体心”立方体的任一顶角上的格点看,与它最邻近的有12个格点;从面心任一点看来,与它最邻近的也是12个格点;但是从体心那点来看,与它最邻近的有6个格点,所以顶角、面心的格点与体心的格点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。
(b)“边心”立方不是布喇菲格子。
从“边心”立方体竖直边心任一点来看,与它最邻近的点子有8个;从“边心”立方体水平边心任一点来看,与它最邻近的点子也有8个。
虽然两者最邻近的点数相同,距离相等,但他们各自具有不同的排列。
晶体结构
![晶体结构](https://img.taocdn.com/s3/m/36a803b9e009581b6ad9eb46.png)
[011]
E
uur a3 uur
a2
A
uur a3 uur
a2
O
ur
a1 B
uuur uur uur
BE a2 a3
O
ur a1
另解:
C uuur ur
OB a1
D
uuur ur uur uur
OE a1 a2 a3
uuur uuur uuur uur uur BE OE OB a2 a3
晶体的物理性质在不同方向上存在差异.
例如:电导率、热学性质、折射率等 石墨沿不同晶向电导率不同 方解石沿不同晶向折射率不同
晶体的宏观特性是由晶体内部结构的周期性决 定的,即晶体的宏观特性是微观特性的反映。
1.2 密堆积
晶体中的原子(或离子)由于彼此之间的吸引力会 尽可能地靠近,以形成空间密堆积排列的稳定结构。
(5)CsCl结构(CsBr、CsI、TlCl等)
Cl
Cs
Cl-和Cs+分别组成简立方子晶格. 氯化钠结构由两个简立方子晶格沿体对角线位移1/2的 长度套构而成为复式格子。 一个晶胞包含一个Cl-和一个Cs+. 其原胞为简立方, ,包含一个Cl-和一个Cs+.
(6)金刚石结构(Si、Ge等)
(3)原胞(Primitive Cell)
这个体积最小的重复单元即为原胞,代表原胞三个边 的矢量称为原胞的基本平移矢量,简称基矢。
基矢通常用 a 1 , a 2 表, a示3
a3 a2
a1
(3)原胞(Primitive Cell)
原胞的体积:
Ω a1 a 2 a 3
a3
a2
原胞的特点:
原胞和晶胞是一致的
第一章 晶体结构
![第一章 晶体结构](https://img.taocdn.com/s3/m/88df9dec0975f46527d3e14e.png)
第一章 晶体结构本章首先从晶体结构的周期性出发,来阐述完整晶体中离子、原子或分子的排列规律。
然后,简略的阐述一下晶体的对称性与晶面指数的特征,介绍一下倒格子的概念。
§1.1晶体的周期性一、晶体结构的周期性1.周期性的定义从X 射线研究的结果,我们知道晶体是由离子、原子或分子(统称为粒子)有规律地排列而成的。
晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质成为晶体结构的周期性。
周期性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质成为晶体结构的周期性。
晶体结构的周期性可由X-Ray 衍射直接证实,这种性质是晶体最基本或最本质的特征。
(非晶态固体不具备结构的周期性。
非晶态的定义等略),在其后的学习中可发现,这种基本性质对固体物理的学习具有重要的意义或是后续学习的重要基础。
2.晶格 格点和点阵晶格:晶体中微粒重心,做周期性的排列所组成的骨架,微粒重心所处的位置称为晶格的格点(或结点)。
格点的总体称为点阵。
整个晶体的结构,可看成是由格点沿空间三个不同方向, 各自按一定距离周期性平移而构成。
每个平移的距离称为周期。
在某一特定方向上有一定周期,在不同方向上周期不一定相同。
晶体通常被认为具有周期性和对称性,其中周期性最为本质。
对称性其实质是来源于周期性。
故周期性是最为基本的对称性,即“平移对称性”(当然,有更为复杂或多样的对称性,但周期性或平移对称性是共同的)。
3.平移矢量和晶胞据上所述,基本晶体的周期性,我们可以在晶体中选取一定的单元,只要将其不断地重复平移,其每次的位移为a 1,a 2,a 3,就可以得到整个晶格。
则→1a ,→2a ,→3a 就代表重复单元的三个棱边之长及其取向的矢量,称为平移矢量,这种重复单元称为晶胞,其基本特性为:⑴晶胞平行堆积在一起,可以充满整个晶体⑵任何两个晶胞的对应点上,晶体的物理性质相同,即:()⎪⎭⎫⎝⎛+++=→→→332211anananrQrQ其中→r为晶胞中任一点的位置矢量。
第一章晶体的结构及晶体中的缺陷
![第一章晶体的结构及晶体中的缺陷](https://img.taocdn.com/s3/m/86775812a76e58fafab0039e.png)
ˆn c ˆn ˆh s
I
s
在晶体中反轴 对应的操作是先绕(轴)线旋转α度,然后再通过线上 (中心)点进行倒反(或先倒反再旋转),即能产生等价图形。这种连续性 操作的符号为 “ L( ) I ”, 其中“ ”为倒反, “L( )” 为旋转.
由此可知, 与Sn都属于复合对称操作,且都由旋转与另一相连的操 作组合而成。
小角度晶界: 晶粒位向差小于10度的晶界。其结构为位 错列,又分为对称倾侧晶界和扭转晶界。
5、晶界能
Gb W= ( A0 ln 0 ) 4 (1 ) b A0 1+ ln( ) 2r0 G 剪切模量;--失配度; b --柏氏矢量;
--泊松比; r0 与位错线有关的一个
除了对称元素和对称操作的符号和名称的不完全相同外,晶体的宏观 对称性与有限分子的对称性最本质的区别是:晶体的点阵结构使晶体 的宏观对称性受到了限制,这种限制主要表现在两方面: 在晶体的空间点阵结构中,任何对称轴(包括旋转轴、反轴以及以后 介绍的螺旋轴)都必与一组直线点阵平行,与一组平面点阵垂直(除 一重轴外);任何对称面(包括镜面及微观对称元素中的滑移面)都必 与一组平面点阵平行,而与一组直线点阵垂直。 晶体中的对称轴(包括旋转轴,反轴和螺旋轴)的轴次n并不是可以有 任意多重,n仅为1,2,3,4,6,即在晶体结构中,任何对称轴或轴性 对称元素的轴次只有一重、二重、三重、四重和六重这五种,不可 能有五重和七重及更高的其它轴次,这一原理称为“晶体的对称性 定律”。 所以,综合前面的讨论,由于点阵结构的限制,晶体中实际存在 的独立的宏观对称元素总共只有八种,见表2
1.3准晶体 准晶体是1984年科学家发现的一种新的物 质聚集形态。一种介于晶体和非晶体之间的
第一章 晶体结构
![第一章 晶体结构](https://img.taocdn.com/s3/m/35b92a4e852458fb770b5668.png)
19
1.3 对称性和布拉维格子的分类
二 基本对称操作
1 i,Cn,σ (m)
2 n度旋转 ─ 反演轴
绕μ轴旋转
2π后再进行中心反演:
n
1,2,3,,4, i, m 八种独立的对称操作。
宏观上看,晶体是有限的,描述晶体宏观对称性 不包含平移对称操作;但从微观上看,晶体是无 限的,为描述晶体结构的对称性,应加上平移对 称操作。
衍射斑点(峰) ↔ 晶格中的一族晶面 倒格子 ↔ 正格子 点子 ↔ 晶面
斑点分布 ↔ 晶格基矢 → 晶体结构
25
1.4 倒格子/倒易点阵
一 定义
设布拉维格子的基矢为:av1 ,av2 , av3
由
v Rl
=
l1av1
+
l2av2
+
l3av3 决定的格子称为正格子
(direct lattice),
满足
2vπ Gh
4 两点阵位矢的关系
v Rn
•
v Gh
=
2πm
m为整数
利用
aavvii
• •
v bvj bj
= =
2π 0
i= j i≠ j
( ) Rv n •Gvh = (l1av1 + l2av2 + l3av3 )•
v h1b1
+
v h2b2
+
v h3b3
= l1h1 • 2π + l2h2 • 2π + l3h3 • 2π
按坐标系的性质,晶体可划分为七大晶 系,每一晶系有一种或数种特征性的布拉 维原胞,共有14种布拉维原胞:
三斜(简单三斜) 单斜(简单、底心) 正交(简单、底心、体心、面心) 四方(简单、体心) 三角 六角 立方(简单、体心、面心)
固体物理基础第1章-晶体结构
![固体物理基础第1章-晶体结构](https://img.taocdn.com/s3/m/4316334148d7c1c708a1459c.png)
ˆ a3 ck
*
*
一个原胞中包含A层
和B层原子各一个 共两个原子
六角密排晶格的原胞和单胞一样
第一讲回顾
什么是固体? 研究固体的思路?复杂到简单
为什么从研究晶体开始? 原胞的选取唯一吗?
1-3 晶格的周期性
1.3.3 复式晶格
• 简单晶格:原胞中仅包含1个原子,所有原子的几何位置和化 学性质完全等价 • 复式晶格:包含两种或更多种等价的原子(或离子) * 两种不同原子或离子构成:NaCl, CsCl * 同种原子但几何位置不等价:金刚石结构、六方密排结构
管原子是金或银还是铜,不管原子之间间距的大小,那他们是完全相 同的,就是他们的结构完全相同!
数学方法抽象描写:不区分物理、化学成分,每个原子都是不可区分
的,只有原子(数学上仅仅是一个几何点)的相对几何排列有意义。
1-2 晶格
• 理想晶体:实际晶体的数学抽象 以完全相同的基本结构单元(基元)规则地,重复的以完 全相同的方式无限地排列而成 • 格点(结点):基元位置,代表基元的几何点 • 晶格(点阵):格点(结点)的总和
1-4 晶向和晶面
1.4.1 晶向
晶向指数
晶向指数
1-4 晶向和晶面
1.4.1 晶向 简单立方晶格的主要晶向
# 立方边OA的晶向
立方边共有6个不同的晶向<100>
# 面对角线OB的晶向
面对角线共有12个不同的晶向<110>
# 体对角线OC晶向
体对角线共有?个不同的晶向<111>
1-4 晶向和晶面
1-3 晶格的周期性
Wigner-Seitz 原胞
以某个格点为中心,作其与邻近格点的中垂面,这些 中垂面所包含最小体积的区域为维格纳-赛兹原胞
第一章晶体结构(一结晶学基础知识)精选全文完整版
![第一章晶体结构(一结晶学基础知识)精选全文完整版](https://img.taocdn.com/s3/m/c74cf33576232f60ddccda38376baf1ffc4fe3db.png)
2. 晶体结构与空间点阵
晶体格子:把晶体中相邻质点的中心用直线联起来 构成的空间格架即晶体格子,简称晶格。
结点:质点的中心位置称为晶格的结点。 晶体点阵:由这些结点构成的空间总体称为晶体点
阵(空间格子或空间点阵)。结点又叫阵点。点阵 中结点仅有几何意义,并不真正代表任何质点。如 图1-1所示.
晶向族:晶体中原子排列周期相同的所有晶向为一个 晶向族,用〈uvw〉表示。 同一晶向族中不同晶向的指数,数字组成相同。 已知一个晶向指数后,对u、v、w进行排列组合, 就可得出此晶向族所有晶向的指数。如〈111〉晶向 族的8个晶向指数代表8个不同的晶向;〈110〉晶向 族的12个晶向指数代表12个不同的晶向。
图1-2 晶胞坐标及晶胞参数
4.晶系与点阵类型
晶格特征参数确定之后,晶胞和由它表示的晶格也随之确定, 方法是将该晶胞沿三维方向平行堆积即构成晶格。
空间点阵中所有阵点的周围环境都是相同的,或者说,所有阵 点都具有等同的晶体学位置。布拉菲(Bravais)依据晶格特征参数 之间关系的不同,把所有晶体的空间点阵划归为7类,即7个晶系, 见表1-1。按照阵点(结点)在空间排列方式不同,有的只在晶胞的 顶点,有的还占据上下底面的面心,各面的面心或晶胞的体心等位 置,7个晶系共包括14种点阵,称为布拉菲点阵(Bravais lattice )。
晶向:点阵可在任何方向上分解为相互平行的直线组, 位于一条直线上的结点构成一个晶向。
2.六方晶系的晶面指数和晶向指数 3.晶向与晶面的关系
1.晶面、晶向及其表征
晶面:晶体点阵在任何方向上可分解为相互平行的结点平面,这样 的结点平面称为晶面。 晶面上的结点,在空间构成一个二维点阵。 同一取向上的晶面,不仅相互平行、间距相等,而且结点的分 布也相同。不同取向的结点平面其特征各异。 任何一个取向的一系列平行晶面,都可以包含晶体中所有的质 点。
晶体结构
![晶体结构](https://img.taocdn.com/s3/m/cf28baca9ec3d5bbfd0a743c.png)
§1.1 晶格的周期性
一、布拉菲(Bravais)格子
布喇菲(A. Bravais),法国学者,1850年提出。
定义:
各晶体是由一些基元(或格点)按一定规则, 周期重
复排列而成。任一格点的位矢均可以写成形式
Ra为n3 基 n矢1a1, n。2为Ra其2n 布中n拉3a,3菲、格子、的取n格1整矢n数2,,n或3 称、正、格矢a。1
3、金刚石结构( diamond ):
碳的同素异构体。 经琢磨后的金刚石又称钻石。 无色透明、有光泽、折光力极强,最硬的物质。
金刚石结构是复式晶格结构,基元中有两个碳原子A、B, 布拉菲格子是面心立方。
或可视为两个面心立方子晶格,沿体对角线平移1/4 体对角 线长度套构而成,如图所示.
金刚石晶体的配位数是4, 这4个碳原子构成一个 正四面体,碳-碳键角为109º28´。
基元是化学组成、空间结构、排列取向、周 围环境相同的原子、分子、离子或离子团的集 合。
可以是一个原子(如铜、金、银等),可以是 两个或两个以上原子(如金刚石、氯化钠、磷化 镓等),有些无机物晶体的一个基元可有多达 100个以上的原子,如金属间化合物NaCd2的基 元包含1000 多个原子,而蛋白质晶体的一个基 元包含多达10000 个以上的原子。
具有金刚石结构的晶体有: 金刚石、元素半导体Si、Ge ,灰锡等。
4、闪锌矿(立方ZnS)结构:( cubic zinc sulfide )
与金刚石结构类似,金刚石的基元是化学性质相同的两个 原子A、B ,而闪锌矿结构的基元是两个不相同的原子.
闪锌矿结构也可视为是两个不同原子的面心立方子晶格, 沿体对角线平移1/4 体对角线长度套构而成.
例如,简立方晶格的几个晶列如图所示。
第一章晶体结构
![第一章晶体结构](https://img.taocdn.com/s3/m/d975d701eff9aef8941e064c.png)
NaCl结构
每个原胞中含两个或多 个原子,且原子不等价
复式晶格
简单晶格
举例 简立方晶格, 体心立方晶格, 面心立方晶格等
特征:每个原胞中只含一 个原子,且所有原子等价
复式晶格
举例 金刚石, 六方密排, 闪锌矿结构等 特征:每个原胞中含两个 或多个原子,且原子不等 价
复式晶格与简单晶格结构有何联系?
• 1.4金刚石结构(Diamond) • 1.5化合物的晶格结构(NaCl,CsCl,C……)
基本概念
晶格(lattice)是指晶体中原子排列的具体形式。
具有不同晶格是指原子规则排列的形式不同;
具有相同晶格是指原子排列形式相同而原子 间距不同。
1.1 简立方晶格
结构特征
原子球占据立方 体的8个顶点; 配位数为6; 立方体边长a定 义为晶格常数。
3、 六角密排与立方密排密堆结构图示
• 第一步:将全同小球 平铺成密排面(A 层); 第二步:第二层密排 面的球心对准A层的 球隙,即B层; A 第三步:第三层密排 B 面放在B层的球隙上, 可形成两种不同的晶 格,即六角密排和立 方密排结构。 六角密排
•
•
立方密排(面心 立方)(A-B-C)
(-A-B-)
•
S原子 Zn原子
§1-2晶格的周期性(periodicity)
主要内容
• (一)原胞与基矢(primitive cell and unit vitor) • (二)晶胞(crystal unit cell) • (三)简单晶格与复杂晶格(crystal lattice) • (四)布拉伐格子(Bravais lattice)
的对称性高于平行六面体原胞。
(二)晶胞(晶格学单胞 crystal unit cell) 1、定义:晶体学通常选取较大的周期单元来研
第一章 晶体结构
![第一章 晶体结构](https://img.taocdn.com/s3/m/e3db6ec3b9f3f90f76c61bf4.png)
面心立方密排方式
间隙(Interstice):
四、八面体间隙(tetrahedral and octahedral interstice) fcc,hcp 间隙为正多面体,且八面体和四面体间隙相互独立 bcc间隙不是正多面体,四面体间隙包含于八面体间隙之中
五.晶面与晶向
1.晶面:同处一个结点面内的所有阵点构成的阵点面。
简单晶胞(初级晶胞):只在平行六面体每个顶角上有一阵点; 复杂晶胞:除在顶角外,在体心、面心或底心上也有阵点。
4.晶体结构的分类
(1)七个晶系:立方、正方、正交、三方、
六方、单斜、三斜
(2)14种布拉菲格子 (3)32种点群(point group)
点群—晶体中所有点对称元素的集合。根据晶体外 形对称性,共有32种点群。
B b
A a
等效晶面族{h k l}中的晶面数:
a)hkl三个数不等,且都≠0,则此晶面族中有3!×4=24组; 如{123} b)hkl有两个数字相等 且都≠0,则有:(3!/2!)×4=12组; 如{112} c)hkl三个数相等,则有:(3!/3!)×4=4组; 如{111} d)hkl有一个为0,应除以2,则有(3!/2)×4=12组; 如{120} 有二个为0,应除以22,则有(3!/2!22)×4=3组; 如{100}
立方晶系
d hkl
d hkl
a h k l
2 2 2
正交晶系
1 h k l a b c
2 2 2
六方晶系
d hkl
1 4 h hk k l 2 3 a c
2 2 2 2
立方晶系:
3.晶向(晶列):阵点连线的指向。相互平行的阵点
晶体的结构
![晶体的结构](https://img.taocdn.com/s3/m/5750298dec3a87c24028c463.png)
富勒
克罗托受建筑学家理查德· 巴克明斯特· 富勒设计的美国万国博 览馆球形圆顶薄壳建筑的启发,认为C60可能具有类似球体的结构, 因此将其命名为buckminster fullerene(巴克明斯特· 富勒烯,简称 富勒烯)。
惠特尼美国艺术博物馆
富勒烯是一系列纯碳组成的原子簇的总称。它们是由非 平面的五元环、六元环等构成的封闭式空心球形或椭球形 结构的共轭烯。
准晶体:
准晶体是一种介于晶体和非晶体之间的固体。准晶体具有 完全有序的结构,然而又不具有晶体所应有的平移对称性,因 而可以具有晶体所不允许的宏观对称性。 1984年Shechtman(谢切 曼)等人用快速冷却方法 制备了Al4Mn准晶体—— 其电子衍射斑具有明显的 五次对称性(五重旋转对 称)但并无平移周期性的 合金相,称为准晶体。 晶体中不存在五重旋 转对称轴。
第二章 (二)晶体中原子靠什么力结合在一起? 晶体的结合 (三)绝对温度(0K)下原子是不动的,加热后, 原子在平衡态下振动。 第三章
晶格振动和晶体热力 学性质 Nhomakorabea(四)缺陷对晶体性质的影响。
第四章
晶体的缺陷
(五)晶体中电子的行为——能带理论。 第五、六章
§1.1 晶体的共性
(一) 晶体结构
固体
晶体 单晶体
配位数: 12
(四) 立方密排(面心立方堆积) 原子球排列之二 ABCABC…—— 面心立方晶格
B层原子球排列
C层原子球排列
原子球排列 —— ABC ABC ABC …… 面心立方晶格结构晶体
Cu、Ag、Au、Al
晶胞中原子数目: 4。 在体心立方晶胞中,每 个角上的原子在晶格中同 时属于8个相邻的晶胞, 每个角上的原子属于一个 晶胞1/8。面上一个原子属 于两个晶胞,每个面上的 原子属于一个晶胞1/2 。 致密度: 0.74 配位数: 12
1.晶体结构
![1.晶体结构](https://img.taocdn.com/s3/m/26531b2102020740be1e9b94.png)
晶体结构=空间点阵+基元
Ci (i)、 CS (m)和 S4( 4 )
四、点群(32种) Schö nflies符号:用主轴+脚标表示 主轴:Cn、Dn、Sn、T和O Cn:n次旋转轴 Sn : n次旋转-反映轴 Dn:n次旋转轴加上一个与之垂直的二次轴 T: 四面体群 O: 八面体群 脚标:h、v、d h:垂直于n次轴(主轴)的水平面为对称面 v:含n次轴(主轴)在内的竖直对称面 d:垂直于主轴的两个二次轴的平分面为对称面
第一章 晶体结构
§1.1 几种常见的晶体结构
一、晶体的定义
晶 体: 组成固体的原子(或离子)在微观上的
排列具有长程周期性结构 非晶体:组成固体的粒子只有短程序,但无长程
周期性 准 晶: 有长程的取向序,沿取向序的对称轴方向 有准周期性,但无长程周期性
规则网络
无规网络
Al65Co25Cu10合金 准 晶
体心立方的基矢和Wigner-Seitz原胞
面心立方基矢、原胞和Wigner-Seitz原胞
4. 晶格的分类 简单晶格:每个晶格原胞中只含有一个原子, 晶格中所有原子在化学、物理和几何环境 上都是完全等同的。 例:Na、Cu、Al等晶格均为简单晶格
复式晶格:每个晶格原胞中含有两个或两个以上的 原子或离子。 简单晶格必须由同种原子组成;反之,由同种原子组成 的晶格却不一定是简单晶格。 如:金刚石、Mg、Zn 、 C60和NaCl等晶格都是复式晶格
b3 a1 a 2 a 3 va
2 a 2 a 3
倒格矢:G n n1 b1 n2 b 2 n3 b3 , n1、n2、n3都是整数。 倒格子原胞体积:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章晶体的结构
测试题
1.以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数目之比.
2.解理面是面指数低的晶面还是面指数高的晶面?为什么?
3.与晶列垂直的倒格面的面指数是什么?
4.高指数的晶面族与低指数的晶面族相比,对于同级衍射,哪一晶面族衍射光弱?为什么?
5.以刚性原子球堆积模型,计算以下各结构的致密度分别为:
(1)简立方,π /6 ;(2)体心立方,;
(3)面心立方,;(4)六角密积,;
(5)金刚石结构,。
6.试证面心立方晶格子是体心立方;体心立方的倒格子是面心立方.
7.六角晶胞的基矢. 求其倒格基矢。
8.求晶格长数为a的面心立方和体心立方晶体晶面族的面间距.
第一章晶体的结构
习题解答
1.以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数目之
比.
[解答]
设原子的半径为R,体心立方晶胞的空间对角线为4R,胞的边长为,晶胞的体积为,一个晶胞包含两个原子,一个原子占的体积为,单位体
积晶体中的原子数为;面心立方晶胞的边长为 ,晶胞的体积为
,一个晶胞包含四个原子,一个原子占的体积为,单位体积晶体中的原子数为 . 因此,同体积的体心和面心立方体晶体中原子数之比为:=0.909。
2.解理面是面指数低的晶面还是面指数高的晶面?为什么?
[解答]
晶体容易沿解理面劈裂,说名平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大。
因为面间距大的晶体晶面族的指数低,所以解理面是面指数低的晶面。
3.与晶列垂直的倒格面的面指数是什么?
[解答]
正格子与倒格子互为倒格子。
正格子晶面与倒格式
垂直,则倒格晶面与正格
矢
正交。
即晶列与倒格面垂直。
4.高指数的晶面族与低指数的晶面族相比,对于同级衍射,哪一晶面族衍射光弱?为什么?
[解答]
对于同级衍射,高指数的晶面族衍射光弱,低指数的晶面族衍射光强。
低指数的晶面族间距大,晶面上的原子密度大,这样的晶面对射线的反射(衍射)作用强。
相反,高指数的晶面族面间距小,晶面上的原子密度小。
另外,由布拉格反射公式
2dh k l s inθ=nλ
可知,面间距d h k l大的晶面,对应一个小的光的掠射角θ面间距d h k l小的晶面,对应一个大的光的掠射角θ。
θ越大,光的透射能力就越强,反射能力就越弱。
5.以刚性原子球堆积模型,计算以下各结构的致密度分别为:
(1)简立方,π /6 ;(2)体心立方,;
(3)面心立方,;(4)六角密积,;
(5)金刚石结构,。
[解答]
设想晶体是由刚性原子球堆积而成。
一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度。
设n为一个晶胞中刚性原子球数,r表示刚性原子球半径,表示晶胞体积,则致密度
(1)对简立方晶体,任一个原子有6个最近邻,若原子以刚球堆积,如图1·2所示,中心在1,2,3,4处的原子球将依次相切。
因为a=2r,V=a3,晶胞内包含1个原子,所以
(2)对体心立方晶体,任一个原子有8个最近邻,若原子以刚性球堆积,如图1·2所示,体心位置O的原子与处在8个角顶位置的原子球相切。
因为晶胞空间对角线的长
为,晶胞内包含2个原子,所以
(3)对面立方晶体,任一个原子有12个最近邻,若以刚性球堆积,如图1.4所示,中心
位于角顶的原子与相邻的3个面心原子球相切。
因为1个晶胞内包含4个原子,所以
(4)对六角密积结构,任一个原子有12个最近邻,若以刚性球堆积,如图1.5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切,晶胞内的原子O与中心在1, 3,4,5,7,8处的原子相切,即O点与中心在5,7,8处的原子分布在正四面体的顶上。
因为四面体的高:
晶胞体积:
一个晶胞内包含两个原子,所以:
(5)对金刚石结构,任一个原子有4个最近邻,若原子以刚性球堆积,如图1.7所示,中心在空间对角线四分之一处的O原子与中心在1,2,3,4处的面心原子相切。
因为
晶胞体积
一个晶胞内包含8个原子,所以
6.试证面心立方晶格子是体心立方;体心立方的倒格子是面心立方.
[解答]
设与晶轴平行的单位矢量分别为面心立方正格子的原胞基矢可取为
由倒格矢公式
可得其倒格矢为
设与晶轴平行的单位矢量分别为,体心立方正格子的原胞基矢可取为
以上三式与面心立方的倒格基矢相比较,两者只相差一常数公因子,这说明面心立方的倒格子是体心立方。
将体心立方正格子原胞基矢代入倒格矢公式
则得其倒格子基矢为
可见体心立方的倒格子是面心立方。
7.六角晶胞的基矢. 求其倒格基矢。
[解答]
晶胞体积为
其倒格矢为
8.求晶格长数为a的面心立方和体心立方晶体晶面族的面间距.
[解答]
面心立方正格子的原胞基矢为
由
可得其倒格基矢为
倒格矢
根据《固体物理教程》(1.16)式
得面心立方晶体晶面族的面间距
体心立方正格子原胞基矢可取为
其倒格子基矢为:
则晶面族的面间距为。