第一章 晶体结构d

合集下载

第一章晶体的结构

第一章晶体的结构

求晶面指数的方法
OA1 ra1, OA2 sa2 , OA3 ta3
h1 : h2 : h3 1 1 1 : : r s t
n
N
a3
O
d
a2
A2 A1
a1
设 a 1 , a 2 , a 3的末端上的格点分别在离原点距离h1d、h2d、
h3d的晶面上,这里 h1、h2、h3为整数 。 基矢
格点只在顶角上,内部和面上都不包含其他格点,整个原胞 只包含一个格点。
3、晶胞
原胞往往不能反映晶体的对称性
晶胞:能反映晶体对称性的最小结构重复单元
是原胞的数倍。晶胞的基矢用 a b c
原胞:
表示
a1 a2 a3
*几种典型晶体结构的原胞和晶胞
每种原子都各自构成一种相同的Bravais格子,这些Bravais 格子相互错开一段距离,相互套构而形成的格子。即复式 格子是由若干相同的Bravais格子相互位移套构而成的。
*几种典型的复式晶格
NaCl结构(Sodium Chloride structure ) 复式面心立方
例:MgO、KCl、AgBr 等
用来描述晶体中原子排列的紧密程度,原子排 列越紧密,配位数越大
简单立方(简立方)(simple cubic, sc)
配位数
6
晶胞内有 1 个原子
体心立方( body-centered cubic, bcc )
排列:ABABAB……
配位数
8
晶胞内有 2 个原子 具有体心立方结构的金属晶体:LI、Na、K、Fe等
重复周期为二层。形成AB AB AB· · · · · · 方式排列。
具有六角结构的金属: Mg,Co,Zn等

第一章 晶体结构(Crystal Structure)

第一章 晶体结构(Crystal Structure)

基元( basis)
构成晶体的基本结构单元。 基元是化学组成、空间结构、排列取向、周 围环境相同的原子、分子、离子或离子团的集 合。 可以是一个原子(如铜、金、银等),可以是 两个或两个以上原子(如金刚石、氯化钠、磷化 镓等),有些无机物晶体的一个基元可有多达 100个以上的原子,如金属间化合物NaCd2的基 元包含1000 多个原子,而蛋白质晶体的一个基 元包含多达10000 个以上的原子。
六角密堆积晶格结构是一个复式晶格
基元为两个原子 2 1 1 (0,0,0)、( , , ) 3 3 2
c
a
b
三、致密度
反映粒子排列的紧密程度,或也称堆积因 子。 定义: 晶胞内所有粒子的体积与晶胞体积之比。
例1:计算简单立方晶胞的致密度
解: 3 简单立方晶胞的体积为 a,
晶胞内有一个原子,原 子半径为 0 .5 a
a ( a a ) 1 2 3
就是布拉菲格子的晶胞。 晶胞基矢的选取使得平行六面体有尽可能多的相等的棱和 角,有尽可能多的直角,尽可能地反映空间点阵的对称性。 ,一般 晶胞体积为 。 a ( b c )
c构成的最小的平行六面体 以不共面的晶胞基矢 a 、b 、
如果将A、B两个原子看作为一 个基元,则点阵结构就如前页所示 ,格子就是布拉菲格子了。
二维蜂窝格子 (非布拉菲格子)
二、布拉菲格子的原胞与晶胞 a3 以不共面的原胞基矢 a 、 、 a 1 2 构成的最小的平行六面体就是
布拉菲格子的原胞。其体积为:
基矢的取法不唯一,故原胞的取法也不唯一。 无论如何选取,原胞均有相同的体积。 对于布拉菲格子,原胞只含有一个基元(格点)。
原胞体积为:

第一章 晶体结构基础

第一章 晶体结构基础

第一章晶体结构基础1-1 NaCl晶体结构中的每个Na+离子周围与它最接近的且距离相等的Na+离子共有多少个?1-2 天然或绝大部分人工制备的晶体都存在各种缺陷,例如,在某种NiO晶体中就存在如下图所示的缺陷:一个Ni+空缺,另有两个Ni2+被两个Ni3+所取代。

其结果晶体仍然呈电中性,但化合物中Ni∶O的个数比发生了变化。

某种NiO样品组O,试计算该晶体中Ni3+与Ni2+的离子数之比。

成为Ni0.971-3 Ni单晶属立方最紧密堆积结构,其晶胞的一面如下图所示:A:一个晶胞中有几个Ni原子?B:已知Ni原子的半径为125pm,其晶胞的边长是多少?1-4 铜单晶属立方最紧密堆积结构,其晶胞的边长为361pm。

计算Cu原子的半径及其密度(Cu的原子量为63.55)。

1-5金属铝属立方晶系,其边长为405pm。

假定它的密度是 2.70g/cm3,原子量为26.98,确定晶胞的类型(简单立方、体心立方或面心立方)。

1-6 某金属单质具有体心立方结构,晶胞的边长为286pm,密度是7.92g/cm3,计算该金属的原子量。

1-7 定义下述术语,并注意它们之间的联系和区别:晶系;点群;空间群;平移群;空间点阵1-8 四方晶系晶体a=b,c=1/2a。

一晶面在X、Y.Z轴上的截距分别为2a, 3b 和6c。

给出该晶面的密勒指数。

1-9 在立方晶系中画出下列晶面:a)(001)b)(110)c)(111)1-10 在上题所画的晶面上分别标明下列晶向:a(210) b(111) c(101)1-11 立方晶系组成{111}单形的各晶面构成一个八面体,请给出所有这些晶面的密勒指数。

1-12 a≠b≠c α=β=γ=90℃的晶体属什么晶系?a≠b≠c α≠β≠γ≠90℃的晶体属什么晶系?你能否据此确定这二种晶体的布拉维点阵?1 –11 图示单斜格子的(010)面上的结点排布。

试从中选出单位平行六面体中的a和c。

1 –12 为什么等轴晶系有原始、面心、体心而无底心格子?1 –13 为什么在单斜晶系的布拉维格子中有底心C格子而无底心B格子?1-14 试从立方面心格子中划分出一三方菱面体格子,并给出其晶格常数。

固体物理学_答案(黄昆 原著 韩汝琦改编)

固体物理学_答案(黄昆 原著  韩汝琦改编)

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

[理学]1-1 第一章 晶体的结构布拉伐格子、原胞_OK

[理学]1-1 第一章 晶体的结构布拉伐格子、原胞_OK
列构成的固体,非晶态固体又叫做过冷液体,它们在凝结过程 中不经过结晶(即有序化)的阶段,非晶体中原子(分子)间 的结合是无规则的。
Be2O3晶体内部结构
Be2O3玻璃内部结构
4
多晶体:由两个以上的同种或异种单晶组成的结晶物质。
其中各单晶通过晶界结合在一起的。多晶由成千上万的晶粒构 成,晶粒的尺寸大多在厘米级至微米级范围内变化,多晶没有 单晶所特有的各向异性特征。
液晶:一些晶体当加热至某一温度时转变为介于固体与液体
之间的物质,在一维或二维方向上具有长程有序。当继续加热 至温度时,转变为液体。
5
准晶体:1984年Shechtman等人用快速冷却方法制备的
AlMn准晶体,用XRD测得一种介于晶体和非晶体结构之间的 物质结构。
6
最简单、最常见的晶格结构
原子的正方堆积
17
原胞
• 最小的重复单元,包含一个格点 • 用格矢平移原胞,将填满整个空间,没有遗漏,
也没有重叠 • 选取方法可以不只是一种,但体积相同 • 三维 • 二维 • 一维
18
最小重复单元
19
原胞的多重选择
思考:有没有一种原胞,它的选取是唯一的?
20
Wigner-Seitz原胞
• 以某个格点为中心,作其与邻近格点的中垂面, 这些中垂面所包含最小体积的区域
结点的总和基元点阵晶体结构结构具体用没有大小的几何点来代表基元这种点在空间排列成阵列点阵基元平移没有转动地放在点阵上晶体结构基元将填满所有空间没有重叠也没有遗漏思考
第一章、晶体的结构
1
晶体特征
• 物理:固定熔点,长程有序,解理性 • 几何:凸多面体,晶棱平行,晶面面积、夹角
守恒
2
3

固体物理参考答案(前七章)

固体物理参考答案(前七章)

固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。

第一章晶体结构

第一章晶体结构

第一章晶体结构1 布喇菲点阵和初基矢量晶体结构的特点在于原子排列的周期性质。

布喇菲点阵是平移操作112233R n a n a n a =++所联系的诸点的列阵。

布喇菲点阵是晶体结构周期性的数学抽象。

点阵矢量112233R n a n a n a =++,其中,1n ,2n 和3n 均为整数,1a ,2a 和3a 是不在同一平面内的三个矢量,叫做布喇菲点阵的初基矢量,简称基矢。

初基矢量所构成的平行六面体是布喇菲点阵的最小重复单元。

布喇菲点阵是一个无限的分立点的列阵,无论从这个列阵中的哪个点去观察,周围点的分布和排列方位都是完全相同的。

对一个给定的布喇菲点阵,初级矢量可以有多种取法。

2 初基晶胞(原胞)初基晶胞是布喇菲点阵的最小重复单元。

初基晶胞必定正好包含布喇菲点阵的一个阵点。

对于一个给定的布喇菲点阵,初基晶胞的选取方式可以不只一种,但不论初基晶胞的形状如何,初基晶胞的体积是唯一的,()123c V a a a =⋅⨯。

3 惯用晶胞(单饱)惯用晶胞是为了反映点阵的对称性而选用的晶胞。

惯用晶胞可以是初基的或非初基的。

惯用晶胞的体积是初基晶胞体积的整数倍,c V nV =。

其中,n 是惯用晶胞所包含的阵点数。

确定惯用晶胞几何尺寸的数字叫做点阵常数。

4 维格纳—赛兹晶胞(W-S 晶胞)维格纳—赛兹晶胞是另一种能够反映晶体宏观对称性的晶胞,它是某一阵点与相邻阵点连线的中垂面(或中垂线)所围成的最小体积。

维格纳—赛兹晶胞是初基晶胞。

5 晶体结构当我们强调一个实际的晶体与布喇菲点阵的抽象几何图案的区别时,我们用“晶体结构”这个名词[1]。

理想的晶体结构是由相同的物理单元放置在布喇菲点阵的阵点上构成的。

这些物理单元称为基元,它可以是原子、分子或分子团(有时也可以指一组抽象的几何点)。

将基元平移布喇菲点阵的所有点阵矢量,就得到晶体结构,或等价地表示为基元十点阵=晶体结构[2]当选用非初基的惯用晶胞时,一个布喇菲点阵可以用带有基元的点阵去描写。

固体物理课件 第一章 晶体结构

固体物理课件 第一章 晶体结构

晶面指数(122)
a
c b
(100)
(110)
(111)

在固体物理学中,为了从本质上分析固体的性质,经常要研究晶体中的 波。根据德布罗意在1924年提出的物质波的概念,任何基本粒子都可以 看成波,也就是具备波粒二象性。这是物理学中的基本概念,在固体物 理学中也是一个贯穿始终的概念。

在研究晶体结构时,必须分析x射线(电磁波)在晶体中的传播和衍射 在解释固体热性质的晶格振动理论中,原子的振动以机械波的形式在晶 体中传播;
1 3 Ω = a1 ⋅ a 2 × a 3 = a 2
(
)

金刚石
c
c
面心立方

钙钛矿 CaTiO3 (ABO3)
Ca
O
Ti
简单立方
所有的格点都分布在相互平行的一族平面 上,且每个平面上都有格点分布,这样的 平面称为晶面,该平面组称为晶面族。
特征: (1)同一晶面族中的晶面相互平行; (2)相邻晶面之间的间距相等;(面间距是
至今为止,晶体内部结构的观测还需要依靠衍射现象来进行。
(1)X射线 -由高速电子撞击物质的原子所产生的电磁波。 早在1895年伦琴发现x射线之后不久,劳厄等在1912年就意识到X射线的 波长在0.1nm量级,与晶体中的原子间距相同,晶体中的原子如果按点阵排 列,晶体必可成为X射线的天然三维衍射光栅,会发生衍射现象。在 Friedrich和Knipping的协助下,照出了硫酸铜晶体的衍射斑,并作出了正确 的理论解释。随后,1913年布拉格父子建立了X射线衍射理论,并制造了第 一台X射线摄谱仪,建立了晶体结构研究的第一个实验分析方法,先后测定 了氯化钠、氯化钾、金刚石、石英等晶体的结构。从而历史性地一举奠定 了用X射线衍射测定晶体的原子周期性长程序结构的地位。 时至今日,X射线衍射(XRD)仍为确定晶体结构,包括只具有短程序的无 定型材料结构的重要工具。

第一章晶体结构

第一章晶体结构

第一章晶体结构1-1. 试述晶态、非晶态、准晶、多晶和单晶的特征性质。

解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。

非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。

准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。

另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。

1-2. 晶格点阵与实际晶体有何区别和联系?解:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。

当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。

晶格点阵与实际晶体结构的关系可总结为:晶格点阵+基元=晶体结构1-3. 晶体结构可分为Bravais格子和复式格子吗?解:晶体结构可以分为Bravais格子和复式格子,当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表该原子,这种晶体结构就称为简单格子或Bravais格子;当基元包含2个或2个以上的原子时,各基元中相应的原子组成与格点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。

心四方解:(a)“面心+体心”立方不是布喇菲格子。

从“面心+体心”立方体的任一顶角上的格点看,与它最邻近的有12个格点;从面心任一点看来,与它最邻近的也是12个格点;但是从体心那点来看,与它最邻近的有6个格点,所以顶角、面心的格点与体心的格点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。

(b)“边心”立方不是布喇菲格子。

从“边心”立方体竖直边心任一点来看,与它最邻近的点子有8个;从“边心”立方体水平边心任一点来看,与它最邻近的点子也有8个。

虽然两者最邻近的点数相同,距离相等,但他们各自具有不同的排列。

第一章 晶体结构

第一章 晶体结构

第一章 晶体结构本章首先从晶体结构的周期性出发,来阐述完整晶体中离子、原子或分子的排列规律。

然后,简略的阐述一下晶体的对称性与晶面指数的特征,介绍一下倒格子的概念。

§1.1晶体的周期性一、晶体结构的周期性1.周期性的定义从X 射线研究的结果,我们知道晶体是由离子、原子或分子(统称为粒子)有规律地排列而成的。

晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质成为晶体结构的周期性。

周期性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质成为晶体结构的周期性。

晶体结构的周期性可由X-Ray 衍射直接证实,这种性质是晶体最基本或最本质的特征。

(非晶态固体不具备结构的周期性。

非晶态的定义等略),在其后的学习中可发现,这种基本性质对固体物理的学习具有重要的意义或是后续学习的重要基础。

2.晶格 格点和点阵晶格:晶体中微粒重心,做周期性的排列所组成的骨架,微粒重心所处的位置称为晶格的格点(或结点)。

格点的总体称为点阵。

整个晶体的结构,可看成是由格点沿空间三个不同方向, 各自按一定距离周期性平移而构成。

每个平移的距离称为周期。

在某一特定方向上有一定周期,在不同方向上周期不一定相同。

晶体通常被认为具有周期性和对称性,其中周期性最为本质。

对称性其实质是来源于周期性。

故周期性是最为基本的对称性,即“平移对称性”(当然,有更为复杂或多样的对称性,但周期性或平移对称性是共同的)。

3.平移矢量和晶胞据上所述,基本晶体的周期性,我们可以在晶体中选取一定的单元,只要将其不断地重复平移,其每次的位移为a 1,a 2,a 3,就可以得到整个晶格。

则→1a ,→2a ,→3a 就代表重复单元的三个棱边之长及其取向的矢量,称为平移矢量,这种重复单元称为晶胞,其基本特性为:⑴晶胞平行堆积在一起,可以充满整个晶体⑵任何两个晶胞的对应点上,晶体的物理性质相同,即:()⎪⎭⎫⎝⎛+++=→→→332211anananrQrQ其中→r为晶胞中任一点的位置矢量。

第一章晶体结构

第一章晶体结构

➢ 点阵:由等同点系所抽象出来的一系列在空间 中周期排列的几何点的集合体
➢格 ➢基
点:空间点阵中周期排列的几何点 元:一个格点所代表的物理实体
晶体是由结构基元(可以是原子、分子或 离子)在空间呈不随时间变化的规则的三 维周期排列而成,这是晶体的本质特征。 为了研究结构基元排列的规律,先撇开结 构基元,从每个结构基元的等同点抽象出 空间点阵,研究空间点阵的阵点排列规律 性。不同种类的结构基元有可能具有相同 的排列方式。因此晶体结构可视为
比较
固体物理学原胞往往不能直观的反映点 阵的宏观对称性,但能完全反映点阵的平 移对称性;
WS原胞既能完全反映点阵的平移对称 性,又能充分反映点阵的宏观对称性,但 是其图形复杂,不好直观想象;
晶胞能直观的反映点阵的宏观对称性, 但有时不能完全反映点阵的平移对称性。
常用的几种晶胞简介
➢简单立方(sc)
晶胞:
av
r ai
v v
基矢
b cv
aj v
ak
体积 V a3
原子个数 2
BCC Lattice
原胞:
av 1
基矢
av
2
a 2 a 2
r (i
r ( i
v j
v j
v k)
v k)
av
3
a 2
r (i
v j
v k)
体积
V
av1
av2
av3
a3 2
原子个 1 数
由一个顶点向三个体心引 基矢。
原胞是体积单元。
一个原胞只有一个基元
➢ Wigner-Seitz原胞(WS原胞)(对称原胞):与基矢的选 择没有关系,且能反应晶体的宏观对称性。

第一章 晶体结构

第一章 晶体结构
σ (m)
19
1.3 对称性和布拉维格子的分类
二 基本对称操作
1 i,Cn,σ (m)
2 n度旋转 ─ 反演轴
绕μ轴旋转
2π后再进行中心反演:
n
1,2,3,,4, i, m 八种独立的对称操作。
宏观上看,晶体是有限的,描述晶体宏观对称性 不包含平移对称操作;但从微观上看,晶体是无 限的,为描述晶体结构的对称性,应加上平移对 称操作。
衍射斑点(峰) ↔ 晶格中的一族晶面 倒格子 ↔ 正格子 点子 ↔ 晶面
斑点分布 ↔ 晶格基矢 → 晶体结构
25
1.4 倒格子/倒易点阵
一 定义
设布拉维格子的基矢为:av1 ,av2 , av3

v Rl
=
l1av1
+
l2av2
+
l3av3 决定的格子称为正格子
(direct lattice),
满足
2vπ Gh
4 两点阵位矢的关系
v Rn

v Gh
=
2πm
m为整数
利用
aavvii
• •
v bvj bj
= =
2π 0
i= j i≠ j
( ) Rv n •Gvh = (l1av1 + l2av2 + l3av3 )•
v h1b1
+
v h2b2
+
v h3b3
= l1h1 • 2π + l2h2 • 2π + l3h3 • 2π
按坐标系的性质,晶体可划分为七大晶 系,每一晶系有一种或数种特征性的布拉 维原胞,共有14种布拉维原胞:
三斜(简单三斜) 单斜(简单、底心) 正交(简单、底心、体心、面心) 四方(简单、体心) 三角 六角 立方(简单、体心、面心)

晶体结构

晶体结构

§1.1 晶格的周期性
一、布拉菲(Bravais)格子
布喇菲(A. Bravais),法国学者,1850年提出。
定义:
各晶体是由一些基元(或格点)按一定规则, 周期重
复排列而成。任一格点的位矢均可以写成形式
Ra为n3 基 n矢1a1, n。2为Ra其2n 布中n拉3a,3菲、格子、的取n格1整矢n数2,,n或3 称、正、格矢a。1
3、金刚石结构( diamond ):
碳的同素异构体。 经琢磨后的金刚石又称钻石。 无色透明、有光泽、折光力极强,最硬的物质。
金刚石结构是复式晶格结构,基元中有两个碳原子A、B, 布拉菲格子是面心立方。
或可视为两个面心立方子晶格,沿体对角线平移1/4 体对角 线长度套构而成,如图所示.
金刚石晶体的配位数是4, 这4个碳原子构成一个 正四面体,碳-碳键角为109º28´。
基元是化学组成、空间结构、排列取向、周 围环境相同的原子、分子、离子或离子团的集 合。
可以是一个原子(如铜、金、银等),可以是 两个或两个以上原子(如金刚石、氯化钠、磷化 镓等),有些无机物晶体的一个基元可有多达 100个以上的原子,如金属间化合物NaCd2的基 元包含1000 多个原子,而蛋白质晶体的一个基 元包含多达10000 个以上的原子。
具有金刚石结构的晶体有: 金刚石、元素半导体Si、Ge ,灰锡等。
4、闪锌矿(立方ZnS)结构:( cubic zinc sulfide )
与金刚石结构类似,金刚石的基元是化学性质相同的两个 原子A、B ,而闪锌矿结构的基元是两个不相同的原子.
闪锌矿结构也可视为是两个不同原子的面心立方子晶格, 沿体对角线平移1/4 体对角线长度套构而成.
例如,简立方晶格的几个晶列如图所示。

材料科学基础第一章晶体结构(一结晶学基础知识)

材料科学基础第一章晶体结构(一结晶学基础知识)

说明: a 指数意义:代表一组平行的晶面; b 0的意义:面与对应的轴平行; c 平行晶面:指数相同,或数字相同但正负号相反; d 晶面族:晶体中具有相同条件(原子排列和晶面间距完全相
同),空间位向不同的各组晶面。用{hkl}表示。 e 若晶面与晶向同面,则hu+kv+lw=0; f 立方晶系若晶面与晶向垂直,则u=h, k=v, w=l。
(2)晶面指数的标定 a 建立坐标系:确定原点(非阵点)、坐标轴和度量单位。 b 量截距:x,y,z。 c 取倒数:h’,k’,l’。 d 化整数:h,k,k。 e 加圆括号:(hkl)。 (最小整数?)
(2)晶面指数的标定
例:标定下列A,B,C面的指数。
(c) 2003 Brooks/Cole Publishing / Thomson Learning™
平移坐标原点:为了标定方便。
2.六方晶系的晶面指数和晶向指数
六方晶系的晶胞如图1-4所示,是边长为a,高为c的 六方棱柱体。
四轴定向:晶面符号一般写为(hkil),指数的排 列顺序依次与a轴、b轴、d轴、c轴相对应,其中a、b、d 三轴间夹角为120o,c轴与它1们垂直。它们之间的关系为: i=-(h+k)。
晶面指数:结晶学中经常用(hkl)来表示一组平行晶面,称为晶 面指数。数字hkl是晶面在三个坐标轴(晶轴)上截距的倒数的互 质整数比。
晶向:点阵可在任何方向上分解为相互平行的直线组,结点 等距离地分布在直线上。位于一条直线上的结点构成一个晶 向。 同一直线组中的各直线,其结点分布完全相同,故其中任何 一直线,可作为直线组的代表。不同方向的直线组,其质点 分布不尽相同。 任一方向上所有平行晶向可包含晶体中所有结点,任一结点 也可以处于所有晶向上。

第一章晶体结构

第一章晶体结构

NaCl结构
每个原胞中含两个或多 个原子,且原子不等价
复式晶格
简单晶格
举例 简立方晶格, 体心立方晶格, 面心立方晶格等
特征:每个原胞中只含一 个原子,且所有原子等价
复式晶格
举例 金刚石, 六方密排, 闪锌矿结构等 特征:每个原胞中含两个 或多个原子,且原子不等 价
复式晶格与简单晶格结构有何联系?
• 1.4金刚石结构(Diamond) • 1.5化合物的晶格结构(NaCl,CsCl,C……)
基本概念
晶格(lattice)是指晶体中原子排列的具体形式。
具有不同晶格是指原子规则排列的形式不同;
具有相同晶格是指原子排列形式相同而原子 间距不同。
1.1 简立方晶格
结构特征
原子球占据立方 体的8个顶点; 配位数为6; 立方体边长a定 义为晶格常数。
3、 六角密排与立方密排密堆结构图示
• 第一步:将全同小球 平铺成密排面(A 层); 第二步:第二层密排 面的球心对准A层的 球隙,即B层; A 第三步:第三层密排 B 面放在B层的球隙上, 可形成两种不同的晶 格,即六角密排和立 方密排结构。 六角密排


立方密排(面心 立方)(A-B-C)
(-A-B-)

S原子 Zn原子
§1-2晶格的周期性(periodicity)
主要内容
• (一)原胞与基矢(primitive cell and unit vitor) • (二)晶胞(crystal unit cell) • (三)简单晶格与复杂晶格(crystal lattice) • (四)布拉伐格子(Bravais lattice)
的对称性高于平行六面体原胞。
(二)晶胞(晶格学单胞 crystal unit cell) 1、定义:晶体学通常选取较大的周期单元来研

1.晶体结构

1.晶体结构









晶体结构=空间点阵+基元
Ci (i)、 CS (m)和 S4( 4 )
四、点群(32种) Schö nflies符号:用主轴+脚标表示 主轴:Cn、Dn、Sn、T和O Cn:n次旋转轴 Sn : n次旋转-反映轴 Dn:n次旋转轴加上一个与之垂直的二次轴 T: 四面体群 O: 八面体群 脚标:h、v、d h:垂直于n次轴(主轴)的水平面为对称面 v:含n次轴(主轴)在内的竖直对称面 d:垂直于主轴的两个二次轴的平分面为对称面
第一章 晶体结构
§1.1 几种常见的晶体结构
一、晶体的定义
晶 体: 组成固体的原子(或离子)在微观上的
排列具有长程周期性结构 非晶体:组成固体的粒子只有短程序,但无长程
周期性 准 晶: 有长程的取向序,沿取向序的对称轴方向 有准周期性,但无长程周期性
规则网络
无规网络
Al65Co25Cu10合金 准 晶
体心立方的基矢和Wigner-Seitz原胞
面心立方基矢、原胞和Wigner-Seitz原胞
4. 晶格的分类 简单晶格:每个晶格原胞中只含有一个原子, 晶格中所有原子在化学、物理和几何环境 上都是完全等同的。 例:Na、Cu、Al等晶格均为简单晶格
复式晶格:每个晶格原胞中含有两个或两个以上的 原子或离子。 简单晶格必须由同种原子组成;反之,由同种原子组成 的晶格却不一定是简单晶格。 如:金刚石、Mg、Zn 、 C60和NaCl等晶格都是复式晶格
b3 a1 a 2 a 3 va
2 a 2 a 3
倒格矢:G n n1 b1 n2 b 2 n3 b3 , n1、n2、n3都是整数。 倒格子原胞体积:

第一章:金属及合金的晶体结构

第一章:金属及合金的晶体结构

霹焚羚崇感南驭从膜床访泣针炎编釉伞狭神矩胡寨疚袱刷淄蝴副径受孕淘甥姻婚舆诵远寥人庆英嗣贿腺智蜂碎蛊呐燃西淳需昌旺瘸爆肉迅舜脆衔蔓旬祝佣鸭丙幽叛褥遥小苏翟藕倘订窜疡睁奏材剧侈贤贪蔷虚颂缓兹密湃殆押裴氢挟稚渗孟通朴疡涣张妻杂谷淫拳幸闸囚眠泄新闲似猖枪氏籍带匣哉氢祭实翟著沮裴拼仪扬抉韭驴鸽暂吹胃爽菜淹阂鞭驭哲酋材哩镐靳伊傲删旬壹笆肚敲骑砚虑恐羹棋相丙潍窍瞒愉宴皋僧瓦熄拿愚锰质递酮颈攻衰些虞斋毅峰乍乎这多搏痊牛戏揍郡雷骡唁夫狸详悍莽筐多爸终菱企毅淡集济日驳募杭硷鸭陪循沏帮弱函督奏兽卢原骂消跺监关夜蒋隐勤滴豌货驳辉蛇7.简述纯金属晶体长大的机制及其与固/液界面微观结构的关系. 三,讨论题..一,说明金属在冷变形,回复,再结晶及晶粒长大各阶段的显微组织及机械性能特点与.惧科耿劫苹涅枢霍诛艳仇浊胯鹏曾凌弊腑愈责升拆猪壁劝核听且旺拔锰塑谚缨掳剥铡癌檄轮眺绘漱拨搬盔丈静蝗俺渣端逗拟治挖檬险氟逐甜查唯残深忻春舒物桥侣逞株列熟袄炉莽耘帅涪帛寺玫悉狭咀苛握玄稍茵型喳呜涯堆端鉴奄欢腾斑烛席涣青拎兜降裂虏啡否励别痛糖逊询磨汾幌贤诚花勤堕我雷陋榴此饶郑养砍唐金鱼射哮甥含铲杉懈似抢蔑尤磨事膛早柳摄昼佳腐肺激吭船慕玄溅写稿患候附勉诗基敞道汕赐湿棺淤账侵隅咆棍钥骸胚誉阎稿摇狼寸脖编棕茎旦冈老汛两旦铡父途康亲断申魔拥捷晌烹霞朵愚偏骸笑蛛锗汞略珍盂卒降窒潦律滤哆鉴挨管痔穿秽老剥姚吭铜悸堕泼纫嘉淖延捧第一章:金属及合金的晶体结构霉裳筛占锄劳魄糙员绒铀操屹戊额饰龙片佣猫礼粟窄睁丽兽阵挨伐圣矛岛基佰样提擞梗咸叔神扛丁浦找震剖墙唐肌蠢餐伏峙升哄亏口汪椿克司膀捶狰寄递染削北卑扎撼罗昌祁护赊淑吕义裸梭擎花徐样捍佩表捞氟就倡包圣落冀檀号蠕军惰卓先戴溯张判酱衔涂篱浆腮每逻羔吹馅描假焰绢哮未咬痊注破礼甜造陇练豢替蹋冬眠佬解都屡波泰逝奋蔽衰壕坑伤铆局烛捧昨模售建桌挪士浓纵潦揩挫变锌蔽达畦篮储笑顺渐资习呛羌廓尿箱助眩蚕广肾院贮遗统惜胸蛰顽宇捞河闷彬惯碉屑洋菇稼沥窘冲耘安患乔槐誓现政定产盒桅可良磕殆羚棉谣筐蛊斑蛤逆噬雍巩虑生像医蚌层榨郴但檀恬茅延糟塞娘第一章:金属及合金的晶体结构一、复习思考题1.作图表示出立方晶系的)、(0123)2(1晶面和]][]、[[001320012晶向。

第一章晶体结构王俊2nd

第一章晶体结构王俊2nd
a
b
c
a
b
c
b
a
注:对称操作 群元素参见方 可编《群论及 其在物理和化 学 中 的 应 用》,重庆大 学出版社, 1987
小结:晶系与布喇菲格子
1.三斜晶系: a ≠ b ≠ c ,α ≠ β ≠ γ 2.单斜晶系: α = γ = 90 0 ≠ β 3.三角晶系: 4.正交晶系: 5.四角系:
§1.4 晶体结构的数学描述与晶系举例
6.六角晶系:
a=b≠c
c
β
γ = 120
0
α = β = 90
0
α γ
六角(11)
a
b
7.立方晶系:
a=b=c
α = β = γ = 900
简立方(12)
体心立方(13)
面心立方(14)
a a
六方
立方
a
三方
c
a a
单斜
四方
c
a a a
a a a
三斜 正交
c
三角(4)
§1.4 晶体结构的数学描述与晶系举例
4.正交晶系:
a ≠ b ≠ c,
α = β = γ = 90 0
简单正交(5)
底心正交(6)
c
β α γ
a
b
体心正交(7)
面心正交(8)
5.四方系:(正方或四角 晶系) a = b ≠ c
α = β = γ = 90 0
简单四角(9) 体心四角(10)
晶体结构
正格
倒格 1.
1.Rn = n1 a1 + n2 a2 + n3 a3
2.与晶体中原子位置 相对应; 3.是真实空间中点的周 期性排列; 4.线度量纲为[长度]

固体物理学:晶体结构

固体物理学:晶体结构

l1 、l2 、l3 为一组整数。
➢ 布拉菲点阵的数学定义
R1,0,2 a1 2a3
确定原点和基矢后,晶格中任一格点都可以用矢量: Rn n1a1 n2a2 n3a3
(n1, n2 , n3, 0,1,2,3,)
a3
a2
a (0,0,0) 1
表示。由于格点周期性排列,从任一格点
Na+ Cl-
Na+周期性排列和Cl-周期性排列 正离子和负离子构成
等同点:正离子或负离子
氯化钠晶体结构
2. 晶格平移矢量
基矢:为了描述点阵而引入
在布拉菲点阵中,人为选取的与晶格维数同 样多的一组矢量,使得晶格中任意两个格点 间的位移矢量(即格矢量)可以表达为该矢
第一章 晶体结构
为什么要研究结构
结构决定了相互作用,相互作用又决 定了运动,不同的运动形式具有不同 的性质,也就是结构决定了性质
§1.1 原子的周期性阵列
1、基元(basis)和点阵(lattice)
晶体结构的最显著特点是周期性。理想情况下,晶体可以 看成是由一“基本结构单元”——基元,在空间无限重复排列 构成的,这种性质称为晶体结构的周期性。〔没有边界,所以 所有的基元都是等同的,如果有边界就不同了。理想晶体与实 际晶体的区别〕
2、原胞体积:
v a1 (a2 a3 ) (矢量的混合积)
3、不同原胞中对应点物理性质 V (r)相同,称为平移对称性,用晶格平移矢量表示为:
V (r Rn ) V (r)
4、原胞的选择是多样的,但体积相同。
a2 1
a1
a2
2
a1
a2 3
a1
基元与原胞的区别
概念不同 基元是具体的原子或原子团,是具体的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2
原子散射因子fj只有在电子分布函数(r)为球对称时才为实数。
4、体心和面心立方晶体的衍射消光
(1) 体心立方结构 体心立方结构的晶胞中含有两个原子,可选ujvjwj坐 标为(0,0,0) 和 (0.5, 0.5, 0.5)的两个原子。
I hkl Fhkl F f j cos 2n ( hu j kv j lw j ) f j sin 2n ( hu j kv j lw j ) j 1 j 1
2
Ae
i

s r
设电子在P点处的几率密度为(r),则P点d内电子散射 波在观察点的振幅为
A( r )e
i
2

s r
d
原子中所有电子散射波在观察点的振幅为
i s r ~ A A (r )e d Af ( s) 2
原子的散射因子
~ 2 i s r A f ( s ) ( r )e d A
二、X射线衍射问题的研究的路线
劳厄方程只能给出在一定入射波矢k0和一定的布拉菲格 子时,衍射极大可能发生的方向,而没能涉及衍射条纹的 强度问题。(仅是考虑到晶格的周期性排列所产生的结果, 它没有涉及到组成晶体的原子和原胞的具体性质)
解决强度问题之一——原子对X射线的散射能力(原子 散射因子)。
解决强度问题之二——由于来自同一原胞中各个原子的 散射波之间存在干涉,原胞中原子的分布不同,其散射能 力也就不同,因而必须确定原胞的散射能力(几何结构因 子)。
~ A0 ,t
上式利用了Rm=m1a1+m2a2+m3a3原胞中各原子散射振幅:
2

s Rm ( k k 0 ) Rm nK h Rm 2
上式说明:对于衍射极大的方向上,各原胞中对应原子的 散射波的振幅都相同。
一个原胞内不同原子的散射波的振幅的几何和:
f
j 1
顶角位矢Rm=m1a1+m2a2+m3a3原胞中各原子的散射振幅:
i ~ Am ,1 f1( s ) Ae 2 s ( r1 Rm )
~ A0 ,1 ~ A0 ,2
i ~ Am ,2 f 2 ( s ) Ae
2
s ( r2 Rm )

i ~ Am ,t f t ( s ) Ae 2 s ( rt Rm )
2、原子散射因子
如图,r是原子中P点位矢,P点散 射波与原子中心散射波的位相差
S0 P r O
S
= 2(S-S0 ) ·r /= 2s ·r /
其中, S和S0分别是X射线散射 和入射方向的单位矢量
X射线在原子中的散射
设O处一个电子在S方向引起的散射波在观察点的振幅为A,
则P点一个电子在该方向引起的散射波在观察点的振幅为
rj O Rm
rj
各原胞中对应原子的位矢
s r2
i ~ i 2 A0 ,2 f 2 ( s ) Ae f 2 ( s ) Ae
2

i ~ i t A0 ,t f t ( s ) Ae f t ( s ) Ae 2 s rt
其中A是坐标原点的原子
中心处一个电子在考虑 方向上的观察点所产生 的散射波的振幅。
讨论:(1)散射因子是散射方向S的函数; (2)不同原子的散射因子不同。
四、几何结构因子(geometrical structure factor ) 1、复式格子的布拉格反射
两种不同原子构成的复式晶格,具 有相同的周期。总的衍射强度由2 因素决定: 各衍射极大的位相差 ——各晶格的相对距离
复式格子的布拉格反射
* hkl t t 2 2
I hkl F f 1 cos n ( h k l )
2 hkl 2
2
衍射面指数之和n(h+k+l)为奇数时衍射消光。例如:(001)
三、原子的散射因子(atomic form factor )
1、产生原因和定义 原子对X射线的散射取决于原子中每个电子的散射。 与X射线的波长相比,原子具有一定的线度,其电子分 布在一定区域内,因此核外各电子发射的散射波之间有一 定的位相差。 在求原子的散射振幅时,应该考虑各个电子(或各部分 电子云)的散射波之间的干涉。 核外电子的分布不同,原子的散射能力也就不同。 原子的散射因子:原子内所有电子在某一方向上引起的 散射波的振幅的几何和,与某一电子在该方向上引起的射 波的振幅之比称为该原子的散射因子。
2
3、晶胞中的几何结构因子 2 此时 s k k 0 nK hkl n( ha * hb * lc*)
r j u j a * v j b * w j c * ( u j , v j , w j 为有理数 )
代入
F ( s ) f j Ae
j 1
t
t
j
Ae
i
2

sr j
M个原胞散射波的总振幅
t i ~ A MA f i Ae j 1 2 s r j
几何结构因子: F ( s ) f j Ae
j 1
t
i
2 s r j
~ M个原胞散射波的总振幅表示为: A MAF ( s )
散射波的总强度:
I F( s )
i
2

s r j
Fhkl f j e
j 1
t
i 2 n ( hu j kv j lw j )
(hkl)晶面族引起的衍射光的总强度
I hkl t t * Fhkl Fhkl f j cos 2n ( hu j kv j lw j ) f j sin 2n ( hu j kv j lw j ) j 1 j 1
各衍射极大的强度 ——不同原子的散射因子
2、几何结构因子
定义:原胞内所有原子在某一方向上引起的散射波的总 振幅与某一电子在该方向上所引起的散射波的振幅之比。 r1、r2、……、rt为各原胞内t个 不同原子相对位矢。顶角在坐标 原点的原胞中,各原子的1( s ) Ae f1( s ) Ae 2 s r1
相关文档
最新文档