华师大版九年级数学下册教案:27.4 正多边形和圆
新华东师大版九年级数学下册《27章 圆 27.4 正多边形与圆》教案_17
正多边形和圆【教学目标】了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形。
复习正多边形概念,让学生尽可能讲出生活中的多边形为引题引入正多边形和圆这一节间的内容。
【教学重难点】1.重点:讲清正多边形和圆中心正多边形半径、中心角、弦心距、边长之间的关系。
【教学过程】一、复习引入:请同学们口答下面两个问题。
1.什么叫正多边形?(各边相等,各角也相等的多边形是正多边形。
)2.从你身边举出两三个正多边形的实例。
3.正n边形是轴对称图形吗?是中心对称图形吗?其对称轴有几条?(正n边形都是轴对称图形,对称轴有n条;正n边形不一定是中心对称图形,当n是偶数时,是中心对称图形;当n是奇数时,不是中心对称图形。
)二、探索新知1.正多边形归纳:(1)任何正多边形都有一个外接圆和一个内切圆。
(2)两个圆是同心圆,叫做正多边形的中心。
正多边形对称轴的交点也是正多边形的中心。
(3)外接圆的半径叫做正多边形的半径。
(4)内切圆的半径叫做正多边形的边心距。
(5)正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角。
正多边形的半径、正多边形的中心角、边长、正多边的边心距之间的等量关系。
2.正多边形的半径、正多边形的中心角、边长、正多边的边心距之间的关系。
设正n边形的半径为R,边心距为r,边长为a,则:(1)中心角的度数为:_________。
(2)每个内角的度数为:________。
(3)每个外角的度数为:____ _。
(4)周长为:_______,面积为:_________。
三、例题解析:例:已知正六边形ABCDEF,如图所示,其外接圆的半径是a,求正六边形的周长和面积。
分析:要求正六边形的周长,只要求AB的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA,过O点作OM⊥AB垂于M,在Rt△AOM中便可求得AM,又应用垂径定理可求得AB的长。
华师大版九年级数学下册教案:27.4正多边形和圆
27.4正多边形和圆教学目标一、基本目标1.经历正多边形的形成过程,了解正多边形的有关概念,掌握用等分圆周画圆的内接正多边形的方法.2.理解依次连结圆的n等分点所得的多边形是正多边形.3.理解并掌握正多边形的半径和边长、边心距、中心角之间的关系,并解决正多边形与圆有关的计算问题.二、重难点目标【教学重点】正多边形的半径、中心角、边心距、边长的概念,用量角器等分圆.【教学难点】正多边形与圆的有关计算.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P65~P67的内容,完成下面练习.【3 min反馈】1.各条边相等,各个角也相等的多边形是正多边形.2.任何正多边形都有一个外接圆和一个内切圆.这两个圆有公共的圆心,称其为正多边形的中心.外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距;正多边形每一条边所对的外接圆的圆心角都相等,叫做正多边形的中心角.3.把圆分成n(n>2)等份,依次连结各分点所得的多边形是这个圆的一个内接正n边形.4.如果正多边形的一个外角等于60°,那么它的边数为6.5.若正多边形的边心距与边长的比为1∶2,则这个正多边形的边数为4.6.已知正六边形的外接圆半径为3cm,那么它的周长为18cm.7.你能用尺规作出正六边形吗?解:以半径长在圆周上截取六段相等的弧,依次连结各等分点,则可作出正六边形.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,在圆内接正六边形ABCDEF中,半径OC=4,OG⊥BC,垂足为G,求这个正六边形的中心角、边长和边心距.【互动探索】(引发学生思考)连结OD,结合已知条件可得∠COD=60°,结合OC=OD可得△COD 为等边三角形,从而可得CD =O C.在Rt △COG 中,由勾股定理即可求得边心距OG .【解答】连结O D.∵六边形ABCDEF 为正六边形.∴∠COD =360°6=60°. ∵OC =OD ,∴△COD 为等边三角形,∴CD =OC =4.在Rt △COG 中,∵OC =4,GC =12BC =12×4=2. ∴OG =OC2-CG2=42-22=23,∴正六边形ABCDEF 的中心角为60°,边长为4,边心距为23.【互动总结】(学生总结,老师点评)在解决正多边形与圆的问题中,常通过作辅助线构造直角三角形求解.【例2】已知⊙O 的半径为2cm ,画圆的内接正三角形.【互动探索】(引发学生思考)画正多边形有两类工具:量角器和尺规.(1)正三角形需要把圆三等分,所以它的中心角为120°,可以用量角器直接量出.(2)用尺规可以作出正六边形,那么用尺规可以作出正三角形吗?【解答】(方法一)如图1,任取一点A ,连结OA ,用量角器或30°角的三角板度量,使∠BAO =∠CAO =30°,点B 、C 在圆周上,连结A 、B 、C 三点,即得△AB C.图1图2(方法二)如图2,用量角器度量,使∠AOB =∠AOC =120°,连结A 、B 、C 三点,即得△AB C.(方法三)如图3,用圆规在⊙O 上顺次截取6条长度等于半径(2cm)的弦,任意顺次连结不相邻的三个点,如点A 、C 、E ,则△ACE 即为所求的三角形.图3图4(方法四)在圆上任取一条直径AD ,以D 为圆心,2cm 为半径画弧,交⊙O 于B 、C 两点,连结A 、B 、C 三点,即得△AB C.【互动总结】(学生总结,老师点评)作圆内接正三角形的方法有很多种,还可以用量角器和尺规作图两者相结合的方法,如用量角器画圆心角∠BOC=120°,OB、OC分别交⊙O于B、C两点,再在⊙O上用圆规截取AC=BC,连结A、B、C三点,即得△AB C.活动2巩固练习(学生独学)1.如图所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是( C )A.60°B.45°C.30°D.22.5°2.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是( C ) A.36°B.60°C.72°D.108°3.下列用尺规等分圆周说法正确的个数有( A )①在圆上依次截取等于半径的弦,就可以六等分圆;②作相互垂直的两条直径,就可以四等分圆;③按①的方法将圆六等分,六个等分点中三个不相邻的点三等分圆;④按②的方法将圆四等分,再平分四条弧,就可以八等分圆周.A.4个B.3个C.2个D.1个4.正八边形共有8条对称轴.5.正n边形的一个外角的度数与它的中心角的度数相等.6.观察下面的图形,说一说是怎么画出来的?解:先画一个O为圆心,OA长为半径的圆,取圆的三等分点,分别以三等分点为圆心,OA长为半径画弧,交⊙O于A、B、C三点,即得该图形.环节3课堂小结,当堂达标(学生总结,老师点评)正多边形的相关概念:(1)中心:一个正多边形的外接圆的圆心叫做这个正多边形的中心.(2)半径:正多边形外接圆的半径叫做正多边形的半径.(3)边心距:正多边形内切圆的半径叫做正多边形的边心距.(4)中心角:正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角.练习设计请完成本课时对应训练!。
九年级数学下册27.4正多边形和圆教案3新华东师大版[修改版]
第一篇:九年级数学下册27.4正多边形和圆教案3新华东师大版27.4正多边形和圆教学目标:1.了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形.2.复习正多边形概念,让学生尽可能讲出生活中的多边形为引题引入正多边形和圆这一节间的内容.3、通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;通过正多边形有关概念的教学,培养学生的阅读理解能力.重难点:正多边形和圆中心正多边形半径、中心角、弦心距、•边长之间的关系.教学过程一、探索新知如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,•正六边形ABCDEF,连结AD、CF交于一点,以O为圆心,OA为半径作圆,那么肯定B、C、•D、E、F都在这个圆上.因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.为了今后学习和应用的方便,•我们把一个正多边形的外接圆的圆心叫做这个多边形的中心.外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角.中心到正多边形的一边的距离叫做正多边形的边心距.例1.已知正六边形ABCDEF,如图所示,其外接圆的半径ED是a,•求正六边形的周长和面积.OCFAMB 现在我们利用正多边形的概念和性质来画正多边形.例2.利用你手中的工具画一个边长为3cm的正五边形.分析:要画正五边形,首先要画一个圆,然后对圆五等分,因此,•应该先求边长为3的正五边形的半径.二、尝试应用例3.在直径为AB的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB,顶点C在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC•的矩形水池DEFN,其中D、E在AB上,如图24-94的设计方案是使AC=8,BC=6.(1)求△ABC的边AB上的高h.(2)设DN=x,且h DNNF,当x取何值时,水池DEFN的面积最大?hAB(3)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.CNhADGE分析:要求矩形的面积最大,先要列出面积表达式,再考虑最值的求法,初中阶段,尤其现学的知识,应用配方法求最值.(3)的设计要有新意,•应用圆的对称性就能圆满解决此题.三、归纳小结(学生小结,老师点评)本节课你有什么收获?四、当堂达标1.如图1所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是().A.60°B.45°C.30°D.22.5°FB(1) (2) (3) 2.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是().A.36°B.60°C.72°D.108°3.若半径为5cm的一段弧长等于半径为2cm的圆的周长,•则这段弧所对的圆心角为()A.18°B.36°C.72°D.144°4.已知正六边形边长为a,则它的内切圆面积为_______.5. 正五边形ABCDE的对角线AC、BE相交于M.(1)求证:四边形CDEM是菱形;2 (2)设MF=BE·BM,若AB=4,求BE的长.教后反思:第二篇:九年级数学下册24.6 正多边形与圆教案沪科版第24章圆24.6正多边形与圆(2)——正多边形的性质【教学内容】正多边形与圆【教学目标】知识与技能了解正多边形和圆的有关概念;,会应用多边形和圆的有关知识画多边形.过程与方法通过作图,培养作图能力.情感、态度与价值观通过探究正多边形与圆知识,逐步培养学生的研究问题能力;培养学生解决实际问题的能力和应用数学的意识。
华东师大版九年级下册 数学 教案 27.4 正多边形与圆1
27.4 正多边形和圆一、教材分析本节内容是华东师大版九年级下册第二十七章第四节《正多边形和圆》的第一课的内容时,学习本节课之前学生已经掌握了圆的性质和与圆有关的三种位置关系。
这些知识都将为本节的学习起着重要的铺垫作用,本课时内容也是将圆及正多边形知识的总结和深化。
本节课从定性、定量的两个角度去讨论,挖掘蕴含的数学知识,把感性认识转化成理性认识,具体到抽象,让学生主动参与,亲身体验知识的发生与发展的过程。
利用正多边形和圆的位置关系探究数量关系,把形的问题转化成了数的问题,体现了数形结合的思想。
二、学情分析数学活动必须建立在学生认知发展水平和已有的知识经验基础之上。
九年级学生正处于思维能力培养和形成正确的人生观、世界观的重要时期,他们感受新事物的能力很强,思维活跃,想象力丰富,富于创造力,不时闪现的思维火花常常让我们感到惊喜,他们喜欢动手,希望得到更多从事数学活动的机会,有较强的表现欲和追求成功的欲望,在取得进步或获得成功时希望得到肯定的评价。
但受年龄等因素的影响,注意力不持久,对枯燥的数学问题缺乏兴趣,缺乏追求成功的韧性,这需要教师创设生动的问题情境,激起学生的探究欲望,在遇到困难时,引导学生团结协作,充分发挥集体智慧。
辅之以现代教学手段的音、画效果,激发学习积极性。
及时发现学生在学习中的不同进步,正确评价,充分发挥评价的激励性,帮助他们建立自信,提高学习的兴趣。
三、教学目标1.知识与技能(1)了解正多边形和圆的有关概念,了解正多边形和圆的关系(2)理解并掌握正多边形的半径和边长、边心距、中心角之间的关系,并能应用它们进行有关的计算。
2.过程与方法结合生活中正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题。
3.情感、态度与价值观通过观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体现了事物之间相互联系、相互作用的关系。
四、教学重点、难点1.重点:探索正多边形和圆的关系,弄清正多边形的半径、中心角、边心距和边长之间的关系2.难点:对正多边形半径、中心角、边心距、边长之间的理解.五、教学策略与手段:采用探究式和讨论式教学,遵循因材施教,循序渐近的原则,坚持以学生为主体,充分发挥学生的主观能动性。
新华师大版九年级下册初中数学 27-4 正多边形和圆 教案
第二十七章圆27.4 正多边形和圆1、通过画图操作,了解正多边形可以通过切割圆得到;2、理解正多边形的外接圆与内切圆的关系.理解正多边形的外接圆与内切圆的关系.理解正多边形的外接圆与内切圆的关系.1、什么是正多边形?怎样判定一个多边形是正多边形?2、正多边形有哪些性质?一、学习做一做(1)一个正n边形共有n条对称轴,它们交于一点,记作O。
(2)点O到正多边形各个顶点的距离相等,记作R,那么以O为圆心、R 为半径的圆就过正多边形各个顶点,它是该正五边形的外接圆。
(3)点O到各边的距离都相等,记为r,那么以点O为圆心、r为半径的圆就与正多边形的各条边相切,它是正多边形的内切圆。
二、学习正多边形的外接圆和内切圆1、任何一个正多边形都有一个外接圆和一个内切圆。
2、正多边形的外接圆和内切圆有公共的圆心,称其为正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距。
3、正多边形每一条边所对的外接圆的圆心角都相等,叫做正多边形的中心角。
三、在圆上切割正多边形1、如图,在⊙O中,,那么弦AB、BC、CD、DE、EA之间有什么关系?∠A、∠B、∠C、∠D、∠E之间有什么关系?2、小组活动。
(4人一组)在圆上切割一个正多边形。
3、班级展示。
4、老师总结。
把圆分成n (n>2)等份,依次连结各分点所得到的多边形是这个圆的一个内接正n边形。
例利用尺规作图,作出已知圆的内接正方形和内接正六边形。
解:内接正方形的作法:(1)用直尺任作圆的一条直径AC;(2)作与直径AC垂直的直径BD;(3)顺次连结所得到的圆上四点,则四边形ABCD即为所求作的正方形。
内接正六边形的作法:(1)用直尺任作圆的一条直径AD;(2)以点A为圆心,OD为半径作圆,与⊙O交于点B、F;(3)以点D为圆心、OD为半径作圆,与⊙O交于点C、E;(4)顺次连结所得到的圆上的六点,则六边形ABCDEF即为所求作的正六边形。
本节课应掌握:正多边形的外接圆和内切圆.课本习题27.4第1、2、3题.。
华师大版数学九年级下册《27.4 正多边形与圆》教学设计
华师大版数学九年级下册《27.4 正多边形与圆》教学设计一. 教材分析华师大版数学九年级下册《27.4 正多边形与圆》这一节主要介绍了正多边形与圆的关系。
通过本节课的学习,让学生理解并掌握正多边形的定义及其与圆的关系,能够运用这一知识点解决相关问题。
教材通过丰富的图片和实例,引导学生探究正多边形与圆的性质,培养学生的观察能力、思考能力和动手操作能力。
二. 学情分析学生在学习本节课之前,已经掌握了多边形的基本概念和性质,对圆的性质也有了一定的了解。
但部分学生在理解正多边形与圆的关系方面可能存在一定的困难。
因此,在教学过程中,要关注学生的个体差异,针对不同层次的学生制定合适的学习目标,引导他们通过观察、思考、操作等活动,深入理解正多边形与圆的关系。
三. 教学目标1.知识与技能:使学生了解正多边形的定义,掌握正多边形与圆的关系,能够运用这一知识点解决相关问题。
2.过程与方法:通过观察、思考、操作等活动,培养学生的观察能力、思考能力和动手操作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探究、积极向上的学习态度。
四. 教学重难点1.重点:正多边形的定义及其与圆的关系。
2.难点:正多边形与圆在实际问题中的应用。
五. 教学方法1.情境教学法:通过丰富的图片和实例,引导学生观察、思考正多边形与圆的关系。
2.动手操作法:让学生亲自动手绘制正多边形,观察其与圆的关系,培养学生的动手操作能力。
3.问题驱动法:设置一系列问题,引导学生探究、讨论,从而深入理解正多边形与圆的关系。
六. 教学准备1.课件:制作包含丰富图片和实例的课件,便于引导学生观察和思考。
2.学具:为每个学生准备一套绘图工具,以便他们在课堂上进行动手操作。
3.练习题:准备一些有关正多边形与圆的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的正多边形和圆的图片,如足球、车轮等,引导学生观察并思考:这些图形之间有什么共同特点?2.呈现(10分钟)介绍正多边形的定义,引导学生通过观察、思考,发现正多边形与圆的关系。
九年级数学下册 27.4《正多边形和圆》教案4 (新版)华东师大版
正三角形的边心距、半径和高的比 是:
A. B.
C. D.
学生观察图案,思考并指出找到的正多边形
学生讨论、交流、发表各自见解。
学生完成证明过程。
学生思考,同学间交流,回答问 题。
学生讨论,思考回答
学生看图(课本图24.3—3)理解概念
学生画出正六边形图形,完成例题1的解答,总结这一类问题的求解方法。
中心到正多边形的一边的距离叫做正多边形的边心距.
三.尝试应用
1.课本例题,有一个亭子,它的地基是半径为 4m的正六边形,求地基的周长和面积(精确到0 .1m)
2.完成下表中有关正多边形的计算:
正多边形边数
内角
中心角
半径
边长
边心距
周长
面积
3
4
1
6
四.补偿提高
3.课本练习1、2、3
1.同步学习P70开放性作业:1、2、3、4、6、7、8题
27.4正多边形和圆
教学目标知识与技能
1、了解正多边形和圆的关系,了解正多边形的中心、半径、边心距、中心角等概念。
2.能运用正多边形的知识解决圆的有关计算问题。
重点:探索正多边形与圆的关系,了解正多边形的有关概念,并能进行计算。
难点:探索正多边形与圆的关系。
教学过程
教师活动
学生活动
一.创设情境,导入新课:
学生独立完成2
3找学生口答
学生单独完成
此题可供学面的由其他学生补 充完善
观察下列美丽图案(课本图24.3—1)回答问题:
(1)这些 美丽的图案,都是在日常生活中我们经常看到的得用正多边形得到的物体,你能从这些图案中找出正多边形来吗?
(2)你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来?
华师大版数学九年级下册27.4《正多边形和圆》教学设计
华师大版数学九年级下册27.4《正多边形和圆》教学设计一. 教材分析《正多边形和圆》这一节内容,主要让学生了解正多边形的定义,掌握正多边形的性质,以及圆的定义和性质。
教材通过引导学生探究正多边形和圆的关系,让学生体会数学与实际生活的联系,培养学生的抽象思维能力。
二. 学情分析学生在学习这一节内容时,已有了一定的几何知识基础,如对图形的认识,对多边形的性质等。
但学生对正多边形和圆的概念可能还比较陌生,因此,教师在教学中应注重引导学生通过观察、操作、思考、交流等方式,自主探究正多边形和圆的性质。
三. 教学目标1.知识与技能:让学生了解正多边形的定义,掌握正多边形的性质,以及圆的定义和性质。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的抽象思维能力。
3.情感态度与价值观:让学生体会数学与实际生活的联系,培养学生的学习兴趣。
四. 教学重难点1.重点:正多边形的定义,正多边形的性质,圆的定义和性质。
2.难点:正多边形和圆的关系。
五. 教学方法1.情境教学法:通过生活实例,引导学生认识正多边形和圆。
2.自主探究法:引导学生通过观察、操作、思考、交流等方式,自主探究正多边形和圆的性质。
3.引导发现法:教师引导学生发现问题,解决问题,培养学生的问题解决能力。
六. 教学准备1.教具:多媒体课件、正多边形和圆的模型。
2.学具:学生用书、练习本、彩笔。
七. 教学过程1.导入(5分钟)教师通过展示生活中的正多边形和圆的实例,如足球、篮球、硬币等,引导学生认识正多边形和圆,激发学生的学习兴趣。
2.呈现(10分钟)教师通过多媒体课件,呈现正多边形和圆的定义和性质,引导学生初步理解正多边形和圆的概念。
3.操练(10分钟)教师引导学生观察正多边形和圆的模型,让学生通过自主探究,发现正多边形和圆的性质。
4.巩固(10分钟)教师通过实例,让学生应用正多边形和圆的性质解决问题,巩固所学知识。
5.拓展(10分钟)教师引导学生探究正多边形和圆的关系,让学生体会数学与实际生活的联系。
新华东师大版九年级数学下册《27章 圆 27.4 正多边形与圆》教案_8
27.4 正多边形和圆教学目标【知识与技能】1.掌握圆内接正多边形、外接圆、边心距、中心角的概念.2.正多边形的画法.【过程与方法】通过作图的过程,提高学生的几何语言表达能力和推理能力.【情感态度】在学生动手操作的过程中,增强学生的数学应用意识,提高学生学习数学的兴趣和积极性,培养学生主动探索的精神,培养学生合作交流和创新意识.【教学重点】圆内接正多边形、外接圆、边心距、中心角的概念.【教学难点】圆内接正多边形、外接圆、边心距、中心角的概念.教学过程一、情境导入,初步认识正三角形的高、外接圆半径、边心距之比为()A.3∶2∶1B.4∶3∶2C.4∶2∶1D.6∶4∶3解析:设正三角形的边长为a,所以它们之比为3∶2∶1.答案:A【教学说明】复习旧知识,为本节课的学习作准备.二、思考探究,获取新知1.如果我们以正多边形的所有对称轴的交点作为圆心,这个点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图.因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.例如:以正五边形为例,这些对称轴也是正五边形各内角的平分线,根据角平分线的性质,点O到各边的距离都相等,记为r.那么以点O为圆心,r为半径的圆就与正五边形的各条边都相切,它是正五边形的内切圆.由此我们得到:任何正多边形都有一个外接圆和一个内切圆.这两个圆有公共的圆心,称其为正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距.正多边形每一条边所对的外接圆的圆心角都相等,叫做正多边形的中心角.【教学说明】学生观察圆的内接正五边形,从而得出相关概念.2.怎样画特殊的正多边形?【归纳结论】利用同圆中相等的圆心角所对的弧相等,作相等的圆心角就可以等分圆.从而作出相应的正多边形.三、运用新知,深化理解1.下列命题不正确的有_____(填所有正确答案的序号).①将一个圆分成4份,依次连接各分点所得的四边形是正方形②正三角形外接圆的圆心叫做正三角形的中心③正方形外接圆的半径等于其边长④正五边形的中心角等于72°答案:①③2.若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为.A.6,B. 3C.6,3D.答案:B3.已知⊙O上的一点A.(1)作⊙O的内接正方形ABCD和内接正六边形AEFCGH;(2)在(1)题的作图中,如果点E在弧AD上,求证:DE是⊙O内接正十二边形的一边.分析:求作⊙O的内接正六边形和正方形,依据定理应将⊙O的圆周六等分、四等分,而正六边形的边长等于半径;互相垂直的两条直径由垂径定理知把圆四等分.要证明DE是⊙O内接正十二边形的一边,由定理知,只需证明DE所对圆心角等于360°÷12=30°.解:(1)作法:①作直径AC;②作直径BD⊥AC;③依次连结A、B、C、D四点,四边形ABCD即为⊙O的内接正方形;④分别以A、C为圆心,OA长为半径作弧,交⊙O于E、H、F、G;⑤顺次连结A、E、F、C、G、H各点.六边形AEFCGH即为⊙O的内接正六边形.(2)证明:连结OE、DE.∵∠AOD=3604︒=90°,∠AOE=3606︒=60°.∴∠DOE=∠AOD-∠AOE=30°.∴DE为⊙O的内接正十二边形的一边.【教学说明】教师出示问题,学生可独立完成,也可小组合作完成.四、师生互动、课堂小结谈谈你本节课的收获或体会:知识、方法、反思、猜想、交流、愉快、困惑、生活.课后作业1.布置作业:教材“习题27.4”中第1 、2、3 题.2.完成同步练习册中本课时的练习.教学反思本节课的教学坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则“引导——探究——发现”教学法为主,辅之直观演示、讨论交流,让学生真正动手操作,动脑思考,动口交流,动心关注.。
2023九年级数学下册第27章圆27.4正多边形和圆教案(新版)华东师大版
为了促进学生参与和互动,我将设计以下教学活动:
(1)导入环节:通过展示生活中的正多边形和圆的实例,如蜂巢、足球场等,激发学生的兴趣,引出本节课的主题。
(2)新课讲解:在讲授正多边形和圆的定义、性质和计算方法时,适时提问,鼓励学生积极参与,巩固所学知识。
(3)实践操作:让学生利用图形软件或实物模型,自主探索正多边形的性质,如中心角、外接圆等,加深对知识的理解。
2.正多边形和圆基础知识讲解(10分钟)
目标:让学生了解正多边形和圆的基本概念、组成部分和原理。
过程:
讲解正多边形和圆的定义,包括其主要组成元素或结构。
详细介绍正多边形和圆的组成部分或功能,使用图表或示意图帮助学生理解。
3.正多边形和圆案例分析(20分钟)
目标:通过具体案例,让学生深入了解正多边形和圆的特性和重要性。
2023九年级数学下册第27章圆27.4正多边形和圆教案(新版)华东师大版
授课内容
授课时数
授课班级
授课人数
授课地点
授课时间
课程基本信息
1.课程名称:九年级数学下册第27章《圆》27.4节《正多边形和圆》
2.教学年级和班级:九年级一班
3.授课时间:2023年4月10日
4.教学时数:1课时(45分钟)
核心素养目标分析
(2)视频:播放与正多边形和圆相关的实例视频,如蜂巢、足球场等,帮助学生直观地感受正多边形和圆在现实生活中的应用。
(3)在线工具:引导学生利用在线图形工具,如Desmos、GeoGebra等,进行正多边形的性质探索和实际问题解决。
(4)实物模型:准备正多边形的实物模型,让学生直观地观察和操作,加深对正多边形性质的理解。
②正多边形的外接圆:正多边形的外接圆的直径等于正多边形的边长,圆心是正多边形的中心。
九年级数学下册27_4正多边形和圆教案2新版华东师大版
《正多边形和圆》教学目标(1)使学生明白得正多边形概念,初步把握正多边形与圆的关系;(2)通过正多边形概念教学,培育学生归纳能力;通过正多边形与圆关系定理的教学培育学生观看、猜想、推理、迁移能力;(3)进一步向学生渗透“特殊—一样”再“一样——特殊”的唯物辩证法思想.教学重点正多边形的概念与正多边形和圆的关系.教学难点在圆中画正多边形.教学进程(一)观看、分析、归纳观看、分析:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?归纳:等边三角形与正方形的边、角性质的一起点.教师组织学生进行,并能够提问学生问题.(二)正多边形的概念(1)概念:各边相等、各角也相等的多边形叫做正多边形.若是一个正多边形有n(n≥3)条边,就叫正n 边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.(2)概念明白得①请同窗们举例,自己在日常生活中见过的正多边形.(正三角形、正方形、正六边形……)②矩形是正多边形吗?什么缘故?菱形是正多边形吗?什么缘故?矩形不是正多边形,因为边不必然相等.菱形不是正多边形,因为角不必然相等.(三)分析、发觉:问题:正多边形与圆有什么关系呢?发觉:正三角形与正方形都有内切圆和外接圆,而且为同心圆.分析:正三角形三个极点把圆三等分;正方形的四个极点把圆四等分.要将圆五等分,把等分点按序连结,可得正五边形.要将圆六等分呢?(四)多边形和圆的关系的定理定理:把圆分成n(n≥3)等份:(1)依次连结各分点所得的多边形是那个圆的内接正n边形;(2)通过各分点作圆的切线,以相邻切线的交点为极点的多边形是那个圆的外切正n边形.咱们以n=5的情形进行证明.已知:⊙O中,TP、PQ、QR、RS、ST别离是通过点A、B、C、D、E的⊙O的切线.求证:(1)五边形ABCDE是⊙O的内接正五边形;(2)五边形PQRST是⊙O的外切正五边形.引导学生分析、归纳证明思路:说明:(1)要判定一个多边形是不是正多边形,除依照概念来判定外,还能够依照那个定理来判定,即:①依次连结圆的n(n≥3)等分点,所得的多边形是正多边形;②通过圆的n(n≥3)等分点作圆的切线,相邻切线相交成的多边形是正多边形.(2)要注意定理中的“依次”、“相邻”等条件.(3)此定理被称为正多边形的判定定理,咱们能够依照它判定一多边形为正多边形或依照它作正多边形.(五)初步应用一、(口答)矩形是正多边形吗?菱形是正多边形吗?什么缘故?2.求证:正五边形的对角线相等.3.如图,已知点A、B、C、D、E是⊙O的5等分点,画出⊙O的内接和外切正五边形.(六)圆内多边形作法(1)用量角器等分圆周由在同圆中相等的弦所对的弧相等可知,在一个圆中,先用量角器作一个等于360n的圆心角,那个角所对的弧确实是圆周的1n,然后在圆周上依次截取这条弧的等弧,就取得圆的n等份点,从而作出正n边形(正五角星确实是如此作出的).(2)用尺规等分圆周关于一些特殊的正n边形,还能够用直尺和圆规来等分圆周.①正四边形的作法如图,用直尺和圆规作⊙O的两条相互垂直的直径,就能够够把⊙O分成4等份,从而作出正四边形.咱们再逐次平分各边所对的弧,就能够够作出正八边形、正十六边形等.②正六边形的作法如图 (1),设⊙O的半径为R,通常先作出⊙O的一条自径AB,然后别离以点A,B为圆心、R为半径作弧,与⊙O交于点C,D,E,F,从而取得⊙O的6等份点,作出正六边形.若是再逐次等分各边所对的弧,就可作出正十二边形、正二十四边形等.咱们能够连接6等份圆周的相间两个点,取得正三角形,如图 (2).(七)小结知识:(1)正多边形的概念.(2)n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形.能力和方式:正多边形的证明方式和思路,正多边形判定能力.。
华东师大版九年级数学下册教案:27.4 正多边形和圆
(续表)
(续表)
(续表)
典案二导学设计
程学
习
将圆六等分呢?你知道为什么吗?
思考:任何一个正多边形既是轴对称图形,又是中心对称图形吗?
跟边数有何关系?
结论:正多边形都是轴对称图形,一个正n边形有条对称轴,每条对称轴都通过正n边形的;一个正多边形,如果有
偶数条边,那么它既是轴对称图形,又是中心对称图形。
活动四利用直尺与圆规作特殊的正多边形
问题:用直尺和圆规作出正方形,正六多边形。
思考:如何作正八边形正三角形、正十二边形?
拓展1:已知:如图,五边形ABCDE内接于⊙O,
AB=BC=CD=DE=EA.
求证:五边形ABCDE是正五边形.
拓展2:各内角都相等的圆内接多边形是否为正多边形?。
九年级数学下册27.4正多边形和圆教案3新版华东师大版2
27.4正多边形和圆教学目标:1.了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形.2.复习正多边形概念,让学生尽可能讲出生活中的多边形为引题引入正多边形和圆这一节间的内容.3、通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;通过正多边形有关概念的教学,培养学生的阅读理解能力.重难点:正多边形和圆中心正多边形半径、中心角、弦心距、•边长之间的关系.教学过程一、探索新知如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,•正六边形ABCDEF,连结AD、CF交于一点,以O为圆心,OA为半径作圆,那么肯定B、C、•D、E、F都在这个圆上.因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.为了今后学习和应用的方便,•我们把一个正多边形的外接圆的圆心叫做这个多边形的中心.外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角.中心到正多边形的一边的距离叫做正多边形的边心距.例1.已知正六边形ABCDEF,如图所示,其外接圆的半径是a,•求正六边形的周长和面积.现在我们利用正多边形的概念和性质来画正多边形.例2.利用你手中的工具画一个边长为3cm的正五边形.分析:要画正五边形,首先要画一个圆,然后对圆五等分,因此,•应该先求边长为3的正五边形的半径.二、尝试应用例3.在直径为AB的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB,顶点C在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC•的矩形水池DEFN,其中D、E在AB上,如图24-94的设计方案是使AC=8,BC=6.(1)求△ABC的边AB上的高h.(2)设DN=x,且h DN NFh AB-=,当x取何值时,水池DEFN的面积最大?(3)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.hF D ECA N分析:要求矩形的面积最大,先要列出面积表达式,再考虑最值的求法,初中阶段,尤其现学的知识,应用配方法求最值.(3)的设计要有新意,•应用圆的对称性就能圆满解决此题.三、归纳小结(学生小结,老师点评)本节课你有什么收获?四、当堂达标1.如图1所示,正六边形ABCDEF 内接于⊙O ,则∠ADB 的度数是( ).A .60°B .45°C .30°D .22.5°(1) (2) (3)2.圆内接正五边形ABCDE 中,对角线AC 和BD 相交于点P ,则∠APB 的度数是( ). A .36° B .60° C .72° D .108°3.若半径为5cm 的一段弧长等于半径为2cm 的圆的周长,•则这段弧所对的圆心角为( )A .18°B .36°C .72°D .144°4.已知正六边形边长为a ,则它的内切圆面积为_______. 5. 正五边形ABCDE的对角线AC 、BE 相交于M .(1)求证:四边形CDEM 是菱形;(2)设MF 2=BE ·BM ,若AB=4,求BE 的长.教后反思:。
华师大版数学九年级下册27.4《正多边形和圆》说课稿
华师大版数学九年级下册27.4《正多边形和圆》说课稿一. 教材分析《正多边形和圆》这一节内容是华师大版数学九年级下册第27.4节。
本节课的主要内容是让学生了解并掌握正多边形的定义、性质以及与圆的关系,能够运用这些知识解决实际问题。
在教材中,这一节内容是继学习了圆的相关知识后展开的,为学生提供了进一步研究圆的性质和应用的机会。
教材通过引入正多边形的概念,引导学生探索正多边形与圆的关系,从而加深对圆的理解。
二. 学情分析在九年级的学生已经具备了一定的几何知识基础,对圆的概念和性质有一定的了解。
但是,对于正多边形与圆的关系,他们可能还没有明确的认知。
因此,在教学过程中,我需要从学生的实际出发,通过引导他们观察、思考、交流和探索,帮助他们建立起正多边形与圆之间的联系,提高他们的空间想象力。
三. 说教学目标1.知识与技能:理解正多边形的定义和性质,能够运用正多边形的知识解决实际问题;掌握正多边形与圆的关系,能够运用这一关系解决相关问题。
2.过程与方法:通过观察、思考、交流和探索,培养学生的空间想象力,提高他们分析问题和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的科学精神。
四. 说教学重难点1.教学重点:正多边形的定义和性质,正多边形与圆的关系。
2.教学难点:正多边形与圆的关系的运用。
五. 说教学方法与手段在教学过程中,我将采用讲授法、引导发现法、交流讨论法等多种教学方法,引导学生主动探究、积极思考。
同时,利用多媒体课件、实物模型等教学手段,帮助学生直观地理解正多边形与圆的关系,提高教学效果。
六. 说教学过程1.导入:通过复习圆的相关知识,引导学生回顾圆的性质和应用,为新课的学习做好铺垫。
2.探究正多边形的定义和性质:让学生观察实物模型,引导学生发现正多边形的特点,进而总结出正多边形的定义和性质。
3.探索正多边形与圆的关系:让学生通过观察、思考、交流,发现正多边形与圆之间的联系,引导学生总结出正多边形与圆的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.4正多边形和圆
教学目标
一、基本目标
1.经历正多边形的形成过程,了解正多边形的有关概念,掌握用等分圆周画圆的内接正多边形的方法.
2.理解依次连结圆的n等分点所得的多边形是正多边形.
3.理解并掌握正多边形的半径和边长、边心距、中心角之间的关系,并解决正多边形与圆有关的计算问题.
二、重难点目标
【教学重点】
正多边形的半径、中心角、边心距、边长的概念,用量角器等分圆.
【教学难点】
正多边形与圆的有关计算.
教学过程
环节1自学提纲,生成问题
【5 min阅读】
阅读教材P65~P67的内容,完成下面练习.
【3 min反馈】
1.各条边相等,各个角也相等的多边形是正多边形.
2.任何正多边形都有一个外接圆和一个内切圆.这两个圆有公共的圆心,称其为正多边形的中心.外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距;正多边形每一条边所对的外接圆的圆心角都相等,叫做正多边形的中心角.
3.把圆分成n(n>2)等份,依次连结各分点所得的多边形是这个圆的一个内接正n边形.
4.如果正多边形的一个外角等于60°,那么它的边数为6.
5.若正多边形的边心距与边长的比为1∶2,则这个正多边形的边数为4.
6.已知正六边形的外接圆半径为3 cm,那么它的周长为18 cm.
7.你能用尺规作出正六边形吗?
解:以半径长在圆周上截取六段相等的弧,依次连结各等分点,则可作出正六边形.
环节2 合作探究,解决问题
活动1 小组讨论(师生互学)
【例1】如图,在圆内接正六边形ABCDEF 中,半径OC =4,OG ⊥BC ,垂足为G ,求这个正六边形的中心角、边长和边心距.
【互动探索】(引发学生思考)连结OD ,结合已知条件可得∠COD =60°,结合OC =OD 可得△COD 为等边三角形,从而可得CD =O C.在Rt △COG 中,由勾股定理即可求得边心距OG .
【解答】连结O D.
∵六边形ABCDEF 为正六边形.
∴∠COD =360°6
=60°. ∵OC =OD ,∴△COD 为等边三角形,
∴CD =OC =4.
在Rt △COG 中,∵OC =4,GC =12BC =12
×4=2. ∴OG =OC 2-CG 2=42-22=23,
∴正六边形ABCDEF 的中心角为60°,边长为4,边心距为2 3.
【互动总结】(学生总结,老师点评)在解决正多边形与圆的问题中,常通过作辅助线构造直角三角形求解.
【例2】已知⊙O 的半径为2 cm ,画圆的内接正三角形.
【互动探索】(引发学生思考)画正多边形有两类工具:量角器和尺规.(1)正三角形需要把圆三等分,所以它的中心角为120°,可以用量角器直接量出.(2)用尺规可以作出正六边形,那么用尺规可以作出正三角形吗?
【解答】(方法一)如图1,任取一点A ,连结OA ,用量角器或30°角的三角板度量,使∠BAO =∠CAO =30°,点B 、C 在圆周上,连结A 、B 、C 三点,即得△AB C.
图1 图2
(方法二)如图2,用量角器度量,使∠AOB =∠AOC =120°,连结A 、B 、C 三点,即得△AB C.
(方法三)如图3,用圆规在⊙O 上顺次截取6条长度等于半径(2 cm)的弦,任意顺次连结不相邻的三个点,如点A 、C 、E ,则△ACE 即为所求的三角形.
图3 图4
(方法四)在圆上任取一条直径AD,以D为圆心,2 cm为半径画弧,交⊙O于B、C两点,连结A、B、C三点,即得△AB C.
【互动总结】(学生总结,老师点评)作圆内接正三角形的方法有很多种,还可以用量角器和尺规作图两者相结合的方法,如用量角器画圆心角∠BOC=120°,OB、OC分别交⊙O 于B、C两点,再在⊙O上用圆规截取AC=BC,连结A、B、C三点,即得△AB C.
活动2巩固练习(学生独学)
1.如图所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是(C)
A.60°B.45°
C.30°D.22.5°
2.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是(C) A.36°B.60°
C.72°D.108°
3.下列用尺规等分圆周说法正确的个数有(A)
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。
在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。
①在圆上依次截取等于半径的弦,就可以六等分圆;
②作相互垂直的两条直径,就可以四等分圆;
③按①的方法将圆六等分,六个等分点中三个不相邻的点三等分圆;
④按②的方法将圆四等分,再平分四条弧,就可以八等分圆周.
A.4个B.3个
C.2个D.1个
4.正八边形共有8条对称轴.
5.正n边形的一个外角的度数与它的中心角的度数相等.
6.观察下面的图形,说一说是怎么画出来的?
解:先画一个O为圆心,OA长为半径的圆,取圆的三等分点,分别以三等分点为圆心,OA长为半径画弧,交⊙O于A、B、C三点,即得该图形.
环节3课堂小结,当堂达标
(学生总结,老师点评)
正多边形的相关概念:
(1)中心:一个正多边形的外接圆的圆心叫做这个正多边形的中心.
(2)半径:正多边形外接圆的半径叫做正多边形的半径.
(3)边心距:正多边形内切圆的半径叫做正多边形的边心距.
(4)中心角:正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角.练习设计
请完成本课时对应训练!。