2020-2021七年级数学下期中第一次模拟试题(带答案) (4)

合集下载

2020-2021深圳莲城学校初一数学下期中第一次模拟试卷(及答案)

2020-2021深圳莲城学校初一数学下期中第一次模拟试卷(及答案)

2020-2021深圳莲城学校初一数学下期中第一次模拟试卷(及答案)一、选择题1.已知点P(3a,a+2)在x轴上,则P点的坐标是()A.(3,2)B.(6,0)C.(-6,0)D.(6,2)2.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD 的周长为()A.20cm B.22cmC.24cm D.26cm3.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=()A.100°B.130°C.150°D.80°4.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A.60°B.50°C.45°D.40°5.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(2,1) B.(﹣2,﹣1) C.(﹣2,1) D.(2,﹣1)6.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是()A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)7.若x y >,则下列变形正确的是( )A .2323x y +>+B .x b y b -<-C .33x y ->-D .33x y ->- 8.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <69.下列说法正确的是() A .一个数的算术平方根一定是正数 B .1的立方根是±1C .255=±D .2是4的平方根 10.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A .B .C .D .11.如图,下列条件中,能判断AB//CD 的是( )A .∠BAC=∠ACDB .∠1=∠2C .∠3=∠4D .∠BAD=∠BCD 12.下列所示的四个图形中,∠1=∠2是同位角的是( )A .②③B .①④C .①②③D .①②④二、填空题13.命题“对顶角相等”的逆命题是_______.14.如果不等式组()53122x x x m ⎧+>+⎪⎨⎪≥⎩,恰好有3个整数解,则m 的取值范围是__________.15.不等式2(1-x )-4<0的解集是____________16.不等式3342x x ->-的最大整数解是__________.17.已知点P (x+3,x ﹣4)在x 轴上,则x 的值为_____________ .1846________.19.在平面直角坐标系中,点(-5,-8)是由一个点沿x 轴向左平移3个单位长度得到的,则这个点的坐标为_______.20.在整数20200520中,数字“0”出现的频率是_________.三、解答题21.如图,在ABC ∆中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F ,12∠=∠.(1)试说明DG BC P 的理由;(2)如果54B ∠=︒,且35ACD ∠=︒,求3∠的度数.22.如图,直线AB 、CD 相交于O 点,AOC ∠与AOD ∠的度数比为4:5,OE AB ⊥,OF 平分DOB ∠,求EOF ∠的度数.23.2020年的寒假是“不同寻常”的一个假期.在这个超长假期里,某中学随机对本校部分同学进行“抗疫有我,在家可以这么做”的问卷调查:A 扎实学习、B 经典阅读、C 分担劳动、D 乐享健康,(每位同学只能选一个),并根据调查结果绘制如下两幅不完整的统计图.根据统计图提供信息,解答问题:(1)本次一共调查了_______名同学;(2)请补全条形统计图;在扇形统计图中A 所对应的圆心角为 度;(3)若该校共有1600名同学,请你估计选择A 有多少名同学?24.已知 2x -y 的平方根为±3,-4 是 3x +y 的一个平方根,求 x -y 的平方根. 25.先阅读,再解方程组.解方程组10,4()5x y x y y --=⎧⎨--=⎩①②时,可由①得1x y -=③,然后再将③代入②,得415y ⨯-=,解得1y =-,从而进一步得0,1.x y =⎧⎨=-⎩这种方法被称为“整体代入法”. 请用上述方法解方程组2320,23529.7x y x y y --=⎧⎪-+⎨+=⎪⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据点P 在x 轴上,即y=0,可得出a 的值,从而得出点P 的坐标.【详解】∵点P (3a ,a+2)在x 轴上,∴y=0,即a+2=0,解得a=-2,∴3a=-6,∴点P 的坐标为(-6,0).故选C .【点睛】此题考查平面直角坐标系中点的坐标,明确点在x 轴上时纵坐标为0是解题的关键.2.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD =BE =3,DF =AC ,DE =AB ,EF =BC ,所以:四边形ABFD 的周长为:AB +BF +FD +DA=AB +BE +EF +DF +AD=AB +BC +CA +2AD=20+2×3=26.故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.3.A解析:A【解析】Q .故选A.∠︒∴∠︒∴∠∠︒1=1303=502=23=1004.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.5.C解析:C【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.6.A解析:A【解析】【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【详解】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).故选:A.【点睛】考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.7.A解析:A【解析】【分析】根据不等式的性质逐个判断即可.【详解】解: A、两边都乘2再加3,不等号的方向不变,故A正确;B、两边都减,b不等号的方向不变,故B错误;C、两边都乘以3-,不等号的方向改变,故C错误;D、两边都除以3-,不等号的方向改变,故D错误;故选:A【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.8.B解析:B【解析】【分析】3【详解】∵4+33132,∴3<m<4,故选B.【点睛】3的取值范围是解题关键.9.D解析:D【解析】【分析】根据平方根、算术平方根、立方根的定义,即可解答.【详解】A 、一个数的算术平方根一定是正数,错误,例如0的算术平方根是0;B 、1的立方根是1,错误;C 、255=,错误;D 、2是4的平方根,正确;故选:D【点睛】本题考查了立方根、平方根,解决本题的关键是熟记平方根、立方根的定义.10.D解析:D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.11.A解析:A【解析】【分析】根据直线平行的判定:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行进行判断即可.【详解】解:A. ∠BAC=∠ACD能判断AB//CD(内错角相等,两直线平行),故A正确;B. ∠1=∠2得到AD∥BC,不能判断AB//CD,故B错误;C. ∠3=∠4得到AD∥BC,不能判断AB//CD,故C错误;D. ∠BAD=∠BCD,不能判断AB//CD,故D错误;故选A.【点睛】本题主要考查了平行线的判定的运用,解题时注意:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行.12.D解析:D【解析】【分析】根据同位角的定义(在截线的同侧,并且在被截线的同一方的两个角是同位角),即可得到答案;【详解】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选D.【点睛】本题主要考查了同位角的概念,判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.二、填空题13.如果两个角相等那么它们是对顶角【解析】【分析】将原命题的条件及结论进行交换即可得到其逆命题【详解】∵原命题的条件是:如果两个角是对顶角结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等那么这两解析:如果两个角相等,那么它们是对顶角【解析】【分析】将原命题的条件及结论进行交换即可得到其逆命题.【详解】∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等,那么这两个角是对顶角,简化后即为:相等的角是对顶角.【点睛】考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题.14.【解析】【分析】先求出不等式组的解集再根据不等式组有且只有三个整数解求出整数解得出即可【详解】解不等式组得:∵有三个整数解∴x=-101∴m的取值范围是故答案为:【点睛】考查一元一次不等式组的整数解解析:21m -<≤-【解析】【分析】先求出不等式组的解集,再根据不等式组有且只有三个整数解求出整数解,得出21m -<≤-即可.【详解】解不等式组得:2,m x ≤<∵有三个整数解,∴x=-1,0,1,∴m 的取值范围是21m -<≤-.故答案为:21m -<≤-.【点睛】考查一元一次不等式组的整数解,解出不等式的解集是解题的关键.15.x>-1【解析】【分析】先将不等式左边去括号进行整理再利用不等式的基本性质将两边不等式同时加2再除以-2不等号的方向改变【详解】解:2(1-x)-4<02-2x-4<0-2x-2<0-2x<2x>-解析:x >-1【解析】【分析】先将不等式左边去括号进行整理,再利用不等式的基本性质,将两边不等式同时加2再除以-2,不等号的方向改变.【详解】解:2(1-x)-4<02-2x-4<0-2x-2<0-2x<2x>-1.故答案为:x>-1.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.16.0【解析】【分析】据解不等式的一般步骤:移项合并系数化为1解答【详解】解:移项得:-3x-4x>-2-3合并同类项得:-7x>-5化系数为1得:故不等式的最大整数解是0【点睛】考查了一元一次不等式的解析:0【解析】【分析】据解不等式的一般步骤:移项,合并,系数化为1解答.【详解】解:移项得:-3x-4x>-2-3.合并同类项得:-7x>-5.化系数为1得:57x <. 故不等式的最大整数解是0.【点睛】考查了一元一次不等式的整数解,解答此题要先求出不等式的解集,再确定最大整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.17.x=4【解析】【分析】【详解】解:∵点P(x+3x −4)在x 轴上∴x −4=0解得:x=4故答案为:x=4解析:x=4【解析】【分析】【详解】解:∵点P(x+3,x−4)在x 轴上,∴x−4=0,解得:x=4,故答案为:x=4.18.6【解析】【分析】求出在哪两个整数之间从而判断的整数部分【详解】∵又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算正确掌握整数的平方数是解题的关键解析:6【解析】【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.19.(-2-8)【解析】【分析】点A向左平移3个单位得到点B(-5-8)则点B向右移动3个单位得到点A【详解】根据分析点B(-5-8)向右移动3个单位得到点A向右平移3个单位则横坐标+3故A(-2-8)解析:(-2,-8)【解析】【分析】点A向左平移3个单位得到点B(-5,-8),则点B向右移动3个单位得到点A.【详解】根据分析,点B(-5,-8)向右移动3个单位得到点A向右平移3个单位,则横坐标“+3”故A(-2,-8)故答案为:(-2,-8)【点睛】本题考查平移时坐标点的变化规律,注意,向左右平移,是横坐标的变化,向上下平移,是纵坐标的变化.20.5【解析】【分析】直接利用频率的定义分析得出答案【详解】解:∵在整数20200520中一共有8个数字数字0有4个故数字0出现的频率是故答案为:【点睛】此题主要考查了频率的求法正确把握定义是解题关键解析:5【解析】【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是12.故答案为:12.【点睛】此题主要考查了频率的求法,正确把握定义是解题关键.三、解答题21.(1)见解析;(2)371∠=︒【解析】【分析】(1)由CD⊥AB,EF⊥AB即可得出CD∥EF,从而得出∠2=∠BCD,再根据∠1=∠2即可得出∠1=∠BCD,依据“内错角相等,两直线平行”即可证出DG∥BC;(2)在Rt△BEF中,利用三角形内角和为180°即可算出∠2度数,从而得出∠BCD的度数,再根据BC ∥DE 即可得出∠3=∠ACB ,通过角的计算即可得出结论.【详解】(1)证明:∵CD AB ⊥,EF AB ⊥,∴CD EF P ,∴2BCD ∠=∠,∵12∠=∠,∴1BCD ∠=∠,∴DG BC P ;(2)解:在Rt △BEF 中,∠B=54°,∴∠2=180°-90°-54°=36°,∴∠BCD=∠2=36°.又∵BC ∥DG ,3353671ACB ACD BCD ︒︒︒∴∠=∠=∠+∠=+=【点睛】本题考查了平行线的判定与性质,解题的关键是:(1)找出∠1=∠BCD ;(2)找出∠3=∠ACB=∠ACD+∠BCD .本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角证出两直线平行是关键.22.50∠=EOF o .【解析】【分析】根据AOC ∠与AOD ∠互补且度数比为4:5,求得80AOC ∠=o ,由OE AB ⊥得到90BOE =o ∠,根据对顶角相等得80AOC BOD ∠=∠=o ,则可求得DOE ∠的度数,根据角平分线的定义可求得∠DOF 的度数,进而得到答案.【详解】解:4AOC x ∠=,则5AOD x ∠=,∵180AOC AOD ∠+∠=o ,∴45180x x +=o ,解得:20x =o ,∴480AOC x ∠==o ,∵OE AB ⊥,∴90BOE =o ∠,∵80AOC BOD ∠=∠=o ,∴10DOE BOE BOD ∠=∠-∠=o ,又∵OF 平分DOB ∠, ∴1402DOF BOD ∠=∠=o , ∴104050EOF EOD DOF ∠=∠+∠=+=o o o .【点睛】本题主要考查角平分线的定义,角的计算,解此题的关键在于准确掌握题图中各角的位置关系.23.(1)200;(2)补全图形见解析,108 ;(3)选择A 有480名同学.【解析】【分析】(1)由B 组的信息可得总人数,(2)先求解C 组所占总体的百分比,再求A 组所占总体的百分比,进而求出A 所对的圆心角,,A D 两组的人数,补全条形图即可.(3)由A 组所占总体的百分比估计总体即可得到答案.【详解】解:(1)由题意得:本次一共调查了5628%200÷=(名),故答案为:200.(2)C Q 组占总体的44100%22%,200⨯= A ∴组占总体的128%20%22%30%,---= A ∴所对的圆心角为:30%360108,⨯︒=︒A ∴组人数为:20030%60⨯=(名),D 组人数为:20020%40⨯= (名),补全条形图如下:故答案为:108.(3)该校共有1600名同学,估计选择A 有:160030%480⨯=(名)答:选择A 的大概有480名同学.【点睛】本题考查的是统计调查的知识,考查了从条形图与扇形图中获取信息,以及利用样本来估计总体,掌握相关知识点是解题的关键.24.±2【解析】【分析】根据题意可求出2x-y 及3x+y 的值,从而可得出x-y 的值,继而可求出x-y 的平方根.【详解】解:由题意得:2x-y=9,3x+y=16,解得:x=5,y=1,∴x-y=4,∴x-y 的平方根为=±2. 【点睛】本题主要考查了平方根的知识,难度不大,解题的关键是求x 、y 的值.25.7,4.x y =⎧⎨=⎩【解析】【分析】观察方程组的特点,把23x y -看作一个整体,得到232x y -=,将之代入②,进行消元,得到25297y ++=,解得4y =,进一步解得7x =,从而得解. 【详解】 解:2320,23529,7x y x y y --=⎧⎪⎨-++=⎪⎩①②由①,得232x y -=,③ 把③代入②,得25297y ++=,解得4y =. 把4y =代入③,得2342x -⨯=,解得7x =.故原方程组的解为7,4.x y =⎧⎨=⎩【点睛】本题考查了二元一次方程组的特殊解法:整体代入法.解方程(组)要根据方程组的特点灵活运用选择合适的解法.。

2020-2021初一数学下期中试卷(附答案) (4)

2020-2021初一数学下期中试卷(附答案) (4)

∴AB//DE,AC//DF,AD//CF,CF=AD=2.5cm,故①②③正确. ∵∠BAC=90°, ∴AB⊥AC, ∵AB//DE
DE AC ,故④正确.
综上所述:之前的结论有:①②③④,共 4 个, 故选 D. 【点睛】 本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学 生易混淆图形的平移与旋转或翻转.
12.C
解析:C
【解析】
试题分析:已知,△ABE 向右平移 2cm 得到△DCF,根据平移的性质得到 EF=AD=2cm,
AE=DF,又因△ABE 的周长为 16cm,所以 AB+BC+AC=16cm,则四边形 ABFD 的周长 =AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选 C.
19.若 x+1 是 125 的立方根,则 x 的平方根是_________. 20.如图,直线 a、b 被直线 l 所截,a∥b,∠1=70°,则∠2= .
三、解答题 21.某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为 x 分 ( 60 x 100 ).校方从 600 幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,
3.D
解析:D
【解析】
【分析】
选项 A 中,∠C 和∠D 是直线 AC、DE 被 DC 所截形成的内错角,内错角相等,判定两直 线平行;
选项 B 中,不符合三线八角,构不成平行; 选项 C 中,∠E 和∠D 是直线 DC、EF 被 DE 所截形成的同旁内角,因为同旁内角不互 补,所以两直线不平行;
故选 D. 【点睛】 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大 小小找不到”的原则是解决问题的关键.

2020-2021下海建平香梅中学七年级数学下期中模拟试卷带答案

2020-2021下海建平香梅中学七年级数学下期中模拟试卷带答案

2020-2021下海建平香梅中学七年级数学下期中模拟试卷带答案一、选择题1.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm2.如图,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,若∠CAB=50º,∠ABC=100º,则∠CBE 的度数为( )A .45°B .30°C .20°D .15°3.不等式x+1≥2的解集在数轴上表示正确的是( ) A . B . C .D .4.已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( )A .18030x y x y +=⎧⎨=-⎩B .180+30x y x y +=⎧⎨=⎩C .9030x y x y +=⎧⎨=-⎩D .90+30x y x y +=⎧⎨=⎩5.10x x y -+=,则xy 的值为( )A .0B .1C .-1D .26.设42a ,小整数部分为b ,则1a b-的值为( ) A .2-B 2C .21+D .21 7.汽车的“燃油效率”是指汽车每消耗1升汽油最多可行驶的公里数,如图描述了A 、B 两辆汽车在不同速度下的燃油效率情况.根据图中信息,下面4个推断中,合理的是( )①消耗1升汽油,A 车最多可行驶5千米;②B 车以40千米/小时的速度行驶1小时,最多消耗4升汽油; ③对于A 车而言,行驶速度越快越省油;④某城市机动车最高限速80千米/小时,相同条件下,在该市驾驶B 车比驾驶A 车更省油.A .①④B .②③C .②④D .①③④8.若x y <,则下列不等式中成立的是( )A .11x y ->-B .22x y -<-C .22x y < D .3232x y -<-9.如图,下列条件中,能判断AB//CD 的是( )A .∠BAC=∠ACDB .∠1=∠2C .∠3=∠4D .∠BAD=∠BCD10.如果a >b ,那么下列各式中正确的是( ) A .a ﹣2<b ﹣2B .22a b p C .﹣2a <﹣2b D .﹣a >﹣b11.过一点画已知直线的垂线,可画垂线的条数是( ) A .0 B .1 C .2 D .无数 12.在平面直角坐标系中,点P(1,-2)在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题13.平面直角坐标系中,已知点A (2,0),B (0,3),点P (m ,n )为第三象限内一点,若∆PAB 的面积为18,则m ,n 满足的数量关系式为________. 14.m 的3倍与n 的差小于10,用不等式表示为______________.15.如图,把一长方形纸片ABCD 沿EF 折叠后ED 与BC 交于点G ,D 、C 分别在M ,N 的位置,若∠EFG=56°,则∠EGB =___________.16.如果不等式组()53122x x x m ⎧+>+⎪⎨⎪≥⎩,恰好有3个整数解,则m 的取值范围是__________.17.如图, 直线AB CD 、相交于点O , OE AB ⊥于点O , OF 平分AOE ∠,11530'∠=︒,则下列结论:①245︒∠=; ②13∠=∠; ③AOD ∠与1∠互为补角;④1∠的余角等于7530'︒,其中正确的是___________(填序号)18.知a ,b 为两个连续的整数,且5a b <<,则ba =______.19.有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲2件、乙3件、丙4件共需285元钱,那么购甲、乙、丙三种商品各一件共需_________________元钱.20.若2(2)9x m x +-+是一个完全平方式,则m 的值是_______.三、解答题21.如图,四边形ABCD 中,∠A=∠C=90°,BE 、DF 分别平分∠ABC 、∠ADC ,判断BE 、DF 是否平行,并说明理由.22.如图,AD//BC ,∠A=∠C .求证:AB//DC .23.在平面直角坐标系中,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使得点A 移至图中的点A'的位置.(1)平移后所得△A 'B 'C '的顶点B '的坐标为 ,C '的坐标为 ; (2)平移过程中△ABC 扫过的面积为 ;(3)将直线AB 以每秒1个单位长度的速度向右平移,则平移 秒时该直线恰好经过点C '.24.求不等式()()922312m m ---≥-的所有正整数解. 25.已知关于x 、y 的二元一次方程组3x my 52x ny 6-=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,求关于a 、b 的二元一次方程组3()()52()()6a b m a b a b n a b +--=⎧⎨++-=⎩的解.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD =BE =3,DF =AC ,DE =AB ,EF =BC ,所以: 四边形ABFD 的周长为: AB +BF +FD +DA=AB +BE +EF +DF +AD=AB+BC+CA+2AD=20+2×3=26.故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.2.B解析:B【解析】【分析】根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,∠ABC=100º,进而求出∠CBE 的度数.【详解】解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°(两直线平行,同位角相等),∵∠ABC=100°,∴∠CBE的度数为:180°-50°-100°=30°.故选B.【点睛】此题主要考查了平移的性质以及直线平行的性质,得出∠CAB=∠EBD=50°是解决问题的关键.3.A解析:A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.4.D解析:D【解析】试题解析:∠A比∠B大30°,则有x=y+30,∠A,∠B互余,则有x+y=90.故选D.5.C【解析】0=,∴x ﹣1=0,x +y =0,解得:x =1,y =﹣1,所以xy =﹣1.故选C .6.D解析:D 【解析】 【分析】 【详解】解:∵1<2<4,∴1<2,∴﹣2<<﹣1,∴2<43,∴a=2,b=422=2-∴1221a b -=== 故选D . 【点睛】本题考查估算无理数的大小.7.C解析:C 【解析】 【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化. 【详解】解:①由图象可知,当A 车速度超过40km 时,燃油效率大于5km /L ,所以当速度超过40km 时,消耗1升汽油,A 车行驶距离大于5千米,故此项错误;②B 车以40千米/小时的速度行驶1小时,路程为40km ,40km ÷10km /L =4L ,最多消耗4升汽油,此项正确;③对于A 车而言,行驶速度在0﹣80km /h 时,越快越省油,故此项错误;④某城市机动车最高限速80千米/小时,相同条件下,在该市驾驶B 车比驾驶A 车燃油效率更高,所以更省油,故此项正确. 故②④合理, 故选:C . 【点睛】本题考查了折线统计图,熟练读懂折线统计图是解题思的关键.8.C解析:C【分析】各项利用不等式的基本性质判断即可得到结果. 【详解】 由x <y ,可得:x-1<y-1,-2x >-2y ,3232x y -->,22x y <, 故选:C . 【点睛】此题考查不等式的性质,熟练掌握不等式的性质是解题的关键.9.A解析:A 【解析】 【分析】根据直线平行的判定:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行进行判断即可. 【详解】解:A. ∠BAC=∠ACD 能判断AB//CD (内错角相等,两直线平行),故A 正确; B. ∠1=∠2得到AD ∥BC ,不能判断AB//CD ,故B 错误; C. ∠3=∠4得到AD ∥BC ,不能判断AB//CD ,故C 错误; D. ∠BAD=∠BCD ,不能判断AB//CD ,故D 错误; 故选A . 【点睛】本题主要考查了平行线的判定的运用,解题时注意:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行.10.C解析:C 【解析】A.不等式的两边都减2,不等号的方向不变,故A 错误;B.不等式的两边都除以2,不等号的方向不变,故B 错误;C.不等式的两边都乘以−2,不等号的方向改变,故C 正确;D.不等式的两边都乘以−1,不等号的方向改变,故D 错误. 故选C.11.B解析:B 【解析】 【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答. 【详解】在平面内,过一点有且只有一条直线与已知直线垂直, 故选:B 【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.12.D解析:D 【解析】 【分析】根据各象限内点的坐标特征解答即可. 【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D. 【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.二、填空题13.【解析】【分析】连接OP 将PAB 的面积分割成三个小三角形根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP 如图:∵A (20)B (03)∴OA=2OB=3∵∠AOB=90°∴∵点P 解析:3230m n +=-【解析】 【分析】连接OP ,将∆PAB 的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答. 【详解】解:连接OP ,如图:∵A (2,0),B (0,3), ∴OA=2,OB=3,∵∠AOB=90°,∴11=23322OAB S OA OB ⋅=⨯⨯=V , ∵点P (m ,n )为第三象限内一点, m <0,n <0∴,11y 222OAP P S OA n n ∴=⋅=⨯⋅=-V , 1133222OBP P S OB x m m =⋅=⨯⋅=-V , 33182PAB OAB OAP OBP S S S S n m ∴=++=--+=V V V V , 整理可得:3230m n +=-; 故答案为:3230m n +=-. 【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形.14.3m -n <10【解析】【分析】根据题意利用不等符号进行连接即可得出答案【详解】解:由题意可得:3m -n <10故答案为:3m -n <10【点睛】本题考查不等式的书写解析:3m -n <10. 【解析】 【分析】根据题意利用不等符号进行连接即可得出答案. 【详解】解:由题意可得:3m -n <10 故答案为:3m -n <10. 【点睛】本题考查不等式的书写.15.112°【解析】【分析】根据折叠前后对应角相等得∠DEF=∠GEF 由AD∥BC 得∠EFG=∠DEF=56°进而求出∠DEG 的度数再由AD∥BC 求出∠DEG=∠EGB【详解】解:∵折叠根据折叠前后对应解析:112° 【解析】 【分析】根据折叠前后对应角相等得∠DEF=∠GEF ,由AD ∥BC 得∠EFG=∠DEF=56°,进而求出∠DEG 的度数,再由AD ∥BC ,求出∠DEG=∠EGB. 【详解】解:∵折叠,根据折叠前后对应的角相等∴∠DEF=∠GEF ∵AD ∥BC∴∠EFG=∠DEF=56°∴∠DEG=∠DEF+∠GEF=56°+56°=112° 又∵AD ∥BC ∴∠EGB=∠DEG=112°. 故答案为:112° 【点睛】本题结合折叠考查了平行线的性质,熟记两直线平行时,内错角、同位角相等,同旁内角互补这个性质.16.【解析】【分析】先求出不等式组的解集再根据不等式组有且只有三个整数解求出整数解得出即可【详解】解不等式组得:∵有三个整数解∴x=-101∴m 的取值范围是故答案为:【点睛】考查一元一次不等式组的整数解 解析:21m -<≤-【解析】 【分析】先求出不等式组的解集,再根据不等式组有且只有三个整数解求出整数解,得出21m -<≤-即可. 【详解】解不等式组得:2,m x ≤<∵有三个整数解, ∴x=-1,0,1,∴m 的取值范围是21m -<≤-. 故答案为:21m -<≤-. 【点睛】考查一元一次不等式组的整数解,解出不等式的解集是解题的关键.17.①②③【解析】【分析】根据角平分线的性质可判断①根据对顶角关系可判断②根据互补的定义可判断③根据余角的定义可判断④【详解】∵OE ⊥AB ∴∠AOE=90°∵OF 平分∠AOE ∴∠2=∠EOF=45°①正解析:①②③ 【解析】 【分析】根据角平分线的性质可判断①,根据对顶角关系可判断②,根据互补的定义可判断③,根据余角的定义可判断④. 【详解】∵OE ⊥AB ,∴∠AOE=90°∵OF 平分∠AOE ,∴∠2=∠EOF=45°,①正确; ∵∠1与∠3互为对顶角,∴∠1=∠3,②正确;∵∠AOD+∠1=180°,∴AOD ∠与1∠互为补角,③正确;∵11530'∠=︒,∴∠1的补角为901530'=7430'︒-︒︒,④错误故答案为:①②③【点睛】本题考查垂直、角平分线、补角、对顶角的基本定义和性质,注意紧紧把握定义来判断. 18.6【解析】【分析】直接利用的取值范围得出ab 的值即可得出答案【详解】∵ab 为两个连续的整数且∴a=2b=3∴3×2=6故答案为:6【点睛】此题考查估算无理数的大小正确得出ab 的值是解题关键解析:6【解析】【分析】a ,b 的值,即可得出答案.【详解】∵a ,b 为两个连续的整数,且a b <<,∴a=2,b=3,∴ba =3×2=6. 故答案为:6.【点睛】此题考查估算无理数的大小,正确得出a ,b 的值是解题关键. 19.【解析】【分析】设购一件甲商品需要x 元一件乙商品需要y 元一件丙商品需要z 元建立方程组整体求解即可【详解】解:设购一件甲商品需要x 元一件乙商品需要y 元一件丙商品需要z 元由题意得把这两个方程相加得5x+ 解析:【解析】【分析】设购一件甲商品需要x 元,一件乙商品需要y 元,一件丙商品需要z 元,建立方程组,整体求解即可.【详解】解:设购一件甲商品需要x 元,一件乙商品需要y 元,一件丙商品需要z 元,由题意得 32315234285x y z x y z ++=⎧⎨++=⎩把这两个方程相加,得5x+5y+5z=600即5(x+y+z)=600∴x+y+z=120∴购甲、乙、丙三种商品各一件共需120元.故答案为120.【点睛】本题考查了三元一次方程组的建模及其特殊解法.根据系数特点,将两式相加,整体求解.20.8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式∴x2+(m-2)x+9=(x±3)2而(x±3)2=x2±6x+9∴m-2=±6∴m=8或m=-4故答案为8或-4 解析:8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式,∴x2+(m-2)x+9=(x±3)2.而(x±3)2=x2±6x+9,∴m-2=±6,∴m=8或m=-4.故答案为8或-4.三、解答题21.BE∥DF,理由见解析.【解析】【分析】根据四边形的内角和为360°得到∠ADC+∠ABC=180°,再根据角平分线的性质得到∠ABE+∠ADF =90°,再由等量替换得到∠AFD=∠ABE,根据同位角相等两直线平行即可得到;【详解】BE∥DF,理由如下:证明:四边形ABCD中,∠A=∠C=90°,∴∠ADC+∠ABC=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠ADF=∠FDC,∠ABE=∠CBE,∴∠ABE+∠ADF =90°,∵∠AFD+∠ADF=90°,∴∠AFD=∠ABE(等量替换),∴BE∥DF(同位角相等,两直线平行).【点睛】本题主要考查四边形的内角和为360°、角平分线的性质、平行四边形的判定以及等量替换原则,掌握同位角相等两直线平行的判定定理是解题的关键.22.证明见解析.【解析】【分析】根据AD∥BC得到∠C=∠CDE,再根据∠A=∠C,利用等量替换得到∠A=∠CDE即可判定;【详解】证明:∵AD∥BC(已知),∴∠C=∠CDE(两直线平行,内错角相等),∵∠A=∠C(已知),∴∠A=∠CDE(等量代换),∴AB∥CD(同位角相等,两直线平行);【点睛】本题主要考查了平行四边形的性质和判定,掌握直线平行内错角相等的性质和同位角相等两直线平行的判定法则是解题的关键.23.(1)(5,3),(8,4);(2)232;(3)5 【解析】【分析】(1)根据网格结构找出点B 、C 的对应点B ′、C '的位置,顺次连接之后,根据平面直角坐标系写出点B ′,C '的坐标;(2)结合图形可知所求为线段AB 扫过的图形为平行四边形ABB A ''加上三角形A B C '''的面积,分别求解之后再求和即可;(3)结合网格结构可知线段AB 向右平移时,A 点坐标变为(8,0)时满足题意,据此可解答本题. 【详解】解:(1)根据题意画图:∴(5,3)B ',(8,4)C ';(2)如图,∵1111634221422182222ABB A S ''=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯=Y , 1117322121312222A B C S '''=⨯-⨯⨯-⨯⨯-⨯⨯=V , ∴平移过程中△ABC 扫过的面积为723822+=; (3)结合网格结构可知线段AB 向右平移时,A 点坐标变为(8,0)时满足题意, 此时A 点向右平移了5个单位长度,∵直线AB 以每秒1个单位长度的速度向右平移,∴平移5秒时该直线恰好经过点C '.【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.72m ≤,正整数解123m =、、【解析】【分析】去括号、移项、合并同类项、系数化成1即可求得不等式的解集,然后确定解集中的正整数解即可.【详解】解:去括号,得2m-4-3m+392≥-移项,得2m-3m ≥4-3- 92,合并同类项,得-m≥-72,系数化为1得72 m≤,则不等式的正整数解为 1,2,3.【点睛】本题考查了一元一次不等式的解法,解不等式的依据是不等式的性质,要注意不等号方向的变化.25.3212 ab⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】对比两个方程组,可得a+b就是第一个方程组中的x,即a+b=1,同理:a﹣b=2,可得方程组解出即可.【详解】∵关于x、y的二元一次方程组3x my52x ny6-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴关于a.b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩满足12a ba b+=⎧⎨-=⎩,解得:3212ab⎧=⎪⎪⎨⎪=-⎪⎩.∴关于a.b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩的解是3212ab⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查解二元一次方程组,通过对比得出以a、b为未知数的方程组是解题关键.。

2020-2021大连市初一数学下期中模拟试卷(含答案)

2020-2021大连市初一数学下期中模拟试卷(含答案)

把{
代入{
即可得到关于 a, b, c 的方程组,从而得到结果.
y 2
cx by 2
【详解】
3a 2c 1① 由题意得, 3c 2b 2② ,

3,

2
得,
9a 6c
6c 4b
3③ 4④
④ ③ 得 9a 4b 1,
故选:D.
10.B
解析:B 【解析】
【分析】
根据平行线的性质,两直线平行同位角相等,得出∠1=∠2,再利用要使 DF∥BC,找出符
5.C
解析:C 【解析】 【分析】 根据 A 和 C 的坐标可得点 A 向右平移 4 个单位,向上平移 1 个单位,点 B 的平移方法与 A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点 D 的 坐标. 【详解】 解:∵点 A(0,1)的对应点 C 的坐标为(4,2), 即(0+4,1+1), ∴点 B(3,3)的对应点 D 的坐标为(3+4,3+1), 即 D(7,4); 故选:C. 【点睛】 此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.
A.电梯的升降
B.夏天电风扇中运动的扇叶
C.汽车挡风玻璃上运动的刮雨器
D.跳绳时摇动的绳子
8.若 a<b<0,则在 ab<1、 1 > 1 、ab>0、 b >1、-a>-b 中正确的有( )
ab
a
A.2 个
B.3 个
C.4 个
D.5 个
x 3
ax cy 1
9.已知
y
2
是方程组
cx
by
2
的解,则
∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,

2020-2021苏州星海学校七年级数学下期中模拟试卷(含答案)

2020-2021苏州星海学校七年级数学下期中模拟试卷(含答案)
【详解】
∵ >1
∴这个点的坐标为( ,-1)
故选:C.
【点睛】
此题考查点的坐标,解题关键在于准确找出这个点与限变点的横、纵坐标与a的关系即可.
2.C
解析:C
【解析】
【分析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
【详解】
解:在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a(a>1),那么所得的图案与原图案相比,
图案向左平移了a个单位长度,并且向下平移了a个单位长度.
故选:C.
【点睛】
本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
3.D
解析:D
【解析】
【分析】
分 和 两种情况将所求方程变形,求出解即可.
【详解】
解:∵点A(0,1)的对应点C的坐标为(4,2),
即(0+4,1+1),
∴点B(3,3)的对应点D的坐标为(3+4,3+1),
即D(7,4);
故选:C.
【点睛】
此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.
7.B
解析:B
【解析】
【分析】
根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.
10.在平面直角坐标中,点M(-2,3)在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
11.如图所示,在ABC中,点D、E、F分别是AB,BC,AC上,且EF∥AB,要使DF∥BC,还需添加条件是()

【必考题】七年级数学下期中一模试题(带答案)

【必考题】七年级数学下期中一模试题(带答案)
=20+2×3
=26.
故选D.
点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.
2.A
解析:A
【解析】
【分析】
先由直线a∥b,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.
6.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于( )
A.2B.3C. D.
7.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )
A.40°B.50°C.60°D.70°
8.下列所示的四个图形中,∠1=∠2是同位角的是()
7.D
解析:D
【解析】
【分析】
根据折叠的知识和直线平行判定即可解答.
【详解】
解:如图可知折叠后的图案∠ABC=∠EBC,
又因为矩形对边平行,根据直线平行内错角相等可得
∠2=∠DBC,
又因为∠2+∠ABC=180°,
所以∠EBC+∠2=180°,
即∠DBC+∠2=2∠2=180°-∠1=140°.
可求出∠2=70°.
17.已知方程3x+5y-3=0,用含x的代数式表示y,则y=________.
18.若关于x的不等式组 的整数解共有4个,则m的取值范围是__________.
19.若 ,则 ______.
20.知 , 为两个连续的整数,且 ,则 ______.

2020-2021大连市七年级数学下期中一模试卷带答案

2020-2021大连市七年级数学下期中一模试卷带答案

2020-2021大连市七年级数学下期中一模试卷带答案一、选择题1.若点(),P a b 在第四象限,则( ) A .0a >,0b > B .0a <,0b < C .0a <,0b >D .0a >,0b <2.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x x x x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-13.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°4.不等式组324323x x x +⎧⎪-⎨≥⎪⎩<的解集,在数轴上表示正确的是( )A .B .C .D .5.已知m=4+3,则以下对m 的估算正确的( ) A .2<m <3B .3<m <4C .4<m <5D .5<m <66.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( )A .B .C .D .7.已知237351x y x y -=-⎧⎨+=-⎩的解21x y =-⎧⎨=⎩,则2(2)3(-1)73(2)5(-1)1x y x y +-=-⎧⎨++=-⎩的解为( )A .-42x y =⎧⎨=⎩B .50x y =-⎧⎨=⎩C .50x y =⎧⎨=⎩D .41x y =-⎧⎨=⎩8.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( )A .B .C .D .9.在平面直角坐标中,点M(-2,3)在( ) A .第一象限 B .第二象限C .第三象限 D .第四象限10.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( )A .491b a -=B .321a b +=C .491b a -=-D .941a b +=11.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )A .35°B .45°C .55°D .125°12.下列各组数中互为相反数的是( ) A .3和2(3)-B .﹣|﹣2|和﹣(﹣2)C .﹣38和38-D .﹣2和12二、填空题13.m 的3倍与n 的差小于10,用不等式表示为______________.14.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________.15.若关于x 、y 的二元一次方程组2212x y ax y a +=⎧⎨+=-⎩的解互为相反数,则a 的值是_______________.16.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.17.11133+=112344+=113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.18.若不等式(m-2)x >1的解集是x <12m -,则m 的取值范围是______. 19.在整数20200520中,数字“0”出现的频率是_________. 20.如图,已知AB ∥CD ,∠B=25°,∠D=45°,则∠E=__度.三、解答题21.阅读材料学习了无理数后,某数学兴趣小组开展了一次探究活动:估算14的近似值. 小明的方法:91416<<Q,设143(01)k k =+<<,22(14)(3)k ∴=+,21496k k ∴=++,1496k ∴≈+,解得,56k ≈,5143 3.836∴≈+≈.问题:(1)请你依照小明的方法,估算30的近似值. (2)已知非负整数a b m 、、,若1a m a <<+,且2m a b =+,结合上述材料估算m 的近似值(用含a b 、的代数式表示).22.列一元一次不等式(组)解决问题:永安六中学生会准备组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶,为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?23.课题学习:平行线的“等角转化功能.(1)问题情景:如图1,已知点A 是BC 外一点,连接AB 、AC ,求BAC B C ∠+∠+∠的度数.天天同学看过图形后立即想出:180BAC B C ∠+∠+∠=︒,请你补全他的推理过程. 解:(1)如图1,过点A 作ED BC ∥,∴B ∠= ,C ∠= .又∵180EAB BAC CAD ∠+∠+∠=︒,∴180BAC B C ∠+∠+∠=︒.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将BAC ∠,B Ð,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.(2)问题迁移:如图2,AB ED P ,求B BCD D ∠+∠+∠的度数.(3)方法运用:如图3,AB CD ∥,点C 在D 的右侧,70ADC ∠=︒,点B 在A 的左侧,60ABC ∠=︒,BE 平分ABC ∠,DE 平分ADC ∠,BE 、DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间,求BED ∠的度数.24.解不等式:121123x x +--≤,并把解集在数轴上表示出来. 25.如图,是小明同学在课堂上画的一个图形,AB ∥CD ,他要想得出∠1=∠2,那么还需要添加一个什么样的条件?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案. 【详解】由点P (a ,b )在第四象限内,得 a >0,b <0, 故选:D . 【点睛】此题考查各象限内点的坐标,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.D解析:D 【解析】 【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可. 【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=, 去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=, 去分母得:2210x x --=,代入公式得:222122x ±==±, 解得:341212x x =+=-,(舍去), 经检验12x =+是分式方程的解, 综上,所求方程的解为12+或-1. 故选D. 【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.3.B解析:B 【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案. 解:过E 作EF ∥AB , ∵AB ∥CD , ∴AB ∥CD ∥EF ,∴∠C=∠FEC ,∠BAE=∠FEA , ∵∠C=44°,∠AEC 为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°, ∴∠1=180°﹣∠BAE=180°﹣46°=134°, 故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.4.A【解析】 【分析】 【详解】324{32? 3x xx <+-≥①②,由①,得x <4,由②,得x≤﹣3,由①②得, 原不等式组的解集是x≤﹣3; 故选A .5.B解析:B 【解析】 【分析】直接化简二次根式,得出3的取值范围,进而得出答案. 【详解】∵m=4+3=2+3, 1<3<2, ∴3<m <4, 故选B . 【点睛】此题主要考查了估算无理数的大小,正确得出3的取值范围是解题关键.6.D解析:D 【解析】 【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答. 【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1; 解不等式②得,x ≤1; ∴不等式组的解集是﹣1<x ≤1. 不等式组的解集在数轴上表示为:故选D.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.7.A解析:A 【解析】 【分析】将x+2与y-1看做一个整体,根据已知方程组的解求出x 与y 的值即可. 【详解】 根据题意得:2=21=1x y +-⎧⎨-⎩ ,解得:=4=2x y -⎧⎨⎩ .故选:A . 【点睛】此题考查二元一次方程的解,解题关键在于掌握方程的解即为能使方程左右两边相等的未知数的值.8.A解析:A 【解析】 【分析】先求出不等式组的解集,再在数轴上表示出来即可. 【详解】213312x x +⎧⎨+≥-⎩<①②∵解不等式①得:x <1, 解不等式②得:x≥-1, ∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A . 【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.9.B解析:B 【解析】 ∵−2<0,3>0,∴(−2,3)在第二象限,故选B.10.D解析:D【解析】【分析】把3{2xy=-=-,代入1{2ax cycx by+=-=,即可得到关于,,a b c的方程组,从而得到结果.【详解】由题意得,321322a cc b--=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963 644a cc b--=⎧⎨-+=⎩③④-④③得941a b+=,故选:D.11.C解析:C【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】如图,∵∠1+∠2=180°,∴a∥b,∴∠4=∠5,∵∠3=∠5,∠3=55°,∴∠4=∠3=55°,故选C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.12.B解析:B【解析】【分析】根据相反数的定义,找到只有符号不同的两个数即可. 【详解】解:A3,3B 、﹣||=﹣,﹣||)两数互为相反数,故本选项正确;C22D 、﹣2和12两数不互为相反数,故本选项错误. 故选:B . 【点睛】考查了相反数的定义:要知道,只有符号不同的两个数互为相反数.二、填空题13.3m -n <10【解析】【分析】根据题意利用不等符号进行连接即可得出答案【详解】解:由题意可得:3m -n <10故答案为:3m -n <10【点睛】本题考查不等式的书写解析:3m -n <10. 【解析】 【分析】根据题意利用不等符号进行连接即可得出答案. 【详解】解:由题意可得:3m -n <10 故答案为:3m -n <10. 【点睛】本题考查不等式的书写.14.3≤a<4【解析】【分析】求出每个不等式的解集根据找不等式组解集的规律找出不等式组的解集根据已知不等式组有四个整数解得出不等式组-4<-a≤-3求出不等式的解集即可得答案【详解】解不等式①得:x≥-解析:3≤a <4 【解析】 【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有四个整数解得出不等式组-4<-a≤-3,求出不等式的解集即可得答案. 【详解】0122x a x x +≥⎧⎨->-⎩①②解不等式①得:x≥-a , 解不等式②x <1,∴不等式组得解集为-a≤x <1, ∵不等式组恰有四个整数解, ∴-4<-a≤-3, 解得:3≤a <4, 故答案为:3≤a <4 【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,能根据不等式组的解集得出关于a 的不等式组是解题关键.15.1【解析】【分析】两方程相加表示出根据方程组的解互为相反数得到即可求出的值【详解】解:①②得:即由题意得:即解得:故答案为:1【点睛】此题考查了二元一次方程组的解方程组的解即为能使方程组中两方程成立解析:1 【解析】 【分析】两方程相加表示出x y +,根据方程组的解互为相反数,得到0x y +=,即可求出a 的值. 【详解】解:2212x y ax y a +=⎧⎨+=-⎩①②,①+②得:331x y a +=-, 即x y +=13a-, 由题意得:0x y +=,即103a-=, 解得:1a =. 故答案为:1. 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.16.70°【解析】【分析】依据平行线的性质可得∠BAE=∠DCE=140°依据折叠即可得到∠α=70°【详解】解:如图∵AB∥CD∴∠BAE=∠DCE=140°由折叠可得:∴∠α=70°故答案为:70°解析:70°. 【解析】 【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB ∥CD ,∴∠BAE =∠DCE =140°, 由折叠可得:12DCF DCE ∠=∠, ∴∠α=70°.故答案为:70°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. 17.【解析】【分析】观察分析可得则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式找出题中的规律是解 11(1)1)22n n n n n +=+≥++ 【解析】【分析】 111(1+1)312+=+112(21)422+=++113(31)532+=++n(n ≥1)的等式表示出来是11((1)22n n n n n +=+≥++ 【详解】由分析可知,发现的规律用含自然数n(n ≥1)的等式表示出来是11((1)22n n n n n +=+≥++ 11((1)22n n n n n +=+≥++ 【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.18.m<2【解析】【分析】根据不等式的性质和解集得出m-2<0求出即可【详解】∵不等式(m-2)x>1的解集是x<∴m-2<0即m<2故答案是:m<2【点睛】考查对不等式的性质解一元一次不等式等知识点的解析:m<2【解析】【分析】根据不等式的性质和解集得出m-2<0,求出即可.【详解】∵不等式(m-2)x>1的解集是x<12m,∴m-2<0,即m<2.故答案是:m<2.【点睛】考查对不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据不等式的性质和解集得出m-2<0是解此题的关键.19.5【解析】【分析】直接利用频率的定义分析得出答案【详解】解:∵在整数20200520中一共有8个数字数字0有4个故数字0出现的频率是故答案为:【点睛】此题主要考查了频率的求法正确把握定义是解题关键解析:5【解析】【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是12.故答案为:12.【点睛】此题主要考查了频率的求法,正确把握定义是解题关键.20.【解析】【分析】首先过点E作EF∥AB由AB∥CD可得AB∥CD∥EF然后根据两直线平行内错角相等即可求出答案【详解】解:过点E作EF∥AB∵AB∥CD∴AB∥CD∥EF∵∠B=25°∠D=45°∴解析:【解析】【分析】首先过点E作EF∥AB,由AB∥CD可得AB∥CD∥EF,然后根据两直线平行,内错角相等即可求出答案.【详解】解:过点E 作EF ∥AB∵AB ∥CD∴AB ∥CD ∥EF∵∠B=25°,∠D=45°∴∠1=∠B=25°,∠2=∠D=45°∴∠BED=∠1+∠2=25°+45°=70°故答案为70.【点睛】本题考查了平行线的性质.掌握辅助线的作法是解题的关键,注意数形结合思想的应用.三、解答题21.(1)3.5;(2)2a b a +. 【解析】【分析】(1)根据题目信息,找出3030(0<k <1),再根据题目信息近似求解即可;(2)由题意直接根据题目提供的求法,先求出k 值,然后再加上a 即可.【详解】解:(1)253036<<Q 305(01)k k =+<<,2230)(5)k ∴=+,2302510k k ∴=++,302510k ∴≈+, 解得:12k ≈, 1303 3.52≈+=. (2(01)m a k k =+<<,22222m a ak k a ak ∴=++≈+,2m a b =+Q ,222a ak a b ∴+=+,解得:2b k a =, 2b m a a∴≈+. 【点睛】 本题考查无理数的估算,注意掌握读懂题目提供信息,然后根据信息中的方法改变数据即可.22.至少有20名八年级学生参加活动.【解析】【分析】设需要七x 个年级学生参加活动,则参加活动的八年级学生为(60-x )个,由收集塑料瓶总数不少于1000个建立不等式求出其解即可.【详解】解:设至少有x 名八年级学生参加活动,则参加活动的七年级学生有(60)x -名,依题意得:15(60)201000x x -+≥解得:20x ≥答:至少有20名八年级学生参加活动.【点睛】此题考查列一元一次不等式解实际问题,一元一次不等式的解法的运用,解答时由收集塑料瓶总数不少于1000个建立不等式是解题关键.23.(1)∠EAB ,∠DAC ; (2)360°;(3)65°【解析】【分析】(1)根据平行线性质“两直线平行,内错角相等”可得∠B+∠BCD+∠D ∠BCF+∠BCD+∠DCF ;(2)过C 作CF ∥AB ,根据平行线性质可得;(3)如图3,过点E 作EF ∥AB ,根据平行线性质和角平分线定义可得∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°,故∠BED=∠BEF+∠DEF. 【详解】 (1)根据平行线性质可得:因为ED BC ∥,所以B ∠=∠EAB ,C ∠=∠DAC ;(2)过C 作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ∥AB ,∴∠D=∠FCD ,∠B=∠BCF ,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°∴∠BED=∠BEF+∠DEF=30°+35°=65°.【点睛】考核知识点:平行线性质和角平分线定义.作辅助线构造平行线是关键.24.1x≥-【解析】【分析】当不等式有分母时,应先两边都乘6,去分母;然后去括号,移项及合并,系数化为1.【详解】解:去分母得,3(1+x)-2(2x-1)≤6去括号得,3+3x-4x+2≤6,移项得,3x-4x≤6-5,即-x≤1,∴x≥-1.解集在数轴上表示得:【点睛】本题考查解不等式的一般步骤,需注意;去分母时单独的一个数也必须乘各分母的最简公分母;在不等式两边都除以一个负数时,应只改变不等号的方向,余下该怎么除还怎么除.25.可添加AE、CF分别平分∠BAC和∠ACD或∠E=∠F或AE∥CF(任选其一即可)【解析】【分析】若添加AE、CF分别平分∠BAC和∠ACD,根据角平分线的定义和平行线的性质即可证出结论;若添加∠E=∠F,根据平行线的性质及判定即可证出结论;若添加AE∥CF,根据平行线的性质及判定即可证出结论.【详解】解:若添加AE、CF分别平分∠BAC和∠ACD∴∠1=12∠BAC,∠2=12∠ACD∵AB∥CD∴∠BAC=∠ACD∴∠1=∠2;若添加∠E=∠F∴AE∥CF∴∠EAC=∠FCA∵AB∥CD∴∠BAC=∠ACD∴∠BAC-∠EAC =∠ACD-∠FCA∴∠1=∠2若添加AE∥CF∴∠EAC=∠FCA∵AB∥CD∴∠BAC=∠ACD∴∠BAC-∠EAC =∠ACD-∠FCA∴∠1=∠2综上:可添加AE、CF分别平分∠BAC和∠ACD或∠E=∠F或AE∥CF(任选其一即可).【点睛】此题考查的是平行线的性质及判定的应用,掌握平行线的判定及性质是解决此题的关键.。

2020-2021学年人教版七年级下册数学期中试卷(有答案)

2020-2021学年人教版七年级下册数学期中试卷(有答案)

人教版七年级下册数学期中试卷一.选择题(共10小题,满分40分,每小题4分)1.一个数的两个平方根分别是2a﹣1与﹣a+2,则这个数是()A.﹣1B.3C.9D.﹣32.在,0,,﹣,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)这五个数中,无理数的个数共有()A.2个B.3个C.4个D.5个3.下列不等式变形错误的是()A.若a>b,则1﹣a<1﹣bB.若a<b,则ax2≤bx2C.若ac>bc,则a>bD.若m>n,则>4.若xy>0,则关于点P(x,y)的说法正确的是()A.在一或二象限B.在一或四象限C.在二或四象限D.在一或三象限5.不等式组的解集在数轴上表示为()A.B.C.D.6.如图,点Q(m,n)是第二象限内一点,则点Q到y轴的距离是()A.m B.n C.﹣m D.﹣n7.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()A.将原图向左平移两个单位B.关于原点对称C.将原图向右平移两个单位D.关于y轴对称8.估计的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间9.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算术平方根是它本身的数只有1和0C.的算术平方根是4D.绝对值是它本身的数只有1和010.如图,数轴上的点A表示的数是1,OB⊥OA,垂足为O,且BO=1,以点A为圆心,AB 为半径画弧交数轴于点C,则C点表示的数为()A.﹣0.4B.﹣C.1﹣D.﹣1二.填空题(共8小题,满分16分,每小题2分)11.的相反数是,绝对值是.12.疫情期间全国“停课不停学”初中生来清网上听课每节课a分钟,每天六节课,每天上网课总时长小于240分钟,可列不等式.13.若点(3+m,a﹣2)关于y轴对称点的坐标是(3,2),则m+a的值为.14.不等式﹣x+1<0的解集是.15.的值是;的立方根是.16.如果点P(x,y)的坐标满足x+y=xy,那么称点P为“和谐点”,若某个“和谐点”到x轴的距离为3,则P点的坐标为.17.若|a﹣2|+b2+4b+4+=0,则=.18.已知不等式6x+1>5x﹣2的最小整数解是方程2x﹣kx=4﹣2k的解,则k=.三.解答题(共10小题,满分64分)19.解方程:2x2﹣8=0.20.计算:5﹣.21.计算:﹣22+﹣﹣|﹣2|.22.解不等式+1≥.并把此不等式的解表示在数轴上.23.解不等式x﹣4<3(x﹣2),并把解集在数轴上表示出来.24.解不等式组.25.(1)计算:++|1﹣|;(2)解方程组;(3)解不等式组,并写出它的所有整数解..26.如图,三角形ABC的顶点坐标分别为A(﹣2,4),B(﹣3,1),C(0,1),BC上的一点P的坐标为(﹣2,1),将三角形ABC向右平移4个单位长度,再向上平移1个单位长度,得到三角形A1B1C1,其中点A,B,C,P分别对应点A1,B1,C1,P1.(1)在图中画出三角形A1B1C1和点P1;(2)连接P1A,P1B,直接写出三角形P1AB的面积.27.平面直角坐标系中,直线y=2x+4与x轴、y轴分别交于点B、A.(1)直接写出直线AB关于x轴对称的直线BC的解析式;(2)如图1,直线BC与直线y=﹣x交于E点,点P为y轴上一点,PE=PB,求P点坐标;(3)如图2,点P为y轴上一点,∠OEB=∠PEA,直线EP与直线AB交于点M,求M点的坐标.28.放假了,学生王东准备利用假期到某工厂打工,该工厂的工作时间:每月25天,每天上午:8:00﹣12:00,下午:14:00﹣18:00.待遇:按件计酬,另每月加奖金100元.生产甲、乙两种产品,规定每月生产甲种产品不少于100件,每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元.下表是生产甲、乙产品件数与所用时间之间的关系:所用总时间(分)生产甲产品的件数(件)生产乙种产品的件数(件)215065190(1)王东每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?(2)王东这个月最多能得多少工资?此时生产甲乙两种产品各多少件?参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:由题意得,2a﹣1﹣a+2=0,解得a=﹣1,所以2a﹣1=﹣3,﹣a+2=3,即一个数的两个平方根分别是3与﹣3,所以这个数是9,故选:C.2.解:在,0,,﹣,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)这六个数中,无理数有:,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)共2个.故选:A.3.解:A、∵a>b,∴﹣a<﹣b,∴1﹣a<1﹣b,正确,故本题选项不符合题意;B、∵a<b,∴ax2≤bx2,正确,故本题选项不符合题意;C、当c<0时,根据ac>bc不能得出a>b,错误,故本题选项不符合题意;D、∵m>n,∴>,正确,故本题选项不符合题意;故选:C.4.解:∵xy>0,∴x>0,y>0或x<0,y<0,∴点P(x,y)在一或三象限.故选:D.5.解:,由①得,x>1,由②得,x≥2,故此不等式组的解集为:x≥2.在数轴上表示为:.故选:A.6.解:因为Q(m,n)是第二象限内一点,所以m<0,所以点Q到y轴的距离是|m|=﹣m.故选:C.7.解:∵将三角形三个顶点的横坐标都减2,纵坐标不变,∴所得三角形与原三角形的关系是:将原图向左平移两个单位.故选:A.8.解:∵49<63<64,∴7<<8,故选:A.9.解:A、立方根是它本身的数只有1和0、﹣1,故此选项错误;B、算术平方根是它本身的数只有1和0,故此选项正确;C、=4的算术平方根是2,故此选项错误;D、绝对值是它本身的数是非负数,故此选项错误.故选:B.10.解:在Rt△AOB中,AB==,∴AB=AC=,∴OC=AC﹣OA=﹣1,∴点C表示的数为1﹣.故选:C.二.填空题(共8小题,满分16分,每小题2分)11.解:的相反数是﹣;∵>0,∴||=.故答案为:﹣,.12.解:依题意,得6a<240.故答案为:6a<240.13.解:∵点(3+m,a﹣2)关于y轴对称点的坐标是(3,2),∴3+m=﹣3,a﹣2=2,解得:m=﹣6,a=4,则m+a的值为:﹣6+4=﹣2.故答案为:﹣2.14.解:不等式两边同时乘以﹣3得:x﹣3>0,移项得:x>3,即不等式的解集为:x>3.故答案为:x>3.15.解:∵42=16,∴=4,=8,=2,故答案为:4,2.16.解:∵某个“和谐点”到x轴的距离为3,∴y=±3,∵x+y=xy,∴x±3=±3x,解得:x=或x=.则P点的坐标为:(,3)或(,﹣3).故答案为:(,3)或(,﹣3).17.解:根据题意得|a﹣2|+(b+2)2+=0,∴a﹣2=0,b+2=0,c﹣=0,解得a=2,b=﹣2,c=,所以原式=××=2×=2×1=2.故答案为2.18.解:6x+1>5x﹣2,解得:x>﹣3,∵x是不等式5x﹣2<6x+1的最小整数解,∴x=﹣2,把x=﹣2代入方程2x﹣kx=4﹣2k中得:2×(﹣2)﹣(﹣2)×k=4﹣2k,解得:k=2,故答案为:2.三.解答题(共10小题,满分64分)19.解:x2=4,所以x1=2,x2=﹣2.20.解:原式=5﹣2﹣2=1.21.解:原式=﹣4+6+3﹣(﹣2)=﹣4+6+3﹣+2=7﹣.22.解:去分母得:3(x﹣1)+6≥2(2x+1),去括号得:3x﹣3+6≥4x+2,移项合并同类项得:﹣x≥﹣1,故不等式的解集为:x≤1,在数轴上表示不等式的解集,如图所示:.23.解:去分母得:x﹣4<3x﹣6,移项得:x﹣3x<﹣6+4,合并得:﹣2x<﹣2,解得:x>1,表示在数轴上,如图所示:.24.解:,解不等式①得:x≥4,解不等式②得:x>,所以不等式组的解集是x≥4.25.解:(1)原式=3﹣4+﹣1,=﹣2+.(2),①×2﹣②得,﹣9n=﹣18,解得n=2,把n=2代入①得,m=7,∴方程组的解为;(3),解①得:x≤3;解②得:x>﹣1;则不等式组的解集为﹣1<x≤3,∴这个不等式组的整数解为0,1,2,3.26.解:(1)如图所示:△A1B1C1和点P1,即为所求;(2)三角形P1AB的面积为:3×5﹣×2×4﹣×1×3﹣×1×5=7.27.解:(1)∵直线y=2x+4与x轴、y轴分别交于点B、A.∴A(0,4),B(﹣2,0),∵直线AB与直线BC关于x轴对称,∴C(0,﹣4),设直线BC的解析式为y=kx+b,∴,解得,;∴直线BC的解析式为y=﹣2x﹣4;故答案为:y=﹣2x﹣4;(2)∵,∴,∴E(﹣4,4),∴AE⊥AO,设OP=a,AP=4﹣a,在Rt△BOP和Rt△EAP中,BP2=4+a2,PE2=16+(4﹣a)2,∵PE=PB,∴4+a2=16+(4﹣a)2,解得a=3.5.∴P(0,3.5).(3)①如图,当点P在点A的下方,∵∠OEB=∠PEA,∠AEO=45°,∴∠PEB=45°,过点B作BN⊥BE交直线EP于点N,过点N作NQ⊥OB于Q,过点E作EH⊥OB于点H,∴△EBN为等腰直角三角形,∴EB=BN,∵∠BEH+∠EBH=90°,∠EBH+∠NBQ=90°,∴∠BEH=∠NBQ,又∵∠EHB=∠BQN=90°,∴△EHB≌△BQN(AAS),∴NQ=BH=2,BQ=EH=4,∴N(2,2),设直线EN的解析式为y=kx+b,∴,解得,∴直线EN的解析式为y=﹣x+,∴,解得,即M(﹣,);②P点在A点的上方,由①知图1中OP=,则AP=,∴OP=,设直线EP的解析式为y=mx+,∵E(﹣4,4),∴﹣4m+=4,解得m=,∴直线EP的解析式为y=x+,∴,解得,∴M(0.8,5.6).综合以上可得点M的坐标为(﹣,)或(0.8,5.6).28.解:(1)设生产一件甲种产品需x分钟,生产一种乙种产品需y分钟,由题意得,解得:x=15,y=20,答:生产一件甲种产品需15分钟,生产一件乙种产品需20分钟;(2)设生产甲种产品a件,工资为w元,w=1.5a+2.8(25×8×60﹣15a)÷20+100,=﹣0.6a+1780,∵a≥100,∴由一次函数性质知,当a=100时,w取最大值为1720元.答:王东该月最多工资为1720元,此时生产甲种产品100件,乙种产品525件.。

2021年南京市七年级数学下期中第一次模拟试题附答案

2021年南京市七年级数学下期中第一次模拟试题附答案
10.如图,直线 ,被直线 、 所截,并且 , ,则 等于()
A.56°B.36°C.44°D.46°
11.如图, 面积为2,将 沿AC方向平移至 ,且AC=CD,则四边形AEFB的面积为()
A.6B.8C.10D.12
12.如图,△ABC经平移得到△EFB,则下列说法正确的有()
①线段AC的对应线段是线段EB;
【详解】
解:解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),
第2次接着运动到点(2,0),第3次接着运动到点(3,2),
∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,
∴横坐标为运动次数,经过第2019次运动后,动点P的横坐标为2019,
纵坐标为1,0,2,0,每4次一轮,
A.(2020,0)B.(3030,0)C.(3030, )D.(3030,﹣ )
3.如图,动点 在平面直角坐标系中按图中箭头所示方向运动,第 次从原点运动到点 ,第 次接着运动到点 ,第 次接着运动到点 ……按这样的运动规律,经过第 次运动后,动点 的坐标是()
A. B. C. D.
4.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为 ,四号暗堡的坐标为 ,原有情报得知:敌军指挥部的坐标为 ,你认为敌军指挥部的位置大约是()
(3)如图(4)所示,已知 ,请问 与 有何关系并说明理由.
26.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,∠A=30°,求∠B的度数.
【参考答案】***试卷处理标记,请不要删除
一、选择题

2020-2021学年华师大版七年级数学下册期中检测题(含答案)

2020-2021学年华师大版七年级数学下册期中检测题(含答案)

2020-2021学年华师大版七年级数学下册期中检测题(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.下列方程中,是二元一次方程的是( )A .xy =1B .y =3x -1C .x +1y =2D .x 2+x -3=02.若a>b ,则下列不等式不一定成立的是( )A .a +m>b +mB .a(m 2+1)>b(m 2+1)C .-a 2 <-b 2D .a 2>b 23.二元一次方程组⎩⎪⎨⎪⎧x +y =2x -y =-2的解是( ) A .⎩⎪⎨⎪⎧x =0,y =-2 B .⎩⎪⎨⎪⎧x =0,y =2 C .⎩⎪⎨⎪⎧x =2,y =0 D .⎩⎪⎨⎪⎧x =-2,y =0 4.(嘉兴中考)不等式1-x ≥2的解在数轴上表示正确的是( )5.(毕节中考)不等式组⎩⎨⎧2x +1≥-3x<1的解集在数轴上表示正确的是( )6.研究下面解方程120 +2x -35 =3x 4 -1-3x 20 的过程:①去分母,得1+4(2x-3)=15x -(1-3x);②去括号,得1+8x -12=15x -1-3x ;③移项,得8x -15x +3x =-1-1+12;④合并同类项,得-4x =10;⑤系数化为1,得x =-52 .对于上面的解法,你认为( )A .完全正确B .变形错误的是②C .变形错误的是③D .变形错误的是⑤7.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是( )A .5x +4(x +2)=44B .5x +4(x -2)=44C .9(x +2)=44D .9(x +2)-4×2=448.甲、乙两人环湖竞走,环湖一周400米,乙的速度是80米/分,甲的速度是乙的速度的114 倍,且甲在乙前100米,若两人同时走,多少分钟两人第一次相遇?设经过x 分钟两人第一次相遇,则所列方程为( )A .80x +100=54 ·80xB .80x +300=54 ·80xC .80x -100=54 ·80xD .80x -300=54 ·80x第Ⅱ卷(非选择题 共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.当x = 时,代数式3x -2与代数式6-x 的值相等.10.(盘锦中考)不等式组⎩⎨⎧2x +3≤x +112x +53-1>2-x的解集是 . 11.(包头中考)如果2x a +1y 与x 2y b -1是同类项,那么a b 的值是 .12.已知x =3-2a 是不等式2(x -3)<x -1的一个解,那么a 的取值范围是 .13.已知关于x ,y 的方程组⎩⎪⎨⎪⎧2x -3y =m ①3x -4y =3m -2 ②的解都是正数,则m 的取值范围是 .14.已知关于x 的方程2x +4=m -x 的解是负数,则m 的取值范围是 .15.某餐厅为招揽生意,规定凡订餐五桌以上,多于五桌的部分按定价的7折收费.某人预定10桌,消费后共付了现金2 550元,则每桌的定价是 元.16.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆共10辆,则甲种运输车至少应安排 辆.三、解答题(本大题共8小题,共72分)17.(10分)解下列方程(组):(1)2-2x +13 =1+x 2 ; (2)2-3x =⎪⎭⎫ ⎝⎛-x 2412118.(6分)用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧y =2x -4,①3x +y =1;② (2)⎩⎨⎧x +2y +12=4(x -1),3x -2(2y +1)=4.19.(8分)(威海中考)解不等式组⎩⎨⎧2x -7<3(x -1), ①5-12(x +4)≥x ,② 并将解集在数轴上表示出来.20.(8分)已知满足不等式5-3x ≤1的最小正整数是关于x 的方程(a +9)x =4(x+1)的解,求a 2-1a 的值.21.(8分)当m 为何值时,方程组⎩⎪⎨⎪⎧5x +6y =2m -3,①7x -4y =m -2, ②的解满足x<0,y<0.22.(10分)(来宾中考)甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案.甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?23.(10分)某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2 200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1 244元,则该水果每千克售价至少为多少元?24.(12分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9 000元;购买10副横拍球拍比购买5副直拍球拍多花费1 600元.(1)求两种球拍每副各多少元;(2)若学校购买两种球拍共40副,其中直拍球拍的数量不低于总数量的70%,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.参考答案第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.下列方程中,是二元一次方程的是 (B )A .xy =1B .y =3x -1C .x +1y =2D .x 2+x -3=02.若a>b ,则下列不等式不一定成立的是 ( D ) A .a +m>b +m B .a(m 2+1)>b(m 2+1)C .-a 2 <-b 2D .a 2>b 23.二元一次方程组⎩⎪⎨⎪⎧x +y =2x -y =-2 的解是 ( B ) A .⎩⎪⎨⎪⎧x =0,y =-2 B .⎩⎪⎨⎪⎧x =0,y =2 C .⎩⎪⎨⎪⎧x =2,y =0 D .⎩⎪⎨⎪⎧x =-2,y =0 4.(嘉兴中考)不等式1-x ≥2的解在数轴上表示正确的是 (A )5.(毕节中考)不等式组⎩⎨⎧2x +1≥-3x<1的解集在数轴上表示正确的是(D )6.研究下面解方程120 +2x -35 =3x 4 -1-3x 20 的过程:①去分母,得1+4(2x-3)=15x -(1-3x);②去括号,得1+8x -12=15x -1-3x ;③移项,得8x -15x +3x =-1-1+12;④合并同类项,得-4x =10;⑤系数化为1,得x =-52 .对于上面的解法,你认为 (B )A .完全正确B .变形错误的是②C .变形错误的是③D .变形错误的是⑤7.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是 (A )A .5x +4(x +2)=44B .5x +4(x -2)=44C .9(x +2)=44D .9(x +2)-4×2=448.甲、乙两人环湖竞走,环湖一周400米,乙的速度是80米/分,甲的速度是乙的速度的114 倍,且甲在乙前100米,若两人同时走,多少分钟两人第一次相遇?设经过x 分钟两人第一次相遇,则所列方程为(B )A .80x +100=54 ·80xB .80x +300=54 ·80xC .80x -100=54 ·80xD .80x -300=54 ·80x第Ⅱ卷(非选择题 共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.当x =2时,代数式3x -2与代数式6-x 的值相等. 10.(盘锦中考)不等式组⎩⎨⎧2x +3≤x +112x +53-1>2-x 的解集是45 <x ≤8.11.(包头中考)如果2x a +1y 与x 2y b -1是同类项,那么a b 的值是12 .12.已知x =3-2a 是不等式2(x -3)<x -1的一个解,那么a 的取值范围是a>-1.13.已知关于x ,y 的方程组⎩⎪⎨⎪⎧2x -3y =m ①3x -4y =3m -2 ② 的解都是正数,则m 的取值范围是m>43 .14.已知关于x 的方程2x +4=m -x 的解是负数,则m 的取值范围是m<4.15.某餐厅为招揽生意,规定凡订餐五桌以上,多于五桌的部分按定价的7折收费.某人预定10桌,消费后共付了现金2 550元,则每桌的定价是300元.16.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆共10辆,则甲种运输车至少应安排6辆.三、解答题(本大题共8小题,共72分)17.(10分)解下列方程(组):(1)2-2x +13 =1+x 2 ;解:去分母,得12-2(2x +1)=3(1+x),去括号,得12-4x -2=3+3x ,移项合并,得-7x =-7,解得x =1.(2)2-3x =12 ⎝ ⎛⎭⎪⎫14-2x . 解:去括号,得2-3x =18 -x ,移项,得-3x +x =18 -2,即-2x =-158 ,两边都除以-2,得x =1516 .18.(6分)用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧y =2x -4,①3x +y =1;②解:将①代入②,得3x +2x -4=1,解得x =1, 将x =1代入①,得y =-2,所以原方程组的解为⎩⎪⎨⎪⎧x =1,y =-2.(2)⎩⎨⎧x +2y +12=4(x -1),3x -2(2y +1)=4.解:整理,得⎩⎪⎨⎪⎧6x -2y =9,①3x -4y =6,②①×2-②,得x =43 ,把x =43 代入①,得6×43 -2y =9,解得y =-12 ,所以原方程组的解为⎩⎪⎨⎪⎧x =43,y =-12.19.(8分)(威海中考)解不等式组⎩⎨⎧2x -7<3(x -1),①5-12(x +4)≥x ,② 并将解集在数轴上表示出来.解:解不等式①得,x>-4,解不等式②得,x ≤2,因此不等式组的解集为-4<x ≤2.在数轴上表示不等式组的解集如图.20.(8分)已知满足不等式5-3x ≤1的最小正整数是关于x 的方程(a +9)x =4(x+1)的解,求a 2-1a 的值. 解:解不等式5-3x ≤1,得x ≥43 ,∴x 的最小正整数是2.又∵x 的最小正整数是关于x 的方程(a +9)x =4(x +1)的解,∴(a +9)×2=4×(2+1),解得a =-3,∴a 2-1a =9+13 =913 .21.(8分)当m 为何值时,方程组⎩⎪⎨⎪⎧5x +6y =2m -3,①7x -4y =m -2, ② 的解满足x<0,y<0.解:由①×2+②×3得10x +12y +21x -12y =4m -6+3m -6,31x =7m -12,x =7m -1231 <0,∴m<127 .由①×7-②×5得35x +42y -35x +20y =14m -21-5m +10,62y =9m -11,y =9m -1162 <0,∴m<119 .∵119 <127 ,∴m<119 .22.(10分)(来宾中考)甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案.甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x 张(x ≥9).(1)分别用含x 的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?解:(1)甲厂家所需金额为3×800+80(x -9)=1 680+80x ;乙厂家所需金额为(3×800+80x)×0.8=1 920+64x ;(2)由题意得1 680+80x>1 920+64x ,解得x>15.答:购买的椅子至少16张时,到乙厂家购买更划算.23.(10分)某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2 200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1 244元,则该水果每千克售价至少为多少元?解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得⎩⎨⎧x +y =2 200,y 4-0.5=x 4×2, 解得⎩⎪⎨⎪⎧x =800,y =1 400. 答:水果店两次分别购买了800元和1 400元的水果.(2)设该水果每千克售价为a 元,第一次所购该水果的重量为800÷4=200千克.第二次所购该水果的重量为200×2=400千克.根据题意,得[200×(1-3%)+400×(1-5%)]a -800-1 400≥1 244.解得a ≥6.答:该水果每千克售价至少为6元.24.(12分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9 000元;购买10副横拍球拍比购买5副直拍球拍多花费1 600元.(1)求两种球拍每副各多少元;(2)若学校购买两种球拍共40副,其中直拍球拍的数量不低于总数量的70%,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.解:(1)设直拍球拍每副x 元,横拍球拍每副y 元,由题意得⎩⎪⎨⎪⎧20(x +20)+15(y +20)=9 000,5(x +20)+1 600=10(y +20), 解得⎩⎪⎨⎪⎧x =220,y =260. 答:直拍球拍每副220元,横拍球拍每副260元.(2)设购买直拍球拍m 副,则购买横拍球拍(40-m)副,由题意得⎩⎪⎨⎪⎧m ≥40×70%,m ≤3(40-m ), 解得28≤m ≤30. ∵m 为正整数,∴m 为28,29,30.设买40副球拍所需的费用为w ,则w =(220+20)m +(260+20)(40-m)=11 200-40m.∴当m =28时,w =10 080元;当m =29时,w =10 040元;当m=30时,w=10 000元;∴当m=30时,w取最小值,最小值为10 000元.答:购买直拍球拍30副,购买横拍球拍10副时,费用最少,最少费用为10 000元.1、三人行,必有我师。

2020-2021重庆市七年级数学下期中一模试卷(及答案)

2020-2021重庆市七年级数学下期中一模试卷(及答案)

2020-2021重庆市七年级数学下期中一模试卷(及答案)一、选择题1.不等式x+1≥2的解集在数轴上表示正确的是( )A .B .C .D .2.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上3.点M (2,-3)关于原点对称的点N 的坐标是: ( )A .(-2,-3)B .(-2, 3)C .(2, 3)D .(-3, 2)4.下列语句中,假命题的是( )A .对顶角相等B .若直线a 、b 、c 满足b ∥a ,c ∥a ,那么b ∥cC .两直线平行,同旁内角互补D .互补的角是邻补角5.已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( )A .18030x y x y +=⎧⎨=-⎩B .180+30x y x y +=⎧⎨=⎩C .9030x y x y +=⎧⎨=-⎩D .90+30x y x y +=⎧⎨=⎩6.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 7.比较552、443、334的大小( ) A .554433234<< B .334455432<< C .553344243<<D .443355342<< 8.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,49.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行10.若a <b <0,则在ab <1、1a >b 1、ab >0、b a >1、-a >-b 中正确的有( ) A .2个 B .3个 C .4个 D .5个11.下列各组数中互为相反数的是( )A .3和2(3)-B .﹣|﹣2|和﹣(﹣2)C .﹣38和38-D .﹣2和1212.下列调查方式,你认为最合适的是( )A .调查市场上某种白酒的塑化剂的含量,采用普查方式B .调查鞋厂生产的鞋底能承受的弯折次数,采用普查方式C .旅客上飞机前的安检,采用抽样调查方式D .了解我市每天的流动人口数,采用抽样调查方式二、填空题13.已知AB ∥x 轴,A (-2,4),AB =5,则B 点横纵坐标之和为______.14.已知3 1.732, 30 5.477≈≈,则0.3≈______.15.比较大小:-________-3.16.如图,把一长方形纸片ABCD 沿EF 折叠后ED 与BC 交于点G ,D 、C 分别在M ,N 的位置,若∠EFG=56°,则∠EGB =___________.17.已知方程3x +5y -3=0,用含x 的代数式表示y ,则y=________.18.已知点P (x+3,x ﹣4)在x 轴上,则x 的值为_____________ .19.比较大小:3-_____________ 32-20.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是__________.三、解答题21.为了增强学生的身体素质,西南大学附中七年级学生在每天晚自习之后进行夜跑.在学期末的体育考试中,七年级的同学们表现出很好的体育素养,并取得了良好的体育成绩.为了了解七年级学生的体育考试情况,小明抽取了部分同学的体育考试成绩进行分析,体育成绩优、良、中、差分别记为,,A B C D ,,并绘制了如下两幅不完整的统计表:(1)本次调查共调查了 名学生,并补全条形统计图;(2)扇形统计图中C 类所对应的扇形圆心角的度数是 度;(3)若七年级人数为800人,请你估计体育成绩优、良的总人数.22.已知1x +与2y -互为相反教,z 是64的方根,求x y z -+的平方根23.某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.24.补全解答过程:已知:如图,直线//AB CD ,直线EF 与直线AB ,CD 分别交于点G ,H ;GM 平分FGB ∠,360∠=︒.求1∠的度数.解:EF 与CD 交于点H ,(已知)34∴∠=∠.(_______________) 360∠=︒,(已知)460∴∠=︒.(______________)//AB CD ,EF 与AB ,CD 交于点G ,H ,(已知)4180FGB ∴∠+∠=︒(_____________)∴∠=_______︒FGB∠,(已知)GM平分FGB∴∠=_______︒.(角平分线的定义)125.探索与应用.先填写下表,通过观察后再回答问题:(1)表格中x=;y=;(2)从表格中探究a≈3.16≈;②已知=180,则a=;=,则b=.(3 2.289≈0.2289【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.2.B解析:B【解析】【分析】应先判断出所求的点的横纵坐标的可能值,进而判断点所在的位置.【详解】∵点A(m,n)满足mn=0,∴m=0或n=0,∴点A在x轴或y轴上.即点在坐标轴上.故选:B.【点睛】本题主要考查了平面直角坐标系中点在坐标轴上时点的坐标的特点:横坐标或纵坐标为0.3.B解析:B【解析】试题解析:已知点M (2,-3),则点M 关于原点对称的点的坐标是(-2,3),故选B .4.D解析:D【解析】分析:分别判断是否是假命题.详解:选项A. 对顶角相等 ,正确.选项B. 若直线a 、b 、c 满足b ∥a ,c ∥a ,那么b ∥c,正确.选项C. 两直线平行,同旁内角互补, 正确.选项D. 互补的角是邻补角,错误,不相邻的两个补角不是邻补角.故选D.点睛:(1)真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立.简单来说就是成立的、对的就是真命题.比如太阳是圆的...就是真命题.(2)条件和结果相矛盾的命题是假命题,即不成立的、错的就是假命题.比如太阳是方的...就是假命题5.D解析:D【解析】试题解析:∠A 比∠B 大30°,则有x=y+30,∠A ,∠B 互余,则有x+y=90.故选D .6.A解析:A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->x b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.7.C解析:C【解析】【分析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C.【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.8.C解析:C【解析】【分析】根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.【详解】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.9.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可.详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确.故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.10.B解析:B【解析】【分析】根据不等式的性质即可求出答案.【详解】解:①∵a<b<0,∴ab不一定小于1,故①错误;②∵a<b<0,∴1a>b1,故②正确;③∵a<b<0,ab>0,故③正确;④∵a<b<0,ba<1,故④错误;⑤∵a<b<0,-a>-b,故⑤正确,故选B.【点睛】此题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.11.B解析:B【解析】【分析】根据相反数的定义,找到只有符号不同的两个数即可.【详解】解:A3,3B、﹣||=﹣,﹣||)两数互为相反数,故本选项正确;C22D、﹣2和12两数不互为相反数,故本选项错误.【点睛】考查了相反数的定义:要知道,只有符号不同的两个数互为相反数.12.D解析:D【解析】【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.据此对各项进行判断即可.【详解】解:A、调查市场上某种白酒的塑化剂的含量,采用抽样调查比较合适,故此选项错误;B、调查鞋厂生产的鞋底能承受的弯折次数,采用抽样调查比较合适,故此选项错误;C、旅客上飞机前的安检,必须进行普查,故此选项错误;D、了解我市每天的流动人口数,采用抽样调查方式,比较合适,故此选项正确.故选D.【点睛】此题主要考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.二、填空题13.-3或7【解析】【分析】由AB∥x轴可知B点的纵坐标和A点的纵坐标相同再根据线段AB的长度为5B点在A点的坐标或右边分别求出B点的坐标即可得到答案【详解】解:∵AB∥x轴∴B点的纵坐标和A点的纵坐标解析:-3或7【解析】【分析】由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案.【详解】解:∵AB∥x轴,∴B点的纵坐标和A点的纵坐标相同,都是4,又∵A(-2,4),AB 5,∴当B点在A点左侧的时候,B(-7,4),此时B点的横纵坐标之和是-7+4=-3,当B点在A点右侧的时候,B(3,4),此时B点的横纵坐标之和是3+4=7;故答案为:-3或7.本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B点位置的不确定得出两种情况分别求解.14.5477【解析】【分析】根据算术平方根的小数点移动规律可直接得出【详解】解:故答案为:05477【点睛】本题考查了算术平方根的应用注意:当被开方数的小数点每向左或向右移动两位平方根的小数点就向左或向解析:5477【解析】【分析】根据算术平方根的小数点移动规律可直接得出.【详解】≈,解:30 5.477∴≈⨯≈0.3300.010.5477故答案为:0.5477.【点睛】本题考查了算术平方根的应用,注意:当被开方数的小数点每向左或向右移动两位,平方根的小数点就向左或向右移动一位.15.<【解析】【分析】由3<10<4可得到结果【详解】因为3<10<4|-10|>|-3|所以-10<-3故答案为:<【点睛】考核知识点:实数的大小比较估计无理数大小是关键解析:<【解析】【分析】由可得到结果.【详解】因为, |-|>|-3|所以-<-3.故答案为:<【点睛】考核知识点:实数的大小比较.估计无理数大小是关键.16.112°【解析】【分析】根据折叠前后对应角相等得∠DEF=∠GEF由AD∥BC 得∠EFG=∠DEF=56°进而求出∠DEG的度数再由AD∥BC求出∠DEG=∠EGB【详解】解:∵折叠根据折叠前后对应解析:112°【解析】【分析】根据折叠前后对应角相等得∠DEF=∠GEF,由AD∥BC得∠EFG=∠DEF=56°,进而求出∠DEG的度数,再由AD∥BC,求出∠DEG=∠EGB.解:∵折叠,根据折叠前后对应的角相等∴∠DEF=∠GEF∵AD∥BC∴∠EFG=∠DEF=56°∴∠DEG=∠DEF+∠GEF=56°+56°=112°又∵AD∥BC∴∠EGB=∠DEG=112°.故答案为:112°【点睛】本题结合折叠考查了平行线的性质,熟记两直线平行时,内错角、同位角相等,同旁内角互补这个性质.17.;【解析】分析:将x看作已知数求出y即可详解:方程3x+5y-3=0解得:y=故答案为点睛:此题考查了解二元一次方程解题的关键是将x看作已知数求出y解析:335x -;【解析】分析: 将x看作已知数求出y即可.详解:方程3x+5y-3=0,解得:y=335x -.故答案为33 5x -.点睛: 此题考查了解二元一次方程,解题的关键是将x看作已知数求出y.18.x=4【解析】【分析】【详解】解:∵点P(x+3x−4)在x轴上∴x−4=0解得:x= 4故答案为:x=4解析:x=4【解析】【分析】【详解】解:∵点P(x+3,x−4)在x轴上,∴x−4=0,解得:x=4,故答案为:x=4.19.>【解析】分析:先比较他们的绝对值根据两个负数绝对值大的反而小即可得出结论详解:即故答案为点睛:考查实数的大小比较两个负数绝对值大的反而小解析:>【解析】分析:先比较他们的绝对值,根据两个负数,绝对值大的反而小,即可得出结论.详解:-=-=1218,<>即>故答案为.>点睛:考查实数的大小比较,两个负数,绝对值大的反而小,20.【解析】【分析】首先根据频率=频数÷数据总数求得第5组的频数然后根据6个组的频数和等于数据总数即可求得第6组的频数【详解】解:∵有50个数据共分成6组第5组的频率是016∴第5组的频数为50×016解析:【解析】【分析】首先根据频率=频数÷数据总数求得第5组的频数,然后根据6个组的频数和等于数据总数即可求得第6组的频数.【详解】解:∵有50个数据,共分成6组,第5组的频率是0.16,∴第5组的频数为50×0.16=8;又∵第1~4组的频数分别为10,8,7,11,∴第6组的频数为50﹣(10+8+7+11+8)=6.故答案为6.【点睛】本题考查频数与频率.三、解答题21.(1)40,图形见详解;(2)72;(3)600【解析】【分析】(1)根据A级的有16人,所占的圆心角是144°,据此即可求得测试的总人数,之后先根据百分比算出B的人数,再根据D的人数算出C的人数,即可补全条形图;(2)利用360︒乘以对应的百分比求得所在扇形的圆心角的度数;(3)利用总人数乘以对应的比例即可求解.【详解】解:(1)1441640360︒÷=︒(名),所以本次调查共调查了40名学生;4035%14⨯=(名),所以B类学生有14名,可以求到C类学生有40-16-14-2=8(名),可以补全条形统计图如下:(2)83607240︒⨯=︒,所以扇形统计图中C类所对应的扇形圆心角的度数是72度;(3)161480060040+⨯=(名),答:体育成绩优、良的总人数约有600名.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.±5【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x、y的值,然后求出z的值,再根据平方根的定义解答.【详解】1x+2y-1x+2y-,∴x+1=0,2-y=0,解得x=-1,y=2,∵z是64的方根,∴z=8所以,x y z-+=-1-2+8=5,所以,x y z-+的平方根是±5【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.23.(1)每个篮球和每个排球的销售利润分别为25元,20元(2)购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.【解析】【分析】(1)设每个篮球和每个排球的销售利润分别为x 元,y 元,根据题意列方程组,解方程即可得到结果;(2)设购进篮球m 个,排球(100﹣m )个,根据题意得不等式组即可得到结果.【详解】解:(1)设每个篮球和每个排球的销售利润分别为x 元,y 元,根据题意得:793551020650x y x y +=+=⎧⎨⎩,解得:2520x y ⎧⎨⎩==. 答:每个篮球和每个排球的销售利润分别为25元,20元;(2)设购进篮球m 个,排球(100﹣m )个,根据题意得:200160(100)174001002m m m m ⎪+-≤-⎧⎪⎨⎩≥, 解得:100353m ≤≤, ∴m=34或m=35, ∴购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.【点睛】本题考查一元一次不等式的应用;二元一次方程组的应用;方案型.24.对顶角相等,等量代换,两直线平行,同旁内角互补,120°,60.【解析】【分析】依据对顶角相等以及平行线的性质,即可得到∠4=60°,∠FGB=120°,再根据角平分线的定义,即可得出∠1=60°.【详解】解:∵EF 与CD 交于点H ,(已知)∴∠3=∠4.(对顶角相等)∵∠3=60°,(已知)∴∠4=60°.(等量代换)∵AB ∥CD ,EF 与AB ,CD 交于点G ,H ,(已知)∴∠4+∠FGB=180°.(两直线平行,同旁内角互补)∴∠FGB=120°.∵GM 平分∠FGB ,(已知)∴∠1=60°.(角平分线的定义)故答案为:对顶角相等,等量代换,两直线平行,同旁内角互补,120°,60.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.25.(1)0.1,10;(2)31.6,32400;(3)0.012.【解析】【分析】(1)由表格得出规律,求出x与y的值即可;(2)根据算术平方根的被开方数扩大100倍,算术平方根扩大10倍,可得答案;(3)根据立方根的被开方数缩小1000倍,立方根缩小10倍,可得答案.【详解】(1)x=0.1,y=10,故答案为:0.1,10;(2,,② 3.24=1.8,∴a=32400,故答案为:31.6,32400;(4 2.289,∴b=0.012,故答案为:0.012.【点睛】考查了算术平方根和立方根,注意被开方数扩大100(1000)倍,算术平方根(立方根)扩大10倍.。

2020-2021学年度七年级下学期期中考试数学试卷(含答案)

2020-2021学年度七年级下学期期中考试数学试卷(含答案)

七年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第三章《变量之间的关系》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。

在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.某数学兴趣小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表),下列说法错误的是()温度/℃−20−100102030声速/(m/s)318324330336342348A. 在这个变化中自变量是温度,因变量是声速B. 当温度每升高10℃,声速增加6m/sC. 当空气温度为20℃,5s的时间声音可以传播1740mD. 温度越高声速越快2.体育课上,老师测量跳远成绩的依据是()A. 平行线间的距离相等B. 两点之间,线段最短C. 垂线段最短D. 两点确定一条直线3.下列各项中,两个幂是同底数幂的是()A. x2与a2B. (−a)5与a3C. (x−y)2与(y−x)2D. −x2与x34.若(x−1)0−2(2x−6)−2有意义,那么x的取值范围是()A. x>1B. x<3C. x≠1或x≠3D. x≠1且x≠35.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠46.一蓄水池中有水50m3,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1234…水池中水量/m348464442…下列说法不正确的是()A. 蓄水池每分钟放水2m3B. 放水18分钟后,水池中水量为14m3C. 蓄水池一共可以放水25分钟D. 放水12分钟后,水池中水量为24m37.某商场为了增加销售额,推出优惠活动,其活动内容为凡活动期间一次购物超过50元,超过50元的部分按9折优惠.在活动期间,李明到该商场为单位购买单价为30元的办公用品x(件)(x>2),则应付款y(元)与商品件数x的关系式为()A. y=27x(x>2)B. y=27x+5(x>2)C. y=27x+50(x>2)D. y=27x+45(x>2)8.如图 ①,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的关系的图象如图 ②,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的关系的图象大致是()A. B.C. D.9.如图,将一副三角尺按下列位置摆放,使∠α和∠β互余的摆放方式是()A.B.C.D.10.如图,直线AB,CD相交于点O,射线OM平分∠BOD.若∠AOC=42∘,则∠AOM等于()A. 159∘B. 161∘C. 169∘D. 138∘11.小萌在利用完全平方公式计算一个二项整式的平方时,得到正确结果4x2+20xy+■,不小心把最后一项染黑了,你认为这一项是()A. 5y2B. 10y2C. 100y2D. 25y212.某同学在计算−3x2乘一个多项式时错误的计算成了加法,得到的答案是x2−x+1,由此可以推断正确的计算结果是()A. 4x2−x+1B. x2−x+1C. −12x4+3x3−3x2D. 无法确定13.若多项式x2+x+m能被x+5整除,则此多项式也能被下列哪个多项式整除()A. x−6B. x+6C. x−4D. x+414.如图所示,与∠α构成同位角的角的个数为()A. 1B. 2C. 3D. 415.某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中,下列说法正确的是()A.数100和η、t都是变量B. 数100和η都是常量C. η和t是变量D. 数100和t都是常量卷Ⅱ二、填空题(本大题共5小题,共25.0分)16.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是_________________.17.如图,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车距离最近,请你在铁路边选一点来建火车站(位置已选好),理由是.18.已知2x=a,3x=b,则6x=.19.如图,直线EF与CD相交于点O,OA⊥OB,且OC平分∠AOF.若∠AOE=40∘,则∠BOD的度数为.20.观察下列图形及表格:梯形个数n123456⋯周长l5811141720⋯则周长l与梯形个数n之间的关系式为.三、解答题(本大题共7小题,共80.0分)21.(8分)计算:(1)(x2y−12xy2−2xy)÷12xy;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y).22.(8分)如图,直线a、b被直线l所截,已知∠1=40°,试求∠2的同位角及同旁内角的度数.23.(12分)(1)表示汽车性能的参数有很多,例如:长宽高、轴距、排量、功率、扭矩、转速、百公里油耗等等.为了了解某种车的耗油量,某专业检测人员对这种车在高速公路上做了耗油试验,并把试验的数据记录下米,制成下表:汽车行驶时间t(ℎ)0123…油箱剩余油量Q(L)100948882…①上表反映的两个变量中,白变量是______;②根据上表可知,每小时耗油______升;③根据上表的数据,写出用t表示Q的关系式:______④若汽车油箱中剩余油量为55L,则汽车行驶了多少小时?(2)年龄与手机号码的秘密:①选取你家里任意一部手机的最后一位:②把这个数字乘上2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥最后用这个数目减去你出生的那一年(例如2004年).现在你看到一个三位数的数字.第一位数字是你家手机号的最后一位,接下来就是你的实际年龄!你能否用你所选数字按照上述步骤验证下?你能用所学知识解释这一问题吗?(计算年龄时按照农历现在为2017年)24.(10分)观察下列式:(x2−1)÷(x−1)=x+1;(x3−1)÷(x−1)=x2+x+1;(x4−1)÷(x−1)=x3+x2+x+1;(x5−1)÷(x−1)=x4+x3+x2+x+1;(1)猜想:(x7−1)÷(x−1)=______;(27−1)÷(2−1)=______;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27.25.(12分)如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=72∘,求∠BOD的度数;(2)若∠DOE=2∠AOC,判断射线OE,OD的位置关系,并说明理由.26.(14分)2018年5月14日川航3U8633航班挡风玻璃在高空爆裂,机组临危不乱,果断应对,正确处置,顺利返航,避免了一场灾难的发生,下面表格是成都当日海拔ℎ(千米)与相应高度处气温t(℃)的关系(成都地处四川盆地,海拔较低,为方便计算,在此题中近似为0米).海拔ℎ(千米)012345…气温t(℃)201482−4−10…根据上表,回答以下问题:(1)由上表可知海拔5千米的上空气温约为________℃;(2)由表格中的规律请写出当日气温t与海拔高度h的关系式为________;如图表示当日飞机下降过程中海拔与玻璃爆裂后立即返回地面所用的时间关系.根据图象回答以下问题:(3)挡风玻璃在高空爆裂时飞机所处的高度为________千米,返回地面用了________分钟;(4)飞机在2千米高空水平面上大约盘旋了________分钟;(5)求挡风玻璃在高空爆裂时,飞机所处高空的气温.27.(16分)已知:如图是一个跳棋棋盘,其游戏规则是:一个棋子从某一个起始角开始,经过若干步跳动以后,到达终点角.跳动时,每一步只能跳到它的同位角或内错角或同旁内角的位置上,例如:从起始位置∠1跳到终点位置∠3写出其中两种不同路径,路径1:∠1−同旁内角→∠9−内错角→∠3.路径2:∠1一内错角→∠12一内错角→∠6−同位角→∠10−同旁内角→∠3.试一试:(1)从起始∠1跳到终点角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能否跳到终点∠8?答案1.C2.C3.D4.D5.D6.D7.B8.C9.A10.A11.D12.C13.C14.C15.C16.y=4−x2(0<x<2)17.垂线段最短18.ab19.20∘20.l=3n+221.解:(1)(x2y−12xy2−2xy)÷12xy=x2y÷12xy−12xy2÷12xy−2xy÷12xy=2x−y−4;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y)=2(x+y)3÷(x+y)−4(x+y)2÷(x+y)−(x+y)÷(x+y) =2(x+y)2−4(x+y)−1.22.解:如图,由图可知,∠4是∠2的同位角,∠3是∠2的同旁内角,∵∠1=40°,∴∠3=∠1=40°,∠4=180°−∠1=140°,即∠2的同位角是140°,∠2的同旁内角是40°.23.解:(1)①自变量是t,②据上表可知,每小时耗油100−94=6升;③Q=100−6t;④当Q=55时,55=100−6t,6t=45,t=7.5.答:汽车行使了7.5小时;(2)比如:我选择数字为9,出生时间为2004年,我的年龄为13岁,由题意得(9×2+5)×50+1767−2004=900+2017−2004=913,解释:假设选取数字为m,出生时间为n年,由题意得(m×2+5)×50+1767−n=100m+(2017−n)因为m为个位数字,(2017−n)两位数,所以100m+(2017−n)三位数,而且第一位数字就所选数字,后两位恰好为年龄.24.(1)x6+x5+x4+x3+x2+x+1;26+25+24+23+22+2+1;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27=(28−1)÷(2−1)=28−1=255.25.解:(1)因为OA平分∠EOC,∠EOC=72∘,∠EOC=36∘.所以∠AOC=12所以∠BOD=∠AOC=36∘.(2)OE⊥OD.理由如下:因为∠DOE=2∠AOC,OA平分∠EOC,所以∠DOE=2∠AOC=∠EOC.又因为∠DOE +∠EOC =180∘, 所以∠DOE =∠EOC =90∘. 所以OE ⊥OD .26.解:(1)−10;(2)t =20−6ℎ; (3)9.8,20; (4)2;(5)根据图象可知,当ℎ=9.8时,挡风玻璃爆裂,此时t =20−6×9.8=−38.8, 所以挡风玻璃在高空爆裂时,飞机所处高空的气温为−38.8℃.27.解:(1)路径∠1→内错角∠12→同旁内角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能跳到终点∠8.其路径为: 路径:∠1→同位角∠10→内错角∠5→同旁内角∠8.。

2020-2021青岛市中初一数学下期中模拟试题(带答案)

2020-2021青岛市中初一数学下期中模拟试题(带答案)
解:设黑色皮块和白色皮块的块数依次为x,y.
则 ,
解得 ,
即黑色皮块和白色皮块的块数依次为12块、20块.
故选D.
4.D
解析:D
【解析】
【分析】
根据折叠的知识和直线平行判定即可解答.
【详解】
解:如图可知折叠后的图案∠ABC=∠EBC,
又因为矩形对边平行,根据直线平行内错角相等可得
∠2=∠DBC,
又因为∠2+∠ABC=180°,
二、填空题
13.如果不等式组 ,恰好有 个整数解,则 的取值范围是__________.
14.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动(旋转角不超过180度),使两块三角尺至少有一组边互相平行.如图2:当∠BAD=15°时,BC∥DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为________.
18. 的整数部分是________.
19.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是__________.
20.已知点 的坐标(3-a,3a-1),且点 到两坐标轴的距离相等,则点 的坐标是_______________.
三、解答题
解得:m=-1,n=2,
∴n-m=2-(-1)=3.
故选:B.
【点睛】
本题考查了二元一次方程组的解,能得出m,n的值是解此题的关键.
10.A
解析:A
【解析】
【分析】
点在第四象限的条件是:横坐标是正数,纵坐标是负数.
【详解】
解:∵点P(2x-6,x-5)在第四象限,
∴ ,

云南省昆明市2020-2021学年七年级下学期期中数学试题(word版含答案)

云南省昆明市2020-2021学年七年级下学期期中数学试题(word版含答案)

云南省昆明市2020-2021学年七年级下学期期中数学试题 学校:___________姓名:___________班级:___________考号:___________一、填空题1.不等式组:23x x >⎧⎨≥⎩的解集为 . 2.点P 在第二象限,P 到x 轴的距离为4,到y 轴的距离为3,那么点P 的坐标是 .3.一个正数x 的平方根是34a -和16a -,则x = .4.已知|2-34|x y +与25)2(x y -+互为相反数,则2021()x y -= . 5.今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是_____次.6.如图所示,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,1)-根据这个规律探索可得,第100个点的坐标为____.二、单选题7.下列实数是无理数的是( )A .23BC .0D .-1.010 1018.用加减消元法解二元一次方程组3421x y x y +=⎧⎨-=⎩①②时,下列方法中无法消元的是( ) A .①2⨯-② B .②(3)⨯--① C .①(2)⨯-+② D .①-②3⨯ 9.已知//AB y 轴,且点A 的坐标为(),21m m -,点B 的坐标为(2,4),则点A 的坐标是( )10.计算32∣∣+ 的值为( ) A .5 B.5-C .1 D.111.已知关于x y 、的二元一次方程组23x y a x y +=⎧⎨-=⎩的解为5x y b =⎧⎨=⎩,则a b +的值为( ) A .14 B .10 C .9 D .812.若不等式组12x x k <≤⎧⎨>⎩无解,则k 的取值范围是( ) A .2k < B .2k ≥ C .1k < D .12k ≤<13.已知(1,2)A -、(1,2)B -、(2,)E a 、(,3)F b ,若将线段AB 平移至EF ,点,A E 为对应点,则a b +的值为( )A .-1B .0C .1D .214.甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min 相遇一次,若同向而行,则每隔6min 相遇一次,已知甲比乙跑得快,设甲每分钟跑x 圈,乙每分钟跑y 圈,则可列方程为( )A .36x y x y -=⎧⎨+=⎩B .36x y x y +=⎧⎨-=⎩C .331661x y x y +=⎧⎨-=⎩ D .331661x y x y -=⎧⎨+=⎩三、解答题152|16.解下列二元一次方程组:(1)21321x y x y +=⎧⎨-=⎩①②(用代入消元法) (2)27325x y x y -=⎧⎨+=⎩①②(用加减消元法) (3)12343314312x y x y ++⎧=⎪⎪⎨--⎪-=⎪⎩ (4)281223x y z x y x z y ++=⎧⎪-=-⎨⎪+=+⎩17.解不等式组253125123x x x x -<⎧⎪++⎨+>⎪⎩,并在数轴上表示出不等式组的解集.18.用如图(1)中的长方形和正方形纸板作侧面和底面,做成如图(2)所示的竖式和横式两种无盖纸盒.现仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存纸板用完?19.已知3y =,求x y 的平方根.20.已知在平面直角坐标系中有三点(3,0)A -,(5,4)B ,(1,5)C ,请回答如下问题: (1)在平面直角坐标系内描出A 、B 、C ,连接三边得到ABC ;(2)将ABC 三点向下平移2个单位长度,再向左平移1个单位,得到111A B C △;画出111A B C △,并写出1A 、1B 、1C 三点坐标;(3)求出111A B C △的面积.21.若方程组3293x y x y a +=⎧⎨-=-⎩的解满足0x >,0y >,试求a 的取值范围.22.七(1)班的生活委员利用周末时间为班上买了4把扫帚和6把铲子共64元,到班长那儿报账时,班长拿出了她上个月购买扫帚和铲子的账目:3把扫帚和5把铲子,共用了55元.班长说:“你这次购买有优惠吧”,生活委员惊讶地说:“你怎么知道的?这次扫帚确实打了八折.”(1)你知道班长是如何判断的吗?(2)你能求出扫帚和铲子的单价吗?23.在直角坐标系中,已知点A,B的坐标是(a,0),(b,0).a,b满足方程组25 3211 a ba b+=-⎧⎨-=-⎩,C为y轴正半轴上一点,且S△ABC=6.(1)求A,B,C三点的坐标;(2)是否存在点P(t,t),使S△PAB=13S△ABC?若存在,请求出P点的坐标;若不存在,请说明理由.参考答案1.x≥3【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:观察不等式组可直接得不等式组的解集为:x≥3故答案为:x≥3【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(-3,4).【分析】点P在第二象限,故点P的横坐标为负,纵坐标为正,由点P到x轴与y轴的距离即可得点P的坐标.【详解】∵点P在第二象限∴点P的横坐标为负,纵坐标为正∵由点P到x轴与y轴的距离分别为4和3∴x=-3,y=4即点P的坐标为(-3,4)故答案为:(-3,4).【点睛】本题根据点所处的象限及点到两坐标轴的距离确定点的坐标,注意的是:点到x轴的距离是点的纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值.3.49【分析】根据一个正数的两个平方根互为相反数,以及互为相反数的两数之和为0,先求得a,再求得x【详解】一个正数x 的平方根是34a -和16a -,34160a a ∴-+-=解得1a =-∴这两个数分别为:7和7-2749x ∴==故答案为:49.【点睛】本题考查了平方根的应用,掌握一个数的两个平方根互为相反数是解题的关键.4.1【分析】两个非负数|2-34|x y +与25)2(x y -+互为相反数,则它们都为0,解方程组即可求出x 与y 的值,从而可求得结果的值.【详解】∵|2-34|x y +与25)2(x y -+互为相反数∴|2-34|x y ++25)2(x y -+=0∵|2-34|0x y +≥,2)25(0x y -+≥∴|2-34|x y +=0,且25)2(x y -+=0即2-340x y +=且250x y -+=即2340250x y x y -+=⎧⎨-+=⎩解方程组得:76x y =⎧⎨=⎩ ∴20212021()(76)1x y -=-=故答案为:1.【点睛】本题考查了解二元一次方程组、求代数式的值、互为相反数的性质,关键是转化,把互为相反数转化为两个非负数的和为0,从而易得方程组;当然本题有更简单的方法,只要把两个方程相减即可直接得出x -y 的值,不用解方程组.5.4【分析】设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,根据买口罩的次数是10次和家里现有口罩35只,可列出关于x 和y 的二元一次方程组,求解即可.【详解】解:设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,由题意得:1015110535x y y +=⎧⎨-⨯+=⎩, 整理得:10530x y y +=⎧⎨=⎩, 解得:46x y =⎧⎨=⎩. 故答案为:4.【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意找到等量关系列出方程组求解.6.14,2().【分析】从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,…依此类推横坐标为n 的有n 个点.题目要求写出第100个点的坐标,我们可以通过加法计算算出第100个点位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.【详解】解:在横坐标上,第一列有一个点,第二列有2个点.…第n 个有n 个点,并且奇数列点数对称而偶数列点数y 轴上方比下方多一个, 所以奇数列的坐标为111,,1,222n n n n n n ---⎛⎫⎛⎫⎛⎫-⋯ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ; 偶数列的坐标为,,1,1222n n n n n n ⎛⎫⎛⎫⎛⎫-⋯- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ , 由加法推算可得到第100个点位于第14列自上而下第六行.14代入上式得(14,1452-)即(14,2),故答案为(14,2). 【点睛】本题的考查了对平面直角坐标系的熟练运用能力,用“从特殊到一般”的方法入手寻找规律是解答本题的关键.7.B【详解】2是分数,是有理数;30是整数,是有理数;-1.010 101是负小数,是有理数;故选B.点睛:无限不循环小数就是无理数.8.D【分析】根据各选项分别计算,即可解答.【详解】解:A、①×2-②得:7y=7,可以消去x,不符合题意;B、②×(﹣3)-①得:﹣7x=﹣7,可以消元y,不符合题意;C、①×(﹣2)+②得:−7y=−7,可以消元x,不符合题意;D、①-②×3得:−5x+6y=1,无法消元,符合题意.故选:D.【点睛】本题考查了加减消元法解二元一次方程组,掌握加减法消去未知数是解题的关键.9.A【分析】根据平行于y轴直线上的点的横坐标相同求解即可得到答案.【详解】解:∵直线AB∥y轴,∴点A(m,2m-1)与点B(2,4)的横坐标相同,∴m=2,∴2m-1=3,∴A(2,3),故选A.【点睛】本题主要考查了平行于y轴的直线上点的坐标的特点,解题的关键在于能够熟练掌握平行于y轴的直线上的所有点的横坐标相同.10.C【详解】原式2=1,故选:C11.A【分析】把方程组的解代入方程组即得关于a、b的方程组,解方程组即可求出a、b的值,进一步即可求出结果.【详解】解:∵5xy b=⎧⎨=⎩是方程组23x y ax y+=⎧⎨-=⎩的解,∴1053b ab+=⎧⎨-=⎩,解得:122ab=⎧⎨=⎩,∴a+b=12+2=14.故选:A.【点睛】本题考查了二元一次方程组的解的定义、二元一次方程组的解法和代数式求值,属于常考题型,正确理解题意、准确计算是关键.12.B【分析】根据不等式组的解集为两个不等式解集的公共部分,所以在无解的情况下,k的值必须大于等于2.【详解】解:∵不等式组有解,∴根据口诀可知k只要大于等于2即可.故选:B【点睛】主要考查了已知一元一次不等式解集求不等式中的字母的取值范围,同样也是利用口诀求解,求不等式组解集的口诀:大大取大,小小取小,大小小大中间找,大大小小无处找. 13.A【分析】根据对应点的纵横坐标变化确定新坐标即可.【详解】解:∵点,A E 为对应点,∴点,B F 为对应点,∴横坐标由A 到E 向右平移一个单位,纵坐标由B 到F 向上平移一个单位,∴b=-1+1=0,a=-2+1=-1,则1a b +=-,故答案选:A .【点睛】此题考查坐标的平移,根据平移前后坐标变化确定平移方式,难度一般.14.C【分析】根据“反向而行,当甲、乙相遇时,甲、乙跑的路程之和等于一圈;同向而行,当甲、乙相遇时,甲跑的路程比乙跑的路程多一圈”建立方程组即可.【详解】设甲每分钟跑x 圈,乙每分钟跑y 圈则可列方组为:331661x y x y +=⎧⎨-=⎩故选:C .【点睛】本题考查了二元一次方程组的实际应用,读懂题意,依次正确建立反向和同向情况下的方程是解题关键.15.10先根据算术平方根、立方根和绝对值的性质计算各项,再根据实数运算法则计算即可.【详解】解:原式(=932-=9322-++=10【点睛】本题考查了实数运算,熟练掌握算术平方根、立方根和绝对值的性质是解题关键.16.(1)35x y =⎧⎨=⎩ ;(2)32x y =⎧⎨=-⎩;(3)22x y =⎧⎨=⎩;(4)123x y z =⎧⎪=⎨⎪=⎩. 【分析】(1)由方程②变形得y =2x -1,并代入方程①,解方程即可求得x 的值,再求得的x 值代入y =2x -1中,可求得y 的值,从而得方程组的解;(2)考虑两方程中y 的系数互为相反数,两式相加即可消去未知数y ,求得x ,再x 的值代入第一个方程即可求得y 的值,从而得方程组的解;(3)先化简方程组中的每一个方程,再用代入法或加减解方程组即可;(4)先消去未知数z ,转化为二元一次方程组,解二元一次方程组求得x 与y 的值,最后求得z 的值即可.【详解】(1)方程②变形得:y =2x -1 ③把③代入①,得:x +2(2x -1)=13解得:x =3把x =3代入③得:y =5所以方程组的解为:35x y =⎧⎨=⎩; (2)①+②得:4x =12解得:x =3把x =3代入①得:3-2y =7所以方程组的解为:32xy=⎧⎨=-⎩;(3)方程组化简得:432 342x yx y-=⎧⎨-=-⎩①②①+②得:7x-7y=0即y=x把y=x代入①得:x=2 ∴y=x=2所以原方程组的解为:22xy=⎧⎨=⎩;(4)原方程组化为:281223 x y zx yx y z++=⎧⎪-=-⎨⎪-+=⎩①②③①×2-③得:x+6y=13 ④④-②得:7y=14解得:y=2把y=2代入②得:x=1把y=2、x=1代入①得:z=3所以原方程组的解为:123xyz=⎧⎪=⎨⎪=⎩.【点睛】本题考查解二元一次方程组和三元一次方程组,解法有代入消元法和加减消元法两种,能够根据方程组的特点,灵活选取适当的方法消元,解方程组的一般思想是:三元一次方程组消元二元一次方程消元一元一次方程.熟练而准确地解方程组是本题的关键.17.51x-<<-,数轴见解析【分析】分别解不等式①②,求得其解集的公共部分,并在数轴上表示出不等式的解集.【详解】253125123x x x x -<⎧⎪⎨+++>⎪⎩①② 解不等式①得:5x >-解不等式②得:1x <-∴不等式的解集为:51x -<<-在数轴上表示出解集,如图:【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,数形结合是解题的关键. 18.做竖式纸盒200个,横式纸盒400个,恰好将库存纸板用完.【详解】解:设做第一种x 个,第二种y 个,根据共有1000张正方形纸板和2000张长方形纸板,可得:432000{21000x y x y +=+= ,解得:200{400x y == . 答:做第一种200个,第二种400个.19.±3【分析】根据算术平方根有意义的条件得出x 的值,再求出y 的值,得到结果.【详解】解:由题意得:2020x x -≥⎧⎨-≥⎩ 解得x =2 ∴y =3,239x y ==,∴x y 的平方根为±3.【点睛】本题考查了算术平方根有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.20.(1)见详解;(2)图形见详解,1A (-4,-2)、1B (4,2)、1C (0,3);(3)12.【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用割补法求面积即可.【详解】解:(1)如图:(2)平移后如图:平移后坐标分别为:1A (-4,-2)、1B (4,2)、1C (0,3);(3)111A B C △的面积:1115845484112222⨯-⨯⨯-⨯⨯-⨯⨯= . 【点睛】此题考查坐标系中坐标的平移和坐标图形的面积,难度一般,掌握平移的性质是关键.21.1233a -<<. 【分析】先求得二元一次方程组的解,由条件得关于a 的一元一次不等式,解不等式即可.【详解】3? 293?x y x y a +=⎧⎨-=-⎩①② ①-②得:3y =6-9a解得:y =2-3a把y =2-3a 代入①得:x =1+3a方程组的解为1323x a y a =+⎧⎨=-⎩由题意得:130230a a +>⎧⎨->⎩解不等式组得:1233a -<<. 【点睛】本题考查了解二元一次方程组及解一元一次不等式组,关键是解二元一次方程组. 22.(1)答案见解析;(2)扫帚每把5元,铲子每把8元【分析】(1)设扫帚每把x 元,铲子每把y 元,然后根据题意列出二元一次方程组求解判断即可得到答案;(2)设扫帚每把m 元,铲子每把n 元,然后根据第二次打了八折,列出正确的方程求解即可得到答案.【详解】解:(1)设扫帚每把x 元,铲子每把y 元,由题意可得:4664 3555x yx y+=⎧⎨+=⎩,解得:514xy=-⎧⎨=⎩,∵x表示的是扫帚的单价,不可能是负数,∴班长由此判定,这次扫帚打了折;(2))设扫帚每把m元,铲子每把n元,由题意可得:40.8664 3555m nm n⨯+=⎧⎨+=⎩,解得:58mn=⎧⎨=⎩,∴扫帚每把5元,铲子每把8元,答:扫帚每把5元,铲子每把8元.【点睛】本题主要考查了二元一次方程组的实际应用,解题的关键在于能够准确找出等量关系列方程求解.23.(1)A(﹣3,0),B(1,0),C(0,3).(2)P(1,1)或(﹣1,﹣1).【详解】试题分析:(1)解出方程组即可得到时点A,B的坐标,利用S△ABC=6,求出点C的坐标;(2)利用S△PAB=S△ABC求出点P的坐标即可.解:(1)由方程组,解得,∴A(﹣3,0),B(1,0),∵c为y轴正半轴上一点,且S△ABC=6,∴AB•OC=6,解得:OC=3∴C(0,3).(2)存在.理由:∵P(t,t),且S△PAB=S△ABC,∴×4×|t|=×6,解得t=±1,∴P(1,1)或(﹣1,﹣1).考点:坐标与图形性质;解二元一次方程组;三角形的面积.。

2020-2021学年鲁教版(五四制)七年级数学下期中复习试卷含答案

2020-2021学年鲁教版(五四制)七年级数学下期中复习试卷含答案

鲁教五四新版七年级下册数学期中复习试卷一.选择题(共12小题,满分48分,每小题4分)1.方程组的解为,则被遮盖的前后两个数分别为()A.1、2B.1、5C.5、1D.2、42.下列四个命题:①±4是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有()个.A.1B.2C.3D.43.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°4.下列说法正确的是()A.篮球队员在罚球线上投篮一次,则“投中”是随机事件B.明天的降水概率为40%,则“明天下雨”是确定事件C.任意抛掷一枚质地均匀的硬币10次,则“5次正面朝上”是必然事件D.a是实数,则“|a|≥0”是不可能事件5.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.6.某市举办中学生足球赛,按比赛规则,每场比赛都要分出胜负,胜1场得3分,负一场扣1分,菁英中学队在8场比赛中得到12分,若设该队胜的场数为x,负的场数为y,则可列方程组为()A.B.C.D.7.池塘中放养了鲤鱼2000条,鲢鱼若干条,在几次随机捕捞中,共捕到鲤鱼200条,鲢鱼300条,估计池塘中原来放养了鲢鱼()A.10000条B.2000条C.3000条D.4000条8.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠D FB=∠CGE.其中正确的结论是()A.②③B.①②④C.①③④D.①②③④9.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.32°B.45°C.60°D.64°10.下列各题中合并同类项,结果正确的是()A.3a+2b=5ab B.4x2y﹣2xy2=2xyC.7a+a=7a2D.5y2﹣3y2=2y211.已知直线y=kx+2与直线y=x交于点P,且点P的横坐标为2,下列结论:其中正确的是()①关于x的方程kx+2=0的解为x=3;②对于直线y=kx+2,当x<3时,y>0;③方程组的解为,A.①②B.①③C.②③D.①②③12.把一副三角板放在水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.90°B.105°C.120°D.135°二.填空题(共6小题,满分24分,每小题4分)13.方程组的解是.14.有6张看上去无差别的卡片,上面分别写着0,π,,,0.1010010001,﹣随机抽取1张,则取出的数是无理数的概率是.15.如图,△ABC中,∠A=55°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DB的度数为.16.如图,直线a,b被c所截,∠1=50°,若要a∥b,则需增加条件(填图中某角的度数);依据是.17.把命题“对顶角相等”改写成“如果…那么…”的形式:.18.将一列有理数﹣1,2,﹣3,4,﹣5,6…如图所示有序排列,4所在位置为峰1,﹣9所在位置为峰2….(1)处在峰5位置的有理数是;(2)2022应排在A,B,C,D,E中的位置上.三.解答题(共7小题,满分78分)19.(6分)如图,已知,AB⊥BC,AD∥BC,∠BAC=∠D=60°.(1)试求∠C和∠DEC的度数;(2)说明直线AC与DE的关系,并说明理由.20.(15分)解方程组(1);(2);21.(9分)小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?22.(12分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.23.(12分)某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.24.(12分)如图:已知在平面直角坐标系中点A(a,b)点B(a,0),且满足|2a﹣b|+(b﹣4)2=0.(1)求点A、点B的坐标.(2)已知点C(0,b),点P从B点出发沿x轴负方向以1个单位每秒的速度移动.同时点Q从C点出发,沿y轴负方向以2个单位每秒的速度移动,某一时刻,如图所示且S阴=S四边形OCAB,求点P移动的时间?(3)在(2)的条件下,AQ交x轴于M,作∠ACO,∠AMB的角平分线交于点N,判断是否为定值,若是定值求其值;若不是定值,说明理由.25.(12分)快车和慢车分别从A市和B市两地同时出发,匀速行驶,先相向而行,慢车到达A市后停止行驶,快车到达B市后,立即按原路原速度返回A市(调头时间忽略不计),结果与慢车同时到达A市.快、慢两车距B市的路程y1、y2(单位:km)与出发时间x(单位:h)之间的函数图象如图所示.(1)A市和B市之间的路程是km;(2)求a的值,并解释图中点M的横坐标、纵坐标的实际意义;(3)快车与慢车迎面相遇以后,再经过多长时间两车相距20km?参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:将x=2代入第二个方程可得y=1,将x=2,y=1代入第一个方程可得2x+y=5∴被遮盖的前后两个数分别为:5,1故选:C.2.解:①∵4是64的立方根,∴①是假命题;②∵5是25的算术平方根,∴②是真命题;③∵如果两条直线都与第三条直线平行,那么这两条直线也互相平行,∴③是真命题;④∵在平面直角坐标系中,与两坐标轴距离都是2的点有且只有4个,∴④是假命题;真命题的个数有2个,故选:B.3.解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选:C.4.解:A.篮球队员在罚球线上投篮一次,则“投中”是随机事件,此选项正确;B.明天的降水概率为40%,则“明天下雨”是随机事件,此选项错误;C.任意抛掷一枚质地均匀的硬币10次,则“5次正面朝上”是随机事件,此选项错误;D.a是实数,则“|a|≥0”是必然事件,此选项错误;故选:A.5.解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.6.解:依题意得:.故选:C.7.解:由题意可得,2000÷×=2000×=3000(条),即估计池塘中原来放养了鲢鱼3000条,故选:C.8.解:∵EG∥BC,∴∠CEG=∠BCA,∵CD平分∠ACB,∴∠BCA=2∠DCB,∴∠CEG=2∠DCB,故①正确,∵CG⊥EG,∴∠G=90°,∴∠GCE+∠CEG=90°,∵∠A=90°,∴∠BCA+∠ABC=90°,∵∠CEG=∠ACB,∴∠ECG=∠ABC,∵∠ADC=∠ABC+∠DCB,∠GCD=∠ECG+∠ACD,∠ACD=∠DCB,∴∠ADC=∠GCD,故②正确,假设AC平分∠BCG,则∠ECG=∠ECB=∠CEG,∴∠ECG=∠CEG=45°,显然不符合题意,故③错误,∵∠DFB=∠FCB+∠FBC=(∠ACB+∠ABC)=45°,∠CGE=45°,∴∠DFB=∠CG E,故④正确,故选:B.9.解:如图所示:由折叠的性质得:∠D=∠B=32°,根据外角性质得:∠1=∠3+∠B,∠3=∠2+∠D,∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+64°,∴∠1﹣∠2=64°.故选:D.10.解:(A)原式=3a+2b,故A错误;(B)原式=4x2y﹣2xy2,故B错误;(C)原式=8a,故C错误;故选:D.11.解:当x=2时,y=x=,则P(2,),把P(2,)代入y=kx+2得2k+2=,解得k=﹣,∴直线y=kx+2的解析式为y=﹣x+2,当y=0时,﹣x+2=0,解得x=3,∴关于x的方程kx+2=0的解为x=3,所以①正确;当y>0,﹣x+2>0,解得x<3,所以②正确;∵直线y=kx+2与直线y=x交点为P(2,),∴方程组的解为,所以③正确.故选:D.12.解:作直线OE平行于直角三角板的斜边.可得:∠A=∠AOE=60°,∠C=∠EOC=45°,故∠1的度数是:60°+45°=105°.故选:B.二.填空题(共6小题,满分24分,每小题4分)13.解:将x=1代入x+y=5,∴y=4,∴方程组的解为:,故答案为:,14.解:在0,π,,,0.1010010001,﹣中,无理数有π,,共2个,∴取出的数是无理数的概率是=;故答案为:.15.解:由翻折的性质可知:∠ADE=∠EDA′,∠AED=∠A′ED=(180°﹣70°)=55°,∵∠A=55°,∴∠ADE=∠EDA′=180°﹣55°﹣55°=70°,∴∠A′DB=180°﹣140°=40°,故答案为40°.16.解:∵∠3=50°,1=50°,∴∠1=∠3,∴a∥b(同位角相等,两直线平行).故答案为:∠3=50°;同位角相等;两直线平行.17.解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.18.解:(1)观察发现:峰n中,A位置的绝对值可以表示为:5n﹣3;B位置的绝对值可以表示为:5n﹣2;C位置(峰顶)的绝对值可以表示为:5n﹣1;D位置的绝对值可以表示为:5n;E位置的绝对值可以表示为:5n+1;∴处在峰5位置的有理数是5×5﹣1=24;(2)根据规律,∵2022=5×405﹣3,∴2022应排在A的位置.故答案为:(1)24;(2)A.三.解答题(共7小题,满分78分)19.解:如图所示:(1)∵AB⊥BC,∴∠B=90°,又∵∠BAC=60°,∠BAC+∠C=90°,∴∠C=30°,又∵AD∥BC,∴∠D=∠DEC,(2)AC⊥DE,理由如下,∵∠D=60°,又∵∠DEC +∠C +∠EFC =180°,∴∠EFC =90°,∴AC ⊥DE .20.解:(1),①×2+②得:﹣9y =﹣9,解得:y =1,把y =1代入②得:x =1, 则方程组的解为; (2)方程组整理得:, ①×2+②得:11x =22,解得:x =2,把x =2代入①得:y =3, 则方程组的解为. 21.解:公平.画树状图得:从表中可以得到:P 积为奇数==,P 积为偶数==, ∴小明的积分为×2=,小刚的积分为×1==.22.解:∵EF ∥AD ,AD ∥BC ,∴EF ∥BC ,∴∠ACB +∠DAC =180°,∵∠DAC =120°,∴∠ACB =60°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.23.解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.24.解:(1)∵|2a﹣b|+(b﹣4)2=0.∴2a﹣b=0,b﹣4=0,∴a=2,b=4,∴点A的坐标为(2,4)、点B的坐标(2,0);(2)方法一:如图2,设P点运动时间为ts,则t>2,所以P点坐标为(2﹣t,0),Q 点坐标为(0,4﹣2t),设直线AQ的解析式为y=kx+4﹣2t,把A(2,4)代入得2k+4﹣2t=4,解得k=t,∴直线AQ的解析式为y=tx+4﹣2t,直线AQ与x轴交点坐标为(,0),∴S阴影=(+t﹣2)×4+××(2t﹣4),而S阴=S四边形OCAB,∴(+t﹣2)×4+××(2t﹣4)=×2×4,整理得t2﹣3t=0,解得t1=0(舍去),t2=3,∴点P移动的时间为3s;方法二:过P点作PM⊥AC于M,QN⊥AB于N,如图,易得四边形OPMC和四边形ACQN都为矩形,S阴影=S矩形OPMC+S矩形ACQN﹣S△AMC﹣S△AQN=4(t﹣2)+2×2t﹣×t×4﹣×2t×2,∵S阴=S四边形OCAB,∴4(t﹣2)+2×2t﹣×t×4﹣×2t×2=×2×4,解得t=3;(3)为定值.理由如下:如图3,∵∠ACO,∠AMB的角平分线交于点N,∴∠ACN=45°,∠1=∠2,∵AC∥BP,∴∠CAM=∠AMB=2∠1,∵∠ACN+∠CAM=∠N+∠1,∴45°+2∠1=∠N+∠1,∴∠N=45°+∠1,∵∠AMB=∠APB+∠PAQ,∴∠APB+∠PAQ=2∠1,∵∠AQC+∠OMQ=90°,而∠OMQ=2∠1,∴∠AQC=90°﹣2∠1,∴==.25.解:(1)由图可知,A市和B市之间的路程是360km,故答案为:360;(2)根据题意可知快车速度是慢车速度的2倍,设慢车速度为x km/h,则快车速度为2x km/h,2(x+2x)=360,解得,x=602×60=120,则a=120,点M的横坐标、纵坐标的实际意义是两车出发2小时时,在距B市120km处相遇;(3)快车速度为120 km/h,到达B市的时间为360÷120=3(h),方法一:当0≤x≤3时,y1=﹣120x+360,当3<x≤6时,y1=120x﹣360,y2=60x,当0≤x≤3时,y2﹣y1=20,即60x﹣(﹣120x+360)=20,解得,x=,﹣2=,当3<x≤6时,y2﹣y1=20,即60x﹣(120x﹣360)=20,解得,x=,﹣2=,所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.方法二:设快车与慢车迎面相遇以后,再经过t h两车相距20 km,当0≤t≤3时,60t+120t=20,解得,t=;当3<t≤6时,60(t+2)﹣20=120(t+2)﹣360,解得,t=.所以,快车与慢车迎面相遇以后,再经过或h两车相距20 km.。

2020-2021杭州绿城育华学校七年级数学下期中一模试题(含答案)

2020-2021杭州绿城育华学校七年级数学下期中一模试题(含答案)

2020-2021杭州绿城育华学校七年级数学下期中一模试题(含答案)一、选择题1.无理数23的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间2.点A在x轴的下方,y轴的右侧,到x轴的距离是3,到y轴的距离是2,则点A的坐标是()A.()23-,B.()23,C.()32,-D.()32--,3.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是()A.1600名学生的体重是总体B.1600名学生是总体C.每个学生是个体D.100名学生是所抽取的一个样本4.已知x、y满足方程组2827x yx y+=⎧⎨+=⎩,则x+y的值是()A.3B.5C.7D.95.解方程组229229232x yy zz x+=⎧⎪+=⎨⎪+=⎩得x等于( )A.18B.11C.10D.96.如图,点E在AB的延长线上,则下列条件中,不能判定AD BC∥的是()A.180D DCB∠+∠=︒B.13∠=∠C.24∠∠=D.CBE DAE∠=∠7.下列图形中,1∠和2∠的位置关系不属于同位角的是()A.B.C.D.8.已知4+3,则以下对m的估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<69.下列说法正确的是()A.一个数的算术平方根一定是正数B.1的立方根是±1C255=±D.2是4的平方根10.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个11.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )A .35°B .45°C .55°D .125° 12.把等宽的一张长方形纸片折叠,得到如图所示的图象,若170∠=︒,则a 的度数为( )A .50°B .55°C .60°D .70°二、填空题13.如图,把一长方形纸片ABCD 沿EF 折叠后ED 与BC 交于点G ,D 、C 分别在M ,N 的位置,若∠EFG=56°,则∠EGB =___________.14.关于 x 的不等式 bx a < 的解集为 2x >-,写出一组满足条件的实数 a ,b 的值:a = _________,b = ___________.15.如图,有一块长为32 m 、宽为24 m 的长方形草坪,其中有两条直道将草坪分为四块,则分成的四块草坪的总面积是________m 2.16.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别为(0,2),(-1,0),将线段AB 沿x 轴的正方向平移,若点B 的对应点的坐标为B'(2,0),则点A 的对应点A'的坐标为___.17.在平面直角坐标系中,点(-5,-8)是由一个点沿x 轴向左平移3个单位长度得到的,则这个点的坐标为_______.18.根据不等式的基本性质,可将“mx <2”化为“x >2m”,则m 的取值范围是_____. 19.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.20.为了估计湖里有多少条鱼,先捕了100条鱼,做好标记然后放回到湖里,过一段时间,待带有标记的鱼完全混合于鱼群后,再捕上200条鱼,发现其中带有标记的鱼为8条,湖里大约有鱼_____条.三、解答题21.如图,AB CD ∥,OE 平分BOC ∠,OF OE ⊥,OP CD ⊥,40ABO ∠=︒,有下列结论:①70BOE ∠=︒;②OF 平分BOD ∠;③POE BOF ∠=∠;④2POB DOF ∠=∠. 请将正确结论的序号填写在空中,并选择其一证明.正确结论的序号是______,我选择证明的结论序号是______,证明:22.王老师为学校购买运动会的奖品后,回学校向后勤处赵主任交账说:我买了两种书共105本,单价分别为8元和12元,买书前我领了1600元,现在还余518元.赵主任算了一下说:你肯定搞错了.(1)赵主任为什么说他搞错了,请你用方程组的知识给予解释;(2)王老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本,但笔记本的单价已模糊不清,只能辨认出应为小于5元的整数,笔记本的单价可能为多少?23.某学校为了迎接“中招考试理化生实验”,需购进A,B两种实验标本共75个.经调查,A种标本的单价为20元,B种标本的单价为12元,若总费用不超过1180元,那么最多可以购买多少个A种标本?(列不等式解决)24.解不等式:121123x x+--≤,并把解集在数轴上表示出来.25.通过对某校七年级学生体育选修课程的统计,得到以下信息:①参加选课的总人数为300;②参加选课的学生在“足球、篮球、排球、乒乓球”中都选择了一门;③选足球和选排球的人数共占总人数的50%;选乒乓球的人数是选排球人数的2倍;选足球和选篮球的人数共占总人数的85%.设选足球的人数为x,选排球的人数为y,试列出二元一次方程组,分别求出选择足球、篮球、排球、乒乓球各门课程的人数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】.【详解】∵1.52=2.25,22=4,2.25<3<4,∴1.52<,∴34<<,故选B.【点睛】本题考查了无理数的估算,熟练掌握和灵活运用相关知识是解题的关键.2.A解析:A【解析】【分析】根据点A在x轴的下方,y轴的右侧,可知点A在第四象限,根据到x轴的距离是3,到y 轴的距离是2,可确定出点A的横坐标为2,纵坐标为-3,据此即可得.【详解】∵点A在x轴的下方,y轴的右侧,∴点A的横坐标为正,纵坐标为负,∵到x轴的距离是3,到y轴的距离是2,∴点A的横坐标为2,纵坐标为-3,故选A.【点睛】本题考查了点的坐标,熟知点到x轴的距离是点的纵坐标的绝对值,到y轴的距离是横坐标的绝对值是解题的关键.3.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、1600名学生的体重是总体,故A正确;B、1600名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.5.C解析:C【解析】【分析】利用加减消元法解方程组即可.【详解】229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③,①+②+③得:3x+3y+3z=90.∴x+y+z=30 ④②-①得:y+z-2x=0 ⑤④-⑤得:3x=30∴x=10故答案选:C .【点睛】本题考查的是三元一次方程组的解法,掌握加减消元法是解题的关键.6.C解析:C【解析】【分析】根据平行线的判定方法一一判断即可:A.同旁内角互补,两直线平行;B 、C 内错角相等,两直线平行;D.同位角相等,两直线平行,再根据结果是否能判断//AD BC ,即可得到答案.【详解】解:A. Q 180D DCB ∠+∠=︒,∴//AD BC ,此项正确,不合题意;B. Q 13∠=∠,∴//AD BC ,此项正确,不合题意;C. ∵∠2=∠4,∴CD ∥AB ,∴不能判定//AD BC ,此项错误,符合题意;D. Q CBE DAE ∠=∠,∴//AD BC ,此项正确,不合题意.故选:C .【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.7.D解析:D【解析】【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】解:A.根据根据同位角的特征得,∠1和∠2是同位角.B.根据根据同位角的特征得,∠1和∠2是同位角.C.根据根据同位角的特征得,∠1和∠2是同位角.D.由图可得,∠1和∠2不是同位角.故选:D.【点睛】本题主要考查了同位角,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.8.B解析:B【解析】【分析】【详解】∵12,∴3<m<4,故选B.【点睛】的取值范围是解题关键.9.D解析:D【解析】【分析】根据平方根、算术平方根、立方根的定义,即可解答.【详解】A、一个数的算术平方根一定是正数,错误,例如0的算术平方根是0;B、1的立方根是1,错误;C5,错误;D、2是4的平方根,正确;故选:D【点睛】本题考查了立方根、平方根,解决本题的关键是熟记平方根、立方根的定义.10.C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.C解析:C【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】如图,∵∠1+∠2=180°,∴a∥b,∴∠4=∠5,∵∠3=∠5,∠3=55°,∴∠4=∠3=55°,故选C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.12.B解析:B【解析】【分析】先根据矩形对边平行得出∠1=∠CDE=70°,再由折叠的性质可以得出答案.解:如图,∵AB∥CD,∠1=70°,∴∠1=∠CDE=70°,由折叠性质知∠α= (180°-∠CDE) 2==55°,故选:B.【点睛】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等的性质和折叠的性质.二、填空题13.112°【解析】【分析】根据折叠前后对应角相等得∠DEF=∠GEF由AD∥BC 得∠EFG=∠DEF=56°进而求出∠DEG的度数再由AD∥BC求出∠DEG=∠EGB【详解】解:∵折叠根据折叠前后对应解析:112°【解析】【分析】根据折叠前后对应角相等得∠DEF=∠GEF,由AD∥BC得∠EFG=∠DEF=56°,进而求出∠DEG的度数,再由AD∥BC,求出∠DEG=∠EGB.【详解】解:∵折叠,根据折叠前后对应的角相等∴∠DEF=∠GEF∵AD∥BC∴∠EFG=∠DEF=56°∴∠DEG=∠DEF+∠GEF=56°+56°=112°又∵AD∥BC∴∠EGB=∠DEG=112°.故答案为:112°【点睛】本题结合折叠考查了平行线的性质,熟记两直线平行时,内错角、同位角相等,同旁内角互补这个性质.14.【解析】【分析】通关观察解不等式下一步为化系数为1且解集为说明据此可写出ab 的值【详解】解:解不等式下一步为化系数为1且解集为说明∴可取则故答案为:2(答案不唯一)【点睛】此题考查运用不等式的性质解 解析:1-【解析】【分析】通关观察解不等式bx a <下一步为化系数为1,且解集为2x >-,说明0b <,2a b =-,据此可写出a ,b 的值.【详解】解:解不等式bx a <下一步为化系数为1,且解集为2x >-,说明0b <,2a b=-, ∴可取1b =-,则2a =,故答案为: 2,1-.(答案不唯一)【点睛】此题考查运用不等式的性质解一元一次不等式,不等式的性质为:①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;②不等式性质2::不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变. 15.【解析】【分析】【详解】解:如图两条直道分成的四块草坪分别为甲乙丙丁把丙和丁都向左平移2米然后再把乙和丁都向上平移2米组成一个长方形长为32-2=30米宽为24-2=22米所以四块草坪的总面积是30解析:【解析】【分析】【详解】解:如图,两条直道分成的四块草坪分别为甲、乙、丙、丁,把丙和丁都向左平移2米,然后再把乙和丁都向上平移2米,组成一个长方形,长为32-2=30米,宽为24-2=22米,所以四块草坪的总面积是30×22=660(㎡). 故答案为:660.【点睛】本题考查了平移的应用,将草坪平移组成一个长方形是解决此题的关键.16.(32)【解析】【分析】根据平移的性质即可得到结论【详解】∵将线段AB 沿x 轴的正方向平移若点B 的对应点B′的坐标为(20)∵-1+3=2∴0+3=3∴A′(32)故答案为:(32)【点睛】本题考查了解析:(3,2)【解析】【分析】根据平移的性质即可得到结论.【详解】∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),∵-1+3=2,∴0+3=3∴A′(3,2),故答案为:(3,2)【点睛】本题考查了坐标与图形变化-平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.17.(-2-8)【解析】【分析】点A向左平移3个单位得到点B(-5-8)则点B向右移动3个单位得到点A【详解】根据分析点B(-5-8)向右移动3个单位得到点A向右平移3个单位则横坐标+3故A(-2-8)解析:(-2,-8)【解析】【分析】点A向左平移3个单位得到点B(-5,-8),则点B向右移动3个单位得到点A.【详解】根据分析,点B(-5,-8)向右移动3个单位得到点A向右平移3个单位,则横坐标“+3”故A(-2,-8)故答案为:(-2,-8)【点睛】本题考查平移时坐标点的变化规律,注意,向左右平移,是横坐标的变化,向上下平移,是纵坐标的变化.18.m<0【解析】因为mx<2化为x>根据不等式的基本性质3得:m<0故答案为:m<0解析:m<0【解析】因为mx<2化为x>2m,根据不等式的基本性质3得:m<0,故答案为:m<0.19.π圆的周长=π•d=1×π=π【解析】【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周说明OO′之间的距离为圆的周长=π由此即可确定O′点对应的数【详解】因为圆的周长为π•d=1×π=π所以圆解析:π圆的周长=π•d=1×π=π【解析】【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.20.2500【解析】【分析】根据通过样本去估计总体的统计思想捕上200条鱼发现其中带有标记的鱼为8条说明有标记的占到而有标记的共有100条从而可求得总数【详解】∵捕上200条鱼发现其中带有标记的鱼为8条解析:2500【解析】【分析】根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为8条,说明有标记的占到8200,而有标记的共有100条,从而可求得总数.【详解】∵捕上200条鱼,发现其中带有标记的鱼为8条∴说明有标记的占到8 200∵有标记的共有100条∴湖里大约有鱼100÷8200=2500条故答案为:2500【点睛】本题考查了用样本估算整体的思想,用样本估计总体时,样本容量越大,样本对总体的估计也就越精确.相应地,搜集、整理、计算数据的工作量也就越大.随机抽样是经过数学证明了的可靠的方法,它对于估计总体特征是很有帮助.三、解答题21.①②③,①②③④.【解析】【分析】由于AB∥CD,则∠ABO=∠BOD=40°,利用平角等于得到∠BOC=140°,再根据角平分线定义得到∠BOE=70°;利用OF⊥OE,可计算出∠BOF=20°,则∠BOF=12∠BOD,即OF平分∠BOD;利用OP⊥CD,可计算出∠POE=20°,则∠POE=∠BOF;根据∠POB=70°-∠POE=50°,∠DOF=20°,可知④不正确.【详解】证明:∵AB∥CD,∴∠ABO=∠BOD=40°,∴∠BOC=180°-40°=140°,∵OE平分∠BOC,∴∠BOE=12×140°=70°,所以①正确;∵OF⊥OE,∴∠EOF=90°,∴∠BOF=90°-70°=20°,∴∠BOF=12∠BOD,所以②正确;∵OP⊥CD,∴∠COP=90°,∴∠POE=90°-∠EOC=20°,∴∠POE=∠BOF,所以③正确;∴∠POB=70°-∠POE=50°,而∠DOF=20°,所以④错误.综上所述,正确的结论为①②③.故答案为:①②③,①②③④.【点睛】此题考查平行线的性质,解题关键在于掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等.22.(1)见详解;(2)2【解析】【分析】(1)设单价为8元的书买了x本,单价为12元的书买了y本,根据题意列二元一次方程组求解即可;(2)设单价为8元的书买了y 本,笔记本的单价为a 元,根据题意列一元一次不等式求解即可【详解】解:(1)设单价为8元的书买了x 本,单价为12元的书买了y 本,根据题意得:1058121600518x y x y +=⎧⎨+=-⎩解得:44.560.5x y =⎧⎨=⎩(不符合题意) ∴赵主任说王老师肯定搞错了.(2)设单价为8元的书买了y 本,笔记本的单价为a 元,根据题意得:01600812(105)5185y y <--⨯--<整理得:041785y <-<即44.545.75y <<∴单价为8元的书买了45本,∴160084512(10545)5182a =-⨯-⨯--=∴笔记本的单价为2元.【点睛】本题考查的知识点是一元一次方程以及一元一次不等式的应用,找准题目中的数量关系是解此题的关键.23.35个【解析】【分析】此题考查应用不等式解决实际问题,由问题出发可以设出购买A 种标本x 个,再根据“需购进A ,B 两种实验标本共75个”,则有购买B 种标本(75)x -个;根据“若总费用不超过1180元”,可以找到不等关系,从而列出不等式,求解即可得出答案.【详解】解:设可以购买x 个A 种标本,则可以购买(75)x -个B 种标本.由题意得,2012(75)1180x x +-…,解得,35x ….答:最多可以购买35个A 种标本.【点睛】合理设出未知量,并根据题意找出不等关系,正确列出不等式是解决此类题目的关键. 24.1x ≥-【解析】【分析】当不等式有分母时,应先两边都乘6,去分母;然后去括号,移项及合并,系数化为1.【详解】解:去分母得,3(1+x )-2(2x-1)≤6去括号得,3+3x-4x+2≤6,移项得,3x-4x≤6-5,即-x≤1,∴x≥-1. 解集在数轴上表示得:【点睛】本题考查解不等式的一般步骤,需注意;去分母时单独的一个数也必须乘各分母的最简公分母;在不等式两边都除以一个负数时,应只改变不等号的方向,余下该怎么除还怎么除.25.135;120;15;30【解析】【分析】设选足球的人数为x ,选排球的人数为y ,根据“选足球和选排球的人数共占总人数的50%;选乒乓球的人数是选排球人数的2倍;选足球和选篮球的人数共占总人数的85%”列出方程组并解答.【详解】解:设选足球的人数为x ,选排球的人数为y ,根据题意,得30050%150230085%x y x y +=⨯⎧⎨+-=⨯⎩解这个方程组,得13515x y =⎧⎨=⎩当135x =,15y =时,230y =;1502120y -=.答:选择足球、篮球、排球、乒乓球课程的人数分别为135、120、15、30.【点睛】本题考查了二元一次方程组的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。

【人教版】七年级数学下期中一模试卷带答案

【人教版】七年级数学下期中一模试卷带答案
D.你喜欢数学吗?是疑问句,不是命题.
故选:B.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
10.B
解析:B
【分析】
根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.
【详解】
①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;
12.D
解析:D
【解析】
由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S四边形HDFC=S梯形ABEH= (AB+EH)×BE= (8+5)×4=26.故选D.
二、填空题
13.-7或9【分析】根据纵坐标相同可知MN∥x轴然后分点N在点M的左边与右边两种情况求出点N的横坐标即可得解【详解】∵点M(13)与点N(x3)的纵坐标都是3∴MN∥x轴∵MN=8∴点N在点M的左边时x

②不一定有 或者 ,举反例如下,
解析:(1)6;(2)① ;②不一定,理由见解析.
【分析】
(1)根据新定义可得 ,然后按有理数的运算法则计算即可;
(2)①首先根据数轴可得 , ,然后根据新定义可得 ,去掉绝对值符号之后按整式加减运算法则化简即可;
②举反例:当 , , 时, 成立;
【详解】
(1) ;
(2)①从a,b在数轴上的位置可得 , ,
∵2017=44×45+37,
∴可以看做点(44,44)向下运动37个单位长度,
∴2017分钟后这个粒子所处的位置(坐标)是(44,7).
故选:D.
【点睛】
本题考查了点的坐标的规律变化,解决此类问题的关键是找到特殊点与变化序号之间的关系.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.∵a>b,∴6+a>b+6,∴选项B正确;
C.∵a>b,∴ ,∴选项C正确;
D.∵a>b,∴-3a<-3b,∴选项D错误.
故选D.
2.C
解析:C
【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.
详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐来自是(-2,1).故选:C.
点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.
3.C
6.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()
A.16块,16块B.8块,24块
C.20块,12块D.12块,20块
7.如图,如果AB∥CD,那么下面说法错误的是()
14.学校计划购买 和 两种品牌的足球,已知一个 品牌足球60元,一个 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.
15.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a∥b成立
16.若关于x的不等式组 的整数解共有4个,则m的取值范围是__________.
A.0个B.1个C.2个D.3个
4.如图所示,已知直线BF、CD相交于点O, ,下面判定两条直线平行正确的是()
A.当 时,AB//CDB.当 时,BC//DEC.当 时,CD//EFD.当 时,BF//DE
5.若a<b<0,则在ab<1、 > 、ab>0、 >1、-a>-b中正确的有()
A.2个B.3个C.4个D.5个
(1)下列选取样本的方法最合理的一种是.(只需填上正确答案的序号)
①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.
(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:
①m=,n=;
②补全条形统计图;
③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?
(1)求三角形ABO的面积;
(2)作出三角形ABO平移之后的图形三角形A′B′O′,并写出A′、B′两点的坐标分别为A′、B′;
(3)P(x,y)为三角形ABO中任意一点,则平移后对应点P′的坐标为.
22.某校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:
3.甲、乙、丙、丁一起研究一道数学题,如图,已知EF⊥AB,CD⊥AB,甲说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB.”乙说:“如果还知道∠AGD=∠ACB,则能得到∠CDG=∠BFE.”丙说:“∠AGD一定大于∠BFE.”丁说:“如果连接GF,则GF∥AB.”他们四人中,正确的是( )
④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.
25.如图,已知 , .
(1)求证: .
(2)若 , 平分 , ,求 .
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
A.∵a>b,∴a-7>b-7,∴选项A正确;
(1)求本次接受随机抽样调查的学生人数及图①中m的值;
(2)本次调查获取的样本数据的平均数是,众数是,中位数是;
(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
23.解不等式组: .
24.家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.
20.一个棱长为8cm的正方体容器装满水,现将这个容器中的水倒入一个高度为 的圆柱形玻璃杯中,恰好装满,则这个圆柱形玻璃杯的底面半径为______cm.
三、解答题
21.如图,三角形ABO中,A(﹣2,﹣3)、B(2,﹣1),三角形A′B′O′是三角形ABO平移之后得到的图形,并且O的对应点O′的坐标为(4,3).
17.如图,将边长为6cm的正方形ABCD先向上平移3cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为______cm2.
18.比较大小 ______ .(填“>”、“<”或“=”)
19.有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲2件、乙3件、丙4件共需285元钱,那么购甲、乙、丙三种商品各一件共需_________________元钱.
2020-2021七年级数学下期中第一次模拟试题(带答案) (4)
一、选择题
1.已知实数a,b,若a>b,则下列结论错误的是
A.a-7>b-7B.6+a>b+6C. D.-3a>-3b
2.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为( )
A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)
A.∠3=∠7B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8
8.一个自然数的算术平方根是x,则它后面一个自然数的算术平方根是().
A.x+1B.x2+1C. D.
9.已知关于 的不等式组 恰有3个整数解,则 的取值范围为( )
A. B. C. D.
10.如图,AB∥CD,EF平分∠GED,∠1=50°,则∠2=()
A.50°B.60°C.65°D.70°
11.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )
A.3<x<5B.-5<x<3C.-3<x<5D.-5<x<-3
12.下列各组数中互为相反数的是( )
A.3和 B.﹣|﹣ |和﹣(﹣ )
C.﹣ 和 D.﹣2和
二、填空题
13.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2xk1x+b的解集为______.
相关文档
最新文档