菱形的定义及其性质教学内容
菱形的性质公开课教案
菱形的性质公开课教案一、教学目标1. 知识与技能:(1)理解菱形的定义及基本性质;(2)掌握菱形的对角线性质、四边形性质及与正方形的关系;(3)能够运用菱形的性质解决实际问题。
2. 过程与方法:(1)通过观察、操作、探究等活动,培养学生的观察能力和推理能力;(2)学会运用几何画板等工具,动态展示菱形的性质;(3)提高学生运用菱形性质解决几何问题的能力。
3. 情感态度与价值观:(1)培养学生对数学几何图形的兴趣;(2)培养学生合作、探究的学习态度;(3)培养学生运用数学知识解决实际问题的意识。
二、教学内容1. 菱形的定义及基本性质(1)引导学生观察菱形的图形,让学生描述菱形的特征;(2)介绍菱形的性质,如对角线互相垂直平分、四边相等等。
2. 菱形的对角线性质(1)引导学生探究菱形对角线的交点性质;(2)证明菱形对角线互相垂直平分。
3. 菱形的四边形性质(1)引导学生观察菱形的四边形性质;(2)证明菱形四边相等。
4. 菱形与正方形的关系(1)引导学生探讨菱形与正方形的联系;(2)证明正方形是特殊的菱形。
5. 菱形的实际应用(1)让学生运用菱形性质解决实际问题;(2)举例说明菱形在现实生活中的应用。
三、教学过程1. 导入新课(1)通过展示生活中的菱形图形,引导学生关注菱形;(2)提问:你们知道菱形有哪些性质吗?2. 探究菱形的性质(1)让学生观察、描述菱形的特征;(2)引导学生发现并证明菱形的对角线性质;(3)引导学生发现并证明菱形的四边形性质;(4)探讨菱形与正方形的关系。
3. 应用菱形的性质(1)让学生运用菱形性质解决实际问题;(2)举例说明菱形在现实生活中的应用。
4. 课堂小结(1)回顾本节课学习的菱形性质;(2)强调菱形性质在实际问题中的应用。
四、作业布置1. 总结菱形的性质,并写在日记本上;2. 找一找生活中的菱形图形,下节课分享。
五、教学反思课后,教师应认真反思本节课的教学效果,包括学生的参与度、理解程度、作业完成情况等,以便对教学方法和教学内容进行调整和改进。
八年级数学菱形的定义和性质华东师大版知识精讲
初二数学菱形的定义和性质华东师大版【本讲教育信息】一. 教学内容:菱形的定义和性质二. 重点、难点:1. 重点:菱形的定义和性质2. 难点:菱形的性质菱形的定义三. 知识梳理:如图,菱形是四条边都相等的四边形,它也是一组邻边相等的平行四边形,它的两条对角线互相垂直平分.如上图,菱形是中心对称图形,也是轴对称图形,对称轴为它的对角线所在的直线.这样,菱形具有以下的性质:菱形的性质:菱形的四条边都相等.菱形的性质:菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.平行四边形所具有的性质,菱形都具有。
这样,我们还可以列出菱形所具有的一些性质:菱形的定义:四条边都相等的四边形。
菱形的性质:两组对边分别平行。
菱形的性质:菱形对角线互相平分菱形的性质:菱形的对边相等即:在菱形ABCD中,AD∥BC,AB∥DC,AD=BC,AB=DC菱形的性质:菱形的对角相等.菱形的性质:菱形的对角线互相平分.菱形的应用非常广泛.现在流行一种新式的衣帽架,可以根据需要将它伸缩,形成各种形状的菱形,固定在墙上,既美观又实用.可伸缩的衣帽架【典型例题】例1. 如图,在菱形ABCD中,∠BAD=2∠B,试求出∠B的度数,并说明△ABC是等边三角形.解:(1)在菱形ABCD中,∠B+∠BAD=180°(两直线平行,同旁内角互补).又∵∠BAD=2∠B,∴∠B=60°.(2)在菱形ABCD中,AB=BC(菱形的四条边都相等),∴在△ABC中,∠BAC=∠BCA(等边对等角).又∵∠B+∠BAC+∠BCA=180°(三角形内角和公式),∴∠BAC=∠BCA=∠B=60°.∴AB=BC=AC(等角对等边),即△ABC是等边三角形.例2. 如图,已知菱形ABCD的边长为2cm,∠BAD=120°,对角线AC、BD相交于点O,试求这个菱形的两条对角线AC与BD的长.分析:运用菱形的定义和性质进行解题: 解:(1) 在菱形ABCD 中, ∠BAO =21∠BAD =21×120°=60°(菱形的每一条对角线平分一组对角). 又在△ABC 中,AB =BC ,∴ ∠BCA =∠BAC =60°(等边对等角),∠ABC =180°-∠BCA -∠BAC =60°, ∴ △ABC 为等边三角形, ∴ AC =AB =2(cm ). (2) 在菱形ABCD 中,AC ⊥BD (菱形的对角线互相垂直), ∴ △ A OB 为直角三角形,∴ 312AO AB BO 2222=-=-=cm (勾股定理), ∴ BD =2BO =32(cm ).例 3. 如图,菱形ABCD 被两条对角线分成四个小三角形,如果每个小三角形的周长是26cm ,对角线AC 和BD 长的和是32cm ,那么菱形的周长是多少?分析:运用菱形的定义和性质进行解题: 解:△AOB 的周长为26cm , 又∵ AC +BD =32cm ∴AO+BO=16cm ∴ AB =10(cm )即菱形ABCD 的周长等于40cm .例4. 如图,在菱形ABCD 中,已知∠ABC =40°,求∠BCD ,∠BCA 度数.分析:运用菱形的定义和性质进行解题: 解:在菱形ABCD 中,∠ABC =40°, ∠BCD =140°(菱形的定义和性质) ∠ACB =70°(菱形的定义和性质)例5. 如图,已知菱形ABCD的边AB长5cm,一条对角线AC长6cm,求这个菱形的周长和它的面积.分析:运用菱形的定义和性质进行解题:解:在菱形ABCD中,∵AB=5,AC=6,AO=3BO=4BD=2BO=8AB+BC+CD+DA=20(cm),cm)∴菱形ABCD的面积=24(2例6. 如图,在菱形ABCD中,已知对角线AC和BD相交于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?分析:运用菱形的定义和性质进行解题:解:在ABCD中,已知AB=6,AO+BO+AB=15,∴AO+BO=15-6=9.又∵AO=OC,BO=OD(菱形对角线互相平分),∴AC+BD=2AO+2BO=2(AO+BO)=2×9=18.【模拟试题】(答题时间:30分钟)一. 选择题:1. 已知在菱形ABCD中,下列哪个是错误的()A. 两组对边分别平行B. 菱形对角线互相平分C. 菱形的对边相等D菱形的对角线相等.2. 已知在菱形ABCD中,下列哪个是错误的()A. AB=CDB. AO=BOC. ∠ABC=∠ADCD. ∠ABO=∠CBO3. 已知在菱形ABCD中,若∠ABO=40°,则哪个角为40°。
菱形的定义与性质说课稿
菱形的定义与性质说课稿菱形的定义与性质说课稿1一、教材分析1、在教材中的作用与地位《菱形》紧接《矩形》一节之后。
纵观整个初中平面几何教材,它是在学生掌握了平行四边形的性质与判定,又学习了特殊的平行四边形――矩形,具备了初步的观察、操作等活动经验的基础上讲授的。
这一节课既是前面所学知识的继续,又是后面学习正方形等知识的基础,起着承前启后的作用。
2、从教材编写角度看教材从学生年龄特征、文化知识的实际水平出发,先让学生动手做,动脑思考,然后与同伴交流、探索、总结归纳,升华得出菱形的性质及判定,这样的安排使抽象的定理让学生更易于接受,并能在整个的教学过程中真正享受到探索的乐趣。
3、基于对教材和班级学情的分析,我认为本节课的教学有几个方面需要把握好的:(1)本节课的课题是:探索菱形的重要性质;(2)目标是:让学生能在动手实践过程中发现并理解菱形的性质;(3)重点是:菱形的定义与性质;(4)教学难点是:菱形性质的灵活运用。
4、根据新课程标准的要求及学生的实际情况,本节课我制定了如下教学目标:1)、知识与技能(1)知道菱形在现实生活中有广泛的应用。
(2)熟记菱形的有关性质和识别条件,并能灵活运用。
2)、过程与方法经历探索菱形的性质和识别条件的过程,在观察、操作和分析的过程中,进一步增进主动探究的意识,体会说理的基本方法。
3)、情感态度价值观体验数学活动来源于生活又服务于生活,体会菱形的图形美,提高学生的学习兴趣。
二、教法分析1、教学设计思想菱形是特殊的平行四边形,后继课要学的正方形具有菱形的一切性质。
这节课教学时注重学生的探索过程,让观察、猜测、验证,获得知识,培养主动探究的能力。
首先由生活中的图片引入,引起学生学习兴趣,发现菱形在生活中的广泛应用,然后设计几个探究性问题,让学生小组讨论,相互交流,形成共识。
讲解例题时根据学生特点帮助他们分析题意,灵活运用菱形的性质与识别条件解题。
2、教学方法针对本节课的特点,我准备采用“创设情境→观察探索→总结归纳→知识运用”为主线的教学模式,观察分析讨论相结合的方法。
小学数学知识归纳菱形的性质与判定
小学数学知识归纳菱形的性质与判定小学数学知识归纳——菱形的性质与判定Introduction===================数学是小学学习的重要课程之一,其中数学几何是培养学生观察、推理和解决问题能力的重要内容。
而菱形作为几何形状之一,在小学数学中也有着重要的地位。
本文将归纳总结菱形的性质与判定,帮助小学生更好地理解和掌握菱形的相关知识。
一、菱形的定义===================菱形是指四条边长度相等的四边形,它具有以下特征:1. 四条边相等。
即菱形的AB = BC = CD = DA。
2. 两条对角线相等。
即菱形的AC = BD。
3. 对角线互相垂直。
即菱形的∠ACB = 90°。
二、菱形的性质===================了解菱形的性质对于解题和判定菱形非常重要。
以下是菱形的一些常见性质:1. 菱形的对角线平分内角。
对于菱形ABCD,其对角线AC和BD将菱形的内角∠BAD、∠ABC、∠BCD和∠CDA平分为两个相等的角。
2. 菱形的对角线互相垂直。
菱形的对角线AC和BD互相垂直,即∠ACB = 90°。
3. 菱形的对角线相互垂直时为正方形。
如果菱形的两条对角线互相垂直,即∠ACB = 90°,那么这个菱形就是一个正方形。
4. 菱形的内角和为360°。
菱形的四个内角之和等于360°,即∠BAD + ∠ABC + ∠BCD + ∠CDA = 360°。
5. 菱形的对边平行。
菱形的相对边AB和CD平行,对边BC和DA平行。
三、菱形的判定===================在解题过程中,判定菱形有时很关键。
以下是一些常见的菱形判定条件:1. 判定边长相等。
如果一个四边形的四条边AB、BC、CD、DA长度相等(AB = BC = CD = DA),那么这个四边形就是一个菱形。
2. 判定对角线相等。
如果一个四边形的对角线AC和BD相等(AC = BD),那么这个四边形就是一个菱形。
九年级数学上册《菱形的性质》教案、教学设计
-采用启发式教学法,通过问题驱动引导学生主动探索菱形的性质。
-运用直观演示法,结合实际图形和模型,帮助学生形象理解菱形的特征。
-实施分组合作学习,鼓励学生互相交流,共同解决难题,培养团队协作能力。
-利用信息技术,如多媒体课件和数学软件,增强课堂教学的互动性和趣味性。
2.教学步骤:
-引入新课:通过生活中的实物或图片,如菱形饰品、建筑结构等,引发学生对菱形的关注。
-进一步提问:“我们已经学过很多四边形,那么菱形与其他四边形有什么不同呢?”激发学生的好奇心,为新课的学习做好铺垫。
2.教学目标:
-使学生了解菱形在生活中的广泛应用,感受几何图形的美。
-激发学生学习菱形性质的兴趣,为新课的学习打下基础。
(二)讲授新知
1.教学内容:
-讲解菱形的定义:菱形是指四条边长度相等的四边形。
-鼓励学生提问,耐心解答,帮助学生克服学习中的困难,增强学习的积极性。
-注重情感教育,鼓励学生面对挑战,培养坚持不懈、勇于探索的精神。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
-利用多媒体展示一组生活中的菱形图案,如菱形装饰品、建筑设计中的菱形元素等,引导学生观察并思考这些图案的特点。
-提问:“大家是否能发现这些图案的共同之处?”通过学生回答,引出菱形的概念。
(五)总结归纳
1.教学活动设计:
-与学生一起回顾本节课所学的内容,总结菱形的性质及其应用。
-让学生尝试用自己的话概括菱形的特点,提高语言表达能力。
-对学生在课堂上的表现给予评价和鼓励,激发学生的学习积极性。
2.教学目标:
-帮助学生巩固所学知识,形成系统的知识结构。
-培养学生总结归纳的能力,提高学习的自主性。
菱形的性质
课题:§2.6.1菱形的性质备课人:李正军※教学目标:1.知识目标:知道菱形在现实生活中有广泛应用。
理解菱形概念与性质,掌握菱形的边、角、对角线、对称性质及相关计算,并能灵活运用。
2.过程与方法:能够运用菱形知识解决有关问题。
在实际操作观察、思考、猜想、归纳的过程中得到数学知识的体验,培养学生动手实验、观察推理的意识,发展学生的逻辑推理能力和演绎能力。
3.情感态度与价值观:通过运用菱形知识解决具体问题,提高观察能力和分析能力。
让学生在互助合作的学习过程中得到数学学习的快乐,获得成功的体验、锻炼克服困难的意志,建立自信心。
体验数学活动来源于生活又服务于生活,体会菱形的图形美,提高学生的学习兴趣。
※重点难点:1. 教学重点:菱形的概念和菱形的性质,菱形的面积公式的推导。
2、教学难点:菱形的性质及灵活应用※方法手段:1.教法:分组合作、实验操作、直观演示,讲解、讨论。
2.学法:合作、探究、练习,展示、分享。
3.教学准备:PPT、几何画板、学生分组、菱形纸片等教具。
※教学过程一、活动导入:学生实验操作活动:出示平行四边形、矩形、菱形教具,组织学生上台操作演示:1、在平行四边形的基础上改变角度为直角=》矩形2、在平行四边形的基础上将邻边改变为相等又会得到什么特殊的四边形?设计意图:1、通过学生实验操作活动导入,了解图形前后变化关系、类比旧知向新知过渡。
2、实物操作向理性思考过渡,将一个实际问题转化为几何问题。
二、合作探究:探究活动设计:活动1、菱形的定义:1、运行几何画板,演示平行四边形=》菱形的前后变化。
(教师操作几何画板,学生观察边的关系,并得到菱形的几何概念)2、菱形定义:一组邻边相等的平行四边形叫菱形。
3、生活中的菱形:你能举出日常生活中有哪些菱形?(出示一组图片直观认识菱形)设计意图:1、由直观认识过渡到几何概念。
2、渗透事物在一定条件下相互转化的辩证思想。
3、关键词:平行四边形+邻边相等→菱形活动2、探究菱形边角的性质:1、观察并讨论,从平行四边形变形为菱形后边、角之间哪些关系没变?哪些关系变了?完成表格:3、学生有意识利用自己的知识储备,进行合情推理,得出结论:菱形的四条边都相等,对角相等。
(完整版)菱形的性质及判定
菱形的性质及判定知识点 A 要求B 要求C要求菱形会识别菱形 掌握菱形的概念、性质和判定,会用菱形的性质和判定解决简单问题会用菱形的知识解决有关问题1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且四边相等. ② 角的性质:邻角互补,对角相等.③ 对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④ 对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定判定①:一组邻边相等的平行四边形是菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四边相等的四边形是菱形.重点是菱形的性质和判定定理。
菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。
菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形重、难点知识点睛中考要求的基础。
难点是菱形性质的灵活应用。
由于菱形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。
如果得到一个平行四边形是菱形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程 中应给予足够重视。
板块一、菱形的性质【例1】 ☆ ⑴菱形的两条对角线将菱形分成全等三角形的对数为⑵在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是【例2】 ⑴如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.图21CBA⑵如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是______.【例3】 如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分.P HFE DCBA【例4】 ☆ 如图1所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .E F DBC A例题精讲图1HO DC BA【巩固】 ☆如图,已知菱形ABCD 的对角线8cm 4cm AC BD DE BC ==⊥,,于点E ,则DE 的长为【例5】 ☆ 菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为【巩固】 如图2,在菱形ABCD 中,6AC =,8BD =,则菱形的边长为( )A .5B .10C .6D .8图2DCBA【巩固】 如图3,在菱形ABCD 中,110A ∠=︒,E 、F 分别是边AB 和BC 的中点,EP CD ⊥于点P ,则FPC ∠=( )A .35︒B .45︒C .50︒D .55︒图3E DP CF BA【例6】 ☆如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒的菱形,剪口与折痕所成的角α的度数应为( )A .15︒或30︒B .30︒或45︒C .45︒或60︒ D.30︒或60︒【巩固】 菱形ABCD 中,E 、F 分别是BC 、CD 的中点,且AE BC ⊥,AF CD ⊥,那么EAF ∠等于 .【巩固】 如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A .210cmB .220cmC .240cmD .280cm图1DCBA【例7】 ☆已知菱形ABCD 的两条对角线AC BD ,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是【例8】 如图,菱形花坛ABCD 的周长为20m ,60ABC ∠=︒,•沿着菱形的对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积.图2【例9】 已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,若AE AF EF AB ===,求C ∠的度数.FEDCBA板块二、菱形的判定【例10】 如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是 .DCAB【例11】 ☆如图,在ABC ∆中,BD 平分ABC ∠,BD 的中垂线交AB 于点E ,交BC 于点F ,求证:四边形BEDF 是菱形FEDCBA【巩固】 已知:如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于E 、F .求证:四边形AFCE 是菱形.ODEFCAB【例12】 如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '.求证:四边形CDC E '是菱形.C'DCB A E【例13】 ☆如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分AB CDEF P PF EDC B A【巩固】 ☆已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.GF E DCBA【例14】 如图,在ABC ∆中,AB AC =,M 是BC 的中点.分别作MD AB ⊥于D ,ME AC ⊥于E ,DF AC ⊥于F ,EG AB ⊥于G .DF EG 、相交于点P .求证:四边形DMEP 是菱形.PMF E DG CBA【例15】 如图,ABC ∆中,90ACB ∠=︒,AD 是BAC ∠的平分线,交BC 于D ,CH 是AB 边上的高,交AD于F ,DE AB ⊥于E ,求证:四边形CDEF 是菱形.HF DECBA【巩固】 ☆如图,M 是矩形ABCD 内的任意一点,将MAB ∆沿AD 方向平移,使AB 与DC 重合,点M 移动到点'M 的位置⑴画出平移后的三角形; ⑵连结'MD MC MM ,,,试说明四边形'MDM C 的对角线互相垂直,且长度分别等于AB AD ,的长;⑶当M 在矩形内的什么位置时,在上述变换下,四边形'MDM C 是菱形?为什么?M'MDC BA三、与菱形相关的几何综合题【例16】 已知等腰ABC △中,AB AC =,AD 平分BAC ∠交BC 于D 点,在线段AD 上任取一点P (A 点除外),过P 点作EF AB ∥,分别交AC 、BC 于E 、F 点,作PM AC ∥,交AB 于M 点,连结ME .⑴求证四边形AEPM 为菱形⑵当P 点在何处时,菱形AEPM 的面积为四边形EFBM 面积的一半?MPFABCDE1. 菱形周长为52cm ,一条对角线长为10cm ,则其面积为 .2.如图,在菱形ABCD 中,4AB a E =,在BC 上,2120BE a BAD P =∠=︒,,点在BD 上,则PE PC +的最小值为PDCBA3. 已知菱形的一个内角为60︒,一条对角线的长为23,则另一条对角线的长为________.4.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.课后练习FEDCBA5.如图,在ABC ∆中,AB AC =,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE .当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由.EDCB A6.如图,ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.⑵ 当BAC ∠为 度时,四边形ADFE 为正方形.FEDCB A7.如图,已知BE 、CF 分别为ABC ∆中B ∠、C ∠的平分线,AM BE ⊥于M ,AN CF ⊥于N ,求证:MN BC ∥.NMEFCBA。
小学菱形知识点总结
小学菱形知识点总结菱形是一种四边形,它的特点是四条边都相等,相对的角也相等。
在小学数学中,学生会接触到菱形的概念,并学习关于菱形的性质、面积、周长等知识点。
本文将对小学菱形的知识点进行总结,帮助学生更好地理解和掌握这一内容。
一、菱形的基本概念1. 定义:菱形是一种特殊的四边形,它的四条边长度相等,相对的角也相等。
通常用符号“◇”来表示。
2. 特点:菱形的特点是四条边相等,相对的角也相等,且对角线互相垂直且平分。
3. 实例:常见的例子有菱形路标、菱形钻石等。
二、菱形的性质1. 对角线垂直平分:菱形的两条对角线互相垂直且平分。
2. 对角线相等:菱形的两条对角线长度相等。
3. 对角线交点:菱形的两条对角线交点称为菱形的中心,也是对角线的交点。
4. 对角线长:菱形的对角线长度可以通过菱形的边长和对角角度来计算。
5. 内角度:菱形的每个内角度为90度。
三、菱形的周长和面积1. 周长:菱形的周长等于四条边长度的和,即4倍边长。
2. 面积:菱形的面积可以通过对角线的长度来计算,公式为(对角线1乘以对角线2)除以2。
四、菱形的相关题目1. 练习题目1:已知菱形的一条对角线长度为8cm,另外一条对角线长度为6cm,求菱形的周长和面积。
2. 练习题目2:菱形的一个内角是120度,求另外三个内角的度数。
3. 练习题目3:已知菱形的周长为24cm,求菱形的边长。
以上是小学菱形的基本知识点总结,通过掌握这些内容,学生可以更好地理解和运用菱形的性质和计算方法。
希望学生能够在老师的指导下,认真学习并掌握这一部分内容,为进一步学习数学打下坚实的基础。
《菱形》教学教案
《菱形》教学教案一、教学目标1. 知识与技能:(1)理解菱形的定义及其性质;(2)学会菱形的判定方法;(3)掌握菱形的对称性和四条边的相等性。
2. 过程与方法:(1)通过观察实物和图形,培养学生的观察能力;(2)运用同角三角函数的基本关系式,求出菱形的边长;(3)利用菱形的性质,解决实际问题。
3. 情感态度与价值观:(1)激发学生对菱形的兴趣,培养其对几何图形的审美意识;(2)培养学生团结合作、积极探究的精神。
二、教学重点与难点1. 教学重点:(1)菱形的定义及其性质;(2)菱形的判定方法;(3)菱形的对称性和四条边的相等性。
2. 教学难点:(1)菱形性质在实际问题中的应用;(2)利用菱形解决几何问题。
三、教学方法1. 采用直观演示法,让学生通过观察实物和图形,理解菱形的定义及其性质;2. 运用同角三角函数的基本关系式,求出菱形的边长;3. 利用菱形的性质,解决实际问题;4. 采用问题驱动法,引导学生积极思考,探究菱形的判定方法;5. 组织学生进行小组讨论,培养学生的团队合作精神。
四、教学准备1. 教学课件:菱形的定义、性质、判定方法及相关例题;2. 实物模型:各种形状的菱形;3. 练习题:与菱形相关的几何题目。
五、教学过程1. 导入新课:(1)展示各种形状的菱形实物模型,引导学生观察并思考:这些图形的共同特征是什么?2. 探究菱形的性质:(3)教师展示菱形的性质PPT,引导学生深入了解菱形。
3. 菱形的判定方法:(2)教师引导学生利用同角三角函数的基本关系式,求出菱形的边长;(3)教师给出相关例题,学生独立完成,教师点评。
4. 菱形在实际问题中的应用:(1)教师提出实际问题,引导学生利用菱形的性质解决;(2)学生分组讨论,提出解决方案;(3)各小组汇报讨论成果,教师点评。
5. 课堂小结:(2)学生分享学习收获。
6. 布置作业:(1)巩固菱形的定义、性质、判定方法;(2)解决一些与菱形相关的几何题目。
菱形的定义及其性质(教案)
教案:菱形的定义及其性质第一章:菱形的定义1.1 引言向学生介绍菱形的概念,并提出问题:“你们认为菱形是什么样的图形?”引导学生通过观察实物或图片来猜测菱形的特征。
1.2 菱形的定义给出菱形的正式定义:“菱形是一个四边形,它的四条边都相等,且对角线互相垂直且平分。
”解释菱形的名称来源,菱形的特点像菱角一样。
1.3 菱形的性质引导学生观察菱形的图形,发现其性质:四条边相等对角线互相垂直对角线平分对方每个角都是直角第二章:菱形的对称性2.1 引言提出问题:“你们认为菱形有什么特殊的对称性吗?”引导学生思考菱形的对称性。
2.2 菱形的对称性给出菱形的对称性定义:“菱形具有轴对称和中心对称的性质。
”解释菱形的轴对称性:菱形有两组对边平行,可以沿两条对角线进行折叠,两边重合。
解释菱心的概念:菱形的中心点是两条对角线的交点,它是菱形的中心对称点。
2.3 菱形的对称性应用引导学生通过实际操作,画出菱形的轴对称和中心对称图形。
让学生尝试解决与菱形对称性相关的问题,如:如果给出一个菱形的一部分,能否确定整个菱形的形状?第三章:菱形的面积计算3.1 引言提出问题:“你们认为如何计算菱形的面积?”引导学生思考菱形面积的计算方法。
3.2 菱形的面积计算公式给出菱形面积的计算公式:“菱形的面积等于对角线之积的一半。
”解释公式背后的原理,通过实际操作或几何证明来说明。
3.3 菱形的面积计算应用引导学生通过实际操作,计算给定菱形的面积。
让学生尝试解决与菱形面积相关的问题,如:如果给出一个菱形的对角线长度,能否计算出其面积?第四章:菱形的构造4.1 引言提出问题:“你们认为如何构造一个菱形?”引导学生思考菱形的构造方法。
4.2 菱形的构造方法给出菱形的构造方法:“通过画两条互相垂直的线段,在对角线上分别标记四个点,连接相邻点即可得到菱形。
”解释菱形构造的原理,通过实际操作或几何证明来说明。
4.3 菱形的构造应用引导学生通过实际操作,尝试构造一个菱形。
菱形的定义及其性质(教案)
为四边形ABCD是简单的平行四边形吗?带着这个问题,我们今天来共同来探讨这种特殊的平行四边形的性质。
⑴简单的情境创设,激发兴趣,指明了课型的性质。
⑴通过几何画板演示,自然地从平行四边形过渡到菱形,为引入菱形的概念做铺垫。
⑵引导学生观察猜想,探究四边形ABCD的性质和特点,学生观察思考过程中学会了动眼、动口、动脑三维一体,多种刺激,调动了学生学习的积极性,培养学生勇于探索,团结协作的精神。
观察猜想:四边形ABCD为什么图形?并且具有什么特点?
师生探究:通过“几何画板”演示、老师提问和学生小组讨论的方式的方式,最后得出四边形ABCD是中心对称图形,是平行四边形,并且有一组邻边相等。
归纳总结:
四边形ABCD是中心对称图形,是平行四边形,并且有一组邻边相等对称轴是两条对角线,又是中心对称图形,对称中心是对角线交点。
五、归纳小结,反馈回授
归纳小结:(3分钟)
1、菱形的定义:
有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质:
⑴菱形的四边相等。
⑵菱形的对角线互相垂直平分,并且平分一组对角。
⑶菱形的面积等于两对角线乘积的一半。
⑴有利于学生理清本节课的知识点,深化对菱形定义和性质的理解。
⑵启发引导学生进行归纳整理,培养学生宏观掌握知识的能力。
菱形的定义及其性质
课题
菱形的定义及其性质
课型
新授课
授课课时
第1课时
授课时长
45分钟
授课题目(章,节)
第十九章第二节19.2.2菱形
教材及参考书目
义务教育课程标准实验教材书数学八年级下册(人民教育出版社)
●教学目标
1、知识目标:掌握菱形的定义和菱形的特殊性质,并熟练运用其进行有关的证明
菱形的性质及判定.教师版演示教学
菱形的性质及判定.教师版知识点 A 要求 B 要求C要求菱形 会识别菱形掌握菱形的概念、性质和判定,会用菱形的性质及判定解决简单问题会用菱形的知识解决有关问题1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质:① 边的性质:对边平行且四边相等. ② 角的性质:邻角互补,对角相等.③ 对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④ 对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定判定①:一组邻边相等的平行四边形是菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四边相等的四边形是菱形.4.三角形的中位线中位线:连结三角形两边的中点所得的线段叫做三角形的中位线.也可以过三角形一边的中点作平行于三角形另外一边交于第三边所得的线段也是中位线.以上是中位线的两种作法,第一种可以直接用中位线的性质,第二种需要说明理由为什么是中位线,再用中位线的性质.知识点睛中考要求菱形的性质 及判定中点中点 中点平行定理:三角形的中位线平行第三边且长度等于第三边的一半.重点是菱形的性质及判定定理。
菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。
菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。
难点是菱形性质的灵活应用。
由于菱形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。
如果得到一个平行四边形是菱形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程 中应给予足够重视。
菱形的定义及其性质(教案)
菱形的定义及其性质一、教学目标:1. 知识与技能:(1)理解菱形的定义;(2)掌握菱形的性质;(3)学会菱形的判定方法。
2. 过程与方法:(1)通过观察实物,培养学生的空间想象能力;(2)运用几何画板软件,直观展示菱形的性质,提高学生的动手操作能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣;(2)培养学生勇于探索、积极思考的科学精神。
二、教学内容:1. 菱形的定义(1)引导学生观察实物,如骰子、风筝等,发现它们都具有四条相等的边和四个角都相等的特征;(2)给出菱形的定义:四条边相等,四个角都相等的四边形叫作菱形。
2. 菱形的性质(1)边长性质:菱形的四条边相等;(2)对角线性质:菱形的对角线互相垂直,且平分;(3)角度性质:菱形的四个角都相等,均为直角或锐角;(4)对角线与边的关系:菱形的对角线将菱形分成的三角形是全等的。
三、教学重点与难点:1. 教学重点:菱形的定义及其性质。
2. 教学难点:菱形性质的证明及应用。
四、教学方法:1. 讲授法:讲解菱形的定义、性质及其证明方法;2. 直观演示法:运用几何画板软件展示菱形的性质;3. 实践操作法:让学生动手操作,验证菱形的性质;4. 小组讨论法:分组探讨菱形的性质,培养学生的合作意识。
五、教学过程:1. 导入新课:通过展示实物,引导学生发现菱形的特征,激发学生的学习兴趣;2. 讲解菱形的定义及性质:结合实物和几何画板软件,讲解菱形的定义、性质及其证明方法;3. 实践操作:让学生利用几何画板软件,自行探究菱形的性质,并完成相关练习;4. 小组讨论:分组探讨菱形的性质,引导学生互相交流、合作,培养学生的团队精神;六、教学评估1. 课堂问答:通过提问方式检查学生对菱形定义和性质的理解程度。
2. 练习题:布置有关菱形的练习题,检查学生对菱形性质的掌握情况。
3. 小组报告:评估学生在小组讨论中的表现,包括合作、交流和分析问题能力。
七、作业布置2. 菱形应用题:设计一些应用题,让学生运用菱形的性质解决问题。
菱形的性质和判定教案
菱形的性质和判定教案一、教学目标知识与技能目标:使学生掌握菱形的定义、性质和判定方法,能够运用菱形的性质解决实际问题。
过程与方法目标:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
情感态度与价值观目标:激发学生对几何图形的兴趣,培养学生的审美观念,提高学生解决问题的自信心。
二、教学内容1. 菱形的定义:菱形是四条边相等的四边形。
2. 菱形的性质:(1)菱形的对角线互相垂直,且平分对方。
(2)菱形的对边平行且相等。
(3)菱形的对角相等。
(4)菱形的四条边相等。
3. 菱形的判定方法:(1)四条边相等的四边形是菱形。
(2)对角线互相垂直,且平分对方的四边形是菱形。
三、教学重点与难点重点:掌握菱形的性质和判定方法。
难点:理解菱形性质之间的内在联系,以及如何运用判定方法判断一个四边形是否为菱形。
1. 教学PPT或黑板。
2. 几何画图工具。
3. 相关几何图形示例。
五、教学过程1. 导入:通过展示一些生活中的菱形图形,如蜂巢、骰子等,引导学生观察并思考这些图形的共同特点。
2. 新课导入:介绍菱形的定义,引导学生通过观察、操作、推理等方法,发现菱形的性质。
3. 讲解与演示:利用PPT或黑板,展示菱形的性质,如对角线互相垂直、平分对方,对边平行且相等等。
通过几何画图工具,演示菱形的性质,帮助学生理解。
4. 练习与巩固:给出一些四边形,让学生判断它们是否为菱形,并说明理由。
引导学生运用菱形的性质和判定方法进行判断。
5. 拓展与应用:引导学生运用菱形的性质解决实际问题,如在设计图案、构造模型等方面应用菱形。
7. 布置作业:设计一些有关菱形的练习题,巩固学生对菱形性质和判定方法的理解。
六、教学评价1. 课堂讲解:评价学生在课堂上的参与程度、提问回答的正确性和完整性。
2. 练习与巩固:评价学生在练习中应用菱形性质和判定方法的正确性。
3. 拓展与应用:评价学生在实际问题中运用菱形性质的创造性和解决问题的能力。
1.1.1菱形的性质(教案)
在今天的教学过程中,我发现学生们对菱形的性质表现出浓厚的兴趣。通过引入日常生活中的例子,他们能够更好地理解菱形的概念和性质。在讲授理论知识时,我注意到有些学生对于对角线垂直平分这一性质的证明感到困惑,因此在接下来的教学中,我需要更加注重这部分内容的讲解和引导。
在实践活动环节,学生们分组讨论和实验操作的过程较为顺利,大多数学生能够积极参与其中。但在成果展示环节,我发现部分小组的表达能力仍有待提高。为了帮助学生们更好地展示自己的成果,我计划在以后的课堂中增加一些关于表达和沟通的培训。
举例:
-对角线互相垂直平分性质的证明:通过引导学生观察菱形的对称性,发现对角线互相垂直平分的规律,并用几何论证方法进行证明。
-菱形对角线长度相等的证明:运用三角形的全等性质,引导学生通过画图和逻辑推理证明菱形对角线长度相等。
-菱形与矩形、平行四边形关系的理解:通过对比分析,让学生了解菱形是矩形、平行四边形的一种特殊形式,并掌握它们之间的相互关系。
2.提高学生的逻辑推理与数学论证能力:在探索菱形性质的过程中,引导学生运用逻辑推理和数学论证方法,形成严谨的数学思维。
3.增强学生的数学应用意识:将菱形的性质应用于解决实际问题,培养学生运用数学知识解决实际问题的能力,增强数学在实际生活中的应用意识。
三、教学难点与重点
1.教学重点
a.菱形的定义:四Байду номын сангаас边相等的四边形。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了菱形的定义、性质和它在实际生活中的应用。通过实践活动和小组讨论,我们加深了对菱形性质的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(完整版)菱形知识讲解
菱形【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】【高清课堂特殊的平行四边形(菱形)知识要点】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、(2015•石景山区一模)如图,菱形ABCD中,E,F分别为AD,AB上的点,且AE=AF,连接EF并延长,交CB的延长线于点G,连接BD.(1)求证:四边形EGBD是平行四边形;(2)连接AG,若∠FGB=30°,GB=AE=1,求AG的长.【思路点拨】(1)连接AC,再根据菱形的性质得出EG∥BD,根据对边分别平行证明是平行四边形即可.(2)过点A作AH⊥BC,再根据直角三角形的性质和勾股定理解答即可.【答案与解析】(1)证明:连接AC,如图1:∵四边形ABCD是菱形,∴AC平分∠DAB,且AC⊥BD,∵AF=AE,∴AC⊥EF,∴EG∥BD.又∵菱形ABCD中,ED∥BG,∴四边形EGBD是平行四边形.(2)解:过点A作AH⊥BC于H.∵∠FGB=30°,∴∠DBC=30°,∴∠ABH=2∠DBC=60°,∵GB=AE=1,∴AB=AD=2,在Rt△ABH中,∠AHB=90°,∴AH=,BH=1.∴GH=2,在Rt△AGH中,根据勾股定理得,AG=.【总结升华】本题考查了菱形性质,关键是根据菱形的性质和平行四边形的判定以及直角三角形的性质解题.举一反三:【变式1】(2015•温州模拟)如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,则∠CBO=度.【答案】50;解:在菱形ABCD中,AB∥CD,∴∠CDO=∠AED=50°,CD=CB,∠BCO=∠DCO,∴在△BCO和△DCO中,,∴△BCO≌△DCO(SAS),∴∠CBO=∠CDO=50°.【高清课堂 特殊的平行四边形(菱形) 例1】【变式2】菱形ABCD 中,∠A ∶∠B =1∶5,若周长为8,则此菱形的高等于( ). A.21 B.4 C.1 D.2【答案】C ;提示:由题意,∠A =30°,边长为2,菱形的高等于12×2=1. 类型二、菱形的判定2、如图所示,在△ABC 中,CD 是∠ACB 的平分线,DE ∥AC ,DF ∥BC ,四边形DECF 是菱形吗?试说明理由.【思路点拨】由菱形的定义去判定图形,由DE ∥AC ,DF ∥BC 知四边形DECF 是平行四边形,再由∠1=∠2=∠3得到邻边相等即可.【答案与解析】解:四边形DECF 是菱形,理由如下:∵ DE ∥AC ,DF ∥BC∴ 四边形DECF 是平行四边形.∵ CD 平分∠ACB ,∴ ∠1=∠2∵ DF ∥BC ,∴ ∠2=∠3,∴ ∠1=∠3.∴ CF =DF ,∴ 四边形DECF 是菱形.【总结升华】在用菱形的定义判定一个四边形是菱形时,首先判定这个四边形是平行四边形,再由一对邻边相等来判定它是菱形.举一反三:【变式】如图所示,AD 是△ABC 的角平分线,EF 垂直平分AD ,分别交AB 于E ,交AC 于F ,则四边形AEDF 是菱形吗?请说明理由.【答案】解:四边形AEDF 是菱形,理由如下:∵ EF 垂直平分AD ,∴ △AOF 与△DOF 关于直线EF 成轴对称.∴∠ODF=∠OAF,又∵ AD平分∠BAC,即∠OAF=∠OAE,∴∠ODF=∠OAE.∴ AE∥DF,同理可得:DE∥AF.∴四边形AEDF是平行四边形,∴ EO=OF又∵Y AEDF的对角线AD、EF互相垂直平分.∴Y AEDF是菱形.3、如图所示,在△ABC中,∠BAC=90°,AD⊥BC于点D,CE平分∠ACD,交AD于点G,交AB于点E,EF⊥BC于点F.求证:四边形AEFG是菱形.【思路点拨】由角平分线性质易知AE=EF,欲证四边形AEFG是菱形,只要再证四边形AEFG是平行四边形或AG=GF=AE即可.【答案与解析】证明:方法一:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC,∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°.∵∠1=∠2,∴∠3=∠4.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠4=∠5.∴∠3=∠5.∴ AE=AG.∴ EF AG.∴四边形AEFG是平行四边形.又∵ AE=AG,∴四边形AEFG是菱形.方法二:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC,∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°.∴∠3=∠4.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠4=∠5.∴∠3=∠5.∴ AE=AG.在△AEG和△FEG中,AE=EF,∠3=∠4,EG=EG,∴△AEG≌△FEG.∴ AG=FG.∴ AE=EF=FG=AG.∴四边形AEFG是菱形.【总结升华】判定一个四边形是菱形,关键是把已知条件转化成判定方法所需要的条件.举一反三:【变式】如图所示,在Y ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证四边形DEBF是菱形.【答案】证明:(1)Y ABCD中,AB∥CD,AB=CD∵ E、F分别为AB、CD的中点∴ DF=12DC,BE=12AB∴ DF∥BE.DF=BE∴四边形DEBF为平行四边形∴ DE∥BF(2)证明:∵ AG∥BD∴∠G=∠DBC=90°∴△DBC为直角三角形又∵ F为边CD的中点.∴ BF=12DC=DF又∵四边形DEBF为平行四边形∴四边形DEBF是菱形类型三、菱形的应用4、如图所示,是一种长0.3m,宽0.2m的矩形瓷砖,E、F、G、H分别为矩形四边BC、CD、DA、AB的中点,阴影部分为淡黄色花纹,中间部分为白色,现有一面长4.2 m,宽2.8m的墙壁准备贴如图所示规格的瓷砖.试问:(1)这面墙最少要贴这种瓷砖多少块?(2)全部贴满后,这面墙壁会出现多少个面积相同的菱形?【答案与解析】解:墙壁长4.2m,宽2.8m,矩形瓷砖长0.3m,宽0.2m,4.2÷0.3=14,2.8÷0.2=14,则可知矩形瓷砖横排14块,竖排14块可毫无空隙地贴满墙面.(1)则至少需要这种瓷砖14×14=196(块).(2)每块瓷砖中间有一个白色菱形,则共有196个白色的菱形,它的面积等于瓷砖面积的一半.另外在同一个顶点处的瓷砖能够拼成一个淡黄色花纹的菱形,它的面积也等于瓷砖面积的一半,有花纹的菱形横排有13个,竖排也有13个,则一共有淡黄色花纹菱形13×13=169个,面积相等的菱形一共有196+169=365(个).【总结升华】菱形可以看作是由直角三角形组成的,因而铺满墙面后,要计算空白菱形的个数和阴影菱形的个数.将相同的图形拼在一起,在顶点周围的几个图形也能拼成一定的图案,不要忽略周围图形的拼接.。
菱形的定义及其性质(教案)
菱形的定义及其性质一、教学目标:1. 知识与技能:(1)能够理解菱形的定义;(2)掌握菱形的性质;(3)学会如何判断一个四边形是否为菱形。
2. 过程与方法:(1)通过观察、操作、推理等过程,探索菱形的性质;(2)培养学生的逻辑思维能力和空间想象力。
3. 情感态度价值观:(1)培养学生对数学美的感知;(2)激发学生学习几何的兴趣。
二、教学重点与难点:1. 教学重点:(1)菱形的定义及其性质;(2)菱形的判定方法。
2. 教学难点:(1)菱形性质的证明;(2)菱形判定方法的灵活运用。
三、教学准备:1. 教具:菱形模型、直尺、圆规、多媒体设备。
2. 学具:学生用书、练习本、铅笔、橡皮。
四、教学过程:1. 导入新课:(1)利用多媒体展示各种生活中的菱形图案,引导学生关注菱形的美感;(2)提问:同学们,你们知道这些图案有什么共同特征吗?2. 探究菱形的定义:(1)学生通过观察菱形模型,总结出菱形的定义;(2)教师引导归纳:菱形是四条边相等的四边形。
3. 探究菱形的性质:(1)学生分组讨论,利用直尺、圆规探究菱形的性质;(2)各组汇报探究成果,教师总结并板书菱形的性质。
4. 菱形的判定方法:(1)学生通过举例,总结出菱形的判定方法;(2)教师引导归纳:对角线互相垂直平分的四边形是菱形。
5. 练习与拓展:(1)学生独立完成课后练习题;(2)教师挑选典型题目进行讲解,强调解题思路。
五、课后作业:1. 完成学生用书上的课后练习题;2. 收集生活中的菱形图案,下节课分享。
教学反思:本节课通过观察、操作、讨论等方式,使学生掌握了菱形的定义、性质和判定方法。
在教学过程中,注意引导学生主动探究,培养学生的逻辑思维能力和空间想象力。
通过课后作业的设置,让学生将所学知识应用到实际生活中,提高学生的实践能力。
但在课堂实践中,还需注意调整教学节奏,确保每个学生都能跟上教学进度。
六、教学内容:菱形的证明与应用1. 知识与技能:(1)学会使用菱形的性质证明相关几何结论;(2)能够运用菱形的性质解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菱形的定义及其性质
19.2.2 菱形的定义及其性质
一、情景创设,引入新课创设情境(1分钟)
在前面同学们学习了平行四边形与矩形的相关
知识,这节课我们将共同学习一种新的图形。
引入新课(8分钟)
用“几何画板”画出等腰△ABC,并作
出关
于底边中点O对称的图形。
如图,在△ABC中,
AB=AC,O为BC边上的中点,△DBC为△ABC关于
点O的对称图形。
观察猜想:四边形ABCD为什么图形?并且具有
什么特点?
师生探究:通过“几何画板”演示、老师提问和
学生小组讨论的方式的方式,最后得出四边形
ABCD是中心对称图形,是平行四边形,并且有一
组邻边相等。
归纳总结:
四边形ABCD是中心对称图形,是平行四边
形,并且有一组邻边相等对称轴是两条对角线,又
是中心对称图形,对称中心是对角线交点。
启发导入:
为四边形ABCD是简单的平行四边形吗?带着这
个问题,我们今天来共同来探讨这种特殊的平行四
边形的性质。
⑴简单的情境创设,
激发兴趣,指明了课
型的性质。
⑴通过几何画板演
示,自然地从平行四
边形过渡到菱形,为
引入菱形的概念做铺
垫。
⑵引导学生观察猜
想,探究四边形
ABCD的性质和特
点,学生观察思考过
程中学会了动眼、动
口、动脑三维一体,
多种刺激,调动了学
生学习的积极性,培
养学生勇于探索,团
结协作的精神。
⑶归纳总结,得出菱
形这种特殊的平行四
边形具有对称性,为
用对称图形的性质得
出菱形性质做铺垫。
二、探索活动,讲授新课
讲授新课:(2分钟)
有一组邻边相等的平行四边形叫做菱形
思考讨论:菱形是平行四边形,它具有平行四边
形的一切性质;菱形又是特殊的平行四边形,它还
具有哪些特殊性质?
探究活动:(8分钟)
请同学们拿出矩形纸片,对折两次,然后
沿
一个角剪开打开,看一看得到了什么图形?
教师活动:教师使用投影仪,和同学们一起进行
实践操作,观察剪下来的图形是怎样的图形。
实际
上,学生很容易发现,剪下的一个图形是菱形。
探究思考:学生动手操作后发现,菱形是轴对称
图形,对称轴就是它对角线所在的直线。
从中利用
轴对称图形的性质可和:⑴AB=BC=CD=DA、BD⊥AC
⑵∠BAC=∠DAC、∠BCA=∠DCA、
∠ABD=∠CBD ∠ADB=∠CDB。
结论用文字如何表述?(2分钟)(幻灯片展
示)
性质:⑴菱形的四边相等。
⑵菱形的对角线互相垂直平分,并且平分
⑴启发引入,让学生
理解,既然菱形是特
殊的平行四边形,那
么它就应该具有平行
四边形的一切性质。
⑵通过动手实验,引
导学生通过合情推理
去探究,发现结论。
⑴在合情推理的基础
上,引导学生说理
(分别从菱形的定义
与中心对称性两个方
面),最后得出菱形
的性质。
⑵要求学生用数学语
言和文字语言表述性
质内容,发展有条理
的表达能力。
问题一:菱形的性质的题设和结论分别是什么?
题设:四边形ABCD是菱形。
结论:对角线互相垂直平分,并且平分一组对角。
问题二:菱形的性质是我们通过对称图形的性质得到的,那还有没有其他的数学方法呢?
利用等腰三角形和全等三角形证明(2分钟)⑴强调菱形定义和性质的本质,让学生理解记忆菱形的几何特征。
⑵引导学生从不同的角度思考,培养学生思维的多样性。
三、例题讲解、指导应用例题讲解:(8分钟)
例1、四边形ABCD是菱形,点O是两条对角线的
交点,AB=5cm,AO=4cm,求两条对角线AC和
BD的长度。
解:应用菱形的性质⑵和勾股定理(见幻灯片)
例2、如图,菱形花坛ABCD的边长为20m,
∠ABC=60,沿着菱形的对角线修建了两条小路
AC和BD,求两条小路的长(结果保留小数点后2
位)和花坛的面积(结果保留小数点后1位)
解:∵花坛ABCD为菱形
∴AC⊥BD,∠ABO=
1
2
∠ABC=
1
2
×60°=30°
在Rt△OAB中,AO=
1
2
AB=
1
2
×20=10(m)
BO=22
AB AO
-=2
2
2010
-=300(m)
⑴通过例题讲解,指
导应用,加深对所学
知识的理解应用,使
学生掌握基础知识。
⑵熟悉、应用菱形的
有关性质;由于菱形
的对角线互相垂直平
分,菱形的二条对角
线就将菱形分成了四
个全等的直角三角
形,结合图形思考求
出菱形的面积,培养
学生数型结合的思
想。
⑴教学中应注意引导
学生探索解题途径,
培养学生有条理地思
考
∴花坛的两条小路长
AC=2AO=20m
BD=2BO≈34.64m
花坛的面积
S=4×
ABC
S=
1
2
A C﹒BD≈346.42m
导析应用:⑴菱形的辅助线的做法通常是做对角
线。
⑵利用菱形的性质。
和表达并规范书写。
⑵突破辅助线难关,
让学生熟悉解题的一
般方法。
四、课堂练习,动手实践课堂练习:(8分钟)(幻灯片展示)
1.菱形的两条对角线长分别为16cm,12cm,那么
这个菱形的高是_______.
2. 已知菱形两邻角的比是1:2,周长是40cm,则
较短对角线长是________
3.如图,在菱形ABCD中,E、F为BC、BD重点,
求证:AE=AF。
(用两种做法)
思路:证法1:利用菱形
性质
再运用△ABE≌△
ADF
证法2:连线AC,证
△AEC≌△AFC
(SAS)
⑴同步练习,检测学
生的掌握情况,及时
回授,强化知识点的
应用。
五、归纳小结,反馈回授归纳小结:(3分钟)(幻灯片展示)
1、菱形的定义:
有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质:
⑴菱形的四边相等。
⑵菱形的对角线互相垂直平分,并且平分一组
对角。
⑶菱形的面积等于两对角线乘积的一半。
⑴有利于学生理清本
节课的知识点,深化
对菱形定义和性质的
理解。
⑵启发引导学生进行
归纳整理,培养学生
宏观掌握知识的能
力。
知识延伸:(2分钟)(幻灯片展示)
菱形的两条对角线互相垂直,并且每一条对角线平
分一组对角,利用其其性质可以很快求出菱形的面
积
六、知识延伸,分层作业菱形的对角线将菱形切成4•个全等的直角三角形,
即菱形的面积S=4×Rt△BOA=
1
2
BD·AC,•即菱形面
积也可以等于对角线乘积的一半.
思考:应用以上性质求巩固练习的第2题
分层作业:(1分钟)
必做题:课本98页 2、
选做题:课本120页 5、2、
⑴知识延伸,有利于
学生更高思维能力的
发展。
⑵必做题与选做题相
结合,面向全体学
生,激发学生兴趣。
板书设计:
1.菱形的定义:
有一组邻边相等的平
行四边形叫做菱形2.菱形的性质:
⑴菱形的四边相等。
⑵菱形的对角线互相垂
直平分,并且平分一组对角。
19.2.2菱形的性质及其定义
(例题讲解)
例1.
例2.
(巩固练习)
1.
2.
3.
(分层作业)。