陈杨—傅立叶光学实验报告材料

合集下载

傅里叶实验报告

傅里叶实验报告

一、实验目的1. 了解傅里叶变换的基本原理和方法。

2. 掌握傅里叶变换在信号处理中的应用。

3. 通过实验验证傅里叶变换在信号处理中的效果。

二、实验原理傅里叶变换是一种将信号从时域转换为频域的方法,它可以将一个复杂的信号分解为一系列不同频率的正弦波和余弦波的叠加。

傅里叶变换的基本原理是:任何周期信号都可以表示为一系列不同频率的正弦波和余弦波的叠加。

三、实验仪器与材料1. 实验箱2. 信号发生器3. 示波器4. 计算机及傅里叶变换软件四、实验步骤1. 设置信号发生器,产生一个正弦信号,频率为f1,幅度为A1。

2. 将信号发生器输出的信号输入到实验箱,通过示波器观察该信号。

3. 利用傅里叶变换软件对观察到的信号进行傅里叶变换,得到频谱图。

4. 改变信号发生器的频率,分别产生频率为f2、f3、f4的正弦信号,重复步骤2-3。

5. 分析不同频率信号的频谱图,观察傅里叶变换在信号处理中的应用。

五、实验数据与结果1. 当信号发生器频率为f1时,示波器显示的信号波形如图1所示。

图1:频率为f1的正弦信号波形2. 对频率为f1的正弦信号进行傅里叶变换,得到的频谱图如图2所示。

图2:频率为f1的正弦信号的频谱图从图2可以看出,频率为f1的正弦信号在频域中只有一个频率成分,即f1。

3. 重复步骤4,分别对频率为f2、f3、f4的正弦信号进行傅里叶变换,得到的频谱图分别如图3、图4、图5所示。

图3:频率为f2的正弦信号的频谱图图4:频率为f3的正弦信号的频谱图图5:频率为f4的正弦信号的频谱图从图3、图4、图5可以看出,不同频率的正弦信号在频域中分别只有一个频率成分,即对应的f2、f3、f4。

六、实验分析与讨论1. 傅里叶变换可以将信号从时域转换为频域,方便我们分析信号的频率成分。

2. 通过傅里叶变换,我们可以得到信号的频谱图,直观地观察信号的频率成分。

3. 实验结果表明,傅里叶变换在信号处理中具有重要作用,可以应用于信号分解、滤波、调制等领域。

傅立叶光学实验报告

傅立叶光学实验报告

傅立叶光学实验报告
一、实验目的
本实验旨在引导学生了解傅立叶光学,并通过实验验证物质特征的光学折射特性,观察、测量及分析物质的光学折射指数分布,验证物质的光学特性,以此加强对光学知识的理解和掌握。

二、原理
傅里叶光学把物质看做是由一些改变其光学折射指数的晶胞组成的,当光线经过这些晶胞时,光线会被折射,从而在物质表面产生折射和反射,折射和反射后光线会发生各种变化,通过观测、记录和分析变化,可以得出物质的光学折射指数分布,从而了解物质的光学特性。

三、实验步骤
1.将实验仪器、光台、准直仪、探测器准备好
2.对光台进行准直
3.将样品放置在准直仪上,调整样品到光路中心
4.调整物质折射指数,调整换算物质折射指数
5.记录、计算光路折射指数变化
6.观察物质的变化和反射现象
四、实验结果
折射率随温度的变化:
温度(℃):20 30 40 50
折射率(n):1.6 1.7 1.8 1.9
反射率随温度的变化:
温度(℃):20 30 40 50
反射率(R/%):8.1 8.5 9.2 10.1
五、实验结论
1. 通过本次实验,可以得出物质折射指数随温度变化的规律,从而更深刻地了解物质的光学特性。

2. 可以观察到折射率随温度增加而增加,而反射率随温度增加而减少。

傅里叶光学实验·

傅里叶光学实验·

实验结果分析与讨论:一.测量小透镜的焦距1f (傅里叶透镜的焦距245.0f cm =)1. 实验光路:He-Ne 激光器→反射镜→直角三棱镜→望远镜(倒置)→小透镜→屏2. 测量焦距的方法:首先布置光路,使从望远镜射出的是平行光。

该平行光通过小透镜射到屏上。

我们知道,在透镜的焦点处,应该有光源的像点。

那么便可以通过移动接收屏找这个像点,以此位置作为焦点。

所以在实验中,我缓慢地移动屏,发现到某一个位置时屏上的像是明亮的一点。

在该位置附近左右移动屏,该点是被略微发散的圆形光斑。

选取那个像为亮点的位置为焦点的位置。

(也可以说,是选取屏上圆形光斑半径最小的位置。

)焦点与小透镜间的距离即为焦距。

所测数据如下:表一 小透镜的焦距得到12.413f cm =二.夫琅和费衍射1. 实验光路:He-Ne 激光器→反射镜→直角三棱镜→光栅→墙屏(此光路满足远场近似)2. 利用夫琅和费衍射测一维光栅常数光栅方程:()dsin =k k=0,1, 2, 3...θλ±±±(2)可以看到0级、1±级、2±级、3±级、4±级。

(3)0级、1±级、级光斑的位置:光斑都是等间距的。

如图三所示,间距为。

(4)计算光栅常数:934163310 1.96103.2210d m ---⨯⨯==⨯⨯三.观察并记录傅立叶频谱面上不同滤波条件的图样或特征1.实验光路:He-Ne激光器→反射镜→直角三棱镜→光栅→小透镜→滤波模板(位于空间频谱面上)→墙屏2. 观察并记录下述傅立叶频谱面上不同滤波条件的图样或特征(1)一维光栅:①滤波模板只让0级通过:无条纹图像,墙屏上一片红光。

如下图所示(下面两个图均为实验过程中当场拍摄):②滤波模板只让级、级通过:有竖条纹,明亮,清晰。

如下图所示:③滤波模板只让级、级通过:竖条纹,类似于上图,但是条纹间隔变密,宽度变细,光强变暗。

傅里叶光学的实验报告(3篇)

傅里叶光学的实验报告(3篇)

第1篇一、实验目的1. 深入理解傅里叶光学的基本原理和概念。

2. 通过实验验证傅里叶变换在光学系统中的应用。

3. 掌握光学信息处理的基本方法,如空间滤波和图像重建。

4. 理解透镜的成像过程及其与傅里叶变换的关系。

二、实验原理傅里叶光学是利用傅里叶变换来描述和分析光学系统的一种方法。

根据傅里叶变换原理,任何光场都可以分解为一系列不同频率的平面波。

透镜可以将这些平面波聚焦成一个点,从而实现成像。

本实验主要涉及以下原理:1. 傅里叶变换:将空间域中的函数转换为频域中的函数。

2. 光学系统:利用透镜实现傅里叶变换。

3. 空间滤波:在频域中去除不需要的频率成分。

4. 图像重建:根据傅里叶变换的结果恢复原始图像。

三、实验仪器1. 光具座2. 氦氖激光器3. 白色像屏4. 一维、二维光栅5. 傅里叶透镜6. 小透镜四、实验内容1. 测量小透镜的焦距实验步骤:(1)打开氦氖激光器,调整光路使激光束成为平行光。

(2)将小透镜放置在光具座上,调节光屏的位置,观察光斑的会聚情况。

(3)当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。

2. 利用夫琅和费衍射测光栅的光栅常数实验步骤:(1)调整光路,使激光束通过光栅后形成衍射图样。

(2)测量衍射图样的间距,根据dsinθ = kλ 的关系式,计算出光栅常数 d。

3. 傅里叶变换光学系统实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。

(2)在光栅后放置傅里叶透镜,将光栅的频谱图像投影到屏幕上。

(3)在傅里叶透镜后放置小透镜,将频谱图像聚焦成一个点。

(4)观察频谱图像的变化,分析透镜的成像过程。

4. 空间滤波实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。

(2)在傅里叶透镜后放置空间滤波器,选择不同的滤波器进行实验。

(3)观察滤波后的频谱图像,分析滤波器对图像的影响。

五、实验结果与分析1. 通过测量小透镜的焦距,验证了透镜的成像原理。

傅里叶变换光学系统实验报告

傅里叶变换光学系统实验报告

实验时间:2014年3月20日 星期四一、 实验目的1. 了解透镜对入射波前的相位调制原理。

2. 加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。

3. 观察透镜的傅氏变换力图像,观察4f 系统的反傅氏变换的图像,并进行比较。

4. 在4f 系统的变换平面插入各种空间滤波器,观察各种试件相应的频谱处理图像。

二、 实验原理1. 透镜的FT 性质及常用函数与图形的关学频谱分析透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间 延迟不同,因而具有相位调制能力。

假设任意点入射光线在透镜中的传播距离等于改点沿光轴方 向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大 小正比于透镜在该点的厚度。

设原复振幅分布为U L (X , y)的光通过透镜后,其复振幅分布受到透镜的位相调制后变为U L (X , y):U L (X , y) U L (X , y)exp[j (x,y)] ⑴若对于任意一点(X ,y )透镜的厚度为D(x, y),透镜的中心厚度为 D 。

光线由该点通过透 镜时在透镜中的距离为 D(x,y),空气空的距离为D 0 D(x,y),透镜折射率为 n 则该点的位相延迟因子t(x, y)为:t(x,y) exp(jkD °)exp[ jk(n 1)D(x,y)]D(x,y)就可得出其相位调制。

在球面镜傍轴区域,用抛物面近似球面,并引入焦距 f ,有:第一项位相因子exp(jknD 。

)仅表示入射光波的常量位相延迟,不影响位相的空间分布,即 波面形状,所以在运算过程中可以略去。

当考虑透镜孔径后,有:实验 1 0傅里叶变换光学系统由此可见只要知道透镜的厚度函数1 2D(X , y) D o 1(x1 (n 1)(右fR 11 R 2)(3)i)(4)j k (X 22fy 2)]t(x,y) exp(jk nD 0)exp[k 2 2t(x,y) exp[ j 亍(x y )]p(x, y)⑹其中的p (x, y )为透镜的光瞳函数,表达式为:2. 透镜的傅立叶变换性质图1透镜的傅立叶变换性质如图1所示,入射的光波通过透镜前面的衍射屏后产生一个衍射光场,这个光场中包含很 多不同的频率成分。

傅里叶光学实验(中国科学技术大学大物实验)

傅里叶光学实验(中国科学技术大学大物实验)

傅里叶光学实验实验目的:加深对傅里叶光学中的一些基本概念和基本理论的理解,如空间频率空间频谱和空间滤波和卷积等.通过实验验证阿贝成像理论,理解透镜成像的物理过程,进而掌握光学信息处理实质.通过阿贝成像原理,进一步了解透镜孔径对分辨率的影响实验原理:我们知道一个复变函数f(x,y)的傅立叶变换为⎰⎰+-=ℑ=dxdy vy ux 2i y x f y x f v u F )](exp[),()},({),(π ( 1 )F (u,v)叫作f(x,y)的变换函数或频谱函数。

它一般也为复变函数,f(x,y)叫做原函数,也可以通过求 F(u,v)逆傅立叶变换得到原函数f(x,y), ⎰⎰+=ℑ=-dudv vy ux 2i v u F v u F y x f 1)](exp[),()},({),(π (2) 在光学系统中处理的是平面图形,当光波照明图形时从图形反射或透射出来的光波可用空间两维复变函数(简称空间函数)来表示。

在这些情况下一般都可以进行傅里叶变换或广义的傅里叶变换。

逆傅里叶变换公式(2)说明一个空间函数f(x,y)可以表示成无穷多个基元函数exp[i 2π(ux +vy )]的线性叠加,dudv v u F ),(是相应于空间频率u ,v 的权重,F (u ,v )称为f (x ,y )的空间频谱。

.最典型的空间滤波系统—两个透镜(光学信息处理系统或傅立叶光学变换系统)叫作4f 系统,如图1所示,激光经过扩束准直形成平行光照明物平面(其坐标为x 1,y 1),透过物平面的光的复振幅为物函数f(x 1,y 1),这一光波透镜1到达后焦平面(频谱面)就得到物函数的频谱,其坐标为(u ,v ),再经透镜2 在透镜2的象平面上可以得到与物相物平面 透镜1 频谱面 透镜2 像平面图2.4-1 4f 系统等大小完全相似但坐标完全反转的象,设其坐标为(x 2,y 2)。

此时我们将坐标完全反转后可以认为得到原物的完全相同的象。

傅里叶变换 实验报告

傅里叶变换 实验报告

傅里叶变换实验报告傅里叶变换实验报告引言:傅里叶变换是一种重要的数学工具,广泛应用于信号处理、图像处理、物理学、工程学等领域。

本次实验旨在通过实际操作和数据分析,深入了解傅里叶变换的原理、特性以及应用。

一、实验目的本实验的目的是通过实际操作,掌握傅里叶变换的基本原理,了解其在信号处理中的应用,并能够正确进行频域分析。

二、实验仪器和材料1. 信号发生器2. 示波器3. 计算机4. 傅里叶变换软件三、实验步骤1. 将信号发生器与示波器连接,并设置合适的频率和幅度,产生一个正弦信号。

2. 通过示波器观察并记录原始信号的时域波形。

3. 将示波器输出的信号通过音频线连接到计算机的输入端口。

4. 打开傅里叶变换软件,选择输入信号源为计算机输入端口,并进行采样。

5. 在傅里叶变换软件中,通过选择合适的窗函数、采样频率和采样点数,进行傅里叶变换。

6. 观察并记录变换后的频域波形,并进行分析。

四、实验结果与分析通过实验操作和数据分析,我们得到了信号的时域波形和频域波形。

在时域波形中,我们可以清晰地看到正弦信号的周期性特征,而在频域波形中,我们可以看到信号的频率成分。

傅里叶变换将信号从时域转换到频域,通过分析频域波形,我们可以得到信号的频率成分。

在实验中,我们可以通过改变信号发生器的频率和幅度,观察频域波形的变化,进一步理解傅里叶变换的原理和特性。

此外,傅里叶变换还可以用于信号滤波。

通过观察频域波形,我们可以选择性地去除某些频率成分,从而实现信号的滤波处理。

这在音频处理、图像处理等领域中具有广泛的应用。

五、实验总结本次实验通过实际操作和数据分析,深入了解了傅里叶变换的原理、特性以及应用。

傅里叶变换作为一种重要的数学工具,在信号处理、图像处理等领域中具有广泛的应用前景。

通过本次实验,我们不仅掌握了傅里叶变换的基本原理和操作方法,还深入了解了信号的时域和频域特性。

这对于我们进一步研究和应用傅里叶变换具有重要的意义。

总之,傅里叶变换是一项重要的数学工具,通过实际操作和数据分析,我们可以更好地理解和应用傅里叶变换,为信号处理和图像处理等领域的研究和应用提供有力支持。

2021年傅里叶变换光学系统实验报告

2021年傅里叶变换光学系统实验报告

试验10 傅里叶变换光学系统试验时间: 3月20日 星期四一、 试验目1. 了解透镜对入射波前相位调制原理。

2. 加深对透镜复振幅、 传输函数、 透过率等参量物理意义认识。

3. 观察透镜傅氏变换力图像, 观察4f 系统反傅氏变换图像, 并进行比较。

4. 在4f 系统变换平面插入多种空间滤波器, 观察多种试件对应频谱处理图像。

二、 试验原理1. 透镜FT 性质及常见函数与图形关学频谱分析透镜因为本身厚度不一样, 使得入射光在经过透镜时, 各处走过光程差不一样, 即所受时间延迟不一样, 所以含有相位调制能力。

假设任意点入射光线在透镜中传输距离等于改点沿光轴方向透镜厚度, 并忽略光强损失, 即经过透镜光波振幅分布不变, 仅产生位相改变, 且其大小正比于透镜在该点厚度。

设原复振幅分布为(,)L U x y 光经过透镜后, 其复振幅分布受到透镜位相调制后变为(,)L U x y ':(,)(,)exp[(,)]L L U x y U x y j x y ϕ'= (1)若对于任意一点(x, y )透镜厚度为(,)D x y , 透镜中心厚度为0D 。

光线由该点经过透镜时在透镜中距离为(,)D x y , 空气空距离为0(,)D D x y - , 透镜折射率为n, 则该点位相延迟因子(,)t x y 为:0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (2)由此可见只要知道透镜厚度函数(,)D x y 就可得出其相位调制。

在球面镜傍轴区域, 用抛物面近似球面, 并引入焦距f, 有:22012111(,)()()2D x y D x y R R =-+- (3)12111(1)()n f R R =-- (4) 220(,)exp()exp[()]2k t x y jknD jx y f=-+ (5) 第一项位相因子0exp()jknD 仅表示入射光波常量位相延迟, 不影响位相空间分布, 即波面形状, 所以在运算过程中能够略去。

光学傅立叶变换实验报告

光学傅立叶变换实验报告

一、实验目的1. 理解光学傅立叶变换的基本原理和过程。

2. 掌握光学傅立叶变换的实验方法及步骤。

3. 分析实验结果,验证光学傅立叶变换的基本规律。

二、实验原理光学傅立叶变换是利用光学系统对光场进行傅立叶变换的一种方法。

当一束光通过一个具有傅立叶变换功能的系统时,其光场分布将发生相应的傅立叶变换。

本实验采用4f系统进行光学傅立叶变换,其中f为透镜的焦距。

实验原理如下:1. 光场分布:设物平面上的光场分布为f(x, y),则其在傅立叶变换透镜L1的后焦面(频谱面)上的光场分布为F(u, v)。

2. 傅立叶变换:根据傅立叶变换公式,有F(u, v) = ∬f(x, y)e^(-j2πux/v)e^(-j2πuy/v)dxdy。

3. 反傅立叶变换:当光场分布F(u, v)通过另一个焦距为f的傅立叶变换透镜L2时,其在像平面上的光场分布为f'(x', y'),满足f'(x', y') = F(u, v)。

三、实验仪器与材料1. 光源:He-Ne激光器2. 物镜:焦距为f的傅立叶变换透镜3. 成像系统:焦距为f的傅立叶变换透镜4. 物平面:光栅或透明薄膜5. 频谱面:光栅或透明薄膜6. 像平面:光栅或透明薄膜7. 照相机:用于记录实验结果8. 实验台:用于固定实验装置四、实验步骤1. 将光源发出的光束经过扩束镜和半透半反镜后,分成两束光,一束作为参考光,另一束作为实验光。

2. 将实验光束经过物镜L1,投射到物平面上,物平面上的光栅或透明薄膜作为待处理的图像。

3. 实验光束经过物镜L1后,在频谱面上形成待处理图像的傅立叶变换频谱。

4. 将参考光束经过成像系统,成像在频谱面上,与实验光束的傅立叶变换频谱进行叠加。

5. 将叠加后的光束经过物镜L2,投射到像平面上,像平面上的光栅或透明薄膜作为处理后的图像。

6. 使用照相机记录实验结果,比较处理前后的图像差异。

五、实验结果与分析1. 实验结果:通过实验,观察并记录了处理前后的图像差异。

傅里叶光学实验

傅里叶光学实验

傅里叶光学实验
傅里叶光学实验是一种经典的实验,被广泛应用于光学研究和应用领域。

该实验利用
傅里叶变换原理,将一个复杂的光学场分解成一系列简单的光学场。

傅里叶变换是一种重要的数学方法,它可以将非周期信号分解成一系列正弦和余弦波,这些正弦和余弦波又被称为“频谱”。

在光学中,傅里叶变换可以将一个复杂的光学场分
解成一系列简单的光学场,如平面波、球面波和高斯光束等。

傅里叶光学实验通常使用一束激光作为光源,这束激光经过一个干涉仪,被分解成一
系列平行的光束。

这些光束经过一个透镜组,被聚焦成一组直径相等,强度相等的高斯光束。

接下来,这些高斯光束进入一个透镜组,被聚焦成一组空间频率不同,方向相同的平
面波。

这些平面波通过一个透镜组,被聚焦成一组直径相等,方向相同的球面波。

傅里叶光学实验在光学研究和应用领域具有广泛的应用。

例如,在成像领域,傅里叶
变换被广泛应用于光学全息成像和自适应光学成像等技术中。

此外,傅里叶光学实验还可
用于测量光学元件的传递函数,以及对光学信号进行滤波和处理。

傅里叶光学

傅里叶光学

实验题目:傅里叶光学实验目的:加深对傅里叶光学中的一些基本概念和基本理论的理解,如空间频率、空间频谱、空间滤波和卷积等。

通过实验验证阿贝成像理论,理解透镜成像的物理过程,进而掌握光学信息处理的实质,通过阿贝成像原理,也可进一步了解透镜孔径对分辨率的影响。

实验原理:见预实验报告。

实验步骤:1、调节仪器打开激光器,取一张白纸挡在光路上,观察光圈中红光集中在那个位置,调节全反射镜,使红光集中在光圈中心。

然后将一维光栅、透镜放在光具座上,调节仪器竖直位置与水平位置,使得激光正好经过仪器正中央。

2、测透镜焦距取一张白纸家在遮光屏上,移动遮光屏,观察其上的激光,待到出现一排清晰的衍射光点时,该位置到透镜的距离即为透镜的焦距。

3、观察光分别经过一维、二维光栅后在屏上所成像,并计算一维光栅参数。

取下白纸,观察墙上光幕中有何现象。

取下一维光栅,安上二维光栅,观察墙上光幕有何现象。

4、观察一维光栅条纹取下二维光栅,换上一维光栅。

把白纸放回焦点上,并在k=0级衍射点处扎一小孔,使得只让0级衍射光通过,观察墙上光幕中有何现象。

在k=0、1、-1级衍射点处扎一小孔,使得只让0、1、-1级衍射光通过,观察墙上光幕有何现象。

在k=0、1、-1、2、-2级衍射点处扎一小孔,使得只让0、1、-1、2、-2级衍射光通过,观察墙上光幕有何现象。

5、观察二维光栅条纹取下一维光栅,换上二维光栅,将白纸放到焦平面上。

扎透含零级衍射的一列水平方向的衍射点,观察现象。

扎透含零级衍射的一列竖直方向的衍射点,观察现象。

扎透含零级衍射的一列与水平方向成45°角(逆时针方向旋转)的衍射点,观察现象。

扎透含零级衍射的一列与水平方向成135°角的衍射点,观察现象。

6、观察光通过光字板后的成像将小透镜与二维光栅取下,换上光字板与大透镜。

观察墙上光幕中光字中的条纹。

设法将光字中的横条纹去掉。

设法将光字中的纵条纹去掉。

设法将光字中的条纹都去掉。

傅里叶光学实验报告[整理]

傅里叶光学实验报告[整理]

实验原理:(略)实验仪器:光具座、氦氖激光器、白色像屏、作为物的一维、二维光栅、白色像屏、傅立叶透镜、小透镜实验内容与数据分析1.测小透镜的焦距f 1 (付里叶透镜f 2=45.0CM )光路:激光器→望远镜(倒置)(出射应是平行光)→小透镜→屏操作及测量方法:打开氦氖激光器,在光具座上依次放上扩束镜,小透镜和光屏,调节各光学元件的相对位置是激光沿其主轴方向射入,将小透镜固定,调节光屏的前后位置,观察光斑的会聚情况,当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。

1231/x cm 87.4189.2186.502/x cm 75.2276.0174.831/f cm112()f x x =-12.1913.2011.67112.1913.2011.6712.3533f cm++==0.7780cm σ==1.320.5929p A pt t cm μ===0.68P =0.0210.00673B p B pt k cm C μ∆==⨯=0.68P =0.59cm μ==0.68P =1(12.350.59)f cm=±0.68P =2.利用弗朗和费衍射测光栅的的光栅常数光路:激光器→光栅→屏(此光路满足远场近似)在屏上会观察到间距相等的k 级衍射图样,用锥子扎孔或用笔描点,测出衍射图样的间距,再根据测出光栅常数sin d k θλ=d (1)利用夫琅和费衍射测一维光栅常数;衍射图样见原始数据;数据列表:各级坐标/x cm光具位置-2级-1级0级1级2级1/b cm2/b cm/L cm1-13.0-6.90 6.814.1126.1483.0543.092-12.5-5.50 6.613.1110.1571.6538.53-10.6-5.26.011.0114.4580.8033.65sin ||i k Lk d x λλθ=≈取第一组数据进行分析:21051343.0910******* 4.00106.810d m ----⨯⨯⨯⨯==⨯⨯21052343.0910******* 3.871014.110d m ----⨯⨯⨯⨯==⨯⨯21053343.09101632810 3.95106.910d m ----⨯⨯⨯⨯==⨯⨯21054343.0910******* 4.191013.010d m ----⨯⨯⨯⨯==⨯⨯554.00 3.87 3.95 4.1910 4.0025104d m m--+++=⨯=⨯61.3610d mσ-=⨯忽略b 类不确定度:671.20 1.3610/9.410p A pt t mμμ--===⨯⨯=⨯则7(400.29.4)10d m-=±⨯(2)记录二维光栅的衍射图样并测量其光栅常数.二维衍射图样如原始数据中所示取一组数据分析:114.0086.8027.2L cm=-=1(4.6 4.6)/2 4.6x mm±=+=故2105327.210632810 3.74104.610d m ----⨯⨯⨯==⨯⨯3.利用空间频谱测量一维、二维光栅常数光路:激光器→光栅→透镜→屏(位于空间频谱面上)(1)利用空间频谱的方法测量一维光栅常数取k=111 6.8 6.96.8522x x x mm mm -+++===1025363281045.010 4.16106.8510fd m xλ----⨯⨯⨯===⨯⨯(2)利用空间频谱的方法测量二维光栅常数取k=11025363281045.010 6.18104.610fd m xλ----⨯⨯⨯===⨯⨯比较两种方法计算的结果后发现,二维光栅常数的计算结果相差较大,分析误差产生的原因可能为:1.衍射光斑是用笔描点记录的,需要依靠试验者的判断,会出现较大误差;2.光斑的间距是由钢尺测纸上的点而得,由于测量时会产生误差;3.利用公式计算式用了近似,也会带来一定的误差;4.观察并记录下述傅立叶频谱面上不同滤波条件的图样或特征;光路:激光器→光栅→小透镜→滤波模板(位于空间频谱面上)→墙上屏空间频谱面经过小透镜的焦点,此时图样为清晰的一排点列(1)一维光栅:(滤波模板自制,一定要注意戴眼镜保护;可用一张纸,一根针扎空来制作,也可用其他方法).a.滤波模板只让 0级通过;现象:屏上只出现一个0级光斑的轮廓,无条纹b.滤波模板只让0、±1级通过;现象:屏上出现平行且竖直的条纹c.滤波模板只让0、、±2级通过;1 现象:屏上出现更为清晰并分布面较大的平行且竖直的条纹(2)二维光栅:a.滤波模板只让含0级的水平方向一排点阵通过;现象:屏上只出现竖直条纹b.滤波模板只让含0级的竖直方向一排点阵通过;现象:屏上只出现水平条纹c.滤波模板只让含0级的与水平方向成45O 一排点阵通过;现象:屏上只出现与水平方向成135°方向的条纹d.滤波模板只让含0级的与水平方向成135O 一排点阵通过.现象:屏上只出现与水平方向成45°方向的条纹5.“光”字屏滤波物面上是规则的光栅和一个汉字“光”叠加而成,在实验中要求得到如下结果:a.如何操作在像面上仅能看到像面上是“光”,写出操作过程.操作过程:在大透镜的后焦面上加一个只让0级中间点通过的滤波模板b.如何操作在像面上仅能看到像面上是横条纹,写出操作过程;操作过程:在大透镜的后焦面上加一个只让含0级的竖直方向一排点阵通过的滤波模板c.如何操作在像面上仅能看到像面上是竖条纹,写出操作过程;操作过程:在大透镜的后焦面上加一个只让含0级的水平方向一排点阵通过的滤波模板由实验4.5可得,对像的垂直结构起作用的是沿水平方向的频谱分量,反之亦然。

大物仿真实验报告——傅里叶光学

大物仿真实验报告——傅里叶光学

大学物理仿真实验报告班级姓名学号实验日期:2012.10.4同组者:无实验名称:傅里叶光学一、实验目的1.学会利用光学元件观察傅立叶光学现象。

2.掌握傅立叶光学变换的原理,加深对傅立叶光学中的一些基本概念和基本理论的理解,如空间频率、空间频谱、空间滤波和卷积等。

二、实验所用仪器及使用方法防震实验台,He-Ne激光器,扩束系统(包括显微物镜,针孔(30µm),水平移动调整器),全反射镜,透镜及架(f=+150mm,f=+100mm),50线/mm光栅滤波器,白屏三、实验原理平面波Ee(x,y)入射到p平面(透过率为)在p平面后Z=0处的光场分布为:E(x,y)= Ee(x,y)图1 入射光波被p平面的图形(或孔径)衍射根据惠更斯原理(Huygens’ Principle),在p平面后任意一个平面p’处光场的分布可看成p平面上每一个点发出的球面波的组合,也就是基尔霍夫衍射积分(Kirchhoff’s diffraction integral)。

(1)这里:=球面波波长;n=p平面(x,y)的法线矢量;K=(波数)是位相和振幅因子;cos(n,r)是倾斜因子;在一般的观察成像系统中,cos(n,r)1。

r=Z+,分母项中r z;(1)式可用菲涅尔衍射积分表示:(菲涅尔近似 Fresnel approximation)(2)当z更大时,即z>>时,公式(2)进一步简化为夫琅和费衍射积分:(Fraunhofer Approximation)(3)这里:位相弯曲因子。

如果用空间频率做为新的坐标有:,若傅立叶变换为(4) (3)式的傅立叶变换表示如下:E(x’,y’,z)=F[E(x,y)]=c图2 空间频率和光线衍射角的关系tg==,tg===,=可见空间频率越高对应的衍射角也越大,当z越大时,衍射频谱也展的越宽;由于感光片和人眼等都只能记录光的强度(也叫做功率谱),所以位相弯曲因子(5)理论上可以证明,如果在焦距为f的汇聚透镜的前焦面上放一振幅透过率为g(x,y)的图象作为物,并用波长为的单色平面波垂直照明图象,则在透镜后焦面上的复振幅分布就是g(x,y)的傅立叶变换,其中空间频率,与坐标,的关系为:,。

傅里叶光学实验报告[整理]

傅里叶光学实验报告[整理]

傅里叶光学实验报告[整理]傅里叶光学实验报告一、实验目的1. 掌握傅里叶光学的基本原理和方法;2. 实验验证平面波和球面波通过透镜之后的傅里叶变换关系;3. 了解频谱成像的基本原理和方法。

二、实验原理傅里叶光学是一种将光场分解为一组微小的平面波或球面波的方法,然后利用傅里叶变换将这些平面波或球面波的振幅和相位信息转换为相应的频谱图像。

1. 平面波通过透镜的傅里叶变换关系当平面波通过透镜时,透镜将平面波折射成球面波。

根据惠更斯原理,球面波前可以看作由无限多的次波分布组成。

如果透镜的曲率半径为R,球面波前中心距离透镜为s,则透镜折射后的球面波前半径为r=R+s。

当球面波面向透镜的时候,透镜将其中心处的波捕获并将其折射到焦平面上。

由于透镜的几何关系,球面波的频谱可以通过傅里叶变换转换为另一个球面波,其频率等于初始球面波频率的两倍,且与原始平面波的振幅和相位有关。

2. 球面波通过透镜的傅里叶变换关系当球面波通过透镜时,透镜将其变为以透镜为中心的球面波。

根据惠更斯原理,透镜表面的每个点都在向球面波前广播无限多的次波。

在透镜上选择一个点作为坐标原点,并定义该点上的波面为 z=0。

当球面波辐射到该点上的时候,透镜所发出的微光波会在该点上聚焦。

此时,球面波的频谱可以通过傅里叶变换转换为平面波,其频率等于初始球面波频率的两倍,且与原始球面波的振幅和相位有关。

3. 频谱成像将频谱图像转换为空间图像的方法称为频谱成像。

在傅里叶光学中,频谱成像允许我们在不影响图像分辨率的情况下调整像场大小和形状。

简单地说,对于一张图像,我们可以选择不同的频率空间滤波器进行滤波,然后通过傅里叶反变换将滤波后的频谱图像转换为空间图像。

滤波后的频谱图像通常会显示出图像的高频信息,使我们可以对图像分辨率和清晰度进行调整。

三、实验仪器1. He-Ne激光器2. 分束器3. 透镜4. 母线5. 干涉条纹增强滤波器6. 透镜支架7. CCD相机8. 分光仪9. 激光干涉仪四、实验步骤1. 准备实验仪器并清洁透镜表面。

傅里叶实验报告

傅里叶实验报告

傅里叶实验报告傅里叶实验报告引言傅里叶变换是一种重要的数学工具,广泛应用于信号处理、图像处理、物理学等领域。

本实验旨在通过实际操作,深入理解傅里叶变换的原理和应用。

实验设备本实验所需设备包括信号发生器、示波器、计算机等。

实验步骤1. 准备工作首先,我们需要将信号发生器连接到示波器上,以便观察信号的波形。

同时,将示波器与计算机连接,以便进行数据采集和分析。

2. 信号发生器设置将信号发生器的频率设置为50Hz,幅度设置为适当的值。

这样可以产生一个稳定的正弦信号。

3. 示波器设置将示波器的触发方式设置为外部触发,以保证观测到稳定的波形。

同时,调整示波器的水平和垂直缩放,使波形在屏幕上能够清晰显示。

4. 信号采集将示波器的输出信号通过USB接口连接到计算机上,使用相应的软件进行数据采集。

在采集过程中,需要注意保持信号的稳定性,避免干扰。

5. 数据分析将采集到的数据导入到计算机上的数据处理软件中,进行傅里叶变换。

通过傅里叶变换,我们可以将时域信号转换为频域信号,进一步分析信号的频谱特性。

实验结果通过对采集到的数据进行傅里叶变换,我们可以得到信号的频谱图。

从频谱图中,我们可以观察到信号的频率成分和强度分布情况。

通过进一步的分析,我们可以得到信号的频率、幅度、相位等信息。

实验思考傅里叶变换的应用非常广泛,例如在通信领域中,可以通过傅里叶变换将信号从时域转换为频域,从而实现信号的调制和解调。

在图像处理中,傅里叶变换可以用于图像的滤波和压缩。

在物理学中,傅里叶变换可以用于光学、声学等领域的研究。

总结通过本次实验,我们深入了解了傅里叶变换的原理和应用。

傅里叶变换是一种非常重要的数学工具,对于信号处理、图像处理、物理学等领域都具有重要意义。

通过实际操作,我们更加深入地理解了傅里叶变换的工作原理,并通过数据分析得到了实验结果。

通过实验思考,我们发现傅里叶变换在各个领域的应用都非常广泛,对于进一步研究和应用具有重要价值。

傅里叶光学实验报告

傅里叶光学实验报告

傅里叶光学实验报告摘要:本实验通过光学元件的调整,利用干涉仪实现了傅里叶光学实验。

实验结果表明,在合适的条件下,可以实现光场的物理变换,为光学信号的处理和传输提供了新的思路。

引言:傅里叶光学是基于傅里叶变换的原理,研究光场在透镜、衍射及干涉等传输过程中的变换规律。

傅里叶光学理论的应用,不仅可以为光学领域提供新的方法和实现技术,而且对于信息科学、通信技术等领域也具有重要的意义。

本次实验旨在掌握傅里叶光学实验的原理和方法,以及掌握干涉仪的基本操作技术。

实验原理:在光学传输过程中,各种光学元件会对光场进行各种变换,如缩放、旋转、平移等。

傅里叶光学理论认为,任何复杂的光学变换都可以分解为一系列基本变换的乘积,这些基本变换因形式各异而具有不同的物理意义。

例如,平移变换对应了频率空间中的相移,旋转变换对应了频率空间中的相位,缩放变换对应了频率空间中的尺度变换等。

傅里叶光学实验利用了干涉仪的干涉效应,实现了光场的物理变换,并通过干涉图案的记录和分析,得到了相关的光学信息。

在干涉仪中,可以通过调整反射镜、透镜等光学元件的位置和角度,实现不同的光学变换效果。

例如,在Fourier变换的情况下,通过调整透镜的位置或反射镜的角度,可以实现平移变换、缩放变换等操作。

实验结果:本次实验中,我们通过调整干涉仪的各个光学元件,实现了物理变换效果,并得到了相应的干涉图案。

通过对干涉图案的分析,实验结果表明,在适当的条件下,我们可以通过傅里叶光学实验,实现光学信号的物理变换、建模、分析和传输。

结论:傅里叶光学是一种重要的光学变换技术和分析手段,利用其可以实现光学信号的稳定传输和处理。

本次实验通过干涉仪实现了傅里叶光学实验,对傅里叶光学基本原理和实现方法有了更深入的了解,对后续的光学研究和应用具有良好的指导意义。

光信息专业实验报告:傅里叶光学变换系统

光信息专业实验报告:傅里叶光学变换系统

光信息专业实验报告:傅里叶光学变换系统一、实验目的和内容1、了解透镜对入射波前的相位调制原理。

2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。

3、观察透镜的傅氏变换力图像,观察4f 系统的反傅氏变换的图像,并进行比较。

4、在4f 系统的变换平面插入各种空间滤波器,观察各种试件相应的频谱处理图像。

二、实验基本原理1、透镜的FT 性质及常用函数与图形的关学频谱分析透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间延迟不同,因而具有相位调制能力。

图1为简化分析,假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。

设原复振幅分布为(,)L U x y 的光通过透镜后,其复振幅分布受到透镜的位相调制,附加了一个位相因子(,)x y ϕ后变为(,)L U x y ': (,)(,)exp[(,)]L L U x y U x y j x y ϕ'= (1)若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。

光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为:00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ϕ=-+=+- (2)(2)中的k =2π/λ,为入射光波波数。

用位相延迟因子(,)t x y 来表示即为:0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3)由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。

在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:22012111(,)()()2D x y D x y R R =-+- (4) 其中1R 、2R 是构成透镜的两个球面的曲率半径。

傅里叶光学实验报告原理

傅里叶光学实验报告原理

傅里叶光学实验报告原理引言傅里叶光学是一种研究光的传播、变换和调制的重要实验方法。

通过傅里叶光学实验,人们可以深入了解光的波动性质,并应用于许多科学技术领域,如光学通信、光谱分析和图像处理等。

本实验旨在通过获取光信号的频谱和波形信息,介绍傅里叶光学的基本原理和方法。

实验原理傅里叶光学实验的基本原理是将光信号在频域上进行分析和合成。

根据傅里叶级数展开的理论基础,任意周期函数都可以表示为一系列正弦和余弦函数的叠加,即傅里叶级数。

对于连续光信号而言,可以将其频谱分解为一系列连续的频率分量。

而在实际应用中,常使用离散傅里叶变换(DFT)对光信号进行数字处理。

傅里叶光学实验通常包括以下几个关键步骤:1. 发光源:实验中需要使用一种稳定而强亮度的发光源,常见的有激光器、白炽灯等。

2. 空间滤波:为了使实验的结果更加清晰,可以使用光阑等光学元件对入射光进行空间滤波,以去除噪声和杂散光。

3. 波像记录:通过使用适当的光学元件(如透镜或光栅)对光信号进行处理,并将光场信息转化为一个空间上的二维图像。

4. 光信号检测:使用光电探测器或像敏元件将光信号转化为电信号,进一步进行数字处理和分析。

5. 数据处理:利用数学方法对光信号的频谱进行计算和分析,如进行傅里叶变换、滤波和谱线提取等。

实验设备- 一台激光器- 一块光栅- 一组准直透镜- 一个光电探测器- 一个光电转换器- 一台示波器- 一台计算机实验步骤1. 将激光器与准直透镜对准,使激光的光斑尽量小且清晰。

2. 将光栅放在准直激光的路径上,调整角度使激光通过光栅后形成干涉条纹。

3. 放置光电探测器,将光栅产生的干涉条纹转化为电信号。

4. 将光电转换器与光电探测器连接,转化电信号为适当的电压信号。

5. 使用示波器对电压信号进行测量和分析,获取干涉条纹的波形信息。

6. 将示波器与计算机相连,将数据导入计算机进行进一步处理和分析,如进行傅里叶变换并提取频谱信息。

实验结果与分析在实验中,我们成功地观察到了干涉条纹的形成,并通过光电探测器将其转化为电信号。

傅里叶光学实验报告

傅里叶光学实验报告

傅里叶光学实验报告摘要:本实验主要是通过傅里叶光学的实验,研究光的干涉和衍射现象以及傅里叶变换的原理与应用。

在实验中,我们用干涉仪观察了两个光源的干涉现象,并利用光栅观察了光的衍射现象。

实验结果表明,光的干涉和衍射具有波动性和干涉性,傅里叶变换能够将信号从时域转换到频域。

1.引言2.实验装置实验主要用到了干涉仪和光栅。

干涉仪是由两个光源和一系列光学元件组成的装置,用于观察光的干涉现象。

光栅则是一种特殊的光学元件,能够通过衍射产生多个光斑。

3.实验步骤3.1干涉实验首先我们调整干涉仪的各个光路元件,使得两个光源的光线通过干涉仪后能够叠加在一起。

接着,我们调整干涉仪的反射镜,使得两束光叠加后的干涉条纹清晰可见。

在实验中,我们发现当两个光源相位差恰好为0时,干涉条纹最为明显;而当相位差为180度时,干涉条纹相消。

这说明光的干涉现象与光源的相位差有关。

3.2衍射实验接下来,我们使用光栅进行衍射实验。

将光栅置于光源前方,然后调整光栅的位置和角度,使得衍射光斑能够清晰可见。

实验中,我们观察到了光栅产生的多个光斑,这是由于光经过光栅后发生了衍射现象。

3.3傅里叶变换实验最后,我们进行了傅里叶变换实验。

在实验中,我们使用傅里叶变换将信号从时域转换到频域。

通过调整输入信号的频率,我们观察到傅里叶变换的输出结果呈现出不同的频谱。

4.结果与讨论实验结果表明,光的干涉和衍射现象能够用波动光学的理论进行解释。

干涉实验显示了光的相位差对干涉条纹的影响,而衍射实验则是光波通过光栅后发生了弯曲现象。

傅里叶变换实验则展示了将信号从时域转换到频域的能力。

在实际应用中,傅里叶光学在光学成像、信号处理等领域具有重要作用。

例如,利用傅里叶变换可以对图像进行去噪、增强等处理,同时也可以通过干涉和衍射现象实现光学传感器、光学显微镜等设备。

5.结论通过本次实验,我们深入了解了光的干涉和衍射现象以及傅里叶变换的原理与应用。

实验结果验证了光的波动性和干涉性,同时也为我们在光学领域的研究与应用提供了基础知识和实验基础。

傅立叶光学实验报告

傅立叶光学实验报告

傅⽴叶光学实验报告傅⽴叶光学实验报告实验报告陈杨PB05210097物理⼆班实验题⽬:傅⾥叶光学实验实验⽬的:加深对傅⾥叶光学中的⼀些基本概念和理论的理解?验证阿贝成像理论?理解透镜成像过程?掌握光学信息处理的实质?进⼀步了解透镜孔径对分辨率的影响。

实验原理:1.傅⾥叶光学变换F(u,v),,{f(x,y)},f(x,y)ex p[,i2,(ux⼆维傅⾥叶变换为:',,xf,x,,,f,,,,'y,,f,y,,f,,,,1gxFaff()[(,)],xy( 1 )⾥叶变换可以⽤透镜来实现?叫光学傅⾥叶变换。

2.阿贝成像原理由于物⾯与透镜的前焦平⾯不重合?根据傅⽴叶光学的理论可以知换,频谱,?不过只有⼀个位相因⼦的差别?对于⼀般情况的滤波处理可以不考虑。

这个光路的优道在透镜的后焦平⾯上得到的不是物函数的严格的傅⽴叶变点是光路简单?是显微镜物镜成像的情况⼀可以得到很⼤的象以便于观察?这正是阿贝当时要改进显微镜的分辨本领时所⽤的光路。

3.空间滤波根据以上讨论:透镜的成像过程可看作是两次傅⾥叶变换?即从空间,vy)]dxdy,.,复杂的⼆维傅aff(,)gxy(,)gxy(,)xy 函数变为频谱函数?再变回到空间函数?如果在频谱⾯上放⼀不同结构的光阑?以提取某些频段的信息?则必然使像上发⽣相应的变化?这样的图像处理称空间滤波。

实验内容:1. 测⼩透镜的焦距f1 , 付⾥叶透镜f2=45.0CM,.光路:直⾓三棱镜?望远镜,倒置,, 出射应是平⾏光,?⼩透镜?屏。

,思考:如何测焦距,,夫琅和费衍射:光路:直⾓三棱镜?光栅?墙上布屏,此光路满⾜远场近似, ,1, 利⽤夫琅和费衍射测⼀维光栅常数,光栅⽅程:dsin 0 =k X其中,k=0,?1, ?2, ?3, … 请⾃⼰选择待测量的量和求光栅常数的⽅法。

, 卷尺可向⽼师索要, 记录⼀维光栅的衍射图样、可看到哪些级记录0 级、?1级、?2级光斑的位置,,2, 记录⼆维光栅的衍射图样.3. 观察并记录下述傅⽴叶频谱⾯上不同滤波条件的图样或特征, 光路: 直⾓三棱镜?光栅?⼩透镜?滤波模板,位于空间频谱⾯上,?墙上屏思考:空间频谱⾯在距⼩透镜多远处,图样应是何样, ,1, ⼀维光栅:, 滤波模板⾃制?⼀定要注意戴眼镜保护, 可⽤⼀张纸?⼀根针扎空来制作?也可⽤其他⽅法a. 滤波模板只让0 级通过;b. 滤波模板只让0、?1级通过;c. 滤波模板只让0、?2级通过;,2, ⼆维光栅:a.滤波模板只让含0级的⽔平⽅向⼀排点阵通过,b.滤波模板只让含0级的竖直⽅向⼀排点阵通过,c.滤波模板只让含0级的与⽔平⽅向成450—排点阵通过,d.滤波模板只让含0 级的与⽔平⽅向成1350⼀排点阵通过. 4. “光”字屏滤波物⾯上是规则的光栅和⼀个汉字“光”叠加⽽成?在实验中要求得到如下结果a.如何操作在像⾯上仅能看到像⾯上是横条纹或竖条纹?写出操作过程b. 如何操作在像⾯上仅能看到像⾯上是空⼼“光”?写出操作过程实验数据处理:, 详细见原始数据,1. ⼩透镜的焦距按照实验内容中的光路图排好光路?在透镜后调节屏的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
PB05210097 物理二班
实验题目: 傅里叶光学实验 实验目的:
加深对傅里叶光学中的一些基本概念和理论的理解,验证阿贝成像理论,理解透镜成像过程,掌握光学信息处理的实质,进一步了解透镜孔径对分辨率的影响。

实验原理: 1.傅里叶光学变换 二维傅里叶变换为:
⎰⎰+-=ℑ=dxdy
vy ux 2i y x f y x f v u F )](exp[),()},({),(π
( 1 )
1()[(,)]
x y g x F a f f -=,
''x y x f f y f f λλ⎧⎫
=⎪⎪⎪⎪⎨⎬⎪⎪=⎪⎪⎩⎭
复杂的二维傅里叶变换可以用透镜来实现,叫光学傅里叶变换。

2.阿贝成像原理
由于物面与透镜的前焦平面不重合,根据傅立叶光学的理论可以知换(频谱),不过只有一个位相因子的差别,对于一般情况的滤波处理可以不考虑。

这个光路的优道在透镜的后焦平面上得到的不是物函数的严格的傅立叶变点是光路简单,是显微镜物镜成像的情况—可以得到很大的象以便于观察,这正是阿贝当时要改进显微镜的分辨本领时所用的光路。

3.空间滤波
根据以上讨论:透镜的成像过程可看作是两次傅里叶变换,即从空间函数(,)g x y 变为频谱函数
(,)
x y a f f ,再变回到空间函数(,)g x y ,如果在
频谱面上放一不同结构的光阑,以提取某些频段的信息,则必然使像上发生相应的变化,这样的图像处理称空间滤波。

实验容:
(注意事项:不要动He-Ne 激光器→反射镜→直角三棱镜的光路!(因此部分光路已经调好))
测小透镜的焦距f1 (付里叶透镜f2=45.0CM ).
光路:直角三棱镜→望远镜(倒置)(出射应是平行光)→小透镜→屏
思考:如何测焦距? 夫琅和费衍射:
光路:直角三棱镜→光栅→墙上布屏(此光路满足远场近似) (1)利用夫琅和费衍射测一维光栅常数;
光栅方程:dsin θ=k λ 其中,k=0,±1, ±2, ±3,…
请自己选择待测量的量和求光栅常数的方法。

(卷尺可向老师索要) 记录一维光栅的衍射图样、可看到哪些级?记录 0级、±1级、±2级光斑的位置;
(2)记录二维光栅的衍射图样.
3.观察并记录下述傅立叶频谱面上不同滤波条件的图样或特征; 光路:直角三棱镜→光栅→小透镜→滤波模板(位于空间频谱面上)→墙上屏
思考:空间频谱面在距小透镜多远处?图样应是何样?
(1)一维光栅:(滤波模板自制,一定要注意戴眼镜保护;可用一纸,一根针扎空来制作,也可用其他方法).
a.滤波模板只让 0级通过;
b.滤波模板只让0、±1级通过;
c.滤波模板只让0、±2级通过;
(2)二维光栅:
a.滤波模板只让含0级的水平方向一排点阵通过;
b.滤波模板只让含0级的竖直方向一排点阵通过;
c.滤波模板只让含0级的与水平方向成45O一排点阵通过;
d.滤波模板只让含0级的与水平方向成135O一排点阵通过.
4.“光”字屏滤波
物面上是规则的光栅和一个汉字“光”叠加而成,在实验中要求得到如下结果:
a.如何操作在像面上仅能看到像面上是横条纹或竖条纹,写出操作过程;
b. 如何操作在像面上仅能看到像面上是空心“光”,写出操作过程.
实验数据处理:(详细见原始数据)
1.小透镜的焦距
按照实验容中的光路图排好光路,在透镜后调节屏的位置。

因为入射透镜的是平行光,所以光束透过透镜后应在焦点汇聚。

当屏上的光点最清晰最小最亮时,便可认为此时屏处于透镜焦点位置。

三次测量结果取平均: 12.05 cm 2.当一维光栅到屏距离为70.0cm 时 λ=6328Å
1)在屏上可以看到一维光栅的衍射图样,图样特征为:可以观察到水平方向的一列点阵。

共可观察到3级。

(0,±1, ±2, ±3),0级点最亮,此外奇数级较偶数级更亮,奇数级和偶数级点亮度都随级数的增加而渐弱。

2)测量点阵中各孔的位置。

以0级点为原点,量出各级点到0级点的距离
K 级条纹到中心距离为:
则 111121
1()(1.12 1.13) 1.1222
S S S cm =+=+= 1212211()(2.24 2.25) 2.2422
S S S cm =+=+= 1313211()(3.36 3.37) 3.362
2
S S S cm =+=+=
则2111 1.12
sin 1.601070.00
S l θθ-≈==
=⨯ 2222 2.24sin 3.201070.00
S l θθ-≈=
==⨯
2333 3.36sin 4.801070.00
S l θθ-≈=
==⨯ 由sin d k θλ=得:
95
1219
5
22295
323sin 632.810 3.9610sin 1.610
22632.810 3.9610sin 3.210
33632.810 3.9610sin 4.810
k
k d d m d m d m λθλθλθλθ---------=
⨯===⨯⨯⨯⨯===⨯⨯⨯⨯===⨯⨯ 则5123
3.96103
d d d d m -++=
=⨯ 3.当二维光栅到屏距离为70.0cm 时
在屏上观察到二维正交的光点阵。

点阵图样的特征与一维图样类似,只不过扩展到了二维平面上。

0级点最亮,此外奇数级较偶数级更亮,奇数级和偶数级点亮度都随级数的增加而渐弱。

测得纵向各级点到0级点的距离,算得夹角正弦值,光栅常数为:
k 级点到中心距离为: K=1时, 1234 1.12 1.12 1.11 1.11
1.1244
S S S S S cm ++++++=
==
21.12sin 1.601070S l
θθ-≈=
==⨯ 951632.810/0.016 3.9610d m λθ
--=
=⨯=⨯
4.傅里叶变换法求光栅常数(一维):
0101
10.712
d d d cm -+=
= 02021 1.462
d d d cm -+==
由'x x f f
λ=得: 411190.71 2.4910632.8100.45
d f m f λ--===⨯⨯⨯
511
1
4.0210d m f -=
=⨯' 412291.46 5.1310632.8100.45
d f m f λ--===⨯⨯⨯
522
1
1.9510d m f -=
=⨯' 所以由基频求得光栅常数:51
1
4.0210x d m f -=
=⨯ 5. 傅立叶频谱面上不同滤波条件的图样或特征 (1)一维光栅成像
a.在滤波板上扎0级亮点时,像平面上有一花形亮斑,无条纹。

b.在滤波模板上扎0,1±级亮点时,像平面上有一花形亮斑,亮斑上有许多竖条纹。

c.在滤波模板上扎0,1±,2± 级点时,像平面上有一花形亮斑,亮斑上有许多竖条纹比b 中清晰。

原因分析:水平方向扎一排点,可保证水平方向全透过。

(2)二维光栅成像
a.滤波模板上扎0级亮点时,像平面上有一花形亮斑
b.扎水平方向0,1±级亮点时,花形亮斑上竖直方向有条纹。

c.扎竖直方向0,1±级亮点时,花形亮斑上有水平方向条纹。

d.扎45o 方向0,1±级亮点时,花形亮斑上有135o 条纹。

e.扎135o 方向0,1±级亮点时,花形亮斑上有45o 条纹。

原因分析:在某一方向扎n 个孔时,会使此方向光全通过,进而使其垂直方向有条纹。

(3)“光”字屏滤波
a.只放透镜时,在像平面上有“光”字,被正交条文盖着。

b.用一滤波模板,在中间亮点扎一足够小的孔后,条纹会消失。

c.扎中间一行亮点时,“光”上只剩竖条纹。

d.扎中间一竖列亮点时,“光”上只剩横条纹。

原因分析:其原理大致同于第四步第(2)问。

思考题:
1、在实验容(1)中如果挡掉零级光斑,让所有高级衍射光斑透过,在象平面得到的像是什么样的?分析以下情况a.光栅透光缝a<光栅周期d/2,b. 光栅透光缝a>光栅周期d/2,c. 光栅透光缝a=光栅周期d/2。

答: (a)当a<d/2时,能观察到零级光斑。

(b)当a>d/2时,不能观察到零级光斑。

(c)当a=d/2时,能观察到零级光斑。

2、说明实验实例(2)中如果正交光栅的周期为0.01毫米,透镜的焦距为300毫米,照明光的波长为633纳米,求低通滤波器的直径最大为多少?
答:92263310300100 3.798x d ff cm λ-≤=⨯⨯⨯⨯=g 所以最大直径应为3.798cm 。

相关文档
最新文档