第24章 24.1 第3课时 平面直角坐标系中的旋转
人教版九年级数学上第24章24.1圆的基本性质教案
圆基本性质1、圆的定义(1)圆的定义点集定义:圆是平面内到定点的距离等于定长的点的集合.定点称为圆心,定长称为半径.(2)弦与直径①弦:连结圆上任意两点间的线段叫做弦.②直径:经过圆心弦,称为直径.(注意:直径是最长的弦,直径是弦,但弦不一定是直径.)(3)弧、优弧、劣弧、半圆①弧:圆上任意两点问的部分叫做圆弧,简称弧,用“⌒”表示.②半圆.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.③优弧、劣弧:大于半圆的弧叫做优弧;小于半圆的弧叫做劣弧.2、圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴.注意:圆有无数条直径,所以圆有无数条对称轴.3、垂径定理及推理定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于这条弦并且平分弦所对的两条弧.4、圆心角圆心角:顶点在圆心的角叫做圆心角.5、圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.推论:在同圆或等圆中,如果两个圆心角、两条弧或两条弦中有一组量相等,那么它们所对的其余各组量分别相等.注意:(1)在具体运用定理或推论解决问题时可根据需要,选择有关部分,比如“等弧所对圆心角相等”,“在同圆或等圆中,相等的圆心角所对的弧相等”等.(2)不能忽略“在同圆或等圆中”这个前提条件,若没有这一条件,虽然圆心角相等,但所对的弧、弦不一定相等.(3)结合图形深刻理解圆心角、弧、弦这几个概念与“所对”一词的含义.(4)若无特殊说明,定理推论中“弧”一般指劣弧.6、圆周角(1)圆周角:顶点在圆上,两边和圆相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.二、重难点知识归纳重点:垂径定理、三组量之间的关系、圆周角定理.难点:以上定理的综合应用.三、典例剖析例1、如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E.已知AB=2DE,∠E=18°.求∠AOC的度数.例2、如图,AB、CD是⊙O的弦,∠A=∠C.求证:AB=CD.例3、已知圆内接△ABC中,AB=AC,圆心O到BC距离为6cm,圆的半径为10cm.求腰AB的长.例4、要测量一个钢板上小孔的直径,通常采用间接的测量方法.如果用一个直径为10mm的标准钢珠放在小孔上,测得钢珠顶端与小孔平面的距离h=8mm(如图),求此小孔的直径d.例5、已知,如图,AD=BC.求证:AB=CD.例6、已知:如图,A点是半圆上一个三等份点,B点是的中点,P是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值是多少?例7、如图,半圆O的直径是AB,CF⊥AB,弦AC的垂直平分线交CF于点D,连结AD并延长AD交半圆O于点E,相等吗?请证明你的结论.例8、如图,四边形ABCD的四个顶点在⊙O上,且对角线AC⊥BD,OE⊥BC于E.求证:.例9、如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,作∠BAC的外角平分线AE交⊙O于点E,连结DE.求证:DE=AB.课堂练习与作业:圆:1、已知,⊙O的半径为3cm,P是⊙O内一点,OP=1cm,则点P到⊙O上各点的最小距离是______cm,最大距离是_________cm.2、如图,已知OA、OB是圆的两条半径,∠OAB=45°,OA=8cm,则AB=__________.3、如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,则∠ACD=__________.4、如图,△ABC中,∠C=90°,AC=6cm,BC=8cm,分别以A、B为圆心,AC、BC为半径画弧,交斜边于E、F,则EF的长是__________.图2图3图4图65、平面直角坐标系中有一个点M(2,3),⊙M的半径为r,若⊙M上的点不全在第一象限内,则r的取值范围是()A.r=2 B.r=3 C.r≥2 D.r≥36、如图,点C在以AB为直径的半圆上,O是圆心,连接OC,则△ABC是()A.锐角三角形B.钝角三角形 C.直角三角形D.不能确定7、如图,点A、D、G、M在半圆O上,四边形ABOC,DEOF,HMNO为矩形,设BC=a,EF=b,NH=c,则下列各式正确的是()A.a>b>c B.a=b=c C.c>a>b D.b >c>a8、如图,BD、CE分别是△ABC的两条高,试说明点E、B、C、D四点在同一个圆上,并画出这个圆.9、如图所示,某部队在灯塔A的周围进行爆破作业,A的周围3千米内的水域为危险区域.有一渔船误入与A距离2千米的B处.为了尽快驶离危险区域,该船应怎样航行?并说明理由.垂径定理:1、如图,AB是⊙O的弦,圆心O到AB的距离OD=1,AB=4,则该圆的半径是__________.2、如图,水平铺设的圆柱形排水管的截面半径是0.5m,其中水面宽为AB=0.6m,则水的最大深度为_____m.3、如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP、PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF=__________.4、如图,已知AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP∶PB=1∶5,那么⊙O 的半径是()5、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm图1图2图3图4图65、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm6、如图所示,AB是⊙O的一条固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B两点)移动时,点P()A.到CD的距离保持不变 B.位置不变 C.平分 D.随点C的移动而移动7、如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长.8、离疫点3千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有禽类强制免疫;同时,对扑杀区和免疫区内的村庄,道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区,如图所示,O为疫点,在扑杀区内的公路CD长为4千米.问这条公路在免疫区内有多少千米?9、如图,⊙O中的弦AB、CD互相垂直于E,AE=5cm,BE=13cm,O到AB的距离为.求⊙O的半径及O到CD的距离.10、如图,某地有一座圆弧形的拱桥,桥下水面宽为7.2m,拱顶高出水面2.4m,现有一艘宽3m,船舱顶部为正方形并高出水面2m的货船要经过这里,此时货船能顺利通过这座拱桥吗?请说明理由.弧、弦、圆心角:1、如果⊙O的半径为R,则⊙O中60°的圆心角所对的弦长为_______,90°的圆心角所对的弦长为_____.2、如图,AB、CD是⊙O的直径,弦DE∥AB,则AC与AE的大小关系是__________.3、如图,D、E分别是⊙O的半径OA、OB上的点,CD⊥OA,CE⊥OB,CD=CE.则的大小关系是________.4、如图,在半径为2cm的⊙O内有长为的弦AB,则此弦所对的圆心角∠AOB为()A.60°B.90° C.120° D.150°图2图3图4图55、如图,在⊙O中,,则下列结论正确的是()A.AB>2CD B.AB=2CD C.AB<2CD D.以上都不正确6、AD是⊙O的直径,弦AB、AC交于A点,且AD平分∠BOC,则下列结论不一定成立的是()A.AB=AC B. C.AD⊥BC D.AB=BC9、如图,以⊙O的直径BC为一边作等边△ABC,AB、AC交⊙O于D、E,求证:BD=DE=EC.10、已知:如图,P为直径AB上一点,EF、CD为过点P的两条弦且∠DPB=∠EPB,求证:(1)CD=EF;(2).圆周角:1、如图,A、B、C是⊙O上三点,∠ACB=40°,则∠ABO等于__________度.2、如图,△ABC的顶点都在⊙O上,∠C=30°,AB=2cm,则⊙O的半径为__________cm.3、如图,在平面直角坐标系中,P是经过O(0,0),A(0,2),B(2,0)的圆上的一个动点(P与O、A、B不重合),则∠OAB=__________,∠OPB=__________.4、如图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC=__________cm.5、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC=__________.6、如图,BD是⊙O的直径,弦AC、BD相交于点E,则下列结论不成立的是()A.∠ABD=∠ACD B. C.∠BAE=∠BDC D.∠ABD=∠BDC图1图2图3图4图5图6图77、如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50° C.40°D.20°8、如图,AB为⊙O的直径,BD是⊙O的弦,延长到C,使BD=DC,连接AC交⊙O于点F,点F不与点A重合.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.9、如图,△ABC的三个顶点都在⊙O上,CN为⊙O的直径,CM⊥AB,交⊙O于M,点F 为的中点.求证:(1);(2)CF平分∠NCM.10、如图(1),已知△ABC是等边三角形,以BC为直径的⊙O交AB、AC于D、E.(1)求证:△DOE是等边三角形;(2)如图(2),若∠A=60°,AB≠AC,则(1)的结论是否成立?如果成立,请给出证明,如果不成立,请说明理由.。
最新人教版九年级上册数学第24章圆第1节圆的有关性质 第3课时弧、弦、圆心角
A. 1 B. 2
C. 3
D. 4
解题秘方:紧扣弧、弦、圆心
角之间关系定理的推论判断.
感悟新知
︵︵ 解:∵AB = CD, ∴ AB=CD,故①正确.
︵︵ ︵︵ ∵AB = CD,∴AC = BD . ∴AC=BD,∠ AOC=∠BOD,故②③④正确. 答案:D
知3-练
感悟新知
知3-练
3-1. 如图, 已知AB,CD 是⊙ O 的两条弦,OE,OF 分 别为AB,CD 的弦心距, 如果AB=CD, 则可得出结 论:__O__E_=__O__F_,__∠__C_O__D_=__∠__A_O__B_(_答__案__不__唯__一__)__ .(至 少填写两个)
知1-练
感悟新知
解:如图24.1-22,过点O 作ON ⊥ AB 于点N.
则AN=
1 2
AB.
∵∠ AOB=120°,OA=OB,∴∠ A=30° .
设ON=a,则OA=2a,
∵ OA2-ON 2=AN 2,∴ AN= 3 a.
∴ AB=2 3
答案: 3 3
a. ∴ OA ∶ AB=
3
.
3
知1-练
半径OB于E,且CD=CE,求证:A︵C
=
︵ BC
.
感悟新知
证明:连接 OC.
知2-练
∵CD⊥OA,CE⊥OB,∴∠CDO=∠CEO=90°.
在 Rt△ CDO 和 Rt△ CEO 中,CCOD==CCOE,,
∴Rt△ COD≌Rt△ COE, ︵︵
∴∠AOC=∠BOC,∴AC=BC.
感悟新知
知3-讲
感悟新知
证明:如图24.1-25,连接OE. ∵ OE=OC,∴∠ C= ∠ E. ∵ CE ∥ AB, ∴∠ C= ∠ BOC,∠ E= ∠ AOE. ∴∠ BOC= ∠ AOE.
沪科版九年级下册数学第24章 圆 旋转作图
本节课应掌握: 1.选择不同的旋转中心、不同的旋转角,设计 出美丽的图案; 2.作出几个复合图形组成的图案旋转后的图案, 要先求出图中的关键点──线的端点、角的 顶点、圆的圆心等.
1.必做:完成教材P10-11习题24.1T3-T5. 2.补充:.
知2-讲
②以旋转中心为角的顶点,以①中的连线作为旋转角的 一边,运用尺规作图,作出图中所有的旋转角,且旋 转角的方向一致; ③确定旋转后图形的对应点,即根据旋转的基本性质: 旋转前后图形的对应点到旋转中心的距离相等,在上 述旋转角的另一边上分别截取对应线段相等,这样就 确定了旋转后图形的对应点.
知2-讲
3如图,在4×4的正方形网格中,△MNP绕某点旋转 一定的角度,得到△M1N1P1,则其旋转中心是( ) A.点AB.点BC.点CD.点180°后,得到的 图案是( )
知识点 2 用旋转变换设计图案
知2-讲
要点精析: (1)确定旋转角的大小和方向:根据图形和已知条件,若 没有直接给出旋转角,则应找出旋转前后图形的一对 对应点,并将它们与旋转中心相连,由此确定旋转角 的大小和方向. (2)确定每对对应点: ①准确找出旋转前图形的各个顶点(通常指图中所有线段 的两个端点),并把它们与旋转中心依次连接;
知2-练
1如图所示的4个图案,能通过基本图形旋转得到的 有( )
A.1个B.2个C.3个D.4个
知2-练
2 (中考•河北)如图是甲、乙两张不同的纸片,将它们 分别沿着虚线剪开后,各自要拼一个与原来面积相等 的正方形,则( )
A.甲、乙都可以B.甲、乙都不可以 C.甲不可以,乙可以D.甲可以,乙不可以
知2-讲
导引:根据图形可知∠BAE=120°,AB边绕点A顺时 针旋转120°得到AE边,所以菱形AEFG可以看 成是把菱形ABCD以A为旋转中心顺时针旋转120° 得到的.
2021年沪科版九年级数学下册第二十四章《图形在坐标系中的变换》公开课课件
第24章 圆
24.1 旋 转 第4课时 图形在坐标系中的变换
1.坐标平面内一点(x,y),以原点为旋转中心,按逆时 针方向旋转 90°,180°,270°,360°后,对应点坐标分 别为__(-y,x)__,__(-x,-y)__,__(y,-x)__,__(x,y)__.
3,2)
9.如图,点 B 在 x 轴上,∠ABO=90°,∠A=30°, OA=4,将△OAB 绕点 O 按顺时针方向旋转 120°得到 △OA′B′,则点 A′的坐标是 ( B )
A . (2 , - 2 2 ) B . (2 , - 2 3 ) C . (2 2 , - 2) D.(2 3,-2)
2.一个图形绕原点作 360°旋转是一个__恒等变换__.
平面直角坐标系中的旋转
1.(5 分)(2015·天津)在平面直角坐标系中,把点 P(-3, 2)绕原点 O 顺时针旋转 180°,所得到的对应点 P′的坐标为 (D)
A.(3,2) B.(2,-3) C.(-3,-2) D.(3,-2) 2.(5 分)如图所示,在方格纸上建立的平面直角坐标系 中,将△ABO 绕点 O 按顺时针方向旋转 90°,得到△A′B′ O,则点 A′的坐标为( D ) A.(3,1) B.(3,2) C.(2,3) D.(1,3)
解:(1)A1(4,-1) (2)(3)图形如图:
12.(12 分)如图,在边长为 1 的小正方形组成的网格中, △AOB 的三个顶点均在格点上,点 A,B 的坐标分别为 A(- 2,3),B(-3,1).
(1)画出△AOB 绕点 O 顺时针旋转 90°后的△A1OB1; 解:图略 (2)点 A1 的坐标为__(3,2)__; (3)四边形 AOA1B1 的面积为__8__.
2025年沪科版九年级下册数学第24章专题1 旋转在解几何题中的六种常见技巧
专题
(2)连接BG交CH于点O,若AB=5,BC=13,求BO的长. 【解】由(1)易得 BH=CD=CG. ∠OHB=∠OCG=90°, 在△HBO 和△CGO 中,∠HOB=∠COG, BH=CG, ∴△HBO≌△CGO(AAS).∴OH=OC.
专题
在 Rt△BCH 中, BH=AB=5,BC=13, ∴由勾股定理得 CH= BC2-BH2= 132-52=12. ∵OH=OC,∴OH=12CH=6. 在 Rt△OHB 中,由勾股定理得 BO= BH2+OH2= 52+62= 61.
返回
专题
2.[2024·上海嘉定区期末]已知在△ABC 中,AB=AC,将△ABC绕点C旋转得 到△CDE,使点B恰好落在边AB上的 点D处,边DE交边AC于点F(如图), 如果△CDF为1等80腰° 三角形,则∠A的 度数为_3_6_°_或___7_.
专题
【点拨】如图,设∠B=x. ∵AB=AC,∴∠ACB=∠B=x. ∴∠A=180°-2x. ∵△ABC绕点C旋转得到△CDE,使点B恰好落在边AB 上的点D处,∴CB=CD,∠2=∠B=x. ∴∠1=∠B=x.∴∠5=180°-2x. ∴∠3=∠A+∠5=360°-4x.
专题
(1)若正方形边长为4,当一条直角边与对角线重合时,重
叠部分的面积为____4____;当一条直角边与正方形的一
边垂直时,重叠部分的面积为 ____4___.
(2)若正方形的面积为S,重叠部分的 程中S1与S的关系为__S_1=__14_S__.
面积为
S1,在旋转过
专题
【类比探究】如图①,若等腰直角三 角板的直角顶点与点 O 重合,在旋转 过程中,两条直角边分别交正方形 ABCD 两边于 E,F 两点,小宇经过 多次实验得到结论 BE+DF= 2OC, 请你帮他进行证明.
人教版九年级数学第24章《圆》24.1. 1-4导学案
第1课时 24.1.1 圆一、新知导学1.圆的定义:把线段op 的一个端点O ,使线段OP 绕着点O 在 旋转 ,另一端点P 运动所形成的图形叫做圆,其中点O 叫做 ,线段OP 叫做 .以O 为圆心 的圆记作 .2.圆的集合定义:圆是到 的点的集合. 3、从圆的定义中归纳:①圆上各点到定点(圆心O )的距离都等于____ __;②到定点的距离等于定长的点都在____ _.4、圆的表示方法:以O 点为圆心的圆记作______,读作______.5、要确定一个圆,需要两个基本条件,一个是______,另一个是_____,其中_____确定圆的位置,______确定圆的大小.6;如图1,弦有线段 ,直径是 ,最长的弦是 ,优弧有 ;劣弧有 。
二、合作探究1.判断下列说法是否正确,为什么?(1)直径是弦.( ) (2)弦是直径.( ) (3)半圆是弧.( ) (4) 弧是半圆.( )(5) 等弧的长度相等.( ) (6) 长度相等的两条弧是等弧.( )2.⊙O 的半径为2㎝,弦AB 所对的劣弧为圆周长的61,则∠AOB = ,AB = 3.已知:如图2,OA OB 、为O 的半径,C D 、分别为OA OB 、的中点,求证:(1);A B ∠=∠ (2)AE BE =4.对角线互相垂直的四边形的各边的中点是否在同一个圆上?并说明理由.三、自我检测1.到定点O 的距离为2cm 的点的集合是以 为圆心, 为半径的圆.2.正方形的四个顶点在以 为圆心,以 为半径的圆上.3.一个点与定圆最近点的距离为4cm, 与最远点的距离是9cm ,则圆的半径是4.下列说法正确的有( )①半径相等的两个圆是等圆; ②半径相等的两个半圆是等弧;③过圆心的线段是直径; ④ 分别在两个等圆上的两条弧是等弧. A. 1个 B. 2个 C. 3个 D. 4个5.如图3,点A O D 、、以及点B O C 、、分别在一条直线上,则圆中有 条弦. 6、下列说法正确的是 (填序号)①直径是弦 ②弦是直径 ③半径是弦 ④半圆是弧,但弧不一定是半圆 ⑤半径相等的两个半圆是等弧 ⑥长度相等的两条弧是等弧 ⑦等弧的长度相等 7.圆O 的半径为3 cm ,则圆O 中最长的弦长为8.如图4,在ABC ∆中,90,40,ACB A ∠=︒∠=︒以C 为圆心,CB 为半径的圆交AB 于点D ,求ACD ∠的度数.9、已知:如图5,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB =2DE ,∠E =18°,求∠C 及∠AOC 的度数.(图1)ED CB A (图2) D BCA(图4) DC ABE(图3) (图5)第2课时 24.1.2 垂直于弦的直径一、新知导学1.阅读教材p80有关“赵州桥”问题,思考能用学习过的知识解决吗?2. 阅读教材p80“探究”内容,自己动手操作,发现了什么?由此你能得到什么结论? 归纳:圆是__ __对称图形, ____________ ________都是它的对称轴;3. 阅读教材p80“思考”内容,自己动手操作: 按下面的步骤做一做:(如图1)第一步,在一张纸上任意画一个⊙O ,沿圆周将圆剪下,作⊙O 的一条弦AB ; 第二步,作直径CD ,使CD AB ⊥,垂足为E ; 第三步,将⊙O 沿着直径折叠. 你发现了什么?归纳:(1)图1是 对称图形,对称轴是 .(2)相等的线段有 ,相等的弧有 .二、合作探究活动1:(1)如图2,怎样证明“自主学习3”得到的第(2)个结论. 叠合法证明:(2)垂径定理:垂直于弦的直径 弦,并且 的两条弧. 定理的几何语言:如图2CD 是直径(或CD 经过圆心),且CD AB ⊥____________,____________,_____________∴推论:___________________________________________________________________________. 活动2 :垂径定理的应用垂径定理的实际应用怎样求p80赵州桥主桥拱半径? 解:如图3小结:(1)辅助线的常用作法:连半径,过圆心向弦作垂线段。
2024春九年级数学下册第24章圆24.1旋转4关于原点对称的点的坐标作业课件新版沪科版
【答案】C
5 点A(-3,2)关于原点的对称点是点B,点B关于x轴对 称的点是点C,则点C的坐标是( ) A.(3,2) B.(-3,2) C.(3,-2) D.(-2,3)
【点拨】 点A(-3,2)关于原点对称的点B的坐标是(3,-
(2)画出线段AB绕原点O旋转180°后的线段A2B2. 【解】如图,线段 A2B2即为所求.
7 [2023·人大附中月考]如图,△ABC三个顶点的坐标分 别是A(1,1),B(4,2),C(3,4).
(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1; 【解】如图,△A1B1C1 即为所求.
第24章 圆
24.1.4 关于原点对称的点的坐标
温馨提示:点击 进入讲评
1D
6
25
7
3D
4C
பைடு நூலகம்5A
答案呈现
1 [2023·凉山州]点P(2,-3)关于原点对称的点P′的坐标 是( D ) A.(2,3) B.(-2,-3) C.(-3,2) D.(-2,3)
2 [2022·怀化]已知点A(-2,b)与点B(a,3)关于原点对 称,则a-b=___5___.
【点拨】 根据关于原点对称的点的坐标特点可知a=2,
b=-3,∴a-b=5.
3 (母题:教材P11习题T7)如图,▱ABCD的两条对角线 AC 与 BD 交 于 平 面 直 角 坐 标 系 的 原 点 , 点 A 的 坐 标 为 (-2,3),则点C的坐标为( ) A.(-3,2) B.(-2,-3) C.(3,-2) D.(2,-3)
【点拨】 平行四边形是中心对称图形,故点A与点C关于
2019春九年级数学下册第24章圆24.1旋转课时作业新版沪科版129
第24章圆24.1旋转第1课时旋转的概念与性质知识要点基础练知识点1旋转的相关概念1.下列图案中,不能由一个图形通过旋转而构成的是(B)2.下列现象属于旋转的是(C)A.摩托车在急刹车时向前滑动B.飞机起飞后冲向空中的过程C.幸运大转盘转动的过程D.笔直的铁轨上飞驰而过的火车知识点2旋转的性质3.一个图形经过旋转变换后,有以下结论:①对应线段的长度不变;②对应角的大小不变;③位置不变;④各点旋转的角度相同.其中正确的结论有(B)A.4个B.3个C.2个D.1个4.(宜宾中考)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是60°.知识点3旋转对称图形5.风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转n°后能与原来的图案重合,那么n的值可能是(D)A.45B.60C.90D.120知识点4简单的旋转作图6.如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.在图中画出△ABC绕着点C按顺时针方向旋转90°后的△ECD.并指出点A的对应点,∠A的对应角,旋转中心及旋转角.答案图解:如图所示,△ECD即为所求.其中点A的对应点为点E,∠A的对应角为∠E,点C为旋转中心,∠ACE,∠DCB均为旋转角.综合能力提升练7.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是(B)A.10°B.20°C.50°D.70°8.(天津中考)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接A D.下列结论一定正确的是(C)A.∠ABD=∠EB.∠CBE=∠CC.AD∥BCD.AD=BC9.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C,此时点A'恰好在AB边上,则点B'与点B之间的距离为(D)A.12B.6C.6√2D.6√310.如图,E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为25,DE=2,则AE的长为(D)A.5B.√23C.7D.√2911.如图,O为正方形的旋转中心,正方形的边长是6 cm,一个足够大的直角∠AOB的顶点与点O重合,直角的两边与正方形的边分别交于点A,B,则图中阴影部分的面积为9 cm2.12.如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为15°.13.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=FF,则AB的长为3√2.14.(宁波中考)在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形;(画出一个即可)(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出旋转后的三角形.解:(1)如图所示.(答案不唯一,画出一个即可)(2)△A'CB'如图所示.15.已知在△ABC中,AB=10,DE∥AC交AB于点D,交BC于点E.(1)将△BDE 顺时针旋转到△BD'E'的位置,连接DD'和EE',如图1,试探究∠BDD'与∠BEE'之间的数量关系,并说明理由;(2)将△BDE 顺时针继续旋转,点D 的对应点D'落在边BC 上,如图2,若BE'=8,D'C=6,求BC 的长.解:(1)∠BDD'=∠BEE'.理由:由旋转知△BDE ≌△BD'E',∴BD=BD',BE=BE',∠DBE=∠D'BE',∴∠DBD'=∠EBE',又∵∠BDD'=180°-∠DDD '2,∠BEE'=180°-∠DDD '2,∴∠BDD'=∠BEE'.(2)∵DE ∥AC ,∴△BDE ∽△BAC ,∴DD DD =DDDD .由题意可得BE=BE'=8,BD=BD'=BC-D'C=BC-6,AB=10.设BC=x ,则D -610=8D,解得x 1=3+√89,x 2=3-√89(不合题意,舍去),故BC 的长为3+√89.拓展探究突破练16.【问题解决】数学课上,老师提出了一个这样问题:如图1,P 是正方形ABCD 内一点,PA=1,PB=2,PC=3,你能求出∠APB 的度数吗? 小明他通过观察、分析、思考,形成了如下思路:思路一:将△PBC 绕点B 逆时针旋转90°,得到△P'BA ,连接PP',求出∠APB 的度数; 思路二:将△APB 绕点B 顺时针旋转90°,得到△CP'B ,连接PP',求出∠APB 的度数. 请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若P 是正方形ABCD 外一点,PA=3,PB=1,PC=√11,求∠APB 的度数.解:【问题解决】如答图1,将△PBC绕点B逆时针旋转90°,得到△P'BA,连接PP'.∵PB=P'B=2,∠P'BP=90°,∴PP'=2√2,∠BPP'=45°.又∵AP'=CP=3,AP=1,∴AP2+P'P2=1+8=9=P'A2,∴∠APP'=90°,∴∠APB=45°+90°=135°.【类比探究】如答图2,将△PBC绕点B逆时针旋转90°,得到△P'BA,连接PP'.∵PB=P'B=1,∠P'BP=90°,∴PP'=√2,∠BPP'=45°.又∵AP'=CP=√11,AP=3,∴AP2+P'P2=9+2=11=P'A2,∴∠APP'=90°,∴∠APB=90°-45°=45°.第2课时中心对称与中心对称图形知识要点基础练知识点1中心对称概念及性质1.下列说法正确的是(C)A.全等的两个图形成中心对称B.能够完全重合的两个图形成中心对称C.旋转180°后能够完全重合的两个图形成中心对称D.旋转后能够重合的两个图形成中心对称2.如图,△ABC与△A'B'C'关于点O成中心对称,下列结论中不成立的是(D)A.OC=OC'B.OA=OA'C.BC=B'C'D.∠ABC=∠A'C'B'知识点2中心对称图形3.下面四个手机应用图标中,属于中心对称图形的是(B)【变式拓展】在等边三角形、等腰梯形、平行四边形和正五边形中,是中心对称图形的是(C) A.等边三角形 B.等腰梯形C.平行四边形D.正五边形4.如图,已知图形是中心对称图形,则对称中心是(D)A.点CB.点DC.线段BC的中点D.线段FC的中点知识点3中心对称(图形)的画法5.如图1,在10×10网格中,四边形ABCD是格点四边形(顶点在网格线的交点上).(1)以点A为对称中心,画出四边形ABCD关于点A成中心对称的四边形AB1C1D1;(2)点N是四边形ABCD内一格点,如图2,以点N为对称中心,画出四边形ABCD关于点N成中心对称的四边形A2B2C2D2.(3)若格点四边形ABCD与格点四边形EFGH关于点O成中心对称,点A的对称点是点E,如图3,请在网格中标出点O的位置.解:(1)如图1,四边形AB1C1D1即为所求.(2)如图2,四边形A2B2C2D2即为所求.(3)如图3,点O即为所求.图1图2图3综合能力提升练6.(长沙中考)下列四个图形中,既是轴对称图形又是中心对称图形的是(A)7.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有(B)A.1个B.2个C.3个D.4个8.(呼和浩特中考改编)下图中序号(1)(2)(3)(4)对应的四个三角形,都是△ABC进行了一次变换之后得到的,其中是通过中心对称得到的是(C)A.(1)B.(2)C.(3)D.(4)9.如图所示,已知菱形ABCD与菱形EFGH关于直线BD上某个点成中心对称,则点B的对称点是(D)A.点EB.点FC.点GD.点H10.(乐山中考)如图,直线a,b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,AB=2,则阴影部分的面积之和为6.11.(安徽中考)如图,已知A(-3,-3),B(-2,-1),C(-1,-2)是直角坐标平面上的三点.(1)请画出△ABC关于原点O对称的△A1B1C1;(2)请写出点B关于y轴对称的点B2的坐标,若将点B2向上平移h个单位,使其落在△A1B1C1内部,指出h的取值范围.解:(1)△A1B1C1如图所示.(2)点B2的坐标为(2,-1).观察可知,h的取值范围为2<h<3.5.12.如图,在▱ABCD中,以A为圆心,AB长为半径画弧交AD于点F;再分别以B,F为圆心,大于12BF 的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF 是菱形.(1)根据以上尺规作图的过程,求证四边形ABEF是中心对称图形;(2)若四边形ABEF的周长为16,AE=4√3,求∠C的大小.解:连接BF,设BF与AE交于点O.(1)由作图过程可知,AB=AF,AE平分∠BAD.∴∠BAE=∠EAF.∵四边形ABCD为平行四边形,∴BC∥AD,∴∠AEB=∠EAF,∴∠BAE=∠AEB,∴AB=BE,∴BE=AF.∵∠BOE=∠FOA,∴△BOE≌△FOA,∴OB=OF,OE=OA,即点B与点F,点E与点A都关于点O对称,∴四边形ABEF为中心对称图形.(2)由(1)得OB=OF,OE=OA,∴四边形ABEF为平行四边形,又∵AB=AF,∴四边形ABEF为菱形,∴BF与AE互相垂直平分,∠BAE=∠FAE,∴OA=12AE=2√3.∵菱形ABEF的周长为16,∴AF=4,∴cos∠OAF=DDDD =√32,∴∠OAF=30°,∴∠BAF=60°.∵四边形ABCD为平行四边形,∴∠C=∠BAD=60°.拓展探究突破练13.如图,中心对称图形圆(图1)和平行四边形(图2),图1中过圆心的一条直线将圆分成A,B 两部分,图2中过平行四边形的中心(对角线的交点)任作两条直线形成A,B两部分.(1)图1、图2中的A,B两部分的面积相等吗?(2)利用(1)中的结论,工人师傅需把图3所示的一块木板分成面积相等的两部分,你认为应该怎样分?请画出示意图,并做简要说明.解:(1)图1、图2中的A,B两部分的面积都相等.(2)如图,先将木板分成两个矩形,过这两个矩形的对角线的交点作直线即可.(答案不唯一)第3课时平面直角坐标系下的旋转变换知识要点基础练知识点1用坐标表示旋转1.(绵阳中考)在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为(B)A.(4,-3)B.(-4,3)C.(-3,4)D.(-3,-4)【变式拓展】在平面直角坐标系中,点A的坐标为(-1,√3),以原点O为中心,将点A顺时针旋转150°得到点A',则点A'的坐标为(D)A.(0,-2)B.(1,-√3)C.(2,0)D.(√3,-1)知识点2图案设计2.如图,按要求涂阴影:(1)将图形①平移到图形②;(2)将图形②沿图中虚线翻折到图形③;(3)将图形③绕其右下方的顶点旋转180°得到图形④.解:(1)如图②所示.(2)如图③所示.(3)如图④所示.3.如图是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分的面积为4.答案图解:如图所示.(答案不唯一)综合能力提升练4.如图,在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),把线段AB绕点A旋转后得到线段AB',使点B的对应点B'落在x轴的正半轴上,则点B'的坐标是(B)A.(5,0)B.(8,0)C.(0,5)D.(0,8)5.(宜昌中考)如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C 的坐标分别为(-5,2),(-2,-2),(5,-2),则点D的坐标为(A)A.(2,2)B.(2,-2)C.(2,5)D.(-2,5)6.(聊城中考)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的点A1处,则点C 的对应点C1的坐标为(A)A.(-95,125) B.(-125,95)C.(-165,125) D.(-125,165)7.如图,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为(D)A.(-a,-b)B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b+2)8.如图,把平面内一条数轴x绕原点O逆时针旋转θ(0°<θ<90°)角得到另一条数轴y,x 轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标,在某平面斜坐标系中,已知θ=60°,点M的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为(-3,5).9.如图,正方形OABC的两边OA,OC分别在x轴,y轴上,点D(5,3)在边AB上,以点C为中心,把△CDB旋转90°,则旋转后点D的对应点D'的坐标是(-2,0)或(2,10).10.(温州中考)如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图1中画出一个面积最小的▱PAQB.(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.解:(1)画法不唯一,如图①,②等.(2)画法不唯一,如图③,④等.11.如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是轴对称图形.解:(1)点D→D1→D2→D经过的路径如图所示.12.(黑龙江龙东地区中考)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2).请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标;(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出点A2的坐标;(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出点A3的坐标.答案图解:(1)△A1B1C1如图所示,此时点A1的坐标为(-2,2).(2)△A2B2C2如图所示,此时点A2的坐标为(4,0).(3)△A3B3C3如图所示,此时点A3的坐标为(-4,0).拓展探究突破练13.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-3,2),B(-1,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后的△A1B1C;(2)平移△ABC,若点A的对应点A2的坐标为(-5,-2),画出平移后的△A2B2C2;(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.解:(1)△A1B1C如图所示.(2)△A2B2C2如图所示.(3)如图所示,旋转中心的坐标为(-1,0).。
平面直角坐标系中的旋转
在数学活动课中,小辉将边长为 2和3的两个正方形放置在直线l上,如图1, 他连结AD、CF,经测量发现AD=CF. (1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF 还相等吗?说明你的理由; (2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请 你求出CF的长.
旋转专题(一)
利用旋转的性质求点的坐标 例1.如图,将△ABC绕点C(0,-1)旋转180°得到 △A'B'C,设点A'的坐标为(a,b),则点A的坐标为( D )
y B' A' -b+1)
B.(-a,-b-1) D.(-a,-b-2)
如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为 A(-1,0),B(-2,0),C(-3,1).将△ABC绕点A按顺时针方向 旋转90°,得到△AB′C′,则点B′的坐标为( A ). A.(2,1) B.(2,3) C.(4,1) D.(0,2)
A.点 M
图 28-9 B.格点 N C.格点 P
D.格点 Q
(4)如图 29-18, 在边长为 1 的小正方形组成的网格中, △AOB 的三个顶点均在格点上, 点 A、 B 的坐标分别是(3, 2), (1, 3). △AOB 绕点 O 逆时针 旋转 90°后得到△A1OB1.(直接填写答案) ...
2 [2011· 舟山]如图 28-8,点 A、B、C、D、O 都在方格纸的 格点上,若△COD 是由△AOB 绕点 O 按逆时针方向旋转而得,则 旋转的角度为( C )
A.30°
B.45°
图 28-8 C.90°
D.135°
3[2010· 徐州]如图 28-9,在 6×4 方格纸中,格点三角形甲 经过旋转后得到格点三角形乙,则其旋转中心是( B )
九年级数学下册 24.1 旋转 24.1.2 旋转课件
B
2021/12/11
第十三页,共二十三页。
简单 的旋转作图 (jiǎndān)
例3 : 如图,△ABC绕C点旋转后,顶点A得对应点为点D. 试确定顶点B对应点的位置 (wèi zhi)以及旋转后的三角形.
图形的旋转(xuánzhuǎn)作法
E A
作法:
1. 连接CD;
D
2. 以CB为一边,作∠BCE,使得∠BCE=∠ACD ;
第二十三页,共二十三页。
长相等,这个图案可以看作是哪个(nǎ
ge)“基本图案”通过旋转得到的.
E
A
D
F
o
H
2021/12/11
B
C
第二十一页,共二十三页。
同学 们再见 (tóng xué)
2021/12/11
第二十二页,共二十三页。
内容 总结 (nèiróng)
九年级(下册)。(5)∠AOD与∠BOE有什么大小关系。AO=DO,BO=EO。∠AOD=∠BOE。∠AOD和
2021/12/11
第十页,共二十三页。
旋转 对称图形: (xuánzhuǎn)
在平面内,一个图形绕着一个定点旋转一定角度后,就能够
与原图形重合,这样的图形叫做(jiàozuò)旋转对称图形。这个定 点就是旋转中心。
中心对称图形与旋转(xuánzhuǎn)对称图形有什么关系?
中心对称图形是特殊的旋转对称图形,不同之处在于 旋转角度不一样,中心对称图形的旋转角度是180°, 而旋转对称图形的旋转角度是在0°到 360°之间,一个
相等,都等于旋转角。 (3)旋转中心是唯一不动的点
(4)旋转(xuánzhuǎn)不改变图形的大小和形状.
2021/12/11
人教版 九年级数学 第24章 圆 24.1 ---24.4章节复习题(含答案)
人教版 九年级数学 第24章24.1 ---24.4复习题(含答案) 24.1 圆的有关性质一、选择题(本大题共10道小题)1. 如图,已知直径MN ⊥弦AB ,垂足为C ,有下列结论:①AC =BC ;②AN ︵=BN ︵;③AM ︵=BM ︵;④AM =BM .其中正确的个数为( )A .1B .2C .3D .42. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A ,B ,C ,给出三角形ABC ,则这块玻璃镜的圆心是 ( )A .AB ,AC 边上的中线的交点 B .AB ,AC 边上的垂直平分线的交点 C .AB ,AC 边上的高所在直线的交点D .∠BAC 与∠ABC 的角平分线的交点3.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°4. 如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A.5B.4C.13D.4.85.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF.若∠AOF=40°,则∠F的度数是( )A.20°B.35°C.40°D.55°6. 如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为P,则OP的长为() A.3 B.2.5 C.4 D.3.57. 如图,AB为⊙O的直径,C,D为⊙O上两点.若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°8. 如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°9. 如图,在半径为5的⊙O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .3 2D .4 210. 如图,⊙P与x 轴交于点A(—5,0),B(1,0),与y 轴的正半轴交于点C.若∠ACB =60°,则点C 的纵坐标为( )A.13+ 3B .2 2+ 3C .4 2D .2 2+2二、填空题(本大题共8道小题)11. 如图所示,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC=65°,连接AD ,则∠BAD= 度.12. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD __________.13. 如图,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连接OD,OE.若∠A=65°,则∠DOE=________°.14. 如图,在⊙O中,BD为⊙O的直径,弦AD的长为3,AB的长为4,AC平分∠DAB,则弦CD的长为________.15. 如图,在⊙O中,半径OA垂直于弦BC,点D在圆上,且∠ADC=30°,则∠AOB的度数为________.16. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为________.17. 当宽为3 cm 的刻度尺的一边与⊙O 相切于点A 时,另一边与⊙O 的两个交点B ,C 处的读数如图所示(单位: cm),那么该圆的半径为________cm.18. 如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________°.三、解答题(本大题共4道小题)19. 如图,在⊙O 中,M ,N 分别是半径OA ,OB 的中点,且CM ⊥OA 交⊙O 于点C ,DN ⊥OB 交⊙O 于点D .求证:AC ︵=BD ︵.20. 如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC 的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑); (2)探究OE 与AC 的位置及数量关系,并证明你的结论.21. 如图,直线AB经过⊙O的圆心,与⊙O相交于点A,B,点C在⊙O上,且∠AOC=30°,P是直线AB上的一个动点(与点O不重合),直线PC与⊙O相交于点Q.在直线AB上使QP=QO成立的点P共有几个?请相应地求出∠OCP的度数.22. 如图,点E是△ABC的内心,线段AE的延长线交BC于点F(∠AFC≠90°),交△ABC的外接圆于点D.(1)求点F与△ABC的内切圆⊙E的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B,C,E三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.人教版 九年级数学 24.1 圆的有关性质 课后训练-答案一、选择题(本大题共10道小题) 1. 【答案】D2. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B .3. 【答案】D[解析] 由同弧所对的圆周角等于圆心角的一半, 可知∠α=2∠BCD =260°. 而∠α+∠BOD =360°, 所以∠BOD =100°.4. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴6BC ===, ∵OD AC ⊥,∴142CD AD AC ===,在Rt CBD △中,BD ==C .5. 【答案】B6. 【答案】C7. 【答案】B[解析] 如图,连接AD.∵AB 为⊙O 的直径,∴∠ADB =90°.∵∠A 和∠BCD 都是BD ︵所对的圆周角,∴∠A =∠BCD =40°,∴∠ABD =90°-40°=50°.故选B.8. 【答案】C9. 【答案】C[解析] 如图,过点O 作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,连接AO.∵OE ⊥AB ,∴AE =12AB =4.在Rt △OAE 中,OA =5,由勾股定理可得OE =3,同理得OF =3.又∵AB ⊥CD ,∴四边形OEPF 是正方形,∴PE =OE = 3.在Rt △OPE 中,由勾股定理可得OP =3 2.10. 【答案】B[解析] 如图,连接PA ,PB ,PC ,过点P 作PD ⊥AB 于点D ,PE⊥OC 于点E.∵∠ACB =60°,∴∠APB =120°. ∵PA =PB ,∴∠PAB =∠PBA =30°. ∵A(-5,0),B(1,0), ∴AB =6, ∴AD =BD =3,∴PD =3,PA =PB =PC =2 3. ∵PD ⊥AB ,PE ⊥OC ,∠AOC =90°,∴四边形PEOD 是矩形,∴OE =PD =3,PE =OD =3-1=2, ∴CE =PC2-PE2=12-4=2 2, ∴OC =CE +OE =2 2+3, ∴点C 的纵坐标为2 2+ 3. 故选B.二、填空题(本大题共8道小题)11. 【答案】20 [解析]如图,连接DO ,∵CO ⊥AB , ∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB , ∴∠BAD=20°.12. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.13. 【答案】50[解析] 由三角形的内角和定理,得∠B +∠C =180°-∠A .再由OB =OD =OC =OE ,得到∠BDO =∠B ,∠CEO =∠C .在等腰三角形BOD 和等腰三角形COE 中,∠DOB +∠EOC =180°-2∠B +180°-2∠C =360°-2(∠B +∠C )=360°-2(180°-∠A )=2∠A ,所以∠DOE =180°-2∠A =50°.14. 【答案】52 2 [解析] ∵BD 为⊙O 的直径,∴∠DAB =∠DCB =90°. ∵AD =3,AB =4,∴BD =5.又∵AC 平分∠DAB ,∴∠DAC =∠BAC =45°, ∴∠DBC =∠DAC =45°,∠CDB =∠BAC =45°, 从而CD =CB ,∴CD =52 2.15. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.16. 【答案】52°[解析] ∵四边形ABCD 是圆内接四边形,∴∠B +∠D =180°.∵∠B =64°,∴∠D =116°.又∵点D 关于AC 的对称点是点E , ∴∠AEC =∠D =116°.又∵∠AEC =∠B +∠BAE ,∴∠BAE =52°.17. 【答案】25618. 【答案】58[解析] 方法一:如图①,连接OB.∵在△OAB 中,OA =OB ,∴∠OAB =∠OBA.又∵∠OAB =32°,∴∠OBA =32°,∴∠AOB =180°-2×32°=116°.又∵∠C =12∠AOB(一条弧所对的圆周角是它所对的圆心角的一半), ∴∠C =58°.方法二:如图②,过点A 作直径AD ,连接BD ,则∠ABD =90°,∴∠C =∠D =90°-32°=58°(同弧所对的圆周角相等).三、解答题(本大题共4道小题)19. 【答案】证明:如图,连接OC ,OD ,则OC =OD .∵M ,N 分别是半径OA ,OB 的中点, ∴OM =ON .∵CM ⊥OA ,DN ⊥OB ,∴∠OMC =∠OND =90°. 在Rt △OMC 和Rt △OND 中,⎩⎨⎧OC =OD ,OM =ON ,∴Rt △OMC ≌Rt △OND (HL), ∴∠MOC =∠NOD ,∴AC ︵=BD ︵.20. 【答案】(1)如图所示:(2)OE AC ∥,12OE AC =. 理由如下:∵AD 平分BAC ∠, ∴12BAD BAC ∠=∠, ∵12BAD BOD ∠=∠,∴BOD BAC ∠=∠, ∴OE AC ∥,∵OA OB =,∴OE 为ABC △的中位线, ∴OE AC ∥,12OE AC =.21. 【答案】解:在直线AB 上使QP =QO 成立的点P 共有3个. (1)如图①.在△QOC 中,OC =OQ ,∴∠OQC =∠OCQ . 在△OPQ 中,QP =QO ,∴∠QOP =∠QPO .又∵∠QPO =∠OCQ +∠AOC ,且∠AOC =30°,∠QOP +∠QPO +∠OQC =180°,∴3∠OCQ =120°, ∴∠OCQ =40°. 即∠OCP =40°.(2)如图②. ∵QO =QP , ∴∠QPO =∠QOP .设∠QPO =x ,则∠OQC =∠QPO +∠QOP =2x .又∵OC =OQ , ∴∠OCQ =∠OQC =2x ,∴∠AOC =∠OPC +∠OCP =x +2x =3x . ∵∠AOC =30°,∴3x =30°,解得x =10°, ∴∠OCP =2x =20°. (3)如图③.∵QO =QP ,∴∠QOP =∠QPO . ∵OC =OQ ,∴∠OQC =∠OCQ .设∠QPO =y ,则∠OQC =∠OCQ =∠QPO +∠AOC =y +30°,∴在△OPQ中,有y+y+y+30°=180°,解得y=50°,∴∠OCP=180°-50°-30°=100°.综上所述,在直线AB上使QP=QO成立的点P共有3个,∠OCP的度数分别为40°,20°,100°.22. 【答案】解:(1)设⊙E切BC于点M,连接EM,则EM⊥BC.又线段AE的延长线交BC 于点F,∠AFC≠90°,∴EF>EM,∴点F在△ABC的内切圆⊙E外.(2)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BED=∠ABE+∠BAD,∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(3)如图①,连接CD.设△ABC的外接圆为⊙O.∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD2+CD2=BC2,∴BD=CD=3 2.(4)B,C,E三点可以确定一个圆.如图②,连接CD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD=CD.又由(2)可知ED=BD,∴BD=CD=ED,∴B,C,E三点确定的圆的圆心为点D,半径为BD(或ED,CD)的长度.24.2 点和圆、直线和圆的位置关系一、选择题(本大题共8道小题)1. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定2. 2019·武汉江岸区期中点P到直线l的距离为3,以点P为圆心,以下列长度为半径画圆,能使直线l与⊙P相交的是()A.1 B.2 C.3 D.43. 2020·武汉模拟在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以点A为圆心,4.8为半径的圆与直线BC的公共点的个数为()A.0 B.1 C.2 D.不能确定4. 如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中7×4方格中的格点相连,连线能够与该圆弧相切的格点有()A.1个B.2个C.3个D.4个5.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上两点,且∠PD C=60°,则∠OBC等于( )A. 55°B. 65°C. 70°D. 75°6. 如图,在△MBC中,∠MBC=90°,∠C=60°,MB=2 3,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A. 2B. 3 C.2 D.37. 如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值为()A.5 B.4 2 C.4.75 D.4.88. 一把直尺、含60°角的三角尺和光盘如图所示摆放,A为60°角与直尺的交点,AB=3,则光盘的直径是()A.3 B.3 3 C.6 D.6 3二、填空题(本大题共8道小题)9. 直角三角形的两条直角边分别是5和12,则它的内切圆半径为.10. 如图,P A,PB是☉O的切线,A,B为切点,点C,D在☉O上.若∠P=102°,则∠A+∠C=.11. 设⊙O 的半径为3,点O 到直线l 的距离为d ,若直线l 与⊙O 至少有一个公共点,则d 的取值范围是________.12. 如图,AB是⊙O 的直径,⊙O 交BC 于点D ,DE ⊥AC ,垂足为E ,要使DE是⊙O 的切线,则图中的线段应满足的条件是____________.13. 如图,在△ABC 中,∠A =60°,BC =5 cm.能够将△ABC 完全覆盖的最小圆形纸片的直径是________cm.14. 已知l 1∥l 2,l 1,l 2之间的距离是3 cm ,圆心O 到直线l 1的距离是1 cm ,如果圆O 与直线l 1,l 2有三个公共点,那么圆O 的半径为________cm.15. 如图,AB 是⊙O的直径,OA =1,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D.若BD =2-1,则∠ACD =________°.16. 如图所示,在半圆O 中,AB 是直径,D是半圆O 上一点,C 是AD ︵的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,有下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.其中正确的结论是________(只需填写序号).三、解答题(本大题共4道小题)17. 在△ABC中,AB=AC=10,BC=16,⊙A的半径为7,判断⊙A与直线BC 的位置关系,并说明理由.18. 如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=1,求点O到弦AB的距离.19. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.20. 如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF,DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠CDF=∠EDC;(3)若DE=10,DF=8,求CD的长.人教版九年级数学24.2 点和圆、直线和圆的位置关系培优训练-答案一、选择题(本大题共8道小题)1. 【答案】B2. 【答案】D3. 【答案】B4. 【答案】C[解析] 如图,连接AB,BC,作AB,BC的垂直平分线,可得点A,B,C所在的圆的圆心为O′(2,0).只有当∠O′BF=∠O′BD+∠DBF=90°时,BF与圆相切,此时△BO′D≌△FBE,EF=DB=2,此时点F的坐标为(5,1).作过点B,F的直线,直线BF经过格点(1,3),(7,0),此两点亦符合要求.即与点B的连线,能够与该圆弧相切的格点是(5,1)或(1,3)或(7,0),共3个.5. 【答案】B【解析】连接OP ,如解图,则OP ⊥AP .∵∠D =60°,∴∠COP =120°,∵∠A =20°,∠APO =90°,∴∠AOP =70°,∴∠AOC =50°,∵OB =OC ,∴∠OBC =180°-50°2=65°.解图6. 【答案】C[解析] 在Rt △BCM 中,∠MBC =90°,∠C =60°,∴∠BMC =30°,∴BC =12MC ,即MC =2BC.由勾股定理,得MC2=BC2+MB2.∵MB =2 3, ∴(2BC)2=BC2+12,∴BC =2.∵AB 为⊙O 的直径,且AB ⊥BC ,∴BC 为⊙O 的切线.又∵CD 也为⊙O 的切线,∴CD =BC =2.7. 【答案】D[解析] 如图,设PQ 的中点为F ,⊙F 与AB 的切点为D ,连接FD ,FC ,CD .∵AB =10,AC =8,BC =6, ∴∠ACB =90°, ∴PQ 为⊙F 的直径.∵⊙F 与AB 相切,∴FD ⊥AB ,FC +FD =PQ ,而FC +FD ≥CD ,∴当CD 为Rt △ABC 的斜边AB 上的高且点F 在CD 上时,PQ 有最小值,为CD 的长,即CD 为⊙F 的直径.∵S △ABC =12BC ·AC =12CD ·AB ,∴CD =4.8.故PQ 的最小值为4.8.8. 【答案】D[解析] 设光盘的圆心为O ,连接OA ,OB ,则OB⊥AB ,∠OAB =12×(180°-60°)=60°. ∵AB =3,∴OA =6,OB =3 3, ∴光盘的直径是6 3.故选 D.二、填空题(本大题共8道小题)9. 【答案】2 [解析]直角三角形的斜边==13,所以它的内切圆半径==2.10. 【答案】219°[解析]连接AB ,∵P A ,PB 是☉O 的切线, ∴P A=PB. ∵∠P=102°,∴∠P AB=∠PBA=(180°-102°)=39°. ∵∠DAB +∠C=180°,∴∠P AD +∠C=∠P AB +∠DAB +∠C=180°+39°=219°.11. 【答案】0≤d≤312. 【答案】BD =CD或AB =AC (答案不唯一)[解析] (1)连接OD .要使DE 是⊙O 的切线,结合DE ⊥AC ,只需OD ∥AC ,根据O 是AB 的中点,只需BD =CD 即可;(2)根据(1)中探求的条件,要使BD =CD ,则连接AD ,由于∠ADB =90°,只需AB =AC ,根据等腰三角形的三线合一即可.13. 【答案】10 33 如图,能够将△ABC 完全覆盖的最小圆形纸片是△ABC 的外接圆⊙O.连接OB ,OC ,则∠BOC =2∠A =120°.过点O 作OD ⊥BC 于点D ,则∠BOD =12∠BOC =60°.∴∠OBD =30°,∴OB =2OD.由垂径定理,得BD =12BC =52 cm ,在Rt △BOD 中,由勾股定理,得OB2=OD2+BD2,即(2OD)2=OD2+(52)2,解得OD =56 3 cm.∴OB =5 33cm ,∴能够将△ABC 完全覆盖的最小圆形纸片的直径是10 33 cm.14. 【答案】2或4 [解析] 设圆O 的半径为r cm 如图①所示,r -1=3,得r =4;如图②所示,r +1=3,得r =2.15. 【答案】112.5 [解析] 如图,连接OC.∵CD 是⊙O 的切线,∴OC ⊥CD.∵BD =2-1,OA =OB =OC =1,∴OD =2,∴CD =OD2-OC2=(2)2-12=1,∴OC =CD ,∴∠DOC =45°.∵OA =OC ,∴∠OAC =∠OCA ,∴∠OCA =12∠DOC =22.5°,∴∠ACD =∠OCA +∠OCD =22.5°+90°=112.5°.16. 【答案】②③ [解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误.如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°, ∴∠GPD =∠GDP ,∴GP =GD ,故②正确.补全⊙O ,延长CE 交⊙O 于点F .∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵.又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵,∴∠CAP =∠ACP ,∴AP =CP .∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°,∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点,∴点P 为Rt △ACQ 的外心,故③正确.三、解答题(本大题共4道小题)17. 【答案】解:⊙A 与直线BC 相交.理由:过点A 作AD ⊥BC 于点D ,则BD =CD =8.∵AB =AC =10,∴AD =6.∵6<7,∴⊙A 与直线BC 相交.18. 【答案】解:(1)∵PA 切⊙O 于点A ,PB 切⊙O 于点B ,∴PA =PB ,∠PAC =90°.∵∠APB =60°,∴△APB 是等边三角形,∴∠BAP =60°,∴∠BAC =90°-∠BAP =30°.(2)过点O 作OD ⊥AB 于点D ,如图所示,则AD =BD =12AB.由(1)得△APB是等边三角形,∴AB=PA=1,∴AD=1 2.在Rt△AOD中,∵∠BAC=30°,∴OD=12OA.由勾股定理,得OA2=OD2+AD2,即(2OD)2=OD2+(1 2)2,∴OD=36,即点O到弦AB的距离为36.19. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l.又∵AD⊥l,∴AD∥OC,∴∠DAC=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)如图②,连接BF.∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF=∠ADE+∠DAE=90°+∠DAE,又由圆内接四边形的性质,得∠AEF+∠B=180°,∴90°+∠DAE+∠B=180°,∴∠DAE=90°-∠B,∴∠BAF=∠DAE.20. 【答案】解:(1)证明:如图,连接OC.∵OA=OB,AC=CB,∴OC⊥AB.又∵点C在⊙O上,∴直线AB是⊙O的切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC.∵OD=OF,∴∠ODF=∠OFD.∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD.∵OD=OC,∴∠ODC=∠OCD,∴∠CDF=∠EDC.(3)如图,过点O作ON⊥DF于点N,延长DF交AB于点M. ∵ON⊥DF,∴DN=NF=4.在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴ON=OD2-DN2=3.由(2)知OC∥DF,∴∠OCM+∠CMN=180°.由(1)知∠OCM=90°,∴∠CMN=90°=∠OCM=∠MNO,∴四边形OCMN是矩形,∴CM=ON=3,MN=OC=5.在Rt△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN=9,∴CD=DM2+CM2=92+32=310.24.3正多边形和圆一、选择题1.如图,四边形ABCD是⊙O的内接四边形,AB为⊙0直径,点C为劣弧BD 的中点,若∠DAB=40°,则∠ABC=().A.140°B.40°C.70°D.50°2.如图,圆O是△ABC的外接圆,连接OA、OC,∠OAC=20°,则∠ABC的度数为()A.140°B.110°C.70°D.40°3.如图,已知△ABC为⊙O的内接三角形,AB>AC.E为BAC的中点,过E 作EF⊥AB于F.若AF=1,AC=4,∠C=60°,则⊙O的面积是()A.8πB.10πC.12πD.18π4.如图,四边形ABCD 内接于O ,9AB =,15AD =,120BCD ∠=︒,弦AC 平分BAD ∠,则AC 的长是( )A .73B .83C .12D .135.如图,AB 为⊙O 的直径,点C 为圆上一点,∠BAC =20°,将劣弧AC 沿弦AC 所在的直线翻折,交AB 于点D ,则弧AD 的度数等于( )A .40°B .50C .80°D .1006.如图,等边△ABD 与等边△ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,下列结论:(1)BE=CD ;(2)AF 平分∠EAC ; (3)∠BFD=60°;(4)AF+FD=BF 其中正确的有( )A .1个B .2个C .3个D .4个7.正方形ABCD 中,对角线AC 、BD 交于O ,Q 为CD 上任意一点,AQ 交BD 于M ,过M作MN ⊥AM 交BC 于N ,连AN 、QN .下列结论:①MA=MN ;②∠AQD=∠AQN ; ③S △AQN =12S 五边形ABNQD ;④QN 是以A 为圆心,以AB 为半径的圆的切线.其中正确的结论有( )A .①②③④B .只有①③④C .只有②③④D .只有①② 8.如图,在菱形ABCD 中,点P 是BC 边上一动点,连结AP ,AP 的垂直平分线交BD 于点G ,交 AP 于点E ,在P 点由B 点到C 点的运动过程中,∠APG 的大小变化情况是( )A .变大B .先变大后变小C .先变小后变大D .不变9.如图,矩形ABCD 为⊙O 的内接四边形,AB =2,BC =3,点E 为BC 上一点,且BE =1,延长AE 交⊙O 于点F ,则线段AF 的长为( )A .755B .5C .5+1D .35210.在四边形ABCD 中,M 、N 分别是CD 、BC 的中点, 且AM ⊥CD ,AN ⊥BC ,已知∠MAN=74°,∠DBC=41°,则∠ADB 度数为( ).A .15°B .17°C .16°D .32°二、填空题11.如图,C 为半圆O 上一点,AB 为直径,且AB 2a =,COA 60∠=.延长AB 到P ,使1BP AB 2=,连CP 交半圆于D ,过P 作AP 的垂线交AD 的延长线于H ,则PH 的长度为________.12.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+22.其中正确的是_____.(把你认为正确结论的序号都填上)13.如图,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,点D是线段BC上一动点,连接AD,以AD为边作△ADE∽△ABC,点N是AC的中点,连接NE,当线段NE最短时,线段CD的长为_____.14.如图,四边形ABCD内接于⊙O,∠1+∠2=64°,∠3+∠4=__________°.15.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=12BD;③BN+DQ=NQ;④AB BNBM2是_____.三、解答题16.如图,四边形ABCD 是O 的内接四边形,42BC =,45BAC ∠=,75ABC ∠=,求AB 的长.17.如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA =OB =a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0120α≤<︒︒且60α≠︒),作点A 关于直线OM′的对称点C ,画直线BC 交于OM′与点D ,连接AC ,AD .有下列结论:有下列结论:①∠BDO + ∠ACD = 90°;②∠ACB 的大小不会随着a 的变化而变化;③当 30︒=α时,四边形OADC 为正方形;④ACD ∆23a .其中正确的是________________.(把你认为正确结论的序号都填上) 18.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形 (1)概念理解①根据上述定义举一个等补四边形的例子:②如图1,四边形ABCD 中,对角线BD 平分∠ABC ,∠A +∠C =180°,求证:四边形ABCD是等补四边形(2)性质探究:③小明在探究时发现,由于等补四边形有一组对角互补,可得等补四边形的四个顶点共圆,如图2,等补四边形ABCD内接于⊙O,AB=AD,则∠ACD∠ACB(填“>”“<”或“=“);④若将两条相等的邻边叫做等补四边形的“等边”,等边所夹的角叫做“等边角”,它所对的角叫做“等边补角”连接它们顶点的对角线叫做“等补对角线”,请用语言表述③中结论:(3)问题解决在等补四边形ABCD中,AB=BC=2,等边角∠ABC=120°,等补对角线BD 与等边垂直,求CD的长.19.定义:在凸四边形中,我们把两组对边乘积的和等于对角线的乘积的四边形称为“完美四边形”(1)在正方形、矩形、菱形中,一定是“完美四边形”的是______.(2)如图1,在△ABC中,AB=2,BC=52,AC=3,D为平面内一点,以A、B、C、D四点为顶点构成的四边形为“完美四边形”,若DA,DC的长是关于x的一元二次方程x2-(m+3)x+14(5m2-2m+13)=0(其中m为常数)的两个根,求线段BD的长度.(3)如图2,在“完美四边形”EFGH中,∠F=90°,EF=6,FG=8,求“完美四边形”EFGH面积的最大值.20.如图,O 是ABC 的外接圆,ABC 的外角DAC ∠的平分线交O 于点E ,连接CE 、BE .(1)求证:BE CE =;(2)若60CAB ∠=︒,23BC =,求劣弧BC 的长度.21.(1)已知:如图1,AB 是O 的直径,点P 为O 上一点(且点P 不与A 、B 重合)连接PA ,PB ,APB ∠的角平分线PC 交O 于点C . ①若86PA PB ==,,求AB 的长 ②求证:2PA PB PC +=(2)如图2,在正方形ABCD 中,52AB 2=,若点P 满足3PC =,且90APC ∠=︒,请直接写出点B 到AP 的距离.22.如图(1) ,折叠平行四边形ABCD ,使得,B D 分别落在,BC CD 边上的,B D ''点,,AE AF 为折痕(1)若AE AF =,证明:平行四边形ABCD 是菱形; (2)若110BCD ︒∠= ,求B AD ''∠的大小;(3)如图(2) ,以,AE AF 为邻边作平行四边形AEGF ,若AE EC =,求CGE ∠的大小23.在平面直角坐标系xOy 中,已知(0,2)A ,动点P 在3y x =的图像上运动(不与O 重合),连接AP ,过点P 作PQ AP ⊥,交x 轴于点Q ,连接AQ .(1)求线段AP 长度的取值范围;(2)试问:点P 运动过程中,QAP ∠是否问定值?如果是,求出该值;如果不是,请说明理由.(3)当OPQ ∆为等腰三角形时,求点Q 的坐标.【参考答案】1.C 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.A 10.C 113 12.①②④ 13.411014.64 15.①②③④ 16.317.①②④18.(1)①正方形;②略;(2)③=;④等补四边形的“等补对角线”平分“等边补角”;(3)CD 的值为2或4. 19.(1)正方形、矩形;(2)3;(3)49. 20.(1)略;(2)43π21.(1)①10AB =,②略;(2)72或12 22.(1)略;(2)30°;(3)45°.23.(1)3AP ≥;(2)QAP ∠为定值,QAP ∠=30°;(3)1(234,0)Q +,2(234,0)Q -,3(23,0)Q -,423(,0)3Q24.4 弧长和扇形面积一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 1. 如图是一圆锥的侧面展开图,其弧长为,则该圆锥的全面积为A.B.C.D.2. 一扇形面积是,半径为,则该扇形圆心角度数是( ) A.B.C.D.3. 圆锥的底面半径为,母线长为,则该圆锥的侧面积为( ) A.B.C.D.4. 如图,在边长为的正方形内部,以各边为直径画四个半圆,则图中阴影部分的面积是( )A. B. C. D.5. 如果圆柱的底面直径为,母线长为,那么圆柱的侧面展开图的面积等于()A. B. C. D.6. 一个扇形占其所在圆的面积的,则该扇形圆心角是()A. B. C. D.无法计算7. 如图,圆锥的底面半径,高,则这个圆锥的侧面展开图的圆心角是()A. B. C. D.8. 一个圆锥的底面圆的周长是,母线长是,它的侧面展开图的圆心角的度数是()A. B. C. D.9. 已知一个圆锥的侧面积是,它的侧面展开图圆心角为,则这个圆锥的底面半径为A. B. C. D.10. 如图,边长为米的正方形池塘的周围是草地,池塘边、、、处各有一棵树,且米.现用长米的绳子将一头羊拴在其中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在()A.处B.处C.处D.处二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如果圆柱的母线长为,底面半径为,那么这个圆柱的侧面积是________.12. 一个圆锥的侧面展开图是一个圆心角为,面积为的扇形,则这个圆锥的高是________.13. 一个圆柱体底面积直径是高的倍,如果底面积半径是分米,则它的表面积是________平方分米.14. 一个扇形的圆心角是,面积为,那么这个扇形的弧长为________.15. 用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于,则这个圆锥的母线长为________.16. 已知圆锥的底面周长为,母线长为,那么这个圆锥的侧面积是________(结果保留).17. 如图,已知的半径,弦,且,点在上,则图中的阴影部分的面积是________.18. 如图,为的弦,点为的中点,,当点、在上运动一周时,点所走过的路径与围成的图形面积是________.19. 如图所示,已知的半径,,则所对的弧的长为________.20. 现有圆周的一个扇形彩纸片,该扇形的半径为,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为________.三、解答题(本题共计6 小题,共计60分,)21. 如图,扇形的圆心角,半径,若将此扇形围成一个圆锥的侧面,求圆锥的底面面积的半径.22. 如图,圆锥的底面半径为,高为,求这个圆锥的侧面积和表面积.23. 如图,圆锥的底面半径,高.求这个圆锥的表面积.取24. 如图,在中,,,以腰为直径作半圆,分别交,于点,.求,的长.25. 有一直径为圆形纸片,从中剪出一个圆心角是的最大扇形(如图所示).(1)求阴影部分的面积(2)用所剪的扇形纸片围城一个圆锥,该圆锥的底面圆的半径是多少?26. 如图,一个圆锥的高为,侧面展开图是半圆.求圆锥的母线长与底面半径之比;求的度数;求圆锥的侧面积(结果保留).参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:设圆锥的底面圆的半径为,扇形的半径为,根据题意得,解得,,解得,所以该圆锥的全面积.故选.2.【答案】A【解答】解:设扇形圆心角的度数为,∴,∴.即扇形圆心角度数为.故选.3.【答案】C【解答】圆锥的侧面展开图为扇形,由扇形面积公式可以得出此圆锥侧面积为:=.4.【答案】D【解答】解:如图所示,.故选.5.【答案】A【解答】解:圆柱的侧面积,故选.6.【答案】B【解答】解:∵一个扇形占其所在圆的面积的,∴该扇形的圆心角占它所在圆的圆心角的,即.故选.7.【答案】C【解答】解:圆锥的母线长,设这个圆锥的侧面展开图的圆心角为,根据题意得,解得,即这个圆锥的侧面展开图的圆心角为.故选.8.【答案】C【解答】解:圆锥侧面展开图的扇形面积半径为,弧长为,代入扇形弧长公式,即,解得,即扇形圆心角为度.故选.9.【答案】【解答】此题暂无解答10.【答案】B【解答】解:①;②;③;④,故选二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:这个圆柱的侧面积.故答案为:.12.【答案】【解答】解:设母线长为,底面圆的半径为,,解得:,底面圆的周长为:,解得:,∴这个圆锥的高是:.故答案为:.13.【答案】【解答】解:∵一个圆柱体底面直径是高的倍,如果底面半径是分米,∴高为分米,底面周长为:(分米),则其侧面积为:(平方分米),上下两底面积为:(平方分米).故它的表面积是:平方分米.14.【答案】【解答】解:设这个扇形的半径是.根据扇形面积公式,得,解得(负值舍去).故半径为.弧长是:.故答案为.15.【答案】【解答】解:设圆锥的母线长为,根据题意得:,解得:.故答案为:.16.【答案】【解答】解:圆锥的侧面积.17.【答案】【解答】解:连接,,∵,∴,∵,∴是等边三角形,∴,,∴,故答案为:.18.【答案】【解答】解:如图,连接、,点所走过的路径为小圆,∵点为的中点,,∴,且,∴点所走过的路径与围成的图形面积是,故答案为:.19.【答案】【解答】解:所对的弧的长,故答案为:.20.【答案】【解答】解:解得:,∵扇形彩纸片是圆周,因而圆心角是∴剪去的扇形纸片的圆心角为.剪去的扇形纸片的圆心角为.故答案为.三、解答题(本题共计 6 小题,每题10 分,共计60分)21.【答案】圆锥的底面圆的半径为.【解答】解:设圆锥的底面圆的半径为,根据题意得,解得.22.【答案】解:∵圆锥的底面半径为,高为,∴圆锥的母线长为,∴.∵圆锥的底面积,∴.【解答】解:∵圆锥的底面半径为,高为,∴圆锥的母线长为,∴.∵圆锥的底面积,∴.23.【答案】解:在中,,,由勾股定理知,侧面积,底面积,∴圆锥的表面积.【解答】解:在中,,,由勾股定理知,侧面积,底面积,∴圆锥的表面积.24.【答案】解:连接,∵,,∴,∴的长,连接、,∵为圆的直径,∴,又,∴,∴,∴的长.【解答】解:连接,∵,,∴,∴的长,连接、,∵为圆的直径,∴,又,∴,∴,∴的长.25.【答案】解:(1)连接,,∵,,∴是圆的直径,,∵圆的直径为,则,故.∴阴影;(2)的长,则,解得:.故该圆锥的底面圆的半径是.【解答】解:(1)连接,,∵,,∴是圆的直径,,∵圆的直径为,则,故.∴阴影;(2)的长,则,解得:.故该圆锥的底面圆的半径是.26.【答案】解:设此圆锥的高为,底面半径为,母线长,∵,∴;由中图所示,∵,,∴,,∴,同理,则;由中图可知,,∴,即,解得,∴,∴圆锥的侧面积为.【解答】解:设此圆锥的高为,底面半径为,母线长,∵,∴;由中图所示,∵,,∴,,∴,同理,则;由中图可知,,∴,即,解得,∴,∴圆锥的侧面积为.。
沪科版数学九下24.1旋转 精品课件(共3课时94页)
O
C
3. 旋转中心是唯一不动的点.
例 2 下图为 4×4 的正方形网格,每个小正方形的边长 均为 1,将 △OAB 绕点 O 逆时针旋转 90°,你能画出 △OAB 旋转后的图形 △OA′B′ 吗?
B
A′
A
B′
O
例 3 如图,点 E 是正方形 ABCD 内一点,连接 AE,
BE,CE,将△ABE 绕点 B 顺时针旋转 90° 到△CBE′
度 θ (0°<θ<360°)后,能够与原图形重合,这样的图 形叫做旋转对称图形,这个定点就是旋转中心.
做一做 下图中不是旋转对称图形的是
( B)
例5 如图是一个标准的五角星,若将它绕中心旋转一定
的角度后能与自身重合,则至少应将它旋转
( B)
A.60° B.72° C.90° D.144°
解析:如图,点 O 是五角星的中心, 则∠AOB =∠BOC =∠COD =∠DOE =∠AOE. A
处,若 AE=1,BE=2,CE=3,则∠BE′C=_1_3_5_度.
解析:连接 EE′. 由旋转性质知 AE = CE′ = 1,BE = BE′,∠EBE′ = 90°,
A
D
E
∴∠BE'E = 45°,EE′ = 2 2.
在△EE′C 中,CE′2 + EE′2 = 9 = CE2,
∴∠EE′C = 90°.
第24章 圆
24.1 旋转
(共3课时94页)
第24章 圆
24.1 旋转
第1课时 旋转的概念和性质
导入新课
情境引入
这些运动 有什么共 同的特点?
新课讲授
观察与思考
旋转的概念
问题 观察下面的现象,它有什么特点? O
沪科版数学九年级下册《第24章 圆 24-1 旋转 第3课时 在平面直角坐标系中对图形进行旋转变换》
知识拓展
图形变换的基本方式有哪些?
平移
轴对称
旋转
思考:我们可以将这些图形变换的方式组合 起来吗?
你能利用上述方式设计出美丽的图案吗?
课堂小结
1.在平面直角坐标系中,以原点为旋转中心把一个图形 按逆时针方向旋转,原图上任意一点坐标(x,y)旋转特 定角度后对应点的坐标如下表:
旋转角度
90°
180°
已知如图,△ABC与 △DEF关于原点O成中心 对称,A(-1,2),C(-1, 1),E(4,-3),则B、 D、F的坐标分别为B (_-4_,__3_),D(_1_,__-_2), F(_1_,__-1_).
随堂练习
1.如图,将线段AB绕点O顺时针旋转90°得到线段 A′B′,那么A(-2,5)的对应点A′的坐标是( B ) A.(2,5) B.(5,2) C.(2,-5) D.(5,-2)
推进新课
如图,△ABC的顶点坐标分别是A(2,1),B
(0,0),C(2,0).
y
2
1
A
B
-2 -1 O
C
1 2x
-1
-2
(1)分别画出△ABC以点O(0,0)为旋转中心,在 图(1)中旋转90°、在图(2)中旋转180°、在图 (3)中旋转270°、在图(4)中旋转360°而得到的 △A′B′C′;
[解析] (1)根据轴对称的概念先找到图形上的关键 点关于AB所在直线的对称点,然后顺次连接起来即可; (2)将图形的各个顶点绕旋转中心O逆时针旋转90°后 的对应点描出来,然后顺次连接起来即可;(3)根据自 己的想象恰当地涂色.
解:如图:
[归纳] 利用平移、轴对称、旋转等变换设计图案, 一般都是先找“关键点”,再作关键点的对应点,然 后顺次连接起来即可.
2022秋九年级数学上册 第24章 圆24.1 圆的有关性质 3弧、弦、圆心角说课稿新人教版
24.1.3 《弧、弦、圆心角》说课稿教材分析:本课是人教版九年级上册第二十四章第一节圆的有关性质,它是在学习了垂径定理后进而要学习的圆的又一个重要性质。
主要研究弧,弦,圆心角的关系。
教材中充分利用圆的对称性,通过观察,实验探究出性质,再进行证明,体现图形的认识,图形的变换,图形的证明的有机结合。
在证明圆的许多重要性质时都运用了圆的旋转不变性。
同时弧,弦,圆心角的关系定理在后继证明线段相等,角相等,弧相等提供了又一种方法。
教学目标分析:1、让学生在实际操作中发现圆的旋转不变性.2、结合图形让学生了解圆心角的概念,学会辨别圆心角.3、引导学生发现圆心角、弦、弧之间的相等关系,并初步学会运用这些关系解决有关问题.4、培养学生观察、分析、归纳的能力,渗透旋转变换的思想及由特殊到一般的认识规律.教法分析:1.学情:由于圆的知识是轴对称及旋转知识的后续学习,学生有一定圆的相关概念,计算的知识储备,因此学习本节难度不是太大。
由于学生对圆的旋转不变性不甚了解,所以在探讨圆心角、弧、弦之间的相等关系时可能感到困难,另外对等对等的理解可能不透彻,我会做直观的示范;初始阶段在证明角相等,线段相等等有关问题时受思维定势的影响,学生往往会走利用“三角形全等”的老路,这时我会有意识引导,针对性训练,构建学生头脑中新的知识网络。
2.教学活动是教与学双边互动过程,必须充分发挥学生的主体和教师的主导作用,因此教学目标的达成,需优选教学法,根据学生的学情,本节课在探究圆心角,弦,弧之间的相等关系我采用发现模式,基本程序是:观察实践——概括归纳——重点研讨——推理反思。
这种教学模式注重知识的形成过程,有利于体现学生的主体地位和分析问题的方法,例题教学时采用讲授模式,一方面通过新知识的讲解练习,及时反馈,查缺补漏,使学生树立信心,培养学习能力,另一方面对大面积提高教学质量也是有意的。
在最后小结时运用自学模式。
3.教学手段:学生动手,现场板演,多媒体辅助教学.教学过程分析:一、创设情景,引入新课1.看一看、思考(1)多媒体动态演示:平行四边形绕对角线交点旋转180度后,你发现了什么?(2)多媒体动态演示:圆绕圆心O旋转180度后,你发现了什么?这两个问题设置是让学生感性认识,发现平行四边形和圆旋转180度后都能与自生重合,是中心对称图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)画图略,点 E 的坐标是(3,3),点 F 的坐标是(3,-1); 唯一,如 B(-2,0)等.
(2)答案不
4.如图所示的花朵图案,至少要旋转
45 度后,才能与原来的图形重合.
5.如图,在平面直角坐标系 xOy 中,已知点 A(3,4),将 OA 绕坐标原点 O 逆时针旋转 90° 至 OA′,则点 A′的坐标是 (-4,3) .
3.在平面直角坐标系中,点 A 的坐标是(0,3),点 B 在 x 轴上,将△AOB 绕点 A 逆时针旋转 90° 得到△AEF,点 O、B 对应点分别是 E、F.
(1)若点 B 的坐标是(-4, 0), 请在图中画出△AEF, 并写出点 E、 F 的坐标; (2)当点 F 落在 x 轴上方时,试写出一个符合条件的点 B 的坐标.
图案设计 我们已学过 平移 、 轴对称 、 旋转 ,利用这些图形变换中的一种或几 种组合,可进行 图案设计 .
1.在平面直角坐标系中,点(3,-2)关于原点的对称点的坐标是( C ) A.(3,2) C.(-3,2) B.(-3,-2) D.(-3,-2)
2.如图是某药业公司商品标志图案,则下列说法中,正确的说法有( B ) ①图案是按照轴对称设计的;②图案是按照旋转设计的;③图案的外层“S” 是按照旋转设计的;④图案的内层“A”是按照轴对称设计的. A.1 个 C.3 个 B.2 个 D .4 个
第24章 圆
24.1 旋转 第3课时 平面直角坐标系中的旋转
平面直角坐标系中点的旋转规律 点(x,y)以点 O 为旋转中心按逆时针方向旋转 90° 、180° 、270° 、360° 后的点 的坐 、 (x,y) .
自我诊断 1.点(-2,5)绕坐标原点 O 顺时针旋转 90° 、180° 后得到的点的坐标 分别为 (5,2) 、 (2,-5) .
6.如图所示是某设计师在方格纸中设计图案的一部分,请你帮他完成余下 的工作: (1)作出关于直线 AB 的轴对称图形; (2)将你画出的部分连同原图形绕点 O 逆时针旋 转 90° ,画出得到的图形; (3)发挥你的想象, 给得到的图案适当涂上阴影, 让图案变得更加美丽.
解:(1)运用轴对称的方法,按照要求进行作图如图①所示; 变换的方法,按照要求进行作图如图②所示; (3)略.
(2)运用旋转