数理统计13 PPT课件
合集下载
概率论与数理统计课件完整版.ppt
P(A1 A2 …)=P(A1)+P(A2)+… (可列可加性)
25
2.概率的性质:
性质1. P() 0.
性质2. 若 A1, A2, , An是两两互不相容的事件, 则 P(A1 A2 An)
P(A1) P(A2) P(An). (有限可加性)
性质3. 若A B,则有 P(B A) P(B) P(A);
若事件A发生必然导致事件B发生,则称件B包含事件A,记 作AB. 若A B且A B, 即A=B, 则称A与B相等.
B
A S
(1) A B
8
2.和事件:
A B { x | x A或x B}称为A与B的和事件.
即A, B中至少有一个发生, 称为A与B的和, 记A B.
可列个事件A1, A2 , 的和事件记为 Ak .
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 , 两两互不相容, 则
P(Bi | A) P(B i | A).
28
§5. 条件概率
(一)条件概率: 设试验E的样本空间为S, A, B是事件, 要考虑
在A已经发生的条件下B发生的概率, 这就是条件概 率问题.
例1.老王的妻子一胎生了3个孩子,已知老大是女孩,求另 两个也都是女孩的概率(假设男孩、女孩出生率相同).
1. 定义: 设A, B是两个事件, 且P(A)>0, 称
A2 , A2 A3 , A1 A2 , A1 A2 , A1 A2 A3 , A1 A2 A2 A3 A1 A3 .
25
2.概率的性质:
性质1. P() 0.
性质2. 若 A1, A2, , An是两两互不相容的事件, 则 P(A1 A2 An)
P(A1) P(A2) P(An). (有限可加性)
性质3. 若A B,则有 P(B A) P(B) P(A);
若事件A发生必然导致事件B发生,则称件B包含事件A,记 作AB. 若A B且A B, 即A=B, 则称A与B相等.
B
A S
(1) A B
8
2.和事件:
A B { x | x A或x B}称为A与B的和事件.
即A, B中至少有一个发生, 称为A与B的和, 记A B.
可列个事件A1, A2 , 的和事件记为 Ak .
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 , 两两互不相容, 则
P(Bi | A) P(B i | A).
28
§5. 条件概率
(一)条件概率: 设试验E的样本空间为S, A, B是事件, 要考虑
在A已经发生的条件下B发生的概率, 这就是条件概 率问题.
例1.老王的妻子一胎生了3个孩子,已知老大是女孩,求另 两个也都是女孩的概率(假设男孩、女孩出生率相同).
1. 定义: 设A, B是两个事件, 且P(A)>0, 称
A2 , A2 A3 , A1 A2 , A1 A2 , A1 A2 A3 , A1 A2 A2 A3 A1 A3 .
概率论与数理统计ppt课件
04
理解基本概念和原理
做大量练习题,培养解题能力
05
06
阅读相关书籍和论文,拓宽知识面
02
概率论基础
概率的基本概念
试验
一个具有有限个或无限个 可能结果的随机试验。
事件
试验中的某些结果的总称 。
概率
衡量事件发生可能性的数 值,通常表示为0到1之间 的实数。
必然事件
概率等于1的事件。
不可能事件
概率等于0的事件。
01 点估计
用样本统计量估计总体参数,如用样本均值估计 总体均值。
02 区间估计
给出总体参数的估计区间,如95%置信区间。
03 估计量的性质
无偏性、有效性和一致性。
假设检验
假设检验的基本思想
先假设总体参数具有某种 特性,然后通过样本信息 来判断这个假设是否合理 。
双侧检验
当需要判断两个假设是否 相等时,如总体均值是否 等于某个值。
连续型随机变量
取值无限的随机变 量。
方差
衡量随机变量取值 分散程度的数值。
03
数理统计基础
总体与样本
总体
研究对象的全体。
抽样方法
简单随机抽样、分层抽样、系统抽样等。
样本
从总体中随机抽取的一部分个体,用于估 计和推断总体的特性。
样本大小
样本中包含的个体数量,需要根据研究目 的和资源来确定。
参数估计
单因素方差分析
单因素方差分析的定义
单因素方差分析是方差分析的一种形式,它只涉及一个实验因素。通过对不同组的均值进行比 较,可以确定这个因素对实验结果的影响是否显著。
单因素方差分析的步骤
单因素方差分析通常包括以下步骤:首先,对实验数据进行分组;其次,计算每组的均值;接 着,计算总的均值和总的变异性;然后,计算组间变异性和组内变异性;最后,通过比较这两 种变异,得出因素的显著性。
概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
数学数理统计PPT课件
b}P{anpnnpbnp}
npq npq npq
(bnp)(anp)
npq
npq
-25-
例 某单位有200台电话分机,每台分机有5%的时间
要使用外线通话。假定每台分机是否使用外线是相互 独立的,问该单位总机要安装多少条外线,才能以 90%以上的概率保证分机用外线时不等待?
解:设有X部分机同时使用外线,则有 X~B(n,p), 其 n 2 中 p 0 0 0. n ,0 1 p 5 n 0 ,- , p p ( 3 ) .0 1 .8 设有N 条外线。由题意有 P{XN}0.9
去掉,代之以 (Markov) 大数定律
1
n2
D n k1
Xk
n0
-11-
二 随机变量的收敛性
定义1 设 X1,X2,,Xn, 为一列随机变量,如果
存在常数 a使得对于任意的 0, 有
ln i P m X n a 1
则称 X n 依概率收敛于 a, 记为 Xn Pa
定义2 设 X1, X2, ,为一列随机变量,X是随机变量
准备工作
1) 切比雪夫不等式
设 X为一随机变量, 其数学期望 E( X )和方差 D( X )
都存在,则对于任意 0, 有
PXE(X) 22
2) A.L.Cauchy-Schwarz不等式.
设 r.v (X ,Y) ,满足 EX 2 , EY 2 则有
E(XY)2 EX2EY2
-3-
贝努里(Bernoulli) 大数定律
n i1
Xi
b}P{ani1
Xi n bn
}
n
n
n
(bn)(an)
n
n
-20-
数理统计 ppt课件
医药数理统计方法
01-04-13
地区
东部 南部 西部 中部
订单百 易碎品订
分比 单百分比
30
25
40
10
20
5
10
3
医药数理统计方法
01-04-14
课堂讨论题 某发报站分别以概率
0.6和0.4发出信号“*”和“–”,若通
讯系统受到种种干扰,当发出信号 “*”时,收报站分别以概率0.8和 0.2收到信号“*”和“–”;当发出信 号为“–”时,收报站分别以概率0.9 和0.1收到信号“–”和“*”。求收报 站收到信号“*”时,发报站确实发 出信号“*”的概率。
n
P(B) P(Ai)P(B|Ai) i1
医药数理统计方法
A3 A2
… B
A1
An
01-04-04
医药数理统计方法
01-04-05
例 有3个外形完全相同的袋子,在 第1个袋子中装有2个白球、1个红球; 在第2个袋子中装有3个白球、1个红 球;在第3个袋子中装有2个白球、2 个红球。先随机地挑选一个袋子,
医药数理统计方法
0.6 “*”
0.8 0.2
0.4 “–”
0.1 0.9
01-04-15
“*” “–”
医药数理统计方法
01-04-16
例 癌症的早期诊断、治疗是提高
疗效的关键。近年来,甲胎蛋白免 疫检测法(简称 AFP 法)被普遍应 用于肝癌的普查和诊断。
医药数理统计方法
01-04-17
设 A={肝癌患者},B={AFP检验 结果为阳性};且已知AFP检测方法 的真阳性率 P(B|A)=0.94,假阳性率 P(B| A )=0.04;在人群中肝癌的发病 率 P(A)=0.0004;今有一人 AFP 检测
概率论与数理统计书ppt课件
条件概率与独立性
CHAPTER
随机变量及其分布
02
随机变量的概念与性质
定义随机变量为在样本空间中的实值函数,其取值依赖于随机试验的结果。
随机变量
讨论随机变量的可数性、可加性、正态性等性质。
随机变量的性质
离散型随机变量的概念
定义离散型随机变量为只能取可数个值的随机变量。
离散型随机变量的分布
讨论离散型随机变量的概率分布,如二项分布、泊松分布等。
应用
中心极限定理及其应用
CHAPTER
贝叶斯推断与决策分析
07
贝叶斯推断的基本原理
金融风险管理
贝叶斯推断在金融风险管理领域有着广泛的应用,如信用风险评估、投资组合优化等。
医疗诊断
贝叶斯推断在医疗诊断方面也有着重要的应用,如疾病诊断、预后评估等。
机器学习与人工智能
贝叶斯推断在机器学习算法和人工智能领域中也有着广泛的应用,如朴素贝叶斯分类器、高斯混合模型等。
参数估计与置信区间
01
点估计
用单一的数值估计参数的值。
02
区间估计
给出参数的一个估计区间,通常包括一个置信水平。
比较两个或多个组的均值差异,确定因素对结果的影响。
方差分析
检验两个或多个组的方差是否相等。
方差齐性检验
研究变量之间的关系,并预测结果。
回归分析
假设检验与方差分析
CHAPTER
回归分析与线性模型
应用
在现实生活中,大数定律被广泛应用于保险、赌博、金融等领域,通过统计数据来预测未来的趋势和风险。
大数定律及其应用
在独立随机变量序列中,它们的和的分布近似于正态分布,即中心极限定理。这意味着,当样本量足够大时,样本均值近似于正态分布。
高等数学概率论与数理统计课件PPT大全
(AB)C=A(BC) 3、分配律:(AB)C=(AC)(BC),
(AB)C=(AC)(BC) 4、对偶(De Morgan)律:
A B A B, AB A B
可推广 Ak Ak , Ak Ak .
k
k
k
k
例:甲、乙、丙三人各向目标射击一发子弹,以A、 B、C分别表示甲、乙、丙命中目标,试用A、B、C
定义:(p8) 事件A在n次重复试验中出现nA次,则 比值nA/n称为事件A在n次重复试验中 出现的频率,记为fn(A). 即 fn(A)= nA/n.
历史上曾有人做过试验,试图证明抛掷匀质硬币时 ,出现正反面的机会均等。
实验者
De Morgan Buffon
K. Pearson K. Pearson
随机事件
二、样本空间(p2)
1、样本空间:试验的所有可能结果所
组成的集合称为样本空间,记为={e};
2、样本点: 试验的单个结果或样本空间 的单元素称为样本点,记为e. 3.由样本点组成的单点集 称为基本事件, 也记为e.
幻灯片 6
随机事件
1.定义 样本空间的任意一个子集称为随机事件, 简称“ 事件”.记作A、B、C等
P( AB) P( AC) P(BC) P( ABC )
30% 3 10% 0 0 0 80%
例1.3.2.在110这10个自然数中任取一数,求
(1)取到的数能被2或3整除的概率,
(2)取到的数即不能被2也不能被3整除的概率,
(3)取到的数能被2整除而不能被3整除的概率。
解:设A—取到的数能被2整除; P(A) 1 P(B) 3
的概率有多大?
3.分组问题
例3:30名学生中有3名运动员,将这30名学生平均 分成3组,求: (1)每组有一名运动员的概率; (2)3名运动员集中在一个组的概率。 解:设A:每组有一名运动员;B: 3名运动员集中在一组
(AB)C=(AC)(BC) 4、对偶(De Morgan)律:
A B A B, AB A B
可推广 Ak Ak , Ak Ak .
k
k
k
k
例:甲、乙、丙三人各向目标射击一发子弹,以A、 B、C分别表示甲、乙、丙命中目标,试用A、B、C
定义:(p8) 事件A在n次重复试验中出现nA次,则 比值nA/n称为事件A在n次重复试验中 出现的频率,记为fn(A). 即 fn(A)= nA/n.
历史上曾有人做过试验,试图证明抛掷匀质硬币时 ,出现正反面的机会均等。
实验者
De Morgan Buffon
K. Pearson K. Pearson
随机事件
二、样本空间(p2)
1、样本空间:试验的所有可能结果所
组成的集合称为样本空间,记为={e};
2、样本点: 试验的单个结果或样本空间 的单元素称为样本点,记为e. 3.由样本点组成的单点集 称为基本事件, 也记为e.
幻灯片 6
随机事件
1.定义 样本空间的任意一个子集称为随机事件, 简称“ 事件”.记作A、B、C等
P( AB) P( AC) P(BC) P( ABC )
30% 3 10% 0 0 0 80%
例1.3.2.在110这10个自然数中任取一数,求
(1)取到的数能被2或3整除的概率,
(2)取到的数即不能被2也不能被3整除的概率,
(3)取到的数能被2整除而不能被3整除的概率。
解:设A—取到的数能被2整除; P(A) 1 P(B) 3
的概率有多大?
3.分组问题
例3:30名学生中有3名运动员,将这30名学生平均 分成3组,求: (1)每组有一名运动员的概率; (2)3名运动员集中在一个组的概率。 解:设A:每组有一名运动员;B: 3名运动员集中在一组
概率论 数理统计第13讲(王)
g(x) = x2. 注:这里的
23
随机变量X 二项分布B(n , p), 例5. 设随机变量 服从 二项分布 Y = eaX, 求 E(Y)。 。 解:
24
例6.设二维离散型随机向量(X,Y)的概率分布如下 设二维离散型随机向量( ) 表所示, 的期望. 表所示,求:Z=X2+Y的期望. = 的期望
, 其中λ>0, 0<p<1, 求E(XY). 解:
26
注意到二项分布 的数学期望,就有 注意到二项分布B(n , p)的数学期望 就有 二项分布 的数学期望
X P
8
8 50
9
7 50
10
15 50
11
10 50
12
10 50
个零件的平均直径为 则这 50 个零件的平均直径为
D = ∑ k × P( X = k ) = ∑ kpk = 10.14
k =8 k =8
12
12
个数字的加权平均 加权平均, 称之为这 5 个数字的加权平均,数学期望的 概念源于此. 概念源于此.
q k −1 p, k = 1,2,L, n − 1; P{ X = k } = q n −1 , k = n. 其中q = 1 − p,于是
E( X ) =
∑
k =1
n −1
kq k −1 p + nq n −1
11
例2.(续) 2.(
E( X ) =
=
k =1 n −1
k =1
注意: 注意:不是所有的随机变量都有数学期望 例如: 分布的密度函数 例如:Cauchy分布的密度函数为 分布的密度函数为
1 f ( x) = , 2 π (1 + x )
数理统计全集ppt课件
ak
1 n
n i1
xik
由大数定律可知:
bk
1n ni1(xi
x)k
Ak
1n n i1
Xi k
依概率收敛于
E( X k )
.
例1. 从一批相同的电子元件中随机地抽出8个,测得使用
寿命(单位:小时)分别为:2300,2430,2580,2400,
2280,1960,2460,2000,试计算样本均值、样本方差及
n
证 明:设 χ2 X i2 X i ~N (0,1)i1,2,,n i 1 X1,X2,,Xn相互独立,则
E (X i)0 ,D (X i)1 , E (X i2) D (X i) E (X i)21,
E χ2 E n Xi2 n E(X i2) n i1 i1
.
E(Xi4)
1 x4ex22dx3 2π
ψ(x) Γ(Γn2(1)n1Γ 2n(2)n22)(n n1 2)(n n1 2x0)n211
1 x n1
n1n2 2
n2
x0 x0
.
f(x;n1,n2) n1 20
n2 n2 25
n2 10
o
x
.
注意:统计的三大分布的定义、基本性质在后面的
学习中经常用到,要牢记!!
4、上α分位点
例3.设总体X和Y相互独立,同服从 N(0,32 )
分布,而 X1,X2,…, X9 和 Y1,Y2,…, Y9 分别是来自X和Y的简单随机样本,求统计量
U X1X2 X9 的分布. Y12 Y22 Y92
解:Xi ~N(0,9)
9
Xi ~ N(0,81)
i1
9
Xi
i1 ~ N(0,1) 9
概率论与数理统计ppt课件
注:P( A) 0不能 A ; P( B) 1不能 B S .
2。 A1 , A2 ,...,An , Ai Aj , i j, P( P(
n n i 1
Ai ) P( Ai )
i 1
n
证:令 Ank (k 1, 2,...), Ai Aj , i j, i, j 1, 2,....
•
5.1 大数定律 5.2 中心极限定理
•
第六章 数理统计的基本概念
• • 6.1 总体和样本 6.2 常用的分布
4
第七章 参数估计
• • • 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计
第八章 假设检验
• • • • • • • 8.1 8.2 8.3 8.4 8.5 8.6 8.7 假设检验 正态总体均值的假设检验 正态总体方差的假设检验 置信区间与假设检验之间的关系 样本容量的选取 分布拟合检验 秩和检验
A B 2 A=B B A
B A
S
例: 记A={明天天晴},B={明天无雨} B A
记A={至少有10人候车},B={至少有5人候车} B
A
一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}
BA
13
事件的运算
A与B的和事件,记为 A B
8
§1 随机试验
确定性现象
自然界与社会Βιβλιοθήκη 活中的两类现象不确定性现象
确定性现象:结果确定 不确定性现象:结果不确定
例:
向上抛出的物体会掉落到地上 ——确定 ——不确定 明天天气状况 ——不确定 买了彩票会中奖
数理统计ppt课件
解 5卷选集在5个位置上的任一种排列,是一个基本 事件,因此,所有可能的基本事件总数(即样本空间中 的基本事件总数)为5!。
设A={第1卷放在最左边}, B={从左到右正好按卷号排 成。12345},则A包含的基本事件总数为1×4!,B包含的基 本事件总数为1。从而,P(A)=4!/5!,P(B)=1/5!。
n 件,问其中恰有 k(k D) 件次品的概率是多少?
解 在N件产品中抽取n件的所有可能取法共有
N n
种,
在 N 件产品中抽取n件,其中恰有k 件次品的取法
共有
D N D种, k n k
于是所求的概率为 p D N D N . k n k n
16
例 5(分房问题) 有 n 个人,每个人都以同样的概 率 1/N 被分配在N(n N) 间房中的每一间中,试求 下列各事件的概率:
则称这类试验的数学模型为古典概型。
2
2. 古典概型中事件概率的计算公式
设随机试验E为古典概型,其样本空间Ω及 事件A分别为:
Ω={ω1,ω2,…,ωn} A={ωi1,ωi2,…,ωik} 则随机事件 A 的概率为:
P( A) k 事件A中包含的基本事件数
n
中的基本事件总数
3
3. 古典概型的基本模型:摸球模型
1.3 古典概型
一、古典概型的概念 二、例题选讲
三、小结
1
一、古典概型
1. 定义 若一个随机试验(Ω,F, P )具有以下两个特征:
(1) 样本空间的元素(基本事件)只有为有限个, 即Ω={ω1,ω2,…,ωn};
(2) 每个基本事件发生的可能性是相等的, 即 P(ω1)=P(ω2)=…=P(ωn)。
故
P( A)
设A={第1卷放在最左边}, B={从左到右正好按卷号排 成。12345},则A包含的基本事件总数为1×4!,B包含的基 本事件总数为1。从而,P(A)=4!/5!,P(B)=1/5!。
n 件,问其中恰有 k(k D) 件次品的概率是多少?
解 在N件产品中抽取n件的所有可能取法共有
N n
种,
在 N 件产品中抽取n件,其中恰有k 件次品的取法
共有
D N D种, k n k
于是所求的概率为 p D N D N . k n k n
16
例 5(分房问题) 有 n 个人,每个人都以同样的概 率 1/N 被分配在N(n N) 间房中的每一间中,试求 下列各事件的概率:
则称这类试验的数学模型为古典概型。
2
2. 古典概型中事件概率的计算公式
设随机试验E为古典概型,其样本空间Ω及 事件A分别为:
Ω={ω1,ω2,…,ωn} A={ωi1,ωi2,…,ωik} 则随机事件 A 的概率为:
P( A) k 事件A中包含的基本事件数
n
中的基本事件总数
3
3. 古典概型的基本模型:摸球模型
1.3 古典概型
一、古典概型的概念 二、例题选讲
三、小结
1
一、古典概型
1. 定义 若一个随机试验(Ω,F, P )具有以下两个特征:
(1) 样本空间的元素(基本事件)只有为有限个, 即Ω={ω1,ω2,…,ωn};
(2) 每个基本事件发生的可能性是相等的, 即 P(ω1)=P(ω2)=…=P(ωn)。
故
P( A)