晶面指数的标定方法的求解过程
晶面指数六方晶系的晶面指数标定讲课文档
0,0,1
练习
1,0,0
0,1,0 晶面指数(233)
常见的晶面指数
(001)
(110)
(100)
(010)
(111)
晶面指数的几点说明:
1°h,k,l 三个数分别对应于a,b,c三晶轴方向。 2°指数中某一数为“0”,表示晶面与相应的晶轴平行,例如 (hk0)晶面平行于c轴。因交点为,倒数为零。 3° (hkl)中括号代表一组互相平行、面间距相等的晶面。
a2
b2
c2
ab
2k l(coscoscos)2hl(coscos cos)]
bc
ac
例 : 某 斜 方 晶 体 的 a=0.742nm, b=0.494nm,
c=0.255nm, 计算d110和d200。
1 dh2kl
h2 a2
kb22
cl22
1 d121
07.412172 4.912452
1 d2
晶面指数六方晶系的晶面指数标定
1°确定交点坐标,X轴:1/3、 Y轴:1、 Z轴:1/2
2°取倒数 3、1、2 3°消除分数 3、1、2 4°晶面指数(312)
0,0,1
练习
1,0,0
0,1,0 晶面指数(233)
常见的晶面指数
(001)
(110)
(100)
(010)
(111)
晶面指数的几点说明:
线表示。
4°用[ ] 括起来,记为[uvw]
Z
确定距原点最近的结点坐标1/2, 1, 0 消除分数为1、2、0 晶向指数 [120]
O
Y
●
晶面指数六方晶系的晶面指数标定
晶面指数的确定方法
1°确定平面与晶胞三个坐标轴的交点坐标(平面不能通过原点) 2°取在三个坐标轴上截距的倒数。 3°消除分数,把它们化为互质的最小整数h、k、l。负数用上划 线表示。 4°用()括起来,记为(hkl )
0,0,1
0,1,0 1,0,0
1°确定交点坐标,X轴:1/2、 Y轴:1、 Z轴:1 2°取倒数 2、1、1 3°消除分数 2、1、1 4°晶面指数(211)
1°确定交点坐标,X轴:1/3、 Y轴:1、 Z轴:1/2 2°取倒数 3、1、2 3°消除分数 3、1、2 4°晶面指数(312)
0,0,1
4-3 六方晶系指数表示
• 上面我们用三个指数 表示晶面和晶向。这 种三指数表示方法, 原则上适用于任意晶 系。对六方晶系,取 a, b,c 为晶轴,而 a 轴 与 b 轴的夹角为120°, c 轴与 a,b 轴相垂直, 如右图所示。
• 但是,用三指数表示六方晶系的晶面和晶向 有一个很大的缺点,即晶体学上等价的晶面 和晶向不具有类似的指数。这一点可以从上 图看出。图中六棱柱的两个相邻表面(红面 和绿面)是晶体学上等价的晶面,但其密勒 指数(Miller Indices)却分别是 (110) 和(100)。 图中夹角为 60°的两个密排方向 D1 和 D2 是 晶体学上的等价方向,但其晶向指数却分别 是[100]和[110]。
六方晶系晶面指数标定
根据六方晶系的对称特点,对六方晶系采用a1, a2,a3及c四个晶轴,a1,a2,a3之间的夹角均 为120度,这样,其晶面指数就以(h k i l)四个 指数来表示。
晶面指数 六方晶系的晶面指数标定
系中的一样,步骤如下:(1)先找出该面在 因交点为 ,倒数为零。
对六方晶系,取 a,b,c 为晶轴,而 a 轴与 b 轴的夹角为120°,c 轴与 a,b 轴相垂直,如右图所示。
四个坐标轴上的截距长度(以晶胞的点阵常数 (2)求其倒数并化为最简整数,即得(hkil)指数,这样得到的晶面指数称为 Miller-Bravais 指数。
c=0.255nm, 计算d110和d200。
1 d2
hkl
h2 a2
kb22
cl22
1
12
12
d12107.4172 4.9452
1 d2
200
22 7.4172
得出:d110 =0.41nm, d200=0.37nm
(4)衍射方向(衍射角θ)的确定
将布拉格方程和晶面间距公式联系起来,可得到不同晶系 的衍射方向。
指数。
六方晶系晶面指数标定
根据六方晶系的对称特点,对六方晶系采用a1, a2,a3及c四个晶轴,a1,a2,a3之间的夹角均 为120度,这样,其晶面指数就以(h k i l)四个 指数来表示。
根据几何学可知,三维空间独立的坐标轴最多 不超过三个。前三个指数中只有两个是独立的, 它们之间存在以下关系:i =- ( h + k ) 。
和晶向不具有类似的指数。这一点可以从上
图看出。图中六棱柱的两个相邻表面(红面
和绿面)是晶体学上等价的晶面,但其密勒 指数(Miller Indices)却分别是 (110和) (100)。 图中夹角为 60°的两个密排方向 D1 和 D2 是 晶体学上的等价方向,但其晶向指数却分别 是[100]和[110]。
晶面指数六方晶系的晶面指数标定
晶向指数的确定方法
1°在相互平行的结点直线中引出一条过原点的结点直线 2°在该直线上选出距原点最近的结点,确定其坐标 3°消除分数,把它们化为互质的最小整数。负数用上划
线表示。
4°用[ ] 括起来,记为[uvw]
Z
确定距原点最近的结点坐标1/2, 1, 0 消除分数为1、2、0 晶向指数 [120]
2hk(c ab
osc
osc
os)
2kl(coscoscos)2hl(coscoscos)]
bc
ac
例 : 某 斜 方 晶 体 的 a=0.742nm, b=0.494nm,
c=0.255nm, 计算d110和d200。
1 d2
hkl
h2 a2
kb22
cl22
1
[001]
晶带定律:凡是属于[uvw]晶
带的晶面,它的晶面指数必须
O
符合hu+kv+lw=0
晶面间距:是两个相邻的平行晶面间的垂直距离,通常 用dhkl 或 d 表示。
晶面间距是现代测试中一个重要的参数。在简单点阵中, 通过晶面指数(hkl)可以方便地计算出相互平行的一组 晶面之间的距离d。
正交(立方、四方、 斜方晶系)
晶面指数的确定方法
1°确定平面与晶胞三个坐标轴的交点坐标(平面不能通过原点) 2°取在三个坐标轴上截距的倒数。
3°消除分数,把它们化为互质的最小整数h、k、l。负数用上划
线表示。 4°用()括起来,记为(hkl )
0,0,1 1,0,0
1°确定交点坐标,X轴:1/2、 Y轴:1、 Z轴:1
2°取倒数 2、1、1 3°消除分数 2、1、1 0,1,0 4°晶面指数(211)
• 但是,用三指数表示六方晶系的晶面和晶向 有一个很大的缺点,即晶体学上等价的晶面 和晶向不具有类似的指数。这一点可以从上 图看出。图中六棱柱的两个相邻表面(红面 和绿面)是晶体学上等价的晶面,但其密勒 指数(Miller Indices)却分别是 (110 ) 和(100)。 图中夹角为 60°的两个密排方向 D1 和 D2 是 晶体学上的等价方向,但其晶向指数却分别 是[100]和[110]。
晶面指数 六方晶系的晶面指数标定
精选可编辑ppt
19
六方晶系一些晶面的指数
精选可编辑ppt
20
六方晶系晶向指数标定
采用4轴坐标时,晶向指数的确定原则仍同前述 晶向指数可用{u v t w}来表示,这里 u + v = - t。
六方晶系晶向指精数选可的编辑表pp示t 方法(c轴与图面垂直) 21
六方晶系中,三轴指数和四轴指数 的相互转化
1°h,k,l 三个数分别对应于a,b,c三晶轴方向。
2°指数中某一数为“0”,表示晶面与相应的晶轴平行,例 如(hk0)晶面平行于c轴。因交点为,倒数为零。
3° (hkl)中括号代表一组互相平行、面间距相等的晶面。
精选可编辑ppt
3
晶向指数的确定方法
1°在相互平行的结点直线中引出一条过原点的结点直线 2°在该直线上选出距原点最近的结点,确定其坐标 3°消除分数,把它们化为互质的最小整数。负数用上划
2°取倒数 3、1、2 3°消除分数 3、1、2 4°晶面指数(312)
0,0,1
练习
1,0,0
0,1,0 晶面指数(233)
精选可编辑ppt
6
常见的晶面指数
(001)
(110)
(100)
(010)
(111)
晶面指数的几点说明:
1°h,k,l 三个数分别对应于a,b,c三晶轴方向。
2°指数中某一数为“0”,表示晶面与相应的晶轴平行,例 如(hk0)晶面平行于c轴。因交点为,倒数为零。
精选可编辑ppt
18
六方晶系晶面指数标定
根据六方晶系的对称特点,对六方晶系采用a1, a2,a3及c四个晶轴,a1,a2,a3之间的夹角均 为120度,这样,其晶面指数就以(h k i l)四个 指数来表示。
晶向指数和晶面指数
晶向指数和晶面指数为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶向指数与晶面指数。
1.晶向指数晶向指数的确定步骤如下:1)以晶胞的某一阵点O为原点,过原点O的晶轴为坐标轴x, y , z, 以晶胞点阵矢量的长度作为坐标轴的长度单位。
2)过原点O作一直线OP,使其平行于待定晶向。
3)在直线OP上选取距原点O最近的一个阵点P,确定P点的3个坐标值。
4)将这3个坐标值化为最小整数u,v,w,加以方括号,[u v w]即为待定晶向的晶向指数。
2.晶面指数晶面指数标定步骤如下:1)在点阵中设定参考坐标系,设置方法与确定晶向指数时相同;2)求得待定晶面在三个晶轴上的截距,若该晶面与某轴平行,则在此轴上截距为无穷大;若该晶面与某轴负方向相截,则在此轴上截距为一负值;3)取各截距的倒数;4)将三倒数化为互质的整数比,并加上圆括号,即表示该晶面的指数,记为( h k l )。
晶面指数所代表的不仅是某一晶面,而是代表着一组相互平行的晶面。
另外,在晶体内凡晶面间距和晶面上原子的分布完全相同,只是空间位向不同的晶面可以归并为同一晶面族,以{h k l}表示,它代表由对称性相联系的若干组等效晶面的总和。
3. 六方晶系指数六方晶系的晶向指数和晶面指数同样可以应用上述方法标定,这时取a1,a2,c为晶轴,而a1轴与a2轴的夹角为120度,c轴与a1,a2轴相垂直,如图2.13所示。
但这种方法标定的晶面指数和晶向指数,不能完全显示六方晶系的对称性,为了更好地表达其对称性,根据六方晶系的对称特点,对六方晶系采用a1,a2,a3及c四个晶轴,a1,a2,a3之间的夹角均为120度,这样,其晶面指数就以(h k i l)四个指数来表示。
根据几何学可知,三维空间独立的坐标轴最多不超过三个。
前三个指数中只有两个是独立的,它们之间存在以下关系:i =- ( h + k ) 。
采用4轴坐标时,晶向指数的确定原则仍同前述(见图2.14),晶向指数可用{u v t w}来表示,这里 u + v = - t。
晶面指数-六方晶系的晶面指数标定ppt课件
h2 a2
k2 b2
l2 c2
= h2 + k2 + l2 a2
d=/(2sin)
2( h2 + k2 + l2 )
∴ sin2 =
4a2
已知晶胞参数的(hkl)晶面,当已知波长,可确定衍射方向;
反之,通过测定衍射方向,可以确定晶胞参数,即可确定晶胞的
大小、形状。【物相分析】
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
(4)衍射方向(衍射角θ)的确定
将布拉格方程和晶面间距公式联系起来,可得到不同晶系 的衍射方向。
如:立方晶系,晶面间距公式为
1 d2
点阵中平行于某一轴向的所有
晶面属于同一晶带。
• 同一晶带中包含不同的晶面,这些晶面的交线互相平行。
• 晶带由所平行的轴向的晶向指数表示。
[001]晶带包含的晶面有: (100)、(010)、(110)、 (110)、(120)等晶面
[001]
晶带定律:凡是属于[uvw]晶
4-3 六方晶系指数表示
• 上面我们用三个指数 表示晶面和晶向。这 种三指数表示方法, 原则上适用于任意晶 系。对六方晶系,取 a, b,c 为晶轴,而 a 轴 与 b 轴的夹角为120°, c 轴与 a,b 轴相垂直, 如右图所示。
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
晶面指数
如何确定晶面指数首先确定该晶体属于何种晶系,然后找出对称型,再确定晶轴,然后根据各晶面与晶轴在空间的相交方位判断晶面符号晶面指数标定步骤如下:1)在点阵中设定参考坐标系,设置方法与确定晶向指数时相同;2)求得待定晶面在三个晶轴上的截距,若该晶面与某轴平行,则在此轴上截距为无穷大;若该晶面与某轴负方向相截,则在此轴上截距为一负值;3)取各截距的倒数;4)将三倒数化为互质的整数比,并加上圆括号,即表示该晶面的指数,记为( h k l )。
晶面所代表的不仅是某一晶面,而是代表着一组相互平行的晶面。
另外,在晶体内凡晶面间距和晶面上原子的分布完全相同,只是空间位向不同的晶面可以归并为同一晶面族,以{h k l}表示,它代表由对称性相联系的若干组等效晶面的总和晶面间距(d{hkl})必可选择3个不相平行的相邻两个点阵点的单位矢量a,b,c,它们将点阵划分成并置的单位,称为晶面间距。
空间点阵按照确定的平行六面体单位连线划分,获得一套直线网格,称为或晶格。
点阵格是分别用几何的点和线反映的,它们具有同样的意义。
中文名晶面间距表现。
包括3个不相平行的相邻点阵点反映的性不同的{hkl}晶面,其面间距(即相邻的两个平行晶面之间的距离)各不相同。
总的来说,低指数的晶面其面间距较大,而高指数面的面间距小。
以图1-22所示的简单立方点阵为例,可看到其{100}面的晶面间距最大,{120}面的间距较小,而{320}面的间距就更小。
但是,如果分析一下体心立方或面心立方点阵,则它们的最大晶面间距的面分别为{110}或{111}而不是{100},说明此面还与点阵类型有关。
此外还可证明,晶面间距最大的面总是(或)最密排的晶面,晶面间距越小则晶面上的阵点排列就越稀疏。
正是由于不同晶面向上的原子排列情况不同,使晶体表现为。
简单立方点阵晶面间距d与点阵之间的关系:。
面心立方晶体(FCC)晶面间距与点阵常数a之间的关系:若h、k、l 均为奇数,则;否则,。
晶面指数六方晶系的晶面指数标定
●
Y
X
Z
练习
●
O X
Y
晶向符号 [221]
[001] [111]
● ●
常见的晶向指数
●
O
●
[010]
[100]
1°确定交点坐标,X轴:1/3、 Y轴:1、 Z轴:1/2 2°取倒数 3、1、2 3°消除分数 3、1、2 4°晶面指数(312)
0,0,1
练习
0,1,0
晶面指数(233)
1,0,0
晶带定律:凡是属于[uvw]晶 带的晶面,它的晶面指数必须 符合hu+kv+lw=0
O
晶面间距:是两个相邻的平行晶面间的垂直距离,通常 用dhkl 或 d 表示。
晶面间距是现代测试中一个重要的参数。在简单点阵中, 通过晶面指数(hkl)可以方便地计算出相互平行的一组 晶面之间的距离d。
正交(立方、四方、 斜方晶系)
2
得出: d110 =0.41nm, d200=0.37nm
(4)衍射方向(衍射角θ)的确定
将布拉格方程和晶面间距公式联系起来,可得到不同晶系 的衍射方向。
如:立方晶系,晶面间距公式为
h2 + k2 + l2 1 h2 k 2 l 2 = 2 2 2 2 a2 d a b c d=/(2sin) 4a2 已知晶胞参数的(hkl)晶面,当已知波长,可确定衍射方向; 反之,通过测定衍射方向,可以确定晶胞参数,即可确定晶胞的 大小、形状。【物相分析】 ∴ sin2 = 2( h2 + k2 + l2 )
• 四指数表示是基于4个坐标轴:a1,a2,a3 和 c 轴,其中,a1,a2 和 c 轴就是原胞的 a,b 和c 轴,而 a3 = -(a1+a2)。下面就分别讨论用 四指数表示的晶面及晶向指数。 • 六方晶系晶面指数的标定原理和方法同立方晶 系中的一样,步骤如下:(1)先找出该面在 四个坐标轴上的截距长度(以晶胞的点阵常数 a,c 为单位长); (2)求其倒数并化为最简整数,即得(hkil)指 数,这样得到的晶面指数称为 Miller-Bravais 指数。
晶面指数和晶向指数
二 晶面指数和晶向指数
例子: 首先选定坐标系,如图所示。 •然后求出待标晶面在a,b,c轴上的 截距,分别为1/2,2/3,1/2。 •取倒数后得到2,3/2,2。 •再将其化成最简整数比,得到4,3, 4三个数。 •该面的晶面指数为(434)。
二 晶面指数和晶向指数
所有相互平行的晶面在三个晶轴上的截距虽然不同, 但它们是成比例的,其倒数也仍然是成比例的,经简化可以 得到相应的互质整数。因此,所有相互平行的晶面,其晶面 指数相同,或者三个符号均相反。可见,晶面指数所代表的 不仅是某一晶面,而且代表着一组相互平行的晶面。
二 晶面指数和晶向指数
今后的学习中,会经常用到原子的位置、原子列的方向和 原子构成的平面等问题。
晶面:穿越晶体的原子面(平面) 晶向:连接晶体中任意原子列的直线方向
这些晶面和晶向决定着材料的许多性质,包括物理性质、 化学性质、力学性质、相变、X光衍射和电子衍射等。
理解和正确标定晶面指数和晶向指数很重要。
zc
(3)将 x,y,z 化成互质整数 u, v,w,且 u∶v∶w = x∶y∶z。 (4)将 u,v,w 三数置于括号内 就得到晶向指数[u v w ]。
二 晶面指数和晶向指数
[121]
[211]
Байду номын сангаас
二 晶面指数和晶向指数
0
1
二 晶面指数和晶向指数
当然,在确定晶向指数时,坐标原点不一定非选取在晶向上不可。 若原点不在待标晶向上,那就需要选取该晶向上两点的坐标 P(x1,y1, z1)和 Q(x2,y2,z2),然后将(x1-x2),(y1-y2),(z1-z2)三个数化成最小 的简单整数 u,v,w,并使之满足u∶v∶w =(x1-x2)∶(y1-y2)∶(z1-z2)。 则[u v w]为该晶向的指数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶面指数的标定方法的求解的简单过程:(如果感兴趣的话,找本《固体物理》,都有详细的推导过程)
在空间中描述一个平面的方位,就是在一个坐标系中表示出该平面法线的方向余弦,或者这个平面在三个坐标轴上的截距。
设三个基矢为a 1 ,a 2, a 3,且坐标轴不一定相互正交。
某一组晶面的面间距为d ,其法线方向的单位矢量为n ,则在此晶面组中,离开原点的距离如式1 X n d X μ⋅= 其中是晶面上任意点的位矢。
1 则得到以下关系
111122223333123cos(,)cos(,)cos(,),,ra n ra a n h d
sa n sa a n h d ta n ta a n h d
ra sa ta ⋅==⋅==⋅== 其中分别是晶面与三个坐标轴交点的位矢
2 变换后:
312123123
123cos(,):cos(,):cos(,):: 3,,h h h a n a n a n ra sa ta a a a =即晶面法线方向与三个坐标轴的夹角余弦之比等于晶面在三个轴上的截距倒数之比其中为三个坐标基矢的长度
如果是最靠近原点的晶面,即h 1= h 2=h 3=1,所以公式3为
123123
111cos(,):cos(,):cos(,):: 4a n a n a n ra sa ta =
因此在求晶面指数的时候,应该考虑坐标基矢的长度,但是平常我们都是取坐标基矢长度为单位长度,即1,所以在一般求晶面指数时,为了避免混淆,直接说取截距,求倒数,再求比值。