河北省邢台市2018-2019学年八年级(上)期末数学试卷 含答案

合集下载

2018-2019学年广西河池市八年级(上)期末数学试卷(解析版)

2018-2019学年广西河池市八年级(上)期末数学试卷(解析版)

2018-2019学年广西河池市八年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A. 5.6×10−1B. 5.6×10−2C. 5.6×10−3D. 0.56×10−12.下列四个汽车标志图中,不是轴对称图形的是()A. B.C. D.3.下列因式分解正确的是()A. 6x+9y+3=3(2x+3y)B. x2+2x+1=(x+1)2C. x2−2xy−y2=(x−y)2D. x2+4=(x+2)24.若分式x−2的值为0,则x的值等于()x+3A. 0B. 2C. 3D. −35.等腰三角形有两条边长为5cm和9cm,则该三角形的周长是()A. 18cmB. 19cmC. 23cmD. 19cm或23cm6.点P(3,4)关于y轴对称的点的坐标是()A. (3,−4)B. (−3,4)C. (−4,−3)D. (−4,3)7.如图,小敏用三角尺按下面方法画角平分线:在已知的∠AOB的两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,则OP平分∠AOB,其作图原理是:△OMP≌△ONP,这样就有∠AOP=∠BOP,则说明这两个三角形全等的依据是()A. SASB. ASAC. AASD. HL8.如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A. AE=ECB. AE=BEC. ∠EBC=∠BACD. ∠EBC=∠ABE9.计算(x+2)2的结果为x2+□x+4,则“□”中的数为()A. −2B. 2C. −4D. 410.如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC的长为()A. 2B. √3C. 4D. 2√311.已知1x −1y=3,则代数式2x+3xy−2yx−xy−y的值是()A. −72B. −112C. 92D. 3412.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A. 140∘B. 100∘C. 50∘D. 40∘二、填空题(本大题共6小题,共18.0分)13.当x______时,分式x+12x−1有意义.14.计算:6a2b÷2a=______.15.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件______使得△ABC≌△DEF.16.各角都相等的十五边形的每个内角的度数是______度.17.如图,若△ACD的周长为50,DE为AB的垂直平分线,则AC+BC=______.18.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为______.三、计算题(本大题共2小题,共14.0分)19.解分式方程:1x−2+2=1+x2−x.20.列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?四、解答题(本大题共6小题,共52.0分)21.因式分解:(1)a3b-ab3(2)(x+1)(x+3)+122.已知:AD是△ABC中BC边上的中线,延长AD至E,使DE=AD,连接BE,求证:△ACD≌△EBD.23. 现有三个村庄A ,B ,C ,位置如图所示,线段AB ,BC ,AC 分别是连通两个村庄之间的公路.现要修一个水站P ,使水站不仅到村庄A ,C 的距离相等,并且到公路AB ,AC 的距离也相等,请在图中作出水站P 的位置.(要求:尺规作图,不写作法,保留作图痕迹.)24. 先化简,再求值:(m +2-5m−2)×2m−4m−3,其中m =4.25. 把一个长为2m ,宽为2n 的长方形沿图1中的虚线平均分成四块小长方形,然后拼成一个正方形(如图2)(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m ,n 的代数式表示) 方法1:______方法2:______(2)根据(1)中的结论,请你写出代数式(m +n )2,(m -n )2,mn 之间的等量关系;(3)根据(2)中的等量关系,解决如下问题:已知实数a ,b 满足:a +b =3,ab =2,求a -b 的值.26.如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;(3)连结CE,写出AE,BE,CE之间的数量关系,并证明你的结论.答案和解析1.【答案】B【解析】解:将0.056用科学记数法表示为5.6×10-2,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【答案】B【解析】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、是轴对称图形,故错误.故选:B.根据轴对称图形概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.【答案】B【解析】解:(A)原式=3(2x+3y+1),故A错误;(C)x2-2xy-y2不是完全平方式,不能因式分解,故C错误;(D)x2+4不能因式分解,故D错误;故选:B.根据因式分解的方法即可求出答案.本题考查因式分解的方法,涉及提取公因式,完全平方公式,平方差公式,解题的关键会判断多项式是否满足完全平方式以及平方差公式.4.【答案】B【解析】解:∵分式的值为0,∴x-2=0且x+3≠0,∴x=2.故选:B.分式值为零的条件是分子等于零且分母不等于零.本题主要考查的是分式值为零的条件,熟练掌握分式值为零的条件是解题的关键.5.【答案】D【解析】解:当等腰三角形的腰长为5cm,底边长为9cm时,∵5+5>9,9-5<5,∴能够成三角形,∴三角形的周长=5+5+9=19cm;当等腰三角形的腰长为9cm,底边长为5cm时,∵9+5>9,9-5<5,∴能够成三角形,∴三角形的周长=9+9+5=23cm;∴该三角形的周长是19cm或23cm.故选:D.由于等腰三角形的腰和底边的长不能确定,故应分两种情况进行讨论.本题考查的是等腰三角形的性质及三角形的三边关系,解答此题时要注意分类讨论,不要漏解.6.【答案】B【解析】解:∵两点关于y轴对称,∴横坐标为-3,纵坐标为4,∴点P关于y轴对称的点的坐标是(-3,4).故选:B.根据关于y轴对称的点的特点解答即可.考查关于y轴对称的点的特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.7.【答案】D【解析】解:由题意知OM=ON,∠OMP=∠ONP=90°,OP=OP,在Rt△OMP和Rt△ONP中,∵,∴Rt△OMP≌Rt△ONP(HL),∴∠AOP=∠BOP,故选:D.据直角三角形全等的判定HL定理,可证△OPM≌△OPN.本题考查学生的观察能力和判定直角三角形全等的HL定理,本题是一操作题,要会转化为数学问题来解决.8.【答案】C【解析】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠A=∠EBC,故选:C.利用等腰三角形的性质分别判断后即可确定正确的选项.本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.9.【答案】D【解析】解:∵(x+2)2=x2+4x+4,∴“□”中的数为4.故选:D.由(x+2)2=x2+4x+4与计算(x+2)2的结果为x2+□x+4,根据多项式相等的知识,即可求得答案.此题考查了完全平方公式的应用.解题的关键是熟记公式,注意解题要细心.10.【答案】C【解析】解:∵∠B=60°,DE⊥BC,∴BD=2BE=2,∵D为AB边的中点,∴AB=2BD=4,∵∠B=∠C=60°,∴△ABC为等边三角形,∴AC=AB=4,故选:C.在Rt△BDE中可先求得BD的长,则可求得AB的长,由条件又可证得△ABC 为等边三角形,则可求得AC=AB,可求得答案.本题主要考查直角三角形的性质、等边三角形的判定和性质,利用直角三角形的性质求得AB的长是解题的关键.11.【答案】D【解析】解:∵=3,∴=3,∴x-y=-3xy,则原式====,故选:D.由=3得出=3,即x-y=-3xy,整体代入原式=,计算可得.本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.12.【答案】B【解析】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后得到等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,即可得出∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°.本题考查了轴对称-最短路线问题,正确正确作出辅助线,得到等腰△OP1P2中∠OP1P2+∠OP2P1=100°是关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.13.【答案】≠12【解析】解:由题意得:2x-1≠0,解得:x≠,故答案为:.根据分式有意义的条件是分母不等于零可得2x-1≠0,再解即可.此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.14.【答案】3ab【解析】解:原式=3ab.故答案是:3ab.根据单项式除单项式的法则计算,再根据系数相等,相同字母的次数相同列式求解即可.本题考查了单项式的除法法则,正确理解法则是关键.15.【答案】∠A=∠D【解析】解:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠A=∠D.根据全等三角形的判定定理填空.本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.16.【答案】156【解析】解:∵十五边形的内角和=(15-2)•180°=2340°,又∵十五边形的每个内角都相等,∴每个内角的度数=2340°÷15=156°.故答案为:156.根据多边形的内角和公式即可得出结果.本题考查多边形的内角和计算公式.多边形内角和定理:多边形内角和等于(n-2)•180°.17.【答案】50【解析】解:∵DE为AB的垂直平分线,∴AD=BD,∵△ACD的周长为50,∴AC+CD+AD=AC+CD+BD=AC+BC=50,故答案为50.由垂直平分线的性质可求得AD=BD,则△ACD的周长可化为AC+CD+BD,即AC+BC,可求得答案.本题主要考查线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.18.【答案】4cm【解析】解:∵BC=10cm,BD:DC=3:2,∴DC=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.故答案为4cm.先由BC=10cm,BD:DC=3:2计算出DC=4cm,由于∠ACB=90°,则点D到AC 的距离为4cm,然后根据角平分线的性质即可得到点D到AB的距离等于4cm.本题考查了角平分线的判定与性质:角平分线上的点到角的两边的距离相等;到角的两边距离相等的点在这个角的角平分线上.19.【答案】解:方程两边同乘(x-2),得1+2(x-2)=-1-x,解得:x=23经检验x=23是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【答案】解:设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x 万人,由题意得240x −30=2404x,解得x=6,经检验x=6是分式方程的解,答:2017年每小时客运量24万人.【解析】设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,根据2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时列出分式方程,求出答案即可.本题考查了分式方程的应用;解这类问题时要注意分析题中的等量关系,由时间关系列出方程是解决问题的关键.21.【答案】解:(1)原式=ab(a2-b2)=ab(a-b)(a+b);(2)原式=x2+3x+x+3+1=x2+4x+4=(x+2)2.【解析】(1)直接提取公因式ab,再利用平方差公式分解因式即可;(2)直接去括号,再利用完全平方公式分解因式即可.此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.22.【答案】证明:∵AD是△ABC的中线,∴BD=CD,在△ACD和△EBD中,{CD=BD∠ADC=∠EDB AD=ED,∴△ACD≌△EBD(SAS).【解析】依据中线的定义,即可得到BD=CD,再根据SAS即可判定△ACD≌△EBD.本题主要考查了全等三角形的判定,解决问题的关键是掌握:两边及其夹角分别对应相等的两个三角形全等.23.【答案】解:作AC的垂直平分线MN,作∠BAC有角平分线AD交直线MN于点P,点P即为所求.【解析】作AC的垂直平分线MN,作∠BAC有角平分线AD交直线MN于点P,点P 即为所求.本题考查作图-应用与设计,角平分线的性质,线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.24.【答案】解:原式=(m+2)(m−2)−5m−2⋅2m−4 m−3=m2−9 m−2⋅2(m−2)m−3=(m+3)(m−3)m−2⋅2(m−2)m−3=2(m+3).当m=4时,原式=2×(4+3)=14.【解析】先将代数式(m+2-)×进行化简,然后将m=4代入求解即可.本题考查了分式的化简求值,解答本题的关键在于先将代数式(m+2-)×进行化简,然后将m=4代入求解.25.【答案】(m+n)2-4mn(m-n)2【解析】解:(1)方法一:阴影部分的面积=(m+n)2-4mn,方法二:阴影部分的面积=(m-n)2,故答案为:(m+n)2-4mn,(m-n)2;(2)三个代数式之间的等量关系是:(m+n)2-4mn=(m-n)2;(3)∵(a-b)2=(a+b)2-4ab,∴(a-b)2=32-4×2=1,a-b=±1.(1)本题可以直接求阴影部分正方形的边长,计算面积;也可以用正方形的面积减去四个小长方形的面积,得阴影部分的面积;(2)由阴影部分的面积相等即可得出三个代数式之间的等量关系;(3)将a+b=3,ab=2,代入三个代数式之间的等量关系,求出(a-b)2的值,即可求出a-b的值.本题主要考查完全平分公式,如何准确地确定三个代数式之间的等量关系是解题的关键.26.【答案】解:(1)图象如图所示;(2)在等边△ABC中,AC=AB,∠BAC=60°,由对称可知:AC=AD,∠PAC=∠PAD,∴AB=AD,∴∠ABD=∠D,∵∠PAC=20°,∴∠PAD=20°,∴∠BAD=∠BAC+∠PAC+∠PAD=100°,(180°−∠BAD)=40°,∴∠D=12∴∠AEB=∠D+∠PAD=60°.(3)结论:CE+AE=BE.理由:在BE上取点M使ME=AE,在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AC=AD,∠EAC=∠EAD,设∠EAC=∠DAE=x.∵AD=AC=AB,(180°−∠BAC−2x)=60°−x,∴∠D=12∴∠AEB=60-x+x=60°.∴△AME为等边三角形,易证:△AEC≌△AMB,∴CE=BM,∴CE+AE=BE.【解析】(1)根据要求画出图象即可;(2)根据∠AEB=∠D+∠PAD,只要求出∠D,∠DAE即可;(3)结论:CE+AE=BE.在BE上取点M使ME=AE,只要证明△AEC≌△AMB 即可解决问题;本题考查作图-轴对称变换,等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.。

河北省保定市定州市2018-2019学年八年级(上)期末数学试卷含解析

河北省保定市定州市2018-2019学年八年级(上)期末数学试卷含解析

2021-2021学年八年级〔上〕期末数学试卷•选择题〔共12小题〕 1.如果分式 有意义,那么x+3x 的取值范围是〔 )x >— 3C.A. x v — 3B. x 工―3D. x =— 32.以下计算正确的选项是〔)_ 9 3 3B. c 3 2 6A. a * a = a3a ?2a = 6a6 6D. 325C. m * m = mm ?m = m3.有一种球状细菌,直径约为0.0000000018 m 那么0.0000000018用科学记数法表示为( )—10 —9 — 8 —8A. 18X 10B. 1.8 X 10C. 1.8 X 10D. 0.18 X 10 4•如图,小明书上的三角形被墨迹遮挡了一局部,但他很快想到方法在作业本上画了一样的三角形,那么这两个三角形完全一样的依据是〔A. 3B. 4C. 5D. 6 7.把多项式x 2+ax +b 分解因式,得〔 x +1) (x — 3),那么a +b 的值是() A. 5 B.- 5 C. 1D. —1&点P (a, 3)和点Q(4, b )关于x 轴对称, 那么(a +b ) 2021 的值〔)20212021A. 1B.- 1C. 7D. —79.假设(2a +3b )( 2 2)=9b - 4a ,那么括号内应填的代数式是〔)A. — 2a — 3bB. 2a +3bC. 2a — 3bD. 3b — 2aO) 6. 一个正多边形的内角和为 900。

,那么从一点引对角线的条数是〔10.假设分式 一一-2与三二的值互为相反数,那么 x =〔 〕x-5 x5. B. ASAC. SSSD. SASF 列长度的三条线段能组成三角形的是〔 A. 3, 4, 8B. 2, 5, 3C. L, 5D. 5, 5, 10A.B.C.—56211.如图,MN 是等边三角形 ABC 的一条对称轴,D 为AC 的中点,点 P 是直线MNk 的一个动点,当PGPD 最小时,/ PCD 勺度数是〔〕12•李老师开车去 20km 远的县城开会,假设按原方案速度行驶,那么会迟到10分钟,在保证17.如图,在 Rt △ ABC 中,/ C _ 90°,以顶点 A 为圆心,适当长为半径画弧,分别交AC , AB 于点M N,再分别以点 M N 为圆心,大于 £M N 勺长为半径画弧,两弧交于点P,作射线AP 交边BC 于点D,假设CD= 4, AB= 15,那么厶ABD 勺面积是 ______ .A. 30°B. 15C. 20°D. 35°平安驾驶的前提下,如果将速度每小时加快 10km 那么正好到达,如果设原来的行驶速度为xkm / h,那么可列分式方程为〔 〕A.———一=10X x+10 C 20 ^0_ 1':.2-L. U二.填空题〔共6小题〕 2_013.当x _时,分式——的值为零.---------x+33214. _______________________________ 分解因式:-m +6m- 9m= _________________ .B.—— —_ 10x+10 x20 — 2Q _ 1 x+10 x 616.如图,在△ ABC 中, AB= AC 点E 在CA 延长线上,EP 丄BC 于点P ,交AB 于点F ,假设AFc18•如图,把长方形纸片ABCD&对角线折叠,设重叠局部EBD那么以下说法:①厶EBD是等腰三角形,EB= ED②折叠后/ ABE和/ CB[一定相等;③折叠后得到的图形是轴对称图形;④厶EBAFH A EDC-定是全等三角形.其中正确的序号是C19.计算题.2 1 2 2(1)5xy -( xy)?( 2xy ).3(2)9 (a- 1) 2-( 3a+2) ( 3a-2).. _ 4 2 220. (1)因式分解:x - 81x y .4_Y7(2)先化简,再求值:「,其中x=- 5.2x-6 x-321. 解分式方程:22.如下图,在厶ABC中, ADL BC于D, CEL AB于E, AD与CE交.于点F,且AD= CD 求证:AB= CF.23.如图,在△ ABC中, AB= AC AB的垂直平分线MN交AC于点D,交AB于点E.(1)假设/ A= 40°,求/ DBC的度数;(2)假设AE= 6,A CBM周长为20,求厶ABC的周长.2 2x - 4x+2) (x - 4x+6) +4进行因式分解的过程解:设x2- 4x =y,原式=(y+2) (y+6) +4 (第一步)2=y +8y+16 (第二步)=(y+4) 2 3(第三步)2 该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果. 这个结果是否分解到最后?________ •(填“是〞或“否〞)如果否,直接写出最后的结果_______ .2 23 请你模仿以上方法尝试对多项式( x - 2x) (x - 2x+2) +1进行因式分解.=(x2-4x+4) 2(第四步)(1)该同学第二步到第三步运用了因式分解的 ___________ (填序号)A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式25 .某地下管道,假设由甲队单独铺设,恰好在规定时间内完成;假设由乙队单独铺设,需要超过规定时间15天才能完成,如果先由甲、乙两队合做10天,再由乙队单独铺设正好按时完成.(1) 这项工程的规定时间是多少天?(2) 甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙队合做来完成,那么 该工程施工费用是多少?BDLAB AO BD= 7cm 点P 在线段 AB 上以2cn /s 的速图〔2〕〔1〕假设点Q 的运动速度与点 P 的运动速度相等,当t = 1时,△ BPC 是否全等,请说明理由;〔2〕 在〔1〕的前提条件下,判断此时线段 PC 和线段PQ 的位置关系,并证明; 〔3〕如图〔2〕,将图〔1〕中的“ ACL AB BDL AB'为改 “/ CAB=Z DBA= 50。

北京市朝阳区2018-2019学年八年级(上)期末数学试卷及答案

北京市朝阳区2018-2019学年八年级(上)期末数学试卷及答案

2018-2019学年北京市朝阳区初二(上)期末数学及答案一.选择题(共8小题,满分24分)1. 画△ABC的边AB上的高,下列画法中,正确的是()【答案】D【解析】试题分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是D.故选:D.考点:三角形的角平分线、中线和高.2.下列各式属于最简二次根式的是()A. B. C. D.【答案】B【解析】试题解析:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选B.3.若分式的值为0,则x的值是()A. 2或﹣2B. 2C. ﹣2D. 0【答案】A【解析】【分析】直接利用分式的值为零则分子为零进而得出答案.【详解】∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.4.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】分析:根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.详解:①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选B.点睛:此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.5.以下图形中,不是轴对称图形的是()A. B. C. D.【答案】D【解析】试题分析:A、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;B、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;C、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;D、沿任何一条直线对折后都不能重合,不是轴对称图形,故本选项正确.故选:D.点睛:本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.已知∠A=60°24′,∠B=60.24°,∠C=60°14′24″,则( )A. ∠A>∠B>∠CB. ∠A>∠B=∠CC. ∠B>∠C>∠AD. ∠B=∠C>∠A【答案】B【解析】【分析】将∠A、∠B、∠C统一单位后比较即可.【详解】∵∠A=60°24′=60.4°,∠B=60.24°,∠C=60°14′24″=60.24°,∴∠A>∠B=∠C.故选B.【点睛】本题考查了度、分、秒的转化计算,比较简单,注意以60为进制即可.7.下列各式变形中,是因式分解的是()A. a2﹣2ab+b2﹣1=(a﹣b)2﹣1B. x4﹣1=(x2+1)(x+1)(x﹣1)C. (x+2)(x﹣2)=x2﹣4D. 2x2+2x=2x2(1+)【答案】B【解析】【分析】利用因式分解的定义判断即可.【详解】A选项:它的结果不是乘积的形式,不是因式分解,故是错误的;B选项:x4﹣1=(x2+1)(x+1)(x﹣1)结果是乘积形式,是因式分解,故是正确的;C选项:(x+2)(x﹣2)=x2﹣4中结果不是乘积的形式,不是因式分解,故是错误的;D选项:2x2+2x=2x2(1+)结果不是整式乘积的形式,不是因式分解,故是错误的;故选:B.【点睛】考查了因式分解的定义,理解因式分解的定义(把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式)是解题的关键。

江西省南昌市新建区2018-2019学年八年级(上)期末数学试卷(解析版)

江西省南昌市新建区2018-2019学年八年级(上)期末数学试卷(解析版)

2018-2019 学年八年级(上)期末数学试卷一、选择题(本大题共 8 小题,每小题 3 分,共 24 分)在每小题给出的四个选项中,只有 一项是正确的,每小题选对得 3 分,选错、不选或多选均得零分. 1.下列运算正确的是( A .a 3+a 3=a 3 ) B .a •a 3=a 3C .(a 3)2=a 6C .x =﹣2D .(ab )3=ab 32.分式 A .x =2的值为 0,则 x 的值是(B .x =0)D .x ≠﹣13.在平面直角坐标系中,点 A (﹣1,2)关于 y 轴对称的点 B 的坐标为( )A .(﹣1,2)B .(1,2)C .(1,﹣2)D .(﹣1,﹣2) 4.如图,已知∠1=∠2,则不一定能使△AB D ≌△A C D 的条件是()A .∠B =∠C 5.把多项式 a 2﹣4a 分解因式,结果正确的是( A .a (a ﹣4)B .(a+2)(a ﹣2)B .∠B D A =∠CD AC .AB =ACD .B D =C D)C .(a ﹣2)2D .a (a+2(a ﹣2)6.已知∠M O N =40°,P 为∠M O N 内一定点,O M 上有一点 A ,O N 上有一点 B ,当△PA B 的周长取最小值时,∠APB 的度数是()A .40° 7.化简 A .﹣a ﹣1B .100°C .140°D .50°的结果是( )B .﹣a+1C .﹣ab+1D .﹣ab+b8.如图,△ABC 中∠ACB =90°,C D 是 AB 边上的高,∠BA C 的平分线 AF 交 C D 于 E ,则△CEF 必为( )A .等边三角形 C .直角三角形B .等腰三角形 D .等腰直角三角形二、填空题(本大题共 6 小题,每小题 3 分,共 18 分) 9.若式子有意义,则 x 的取值范围是10.把一块直尺与一块三角板如图放置,若∠1=44°,则∠2 的度数是..11.若 a =2,a ﹣b =3,则 a 2﹣ab =12.若(x 2﹣a )x+2x 的展开式中只含有 x 3 这一项,则 a 的值是13.如图,在△AB C 中,AC =A D =B D ,当∠B =25°时,则∠BAC 的度数是...14.在平面直角坐标系中,点 A (﹣1,0)、B (3,0)、C (0,2),当△AB C 与△ABD 全等 时,则点 D 的坐标可以是 三.解答题(共 78 分).15.(1)计算:(﹣2a 2b )2+(﹣2ab ) (﹣3a 3b ). (2)分解因式:(a+b )2﹣4ab . 16.(1)求值:(1﹣ (2)解方程:)÷ ,其中 a =100. =+3.17.已知 x =3,x =6,x =12,x =18. a b c d (1)求证:①a+c =2b ;②a+b =d ;(2)求 x 2 ﹣+ a b c的值. 18.将图 1 中的矩形 AB C D 沿对角线 AC 剪开,再把△AB C 沿着 A D 方向平移,得到图 2 中 的△A ′BC ′.(1)在图 2 中,除△A D C 与△C ′BA ′全等外,请写出其他 2 组全等三角形;① ;②;(2)请选择(1)中的一组全等三角形加以证明.19.在一个含有多个字母的式子中,若任意交换两个字母的位置,式子的值不变,则这样的 式子就叫做对称式.例如:a+b ,abc 等都是对称式. (1)在下列式子中,属于对称式的序号是 ①a 2+b 2②a ﹣b ③④a 2+bc .(2)若(x+a )(x+b )=x 2+mx+n ,当 m =﹣4,n =3,求对称式;的值.20.某商场第 1 次用 600 元购进 2B 铅笔若干支,第 2 次用 800 元又购进该款铅笔,但这次 每支的进价是第 1 次进价的八折,且购进数量比第 1 次多了 100 支. (1)求第 1 次每支 2B 铅笔的进价;(2)若要求这两次购进的 2B 铅笔按同一价格全部销售完毕后获利不低于 600 元,问每 支 2B 铅笔的售价至少是多少元?21.如图,A D 是△AB C 的角平分线,点 F 、E 分别在边 AC 、AB 上,连接 DE 、D F ,且∠ AF D+∠B =180°. (1)求证:B D =F D ;(2)当 AF+F D =AE 时,求证:∠AF D =2∠AE D .22.如图,在等边△AB C中,线段A M为BC边上的中线.动点D在直线A M上时,以C D 为一边在C D的下方作等边△C D E,连结BE.(1)填空:∠CAM=度;(2)若点D在线段A M上时,求证:△A D C≌△BE C;(3)当动点D在直线A M上时,设直线BE与直线A M的交点为O,试判断∠A OB是否为定值?并说明理由.参考答案与试题解析一.选择题(共8小题)1.下列运算正确的是(A.a3+a3=a3)B.a•a3=a3C.(a3)2=a6D.(ab)3=ab3【分析】根据幂的乘方和积的乘方的运算方法,合并同类项的方法,以及同底数幂的乘法的运算方法,逐项判断即可.【解答】解:A、∵a3+a3=2a3,∴选项A不符合题意;B、∵a•a3=a4,∴选项B不符合题意;C、∵(a3)2=6,a∴选项C符合题意;D、∵(ab)3=a3b3,∴选项D不符合题意.故选:C.2.分式A.x=2的值为0,则x的值是(B.x=0)C.x=﹣2D.x≠﹣1【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由式的值为0,得x﹣2=0,且x+1≠0.解得x=2.故选:A.3.在平面直角坐标系中,点A(﹣1,2)关于y轴对称的点B的坐标为()A.(﹣1,2)B.(1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:点A(﹣1,2)关于y轴对称的点B的坐标为(1,2),故选:B.4.如图,已知∠1=∠2,则不一定能使△AB D≌△A C D的条件是()A.∠B=∠C B.∠B D A=∠CD A C.AB=AC D.B D=C D【分析】根据全等三角形的判定定理SSS、SAS、ASA、AAS、HL分别进行分析即可.【解答】解:A、添加∠B=∠C可利用AAS定理判定△AB D≌△AC D,故此选项不合题意;B、添加∠B DA=∠C D A可利用ASA定理判定△AB D≌△AC D,故此选项不合题意;C、添加AB=AC可利用SAS定理判定△AB D≌△AC D,故此选项不合题意;D、添加B D=C D不能判定△AB D≌△AC D,故此选项符合题意;故选:D.5.把多项式a2﹣4a分解因式,结果正确的是(A.a(a﹣4)B.(a+2)(a﹣2))C.(a﹣2)2D.a(a+2(a﹣2)【分析】原式提取公因式即可.【解答】解:原式=a(a﹣4),故选:A.6.已知∠M O N=40°,P为∠M O N内一定点,O M上有一点A,O N上有一点B,当△PA B 的周长取最小值时,∠APB的度数是()A.40°B.100°C.140°D.50°【分析】设点P关于O M、O N对称点分别为P′、P″,当点A、B在P′P″上时,△PA B周长为PA+AB+BP=P′P″,此时周长最小.根据轴对称的性质,可求出∠APB的度数.【解答】解:分别作点P关于OM、O N的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交O M、O N于点A、B,连接PA、PB,此时△PAB周长的最小值等于P′P″.由轴对称性质可得,OP′=OP″=O P,∠P′OA=∠P O A,∠P″OB=∠P OB,∴∠P′OP″=2∠M O N=2×40°=80°,∴∠OP′P″=∠OP″P′=(180°﹣80°)÷2=50°,又∵∠BP O=∠O P″B=50°,∠APO=∠AP′O=50°,∴∠APB=∠AP O+∠BP O=100°.故选:B.7.化简A.﹣a﹣1的结果是()B.﹣a+1C.﹣ab+1D.﹣ab+b 【分析】本题考查的是分式的除法运算,做除法运算时要转化为乘法的运算,注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:=(﹣)×=﹣a+1.故选:B.8.如图,△ABC中∠ACB=90°,C D是AB边上的高,∠BA C的平分线AF交C D于E,则△CEF必为()A.等边三角形C.直角三角形B.等腰三角形D.等腰直角三角形【分析】根据角平分线的定义求出∠1=∠2,再根据等角的余角相等求出∠3=∠4,根据对顶角相等可得∠5=∠4,然后求出∠3=∠5,再利用等角对等边可得CE=CF,从而得解.【解答】解:如图,∵AF是∠BAC的平分线,∴∠1=∠2,∵∠ACB=90°,C D是AB边上的高,∴∠1+∠3=90°,∠2+∠4=90°,∴∠3=∠4,∵∠5=∠4(对顶角相等),∴∠3=∠5,∴CE=CF,∴△CEF是等腰三角形.故选:B.二.填空题(共6小题)9.若式子【分析】直接利用分式有意义即分母不为零,进而得出答案.【解答】解:∵式子有意义,有意义,则x的取值范围是x≠3 .∴x的取值范围是:x﹣3≠0,解得:x≠3.故答案为:x≠3.10.把一块直尺与一块三角板如图放置,若∠1=44°,则∠2的度数是134°.【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【解答】解:∵∠1=44°,∴∠3=90°﹣∠1=90°﹣44°=46°,∴∠4=180°﹣46°=134°,∵直尺的两边互相平行,∴∠2=∠4=134°.故答案为134°.11.若a=2,a﹣b=3,则a2﹣ab=6.【分析】首先提取公因式a,进而将已知代入求出即可.【解答】解:∵a=2,a﹣b=3,∴a2﹣ab=a(a﹣b)=2×3=6.故答案为:6.12.若(x2﹣a)x+2x的展开式中只含有x3这一项,则a的值是2.【分析】首先利用单项式乘以多项式整理得出x3+(2﹣a)x进而根据展开式中只含有x3这一项得出2﹣a=0,求出即可.【解答】解:∵(x2﹣a)x+2x的展开式中只含有x3这一项,∴x3﹣ax+2x=x3+(2﹣a)x中2﹣a=0,∴a=2,故答案为:2.13.如图,在△AB C中,AC=A D=B D,当∠B=25°时,则∠BAC的度数是105°.【分析】由在△AB C中,AC=A D=B D,∠B=25°,根据等腰三角形的性质,即可求得∠A D C的度数,接着求得∠C的度数,然后根据三角形内角和定理可得∠BA C的度数.【解答】解:∵AD=B D,∴∠BA D=∠B=25°,∴∠A D C=∠B+∠BA D=25°+25°=50°,∵A D=A C,∴∠C=∠A D C=50°,∴∠BA C=180°﹣∠B﹣∠C=180°﹣25°﹣50°=105°,故答案为105°.14.在平面直角坐标系中,点A(﹣1,0)、B(3,0)、C(0,2),当△AB C与△ABD全等时,则点D的坐标可以是(0,﹣2)或(2,﹣2)或(2,2).【分析】根据三角形全等的判定分三种情况解答即可.【解答】解:∵△AB C与△AB D全等,如图所示:点D坐标分别为:(0,﹣2)或(2,﹣2)或(2,2).故答案为:(0,﹣2)或(2,﹣2)或(2,2).三.解答题(共8小题)15.(1)计算:(﹣2a2b)2+(﹣2ab)(﹣3a3b).(2)分解因式:(a+b)2﹣4ab.【分析】(1)先根据幂的乘方和积的乘方、单项式乘以单项式的运算法则计算,再合并同类项即可;(2)先利用完全平方公式去括号合并同类项,进而利用完全平方公式分解因式即可.【解答】解:(1)原式=4a4b2+6a4b2=10a4b2;(2)原式=a2+2ab+b2﹣4ab=a2﹣2ab+b2=(a﹣b)2.16.(1)求值:(1﹣)÷,其中a=100.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得;(2)根据解分式方程的步骤依次计算可得.【解答】解:(1)原式=•=a﹣1,当a=100时,原式=100﹣1=99.(2)方程两边同乘x﹣1,得2x=1+3(x﹣1),解得x=2,检验:当x=2时,x﹣1≠0,∴x=2是原方程的解.a b c d17.已知x=3,x=6,x=12,x=18.(1)求证:①a+c=2b;②a+b=d;(2)求x2﹣+的值.a b ca cb a x b d【分析】(1)根据同底数幂的乘法法则x+=x2.x • =x.据此即可证得①a+c=2b;②a+b=d;(2)由(1)的结论解答即可.【解答】解:(1)证:∵3×12=62,a x c b∴x • =(x)2a c b即x+=x2.∴a+c=2b.∵3×6=18,a xb d∴x • =x.a b d即x+=x.∴a+b=d.(2)由(1)知a+c=2b,a+b=d.则有:2a+b+c=2b+d,∴2a﹣b+c=d∴x2﹣+a b c=x=18.d18.将图1中的矩形AB C D沿对角线AC剪开,再把△AB C沿着A D方向平移,得到图2中的△A′BC′.(1)在图2中,除△A D C与△C′BA′全等外,请写出其他2组全等三角形;①△AA′E≌△C′CF;②△A′DF≌△CBE;(2)请选择(1)中的一组全等三角形加以证明.【分析】(1)依据图形即可得到2组全等三角形:①△AA′E≌△C′CF;②△A′DF≌△C BE;(2)依据平移的性质以及矩形的性质,即可得到判定全等三角形的条件.【解答】解:(1)由图可得,①△AA′E≌△C′CF;②△A′D F≌△CBE;故答案为:△AA′E≌△C′CF;△A′D F≌△CBE;(2)选△AA′E≌△C′CF,证明如下:由平移性质,得AA′=C′C,由矩形性质,得∠A=∠C′,∠AA′E=∠C′CF=90°,∴△AA′E≌△C′CF(ASA).19.在一个含有多个字母的式子中,若任意交换两个字母的位置,式子的值不变,则这样的式子就叫做对称式.例如:a+b,abc等都是对称式.(1)在下列式子中,属于对称式的序号是①③;①a2+b2②a﹣b③④a2+bc.(2)若(x+a)(x+b)=x2+mx+n,当m=﹣4,n=3,求对称式的值.【分析】(1)根据对称式的概念求解可得;(2)先根据等式得出a+b=m=﹣4,ab=n=3,再由+=【解答】解:(1)属于对称式的是①③,计算可得.故答案为:①③;(2)由等式a+b=m=﹣4,ab=n=3,∴a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10,20.某商场第1次用600元购进2B铅笔若干支,第2次用800元又购进该款铅笔,但这次每支的进价是第1次进价的八折,且购进数量比第1次多了100支.(1)求第1次每支2B铅笔的进价;(2)若要求这两次购进的2B铅笔按同一价格全部销售完毕后获利不低于600元,问每支2B铅笔的售价至少是多少元?【分析】(1)设第1次每支2B铅笔的进价为x元,则第2次的进价为0.8x元,根据数量=总价÷单价结合第二次比第一次多购进100支,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可求出第一次购进2B铅笔的数量,用其加100可求出第二次购进数量,设每支2B铅笔的售价为y元,根据利润=单价×数量﹣进价结合总利润不低于600元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第1次每支2B铅笔的进价为x元,则第2次的进价为0.8x元,依题意,得﹣=100,解得:x=4.经检验,x=4是原方程的解,且适合题意.答:第1次每支2B铅笔的进价为4元.(2)600÷4=150(支),150+100=250(支)设每支2B铅笔的售价为y元,依题意,得:(150+250)y﹣(600+800)≥600,解得:y≥5.答:每支2B铅笔的售价至少是5元.21.如图,A D是△ABC的角平分线,点F、E分别在边AC、AB上,连接DE、D F,且∠AF D+∠B=180°.(1)求证:B D=F D;(2)当AF+F D=AE时,求证:∠AF D=2∠AE D.【分析】(1)由角平分线的性质得D M=D N,角角边证明△D M B≌△D NF,由全等三角形的性质求得B D=F D;(2)由边角边证△A DF≌△A D G,其性质得F D=G D,∠AF D=∠A G D,因AF+F D=AE,AE=A G+G E得FD=G D=G E,由等腰三角形等边对等角和三角形的外角定理得∠AG D =2∠GE D,等量代换得∠AF D=2∠AE D.【解答】证明:(1)过点D作D M⊥AB于M,D N⊥AC于N,如图1所示:∵D M⊥AB,D N⊥AC,∴∠D M B=∠D N F=90°,又∵A D平分∠BA C,∴D M=D N,又∵∠AF D+∠B=180°,∠AF D+∠DF N=180°,∴∠B=∠DF N,在△D M B和△D N F中,∴△D M B≌△D N F(AAS)∴B D=F D;(2)在AB上截取A G=AF,连接D G.如图2所示,∵A D平分∠BAC,∴∠DAF=∠DAG,在△A DF和△A D G中.,∴△A DF≌△A D G(SAS).∴∠AF D=∠A G D,F D=G D又∵AF+F D=AE,∴A G+G D=AE,又∵AE=A G+G E,∴F D=G D=G E,∴∠G D E=∠GED又∵∠A G D=∠G E D+∠G D E=2∠G E D.∴∠AF D=2∠AED22.如图,在等边△AB C中,线段A M为BC边上的中线.动点D在直线A M上时,以C D 为一边在C D的下方作等边△C D E,连结BE.(1)填空:∠CAM=30度;(2)若点D在线段A M上时,求证:△A D C≌△BE C;(3)当动点D在直线A M上时,设直线BE与直线A M的交点为O,试判断∠A OB是否为定值?并说明理【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC=AC,D C=E C,∠ACB=∠D CE=60°,由等式的性质就可以∠BCE=∠AC D,根据SAS就可以得出△A D C≌△BE C;(3)分情况讨论:当点D在线段A M上时,如图1,由(2)可知△A C D≌△BCE,就可以求出结论;当点D在线段A M的延长线上时,如图2,可以得出△AC D≌△BCE而有∠CBE=∠CA D=30°而得出结论;当点D在线段M A的延长线上时,如图3,通过得出△AC D≌△BCE同样可以得出结论.【解答】解:(1)∵△AB C是等边三角形,∴∠BA C=60°.∵线段A M为BC边上的中线∴∠CA M=∠BA C,∴∠CA M=30°.故答案为:30;(2)∵△ABC与△DE C都是等边三角形∴AC=BC,C D=CE,∠ACB=∠D C E=60°∴∠AC D+∠D C B=∠D CB+∠BCE∴∠AC D=∠BC E.在△A D C和△BE C中,∴△AC D≌△BC E(SAS);(3)∠A OB是定值,∠A OB=60°,理由如下:①当点D在线段A M上时,如图1,由(2)可知△A C D≌△BCE,则∠CBE=∠CAD=30°,又∠AB C=60°∴∠CBE+∠AB C=60°+30°=90°,∵△AB C是等边三角形,线段A M为BC边上的中线∴∠B OA=90°﹣30°=60°.②当点D在线段A M的延长线上时,如图2,∵△AB C与△DEC都是等边三角形∴AC=BC,C D=CE,∠ACB=∠D C E=60°∴∠ACB+∠D C B=∠D CB+∠D C E∴∠AC D=∠BC E在△AC D和△BCE中∴△AC D≌△BC E(SAS)∴∠CBE=∠CAD=30°,同理可得:∠BAM=30°,∴∠B OA=90°﹣30°=60°.③当点D在线段M A的延长线上时,∵△AB C与△DEC都是等边三角形∴AC=BC,C D=CE,∠ACB=∠D C E=60°∴∠AC D+∠A CE=∠BCE+∠ACE=60°∴∠AC D=∠BC E在△AC D和△BCE中∴△AC D≌△BC E(SAS)∴∠CBE=∠CAD同理可得:∠CAM=30°∴∠CBE=∠CAD=150°∴∠CB O=30°,∠BA M=30°,∴∠B OA=90°﹣30°=60°.综上,当动点D在直线A M上时,∠A O B是定值,∠A OB=60°.理由如下:①当点D在线段A M上时,如图1,由(2)可知△A C D≌△BCE,则∠CBE=∠CAD=30°,又∠AB C=60°∴∠CBE+∠AB C=60°+30°=90°,∵△AB C是等边三角形,线段A M为BC边上的中线∴A M平分∠BAC,即∴∠B OA=90°﹣30°=60°.②当点D在线段A M的延长线上时,如图2,∵△AB C与△DEC都是等边三角形∴AC=BC,C D=CE,∠ACB=∠D C E=60°∴∠ACB+∠D C B=∠D CB+∠D C E∴∠AC D=∠BC E在△AC D和△BCE中∴△AC D≌△BC E(SAS)∴∠CBE=∠CAD=30°,同理可得:∠BAM=30°,∴∠B OA=90°﹣30°=60°.③当点D在线段M A的延长线上时,∵△AB C与△DEC都是等边三角形∴AC=BC,C D=CE,∠ACB=∠D C E=60°∴∠AC D+∠A CE=∠BCE+∠ACE=60°∴∠AC D=∠BC E在△AC D和△BCE中∴△AC D≌△BC E(SAS)∴∠CBE=∠CAD同理可得:∠CAM=30°∴∠CBE=∠CAD=150°∴∠CB O=30°,∠BA M=30°,∴∠B OA=90°﹣30°=60°.综上,当动点D在直线A M上时,∠A O B是定值,∠A OB=60°.。

2018-2019学年河北省邯郸市锦玉中学初一(上)期末考试数学试卷(1)

2018-2019学年河北省邯郸市锦玉中学初一(上)期末考试数学试卷(1)

2018-2019学年河北省邯郸市锦玉中学初一(上)期末考试数学试卷一、选择题1. 下列运算结果为正数的是( ) A.2018−2019 B.(−3)2 C.(−2019)×0 D.−4÷62. 一个整数23190...0用科学记数法表示为2.319×1010,则原数中“0”的个数为( ) A.10 B.7 C.6 D.43. 图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A.④B.③C.②D.①4. 如图是由相同的小正方体木块粘在一起的几何体,它从正面,左面,上面分别看到的平面图形是( )A.①②④B.③②④C.③①④D.①②③5. 下列等式变形中,错误的是( )A.由a =b ,得a +5=b +5B.由a =b ,得a −3=b−3 C.由x +2=y +2,得x =y D.由−3x =−3y ,得x =−y6. 点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论: 甲:a −b >0;乙:a +b >0;丙:|a |<|b |;丁:ab >0, 其中错误的是( )A.甲乙B.丙丁C.甲丙D.乙丁7. 2×2×⋯×2m个23+3+⋯+3⏟n个3=( )A.2m3nB.2m3nC.2mn3 D.m23n8. 一张方桌由一个桌面和四条桌腿组成,如果1立方米木料可制作方桌的桌面50个或制作桌腿300条,现有5立方米木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张?设用x 立方米木料做桌面,那么桌腿用木料(5−x)立方米,根据题意,得( ) A. 4×50x=300(5−x ) B.50x=4×300(5−x ) C.4×50(5−x )=300xD.50(5−x )=4×300x9. 点A ,B ,C 在同一条数轴上,其中点A ,B 表示的数分别为−3,1,若B C =2,则A C =( ) A.3 B.2 C.3或5 D.2或610. 对任意x ,y 定义新运算“⊕”如下:x ⊕y =x 2−y ,若|a −3|+(b +2)2=0,则a⊕b =( ) A.4 B. 8 C.11 D.711. 嘉琪同学将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是( ) A.B.C.D.12. 如图,嘉琪做了四道方程变形题,出现错误的有( )A. B. C. D.13. 如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则a−b等于( )A.8B.7C.6D.514. 已知岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30∘和南偏西45∘方向上,符合条件的示意图是()A.B.C.D.15. 用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数是()A.4n+1 B.3n+1 C.4n+2 D.3n+216. 如图所示为魔术师在小丽面前表演的经过:假设小丽所写数字为a,那么魔术师猜中的结果应为( )A.2B.3C.4D.a+4二、解答题17. 计算(1)−14−(−6)+2−3×(−13)(2)(29−14+118)÷(−136)(3)2x−(x+10)=5x+2(x+1)(4)x−32−4x+15=118. 如图所示是一个正方形纸盒的平面展开图,已知纸盒中相对面上的数互为相反数.(1)填空:a=________,b=________,c=________;(2)先化简,再求值:5a2b−2a2b+3(2abc−a2b)+4abc.19. 如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着−5,−2,1,9,且任意相邻四个台阶上数的和都相等.尝试:(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用:求从下到上前98个台阶上数的和.发现:试用含k (k 为正整数)的式子表示出数“−2”所在的台阶数.20. 如图,点C 在线段A B 上,点M ,N 分别是A C ,B C 的中点.(1)若A C =9cm ,CB =6cm ,则线段M N 的长为_________cm ;(2)若A C =acm ,CB =bcm ,则线段M N 的长为_________cm ;(3)若A B =m c m ,求线段M N 的长度.21. 某班同学参加一次知识竞赛,共答10道题,每题分值相同.每题答对得分,答错或不答扣分.现抽出8份试卷进行分析如下表.(1)答对一题得________分,答错或不答一题扣________分.(2)如果答对的题数为n (n 在1到10之间,且为整数),用含n 的式子表示得分;(3)甲说他得了40分,乙说他得了20分,谁说的对?请说明理由.22.如图,已知∠A O B 内部有顺次的四条射线:O E ,O C ,O D ,O F ,O E 平分∠A O C ,O F 平分∠B O D .(1)若∠A O B 160,∠C O D 40,则∠E O F 的度数为________;(2)若∠A O B α,∠C O D β,求∠E O F 的度数.23. 如图,将一副直角三角尺的直角顶点C 叠放在一起.(1)若∠D CE =35∘,∠A CB =________;若∠A CB =140∘20′,则∠D CE =________;(2)猜想∠A CB 与∠D CE 的大小有何特殊关系,并说明理由;(3)若保持三角尺B CE (其中∠B =45∘)不动,三角尺A CD 的CD 边与CB 边重合,然后将三角尺A CD (其中∠D =30∘)绕点C 按逆时针方向任意转动一个角度∠B CD .设∠B CD =α(0∘<α<90∘),∠A CB 能否是∠D CE 的4倍?若能求出α的值;若不能说明理由.参考答案与试题解析2018-2019学年河北省邯郸市锦玉中学初一(上)期末考试数学试卷一、选择题 1.【答案】 B【考点】 有理数的乘方 有理数的除法 有理数的乘法 有理数的加法 【解析】 此题暂无解析 【解答】解:A 中,2018−2019=−1,−1为负数,A 错误;B 中,(−3)2=9,9为正数,B 正确;C 中,(−2019)×0=0,0既不是正数也不是负数,C 错误;D 中,−4÷6=−23,−23为负数,D 错误. 故选B . 2.【答案】 B【考点】科学记数法–原数科学记数法–表示较大的数 【解析】把2.319×1010写成不用科学记数法表示的原数的形式即可得. 【解答】解:∵ 2.319×1010表示的原数为23190000000, ∴ 原数中“0”的个数为7. 故选B . 3. 【答案】 D【考点】展开图折叠成几何体【解析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体. 故选D . 4.【答案】 A【考点】简单组合体的三视图 【解析】 此题暂无解析【解答】解:从正面看第一层是三个小正方形,第二层左边两个小正方形;从侧面看第一层三个小正方形中,中间缺少一个小正方形,第二层有三个小正方形;从上面看第一层有三个小正方形,第二层中间只有一个小正方形,第三层左侧有两个小正方形. 故选A . 5. 【答案】 D 【考点】 等式的性质 【解析】根据等式的性质,可得答案. 【解答】解:A ,两边都加5,故A 正确;B ,两边都除以同一个不为零的数,故B 正确;C ,两边都加2,故C 正确;D ,左边除以3,右边除以−3,故D 错误; 故选D . 6.【答案】 D【考点】 实数与数轴 绝对值【解析】根据图示,可得b <−3,0<a <3,据此逐项判断即可. 【解答】解:∵ b <a , ∴ a −b >0;甲正确; ∵ b <−3,0<a <3, ∴ a +b <0;乙错误; ∵ b <−3,0<a <3, ∴ |b |>3,|a |<3, ∴ |a |<|b |;丙正确; ∵ b <0,a >0,∴ab<0,丁错误∴错误的是:乙丁;故选D.7.【答案】B【考点】有理数的乘方有理数的加法【解析】此题暂无解析【解答】解:分子中m个2相乘,为2m,分母中是n个3相加,为3n.故选B.8.【答案】A【考点】一元一次方程的应用【解析】此题暂无解析【解答】解:x立方米木料做桌面,则(5−x)立方米木料做桌腿.则4×50x=300(5−x).故选A.9.【答案】D【考点】两点间的距离数轴【解析】要求学生分情况讨论A,B,C三点的位置关系,即点C在线段A B内,点C在线段A B外.【解答】解:此题画图时会出现两种情况,即点C在线段A B内,点C在线段A B外,所以要分两种情况计算.点A,B表示的数分别为−3,1,A B=4.第一种情况:在A B外,A C=4+2=6;第二种情况:在A B内,A C=4−2=2.故选D.10.【答案】C【考点】非负数的性质:偶次方非负数的性质:绝对值有理数的混合运算【解析】利用非负数的性质求出a与b的值,再利用新定义计算即可求出所求式子的值.【解答】解:∵|a−3|+(b+2)2=0,∴a−3=0,b+2=0,解得:a=3,b=−2,则原式=9+2=11,故选C.11.【答案】C【考点】余角和补角【解析】根据图形,结合互余的定义判断即可.【解答】解:A,∠α与∠β相等,不互余,故本选项错误;B,∠α与∠β不互余,故本选项错误;C,∠α与∠β互余,故本选项正确;D,∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选C.12.【答案】C【考点】解一元一次方程【解析】此题暂无解析【解答】解:应为7x=4,x=47;应为3−x=5,x=3−5;应为14y=12,y=2;而正确.故错误的为.故选C.13.【答案】B【考点】整式的加减【解析】此题暂无解析【解答】解:设空白处的面积为c,根据题意得:a+c=16,b+c=9,则a−b=(16−c)−(9−c)=16−9=7.故选B.14.【答案】D【考点】方向角【解析】根据方向角的定义,即可解答.【解答】解:根据岛P,Q分别测得船R位于南偏东30∘和南偏西45∘方向上,故D符合.故选D.15.【答案】D【考点】规律型:图形的变化类【解析】观察图形得到第1个图形需要围棋子的枚数=5;第2个图形需要围棋子的枚数=5+3;第3个图形需要围棋子的枚数=5+3×2;第4个图形需要围棋子的枚数=5+3×3,…,则第n个图形需要围棋子的枚数=5+3(n−1).【解答】解:第1个图形需要围棋子的枚数=5,第2个图形需要围棋子的枚数=5+3,第3个图形需要围棋子的枚数=5+3×2,第4个图形需要围棋子的枚数=5+3×3,…,所以第n个图形需要围棋子的枚数为:5+3(n−1)=3n+2;故选D.16.【答案】C 【考点】整式的混合运算整式的加减列代数式【解析】此题暂无解析【解答】解:由题意易得:(a⋅6+8)÷2−3a,化简得:3a+4−3a,即无论a取何值,按照魔术师给出的运算方法得到的结果都是4.故选C.二、解答题17.【答案】解:(1)−14−(−6)+2−3×(−13)=−1+6+2+1=8;(2)(29−14+118)÷(−136)=(836−936+236)×(−36)=136×(−36)=−1;(3)2x−(x+10)=5x+2(x+1)去括号:2x−x−10=5x+2x+2移项:2x−x−5x−2x=2+10合并同类项:−6x=12系数化为1:x=−2;(4)x−32−4x+15=15x−1510−8x+210=15x−15−8x−210=15x−15−8x−2=10−3x=10+15+2x=−9.【考点】分式方程的解解一元一次方程有理数的混合运算【解析】此题暂无解析【解答】解:(1)−14−(−6)+2−3×(−13)=−1+6+2+1=8;(2)(29−14+118)÷(−136)=(836−936+236)×(−36)=136×(−36)=−1;(3)2x−(x+10)=5x+2(x+1)去括号:2x−x−10=5x+2x+2移项:2x−x−5x−2x=2+10合并同类项:−6x=12系数化为1:x=−2;(4)x−32−4x+15=15x−15 10−8x+210=15x−15−8x−210=15x−15−8x−2=10−3x=10+15+2x=−9.18.【答案】1,−2,−3(2)原式=5a2b−2a2b+6abc−3a2b+4abc=5a2b−2a2b−3a2b+6abc+4abc =10abc.当a=1,b=−2,c=−3时,原式=10×1×(−2)×(−3)=60.【考点】专题:正方体相对两个面上的文字整式的加减相反数【解析】(1)长方体的表面展开图,相对的面之间一定相隔一个长方形,根据这一特点作答;(2)先去括号,然后再合并同类项,最后代入计算即可.【解答】解:(1)3与c是对面;2与b是对面;a与−1是对面.∵纸盒中相对两个面上的数互为相反数,∴a=1,b=−2,c=−3.故答案为:1,−2,−3.(2)原式=5a2b−2a2b+6abc−3a2b+4abc=5a2b−2a2b−3a2b+6abc+4abc=10abc.当a=1,b=−2,c=−3时,原式=10×1×(−2)×(−3)=60.19.【答案】解:(1)由题意得前4个台阶上数的和是−5−2+1+9=3;(2)由题意得−2+1+9+x=3,解得:x=−5,则第5个台阶上的数x是−5;由题意知台阶上的数字是每4个一循环,∵98÷4=24⋯⋯2,∴24×3−5−2=65,即从下到上前98个台阶上数的和为65.数“−2”所在的台阶数为:2,6,10⋯所以“−2”所在的台阶数为:4k−2.【考点】规律型:图形的变化类规律型:数字的变化类规律型:点的坐标【解析】(1)将前4个数字相加可得.(2)根据“相邻四个台阶上数的和都相等”列出方程求解可得;应用:根据“台阶上的数字是每4个一循环”求解可得.由循环规律即可知“−2”所在的台阶数为4k−2.【解答】解:(1)由题意得前4个台阶上数的和是−5−2+1+9=3;(2)由题意得−2+1+9+x=3,解得:x=−5,则第5个台阶上的数x是−5;由题意知台阶上的数字是每4个一循环,∵98÷4=24⋯⋯2,∴24×3−5−2=65,即从下到上前98个台阶上数的和为65.数“−2”所在的台阶数为:2,6,10⋯所以“−2”所在的台阶数为:4k−2.20.【答案】解:(1)M N =M C +N C =12A C +12B C=12×9+12×6 =7.5cm .(2)由题意得:M N =M C +N C =12A C +12B C , ∵ A C =acm ,CB =bcm , ∴ M N =a+b 2.(3)M N =M C +N C =12A C +12B C=12(A C +B C )=12A B , ∵ A B =m c m, ∴ M N =m 2.【考点】 线段的中点 【解析】此题暂无解析 【解答】解:(1)MN =M C +N C =12A C +12B C =12×9+12×6 =7.5cm .(2)由题意得:M N =M C +N C =12A C +12B C , ∵ A C =acm ,CB =bcm , ∴ M N =a+b 2.(3)M N =M C +N C =12A C +12B C=12(A C +B C )=12A B , ∵ A B =m c m, ∴ M N =m 2. 21.【答案】10,5(2)根据第一问结果:答对为10分, 答错扣5分可知,得分为:10n−5(10−n ), 化简得15n −50.(3)将40,20分别代入方程可得: 15n −50=40,则n =6, 15n −50=20,则n ≈4.1,不为整数. 所以甲对,乙错. 【考点】整数问题的综合运用 一元一次方程的应用 整式【解析】 此题暂无解析 【解答】解:(1)由6号同学可得,每答对一道为10分, 设答错一题扣x 分,那么由1号同学可得方程, 8×10−2x =70.解得:x =5. 故答案为:10;5.(2)根据第一问结果:答对为10分, 答错扣5分可知,得分为:10n−5(10−n ), 化简得15n −50.(3)将40,20分别代入方程可得: 15n −50=40,则n =6, 15n −50=20,则n ≈4.1,不为整数. 所以甲对,乙错. 22. 【答案】100(2)∵ O E 平分∠A O C ,O F 平分∠B O D , 又∵ ∠A O B =α,∠C O D =β, ∴ ∠A O C +∠B O D =α−β, 即2∠A O E +2∠B O F =α−β,∴ ∠A O E +∠B O F =α−β2, ∴ ∠E OF =∠A O B −(∠A O E +∠B O F ) =α−α−β2=α2+β2=α+β2. ∴ ∠E O F 的度数为α+β2.【考点】角平分线的性质 角的计算 【解析】此题暂无解析 【解答】解:(1)∵ O E 平分∠A O C ,O F 平分∠B O D , 又∵ ∠A O B =160,∠C O D =40, ∴ ∠A O C +∠B O D =160−40=120, 即2∠A O E +2∠B O F =120, ∴ ∠A O E +∠B O F =60,∴ ∠E O F =∠A O B −(∠A O E +∠B O F ) =160−60=100, ∴ ∠E O F 的度数为100. 故答案为:100. (2)∵ O E 平分∠A O C ,O F 平分∠B O D , 又∵ ∠A O B =α,∠C O D =β, ∴ ∠A O C +∠B O D =α−β, 即2∠A O E +2∠B O F =α−β,∴ ∠A O E +∠B O F =α−β2, ∴ ∠E O F =∠A O B −(∠A O E +∠B O F) =α−α−β2=α2+β2=α+β2. ∴ ∠E O F 的度数为α+β2.23.【答案】 145∘,39∘40′ (2)互补.理由:∵ ∠A CE +∠E CD +∠D CB +∠E CD =180. ∵ ∠A CE +∠E CD +∠D CB =∠A CB , ∴ ∠A CB +∠D CE =180∘, 即∠A CB 与∠D CE 互补. (3)当∠A CB 是∠D CE 的4倍, ∴ 设∠A CB =4x ,∠D CE =x , ∵ ∠A CB +∠D CE =180∘, ∴ 4x +x =180∘解得:x =36∘, ∴ α=90∘−36∘=54∘. 【考点】直角三角形的性质 余角和补角 【解析】(2)由于∠A CD =∠E CB =90∘,重叠的度数就是∠E CD 的度数,所以∠A CB +∠D CE =180∘. 【解答】解:(1)∵ ∠A CD =∠E CB =90∘,∠D CE =35∘,∴ ∠A CB =180∘−35∘=145∘. ∵ ∠A CD =∠E CB =90∘,∠A CB =140∘20′, ∴ ∠D CE =180∘−140∘20′=39∘40′. 故答案为:145∘,39∘40′. (2)互补. 理由:∵ ∠A CE +∠E CD +∠D CB +∠E CD =180. ∵ ∠A CE +∠E CD +∠D CB =∠A CB , ∴ ∠A CB +∠D CE =180∘, 即∠A CB 与∠D CE 互补. (3)当∠A CB 是∠D CE 的4倍, ∴ 设∠A CB =4x ,∠D CE =x , ∵ ∠A CB +∠D CE =180∘, ∴ 4x +x =180∘ 解得:x =36∘,∴ α=90∘−36∘=54∘.。

河北省邢台市2018-2019学年八年级(上)期末数学试卷 含解析

河北省邢台市2018-2019学年八年级(上)期末数学试卷  含解析

2018-2019学年八年级(上)期末数学试卷一、选择题(本大题有14个小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列式子,表示4的平方根的是()A.B.42C.﹣D.±2.把8.973精确到十分位是()A.9 B.9.00 C.8.97 D.9.03.用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是()A.假定CD∥EF B.假定CD不平行于EFC.已知AB∥EF D.假定AB不平行于EF4.若是无理数,则a的值可以是()A.B.1 C.2 D.95.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.6.将一个正方形纸片按如图1、图2依次对折后,再按如图3打出一个心形小孔,则展开铺平后的图案是()A.B.C.D.7.若,则x的值可以是()A.1 B.3 C.4 D.58.小米在用尺规作图作△ABC边AC上的高BH,作法如下:①分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于F;②作射线BF,交边AC于点H;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;④取一点K,使K和B在AC的两侧;所以,BH就是所求作的高.其中顺序正确的作图步骤是()A.①②③④B.④③②①C.②④③①D.④③①②9.若将﹣,,、四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是()A.﹣B.C.D.10.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30 B.25 C.20 D.1511.在将式子(m>0)化简时,小明的方法是:;小亮的方法是:;小丽的方法是:.则下列说法正确的是()A.小明、小亮的方法正确,小丽的方法不正确B.小明、小丽的方法正确,小亮的方法不正确C.小明、小亮、小丽的方法都正确D.小明、小丽、小亮的方法都不正确12.如图所示,在△ABC中,AB=AC,∠BAD=α,且AE=AD,则∠EDC=()A.αB.αC.αD.α13.如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC的长是()A.2B.2 C.4D.414.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.13二、填空题(本大题有3个小题,每小题4分,共12分)15.已知命题:“等角的补角相等.”写出它的逆命题:.16.若,则括号中式子为.17.如图,在Rt△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,CD=2,则BC =.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤)18.如图甲,这是由8个同样大小的立方体组成的魔方,总体积为64cm3.(1)这个魔方的棱长为cm;(2)图甲中阴影部分是一个正方形ABCD,求这个正方形的边长;(3)把正方形ABCD放置在数轴上,如图乙所示,使得点A与数1重合,则D在数轴上表示的数为.19.小明和小亮参加跳绳比赛,在某段相同时间内,小明跳了180下,小亮跳了210下,已知小明每分钟比小亮少跳20下,则小亮每分钟跳多少下?20.如图所示,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点O.求证:AD垂直平分EF.21.已知:x=,y=﹣2.求:(1)代数式x﹣y的值;(2)代数式x2﹣3xy+y2的值.22.已知:如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.(1)求证:CD=CE;(2)连接DE,交AB于点F,猜想△BEF的形状,并给予证明.23.阅读材料:小华像这样解分式方程=解:移项,得:﹣=0通分,得:=0整理,得:=0分子值取0,得:x+5=0即:x=﹣5经检验:x=﹣5是原分式方程的解.(1)小华这种解分式方程的新方法,主要依据是;(2)试用小华的方法解分式方程﹣=124.探究:已知,如图1,在△ABC中,∠ACB=90°,AC=6,BC=8,D是线段AB上一个动点.(1)画出点D关于直线AC、BC的对称点M、N;(2)在(1)的条件下,连接MN①求证:M、C、N三点在同一条直线上;②求MN的最小值.应用:已知,如图2,在△ABC中,∠C=30°,AC=CB,AB=3,△ABC的面积为S,点D、E、F分别是AB、AC、BC上三个动点,请用含S的代数式直接表示△DEF的周长的最小值,并在图2中画出符合题意的图形.参考答案与试题解析一.选择题(共14小题)1.下列式子,表示4的平方根的是()A.B.42C.﹣D.±【分析】根据平方根的概念解答即可.【解答】解:表示4的平方根的是,故选:D.2.把8.973精确到十分位是()A.9 B.9.00 C.8.97 D.9.0【分析】根据近似数的精确度,把百分位上的数字4进行四舍五入即可.【解答】解:把8.973精确到十分位是9.0,故选:D.3.用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是()A.假定CD∥EF B.假定CD不平行于EFC.已知AB∥EF D.假定AB不平行于EF【分析】根据要证CD∥EF,直接假设CD不平行于EF即可得出.【解答】解:∵用反证法证明命题:如果AB∥CD,AB∥EF,那么CD∥EF.∴证明的第一步应是:从结论反面出发,假设CD不平行于EF.故选:B.4.若是无理数,则a的值可以是()A.B.1 C.2 D.9【分析】根据无理数的概念和算术平方根解答即可.【解答】解:A、是有理数,错误;B、是有理数,错误;C、是无理数,正确;D、是有理数,错误;故选:C.5.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.【分析】直接利用中心对称图形的性质得出答案.【解答】解:A、新图形不是中心对称图形,故此选项错误;B、新图形是中心对称图形,故此选项正确;C、新图形不是中心对称图形,故此选项错误;D、新图形不是中心对称图形,故此选项错误;故选:B.6.将一个正方形纸片按如图1、图2依次对折后,再按如图3打出一个心形小孔,则展开铺平后的图案是()A.B.C.D.【分析】依据轴对称的性质,将纸片依次展开还原,即可得到正确结论.【解答】解:将图3展开可得小孔位于图2中虚线的左右两侧,且位于上边缘;把图2展开可得小孔位于图1中虚线的上下两侧,且关于该虚线对称;故选:B.7.若,则x的值可以是()A.1 B.3 C.4 D.5【分析】根据二次根式的有意义的条件解答即可.【解答】解:若,所以,解得:2≤x<4,故选:B.8.小米在用尺规作图作△ABC边AC上的高BH,作法如下:①分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于F;②作射线BF,交边AC于点H;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;④取一点K,使K和B在AC的两侧;所以,BH就是所求作的高.其中顺序正确的作图步骤是()A.①②③④B.④③②①C.②④③①D.④③①②【分析】根据直线外一点作已知直线的垂线的方法作BH⊥AC即可.【解答】解:用尺规作图作△ABC边AC上的高BH,作法如下:取一点K,使K和B在AC的两侧;以B为圆心,BK长为半径作弧,交直线AC于点D和E;分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于F;作射线BF,交边AC于点H;所以,BH就是所求作的高.故正确的作图步骤是④③①②.故选:D.9.若将﹣,,、四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是()A.﹣B.C.D.【分析】先估算出各数,再根据实数与数轴的关系即可得出结论.【解答】解:﹣是负数,在原点的左侧,不符合题意;<<6<,即2<<3,符合题意;>,即>3,在墨迹覆盖处的右边,不符合题意;>,即>4,在墨迹覆盖处的右边,不符合题意;故选:B.10.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30 B.25 C.20 D.15【分析】在直角三角形AHB中,利用勾股定理进行解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正方形,∴HG=EF=4,∴BH=16,∴在直角三角形AHB中,由勾股定理得到:AB===20.故选:C.11.在将式子(m>0)化简时,小明的方法是:;小亮的方法是:;小丽的方法是:.则下列说法正确的是()A.小明、小亮的方法正确,小丽的方法不正确B.小明、小丽的方法正确,小亮的方法不正确C.小明、小亮、小丽的方法都正确D.小明、小丽、小亮的方法都不正确【分析】小明的方法为原式分子分母乘以有理化因式,化简得到结果;小亮的方法为将分子利用二次根式性质化简,约分即可得到结果;小丽得方法为分子利用二次根式性质化简,再利用二次根式除法法则逆运算变形,计算即可得到结果.【解答】解:在将式子(m>0)化简时,小明的方法是:===,正确;小亮的方法是:==,正确;小丽的方法是:===,正确,则小明、小亮、小丽的方法都正确.故选:C.12.如图所示,在△ABC中,AB=AC,∠BAD=α,且AE=AD,则∠EDC=()A.αB.αC.αD.α【分析】根据等边对等角,和三角形的外角性质列出等式整理即可得出结论.【解答】解:根据题意:在△ABC中,AB=AC∴∠B=∠C∵AE=AD∴∠ADE=∠AED,即∠B+∠α﹣∠EDC=∠C+∠EDC化简可得:∠α=2∠EDC∴∠EDC=α.故选:A.13.如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC的长是()A.2B.2 C.4D.4【分析】求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.【解答】解:∵∠A=30°,∠B=90°,∴∠ACB=180°﹣30°﹣90°=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=1,∴CD=2=AD,∴AB=1+2=3,在△BCD中,由勾股定理得:CB=,在△ABC中,由勾股定理得:AC==2,故选:A.14.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.13【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选:C.二.填空题(共3小题)15.已知命题:“等角的补角相等.”写出它的逆命题:如果两个角的补角相等,那么这两个角相等.【分析】交换命题的题设和结论即可写出该命题的逆命题.【解答】解:等角的补角相等的逆命题为:如果两个角的补角相等,那么这两个角相等,故答案为:如果两个角的补角相等,那么这两个角相等.16.若,则括号中式子为﹣2x(x+1).【分析】根据分式的除法法则计算,得到答案.【解答】解:÷=•(x+1)(x﹣1)=﹣2x(x+1),故答案为:﹣2x(x+1).17.如图,在Rt△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,CD=2,则BC = 6 .【分析】作DE⊥AB于E,根据角平分线的性质得到DE=CD=2,根据直角三角形的性质得到BD=2DE=4,结合图形计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=2,∵DE⊥AB,∠B=30°,∴BD=2DE=4,∴BC=CD+BD=6,故答案为:6.三.解答题(共7小题)18.如图甲,这是由8个同样大小的立方体组成的魔方,总体积为64cm3.(1)这个魔方的棱长为 4 cm;(2)图甲中阴影部分是一个正方形ABCD,求这个正方形的边长;(3)把正方形ABCD放置在数轴上,如图乙所示,使得点A与数1重合,则D在数轴上表示的数为1﹣2.【分析】(1)魔方是个正方体,正方体的体积等于棱长的三次方;(2)这个正方形ABCD的边长是小立方体一个面的对角线的长度;(3)点D表示的数是负数,它的绝对值比正方形ABCD的边长少1.【解答】解:(1)设魔方的棱长为acm,根据题意得a3=64∴a=4故答案为4.(2)设小正方体的棱长为bcm,根据题意得 8b3=64∴b=2∴所以根据勾股定理得CD2=22+22∴CD=2答:这个正方形的边长是2cm.(3)由(2)知,AD=2∴点D对应的数的绝对值是2﹣1∵点D对应的数是负数∴点D对应的数是1﹣2故答案为1﹣2.19.小明和小亮参加跳绳比赛,在某段相同时间内,小明跳了180下,小亮跳了210下,已知小明每分钟比小亮少跳20下,则小亮每分钟跳多少下?【分析】设小亮每分钟跳x下,则小明每分钟跳(x﹣20)下,根据小明跳180下与小亮跳210下的时间相等建立方程求出其解即可.【解答】解:设小亮每分钟跳x下,则小明每分钟跳(x﹣20)下,由题意,得解得:x=140经检验:x=140是原方程的解,答:小亮每分钟跳140下.20.如图所示,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点O.求证:AD垂直平分EF.【分析】由AD为△ABC的角平分线,得到DE=DF,推出∠AEF和∠AFE相等,得到AE=AF,即可推出结论.【解答】证明:∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,∴∠DEF=∠DFE,∴∠AEF=∠AFE,∴AE=AF∴点A、D都在EF的垂直平分线上,∴AD垂直平分EF21.已知:x=,y=﹣2.求:(1)代数式x﹣y的值;(2)代数式x2﹣3xy+y2的值.【分析】(1)将x、y的值代入计算可得;(2)将x、y的值代入原式=(x﹣y)2﹣xy计算可得.【解答】解:(1)∵x=,y=﹣2,∴x﹣y=﹣+2=2;(2)原式=(x﹣y)2﹣xy=(﹣+2)2﹣(﹣2)=4﹣5+2=2﹣1.22.已知:如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.(1)求证:CD=CE;(2)连接DE,交AB于点F,猜想△BEF的形状,并给予证明.【分析】(1)连接CE,由平行线的性质,结合条件可证明△ADC≌△BCE,可证明CD=CE;(2)由(1)中的全等可得∠CDE=∠CED,∠ACD=∠BEC,可证明∠BFE=∠BEF,可证明△BEF为等腰三角形.【解答】(1)证明:如图,连接CE,∵AD∥BE,∴∠A=∠B,在△ADC和△BCE中∴△ADC≌△BCE(SAS),∴CD=CE;(2)解:△BEF为等腰三角形,证明如下:由(1)可知CD=CE,∴∠CDE=∠CED,由(1)可知△ADC≌△BEC,∴∠ACD=∠BEC,∴∠CDE+∠ACD=∠CED+∠BEC,即∠BFE=∠BED,∴BE=BF,∴△BEF是等腰三角形.23.阅读材料:小华像这样解分式方程=解:移项,得:﹣=0通分,得:=0整理,得:=0分子值取0,得:x+5=0即:x=﹣5经检验:x=﹣5是原分式方程的解.(1)小华这种解分式方程的新方法,主要依据是分式的值为0即分子为0且分母不为0 ;(2)试用小华的方法解分式方程﹣=1【分析】(1)根据分式的值为0即分子为0且分母不为0可得;(2)移项后,通分、根据分式的加减法则计算左边,再由(1)中结论得出关于x的方程,解之求得x的值,最后检验即可得.【解答】解:(1)小华这种解分式方程的新方法,主要依据是分式的值为0即分子为0且分母不为0,故答案为:分式的值为0即分子为0且分母不为0.(2)﹣﹣1=0,﹣﹣=0,=0,=0,则﹣4(x+2)=0,解得:x=﹣2,检验:x=﹣2时,分母为0,分式无意义,所以x=﹣2是增根,原分式方程无解.24.探究:已知,如图1,在△ABC中,∠ACB=90°,AC=6,BC=8,D是线段AB上一个动点.(1)画出点D关于直线AC、BC的对称点M、N;(2)在(1)的条件下,连接MN①求证:M、C、N三点在同一条直线上;②求MN的最小值.应用:已知,如图2,在△ABC中,∠C=30°,AC=CB,AB=3,△ABC的面积为S,点D、E、F分别是AB、AC、BC上三个动点,请用含S的代数式直接表示△DEF的周长的最小值,并在图2中画出符合题意的图形.【分析】探究:(1)根据要求画出图形即可;(2)①想办法证明∠MCN=180°即可;②由题意可知MN=2CD,当CD⊥AB时,CD的值最小,即MN的值最小;应用:如图2中,设D是AB上任意一点,作点D关于直线AC的对称点D′,点D关于直线BC的对称点D″,连接D′D″交AC于E,交BC于F.作CH⊥AB于H.由△DEF的周长=DE+EF+DF=D′E+EF+FD″=D′D″=CD,推出CD的值最小时,△DEF的周长最小,由此即可解决问题;【解答】探究:(1)解:如图1中,点M,N即为所求;(2)①证明:连接CD,由对称的性质可知:∠ACD=∠ACM,∠BCD=∠BCN,∵∠ACD+∠BCD=90°,∴∠MCD+∠NCD=2(∠ACD+∠BCD)=180°,∴M,C,N共线.②解:∵CM=CD,CN=CD,∴MN=CM+CN=2CD,∴当CD最短时,MN的值最小,∵CD⊥AB时,垂线段最短,∴CD的最小值===,∴MN的最小值是;应用:解:如图2中,设D是AB上任意一点,作点D关于直线AC的对称点D′,点D 关于直线BC的对称点D″,连接D′D″交AC于E,交BC于F.作CH⊥AB于H.由对称的性质可知:CD=CD′=CD″,ED=ED′,FD=FD″,∠ACD=∠ACD′,∠BCD =∠BCD″,∴∠D′CD″=2∠ACB=60°,∴△D′CD″是等边三角形,∴D′D″=CD′=CD,∵△DEF的周长=DE+EF+DF=D′E+EF+FD″=D′D″=CD,∴CD的值最小时,△DEF的周长最小,当CD与CH重合时,CD的值最小,∵•AB•CH=S,∴CH=,∴△DEF的周长的最小值为.。

北师大版八年级(上)期末数学压轴题系列专题练习(含答案)

北师大版八年级(上)期末数学压轴题系列专题练习(含答案)

图3EDBA图2EDCBA图1EDCBA2018-2019学年北师大版八年级数学(上)八年级数学期末试题北师大版八年级上册期末压轴题系列11、如图,已知:点D 是△ABC 的边BC 上一动点,且AB =AC ,DA =DE ,∠BAC =∠ADE =α.⑴如图1,当α=60°时,∠BCE = ;⑵如图2,当α=90°时,试判断∠BCE 的度数是否发生改变,若变化,请指出其变化范围;若不变化,请求出其值,并给出证明;(图1) (图2) (图3)⑶如图3,当α=120°时,则∠BCE = ;2、如图1,在平面直角坐标系xoy 中,直线6y x =+与x 轴交于A ,与y 轴交于B ,BC ⊥AB 交x 轴于C 。

①求△ABC 的面积。

如图2,②D 为OA 延长线上一动点,以BD 为直角边做等腰直角三角形BDE ,连结EA .求直线EA 的解析式.③点E 是y 轴正半轴上一点,且∠OAE =30°,上一动点,是判断是否存在这样的点M 、N ,使得OM +NM 的值最小,若存在,请写出其最小值,并加以说明.3. 如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+,(1)求直线2l 的解析式;(2)过A 点在△ABC 的外部作一条直线3l ,过点B 作BE ⊥3l 于E ,过点C 作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF =EF(3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。

在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。

4. 如图①,直线AB 与x 轴负半轴、y 轴正半轴分别交于A 、B 两点.OA 、OB 的长度分别为a 和b ,且满足2220a ab b -+=.⑴判断△AOB 的形状.⑵如图②,正比例函数(0)y kx k =<的图象与直线AB 交于点Q ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM =9,BN =4,求MN 的长.⑶如图③,E 为AB 上一动点,以AE 为斜边作等腰直角△ADE ,P 为BE 的中点,连结PD 、PO ,试问:线段PD 、PO 是否存在某种确定的数量关系和位置关系?写出你的结论并证明.①OQ NMyxBA②OPy xE DBA③5、如图,已知△ABC 和△ADC是以AC为公共底边的等腰三角形,E、F分别在AD和CD上,已知:∠ADC+∠ABC=180°,∠ABC=2∠EBF;(1)求证:EF=AE+FC(2)若点E、F在直线AD和BD上,则是否有类似的结论?6、操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN.(1)探究线段BM、MN、NC之间的关系,并加以证明;(2)若点M、N分别是射线AB、CA上的点,其它条件不变,请你再探线段BM,MN,NC之间的关系,在图④中画出图形,并说明理由.(3)求证:CN-BM=MN图①图②图③图④EDCBAF北师大版八年级上册期末压轴题5答案; 1、⑴如图1,当α=60°时,∠BCE =120°;⑵证明:如图,过D 作DF ⊥BC ,交CA 或延长线于F 。

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

河北省邢台市20172018学年八年级数学下学期第一次月考试题冀教版

河北省邢台市20172018学年八年级数学下学期第一次月考试题冀教版

河北省邢台市2021-2021学年八年级数学下学期第一次月考试题试卷总分值:120分答题时间:90分钟说明:本试卷分卷Ⅰ和卷Ⅱ两局部:卷Ⅰ为选择题,卷Ⅱ为非选择题。

卷Ⅰ〔选择题,共42分〕一、选择题〔本大题共16个小题,1~10题每题3分,11~16每题2分,共42分.在每题给出的四个选项中,只有一项为哪一项最符合题目要求的〕1、为了了解某中学初三800名学生的视力情况,从中随机抽取了 30名学生进行调查,在此次调查中,样本容量为( )名学生的视力名学生的视力2、以下调查方式适宜的是 ( )A.要了解一批灯泡的使用寿命,采用全面调查方式B.了解浙江电视台“中国好声音第四季〞栏目收视率,采用全面调查方式C.为保证“神十〞在2021年6月成功发射,之前要对飞船重要零部件进行检查,检查采用抽样调查的方式D.,要了解全国观众对“奔跑吧兄弟〞节目的喜爱程度 ,采用抽样调查方式3、在平面直角坐标系中,点的坐标为,点的坐标为,点到直线的距离为 ,且是直角三角形 ,那么满足条件的点有( ) 个.4、图是甲、乙两户居民家庭全年各项支出的统计图.图根据统计图,以下对两户教育支出占全年总支出的百分比作出的判断中,正确的选项是( )A. 甲户大B. 乙户大C. 两户一样D. 无法确定哪户大15、中学生骑电动车上学给交通平安带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学〞的态度,从中随机调查400个家长,结果有360个家长持反对态度。

那么以下说法正确的选项是()调查方式是普查该校只有360个家长持反对态度C.样本是360个家长D.该校约有90%的家长持反对态度6、某校七年级在“数学小论文〞评比活动中,共征集到论文30篇,并对其进行评比、整理、分组,并画出如下图的频数分布直方图,从左到右各小长方形的高度比为2:4:3:1,那么B组的频数为( )7、一个班有40名学生,在期末体育考核中,优秀的有18人,在扇形统计图中,代表体育优秀扇形的圆心角是()°°°°8、在直角坐标系中,将点(2,-3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,-3)B.(-4,3)C.(-4,-3)D.(0,3)9、如图,在的正方形网格中有四个格点A、B、C、D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标对称,那么原点是()A.A点点 C.C点 D.D点210、在平面直角坐系中,将点〔Ax,y〕向左平移个位度,再向上平移3个位度后与点 B(-3,2)重合,点A的坐是()A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)11、将△ABC的三个点的横坐都加上-6,坐都减去5,所得形与原形的关系是()A.将原形向x的正方向平移了6个位,向y的正方向平移了5个位B.将原形向x的方向平移了6个位,向y的正方向平移了5个位C.将原形向x的方向平移了6个位,向y的方向平移了5个位D.将原形向x的正方向平移了6个位,向y的方向平移了5个位12、今年我市有4万名考生参加中考,了了解些考生的数学成,从中抽取2000名考生的数学成行分析,在个中,以下法:①4万名考生的数学中考成的全体是体;②每个考生是个体;③2000名考生是体的一个本;④本容量是2000其中法正确的有 ()个个个个13、在平面直角坐系中,孔明做走棋游,其走法是;棋子从原点起,第1步向右走1个位,第2步向右走2个位,第3步向上走1个位,第4步向右走1个位,第5步向右走2个位,⋯⋯依此推,第n步是:当n能被整除,向上走1个位;当n被3除,余数是1,向右走1个位,当n被3除,余数2 ,向右走2个位,当他走完第100步,棋子所位置的坐是()A.(100,34)B.(67,33)C.(100,33)D.(99,34)14、将50个数据分成 3 ,其中第一和第三的率之和0.7,第二小的数是〔〕15、假设点在上,点的坐()A.(2,-1)B.(2,0)C.(3,0)D.(-2,0)16、点坐,且点到两坐的距离相等,的坐是()A.(6,-6)B.(1,-1)C.(3,3)D.(6,-6)或(3,3)卷Ⅱ〔非,共78分〕二、填空(本大共3个小,17、18每小3分,19每空2分,共10分)317、在本的数分布直方中,有11个小方形,假设正中的小方形的面等于其它10个小方形面之和的,且本数据有160个,中一的数.18、如下,、、、、、⋯.点的坐.19、某校在“地球,化祖国〞的建活中,学生开展植造林活.了解全校学生的植情况,学校随机抽了100名学生的植情况,将数据整理如下表:100名同学平均每人植棵;假设校共有1000名学生,根据以上果估校学生的植数是棵.植数量(位:棵)456810人数2820251611〔第18〕〔第19〕三、解答〔共68分,20、21、22每各10分,23、24每各12分,2514分。

模拟卷:2018-2019学年八年级数学上学期期末原创卷B卷(河北)

模拟卷:2018-2019学年八年级数学上学期期末原创卷B卷(河北)

数学试题 第1页(共6页) 数学试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前2018-2019学年上学期期末原创卷B 卷(河北)八年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:冀教版八上全册。

第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .2.16的算术平方根是( ) A .4B .±4C .±2D .23.在实数|-3|,-2,0,π中,最小的数是( ) A .|-3|B .-2C .0D .π4.要使得代数式12x x --在实数范围内有意义,则x 的取值范围是( ) A .2x ≥ B .1x ≥ C .2x ≠D .1x ≥且2x ≠5.如果132x y x +=,那么yx的值为( ) A .12 B .23 C .13D .256.下列运算错误的是( ) A .532-=B .632÷=C .6332⨯=D .2333-=7.已知a 、b 、c 是三角形的三边长,如果满足2(6)8|10|0a b c -+-+-=,则三角形的形状是( ) A .底与边不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形8.下列命题中,真命题的是( )A .相等的两个角是对顶角B .若a >b ,则|a |>|b |C .两条直线被第三条直线所截,内错角相等D .等腰三角形的两个底角相等9.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则 ∠CBE 的度数为( )A .80°B .70°C .40°D .30°10.如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了( )A .4米B .6米C .8米D .10米11.数学课上,小丽用尺规这样作图:(1)以点O 为圆心,任意长为半径作弧,交OA ,OB 于D ,E 两点;(2)分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧交于点C ;(3)作射线OC 并连数学试题第3页(共6页)数学试题第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………接CD,CE,下列结论不正确的是()A.∠1=∠2 B.S△OCE=S△OCD C.OD=CD D.OC垂直平分DE12.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是()A.BF=DF B.∠1=∠EFD C.BF>EF D.FD∥BC13.已知:如果二次根式28n是整数,那么正整数n的最小值是()A.1 B.4 C.7 D.2814.如图,∠AOB=30º,∠AOB内有一定点P,且OP=12,在OA上有一动点Q,OB上有一动点R.若△PQR 周长最小,则最小周长是()A.6 B.12 C.16 D.2015.若关于x的方程2222x mx x++=--的解为正数,则m的取值范围是()A.m<6 B.m>6 C.m<6且m≠0D.m>6且m≠816.在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于E,A1C1分别交AC、BC于点D、F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.其中一定正确的有()A.①②④B.②③④C.①②⑤D.③④⑤第Ⅱ卷二、填空题(本大题共3小题,共12分.17~18小题各3分;19小题有两个空,每空3分)17.同学们都知道,蜜蜂建造的蜂房既坚固又省料.那你知道蜂房蜂巢的厚度吗?事实上,蜂房的蜂巢厚度仅仅约为0.000073m.此数据用科学记数法表示为__________.18.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.19.在方格纸中,选择标有序号的一个小正方形涂黑,与图中阴影构成中心对称图形,涂黑的小正方形序号为__________;若与图中阴影构成轴对称图形,涂黑的小正方形序号为__________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)计算下列各题:(1)03816(21)-++-;(2)211(3)||292----+-.21.(本小题满分9分)如图,某公路上A,B两点的正南方有D,C两村庄,现要在公路AB上建一个车站E,使C,D两村到E站的距离相等,已知AB=50 km,DA=20 km,CB=10 km,请你设计出E站的位置,并计算车站E距A点多远?数学试题 第5页(共6页) 数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________22.(本小题满分9分)如图,△ABC 中,AB 的垂直平分线分别交AB ,BC 于D ,E ,AC 的垂直平分线分别交AC ,BC 于F ,G .(1)若△AEG 的周长为10,求线段BC 的长. (2)若∠BAC =128°,求∠EAG 的度数.23.(本小题满分9分)如图,在△ABC 中,∠BAC =90°,AC =AB ,点D 为BC 边上的一个动点(点D 不与B ,C 重合),以AD 为边作等腰直角△ADE ,∠DAE =90°,连接CE . (1)求证:△ABD ≌△ACE .(2)试猜想线段BD ,CD ,DE 之间的等量关系,并证明你的猜想.24.(本小题满分10分)某地下管道,若由甲队单独铺设,恰好在规定时间内完成;若由乙队单独铺设,需要超过规定时间15天才能完成,如果先由甲、乙两队合做10天,再由乙队单独铺设正好按时完成. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成,那么该工程施工费用是多少? 25.(本小题满分10分)如图,在△ABC 中,AB =AC ,D ,E ,F 分别在三边上,且BE =CD ,BD =CF ,G为EF 的中点.(1)若∠A =40°,求∠B 的度数; (2)试说明:DG 垂直平分EF .26.(本小题满分11分)如图1,△ABC 中,CD ⊥AB 于D ,且BD ∶AD ∶CD =2∶3∶4,(1)试说明△ABC 是等腰三角形;(2)已知S △ABC =40 cm 2,如图2,动点M 从点B 出发以每秒1 cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒),①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.。

八年级2018-2019学年度上学期期中考试 数学试题(word版,含答案)

八年级2018-2019学年度上学期期中考试 数学试题(word版,含答案)

2018-2019学年度八年级上学期期中考试 数学试题第1卷(选择题 共42分)注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后。

再选涂其它答案,不能答在试卷上。

3.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共14小题.每小题3分,共42分)1.若一个正多边形一个外角是60°,则该正多边形的内角和是 A .360° B . 540° C . 720° D .900° 2. 若点A (1,1)m n +-与点B (-3,2)关于y 轴对称,则m n +的值是A .-5B .-3C .3D . 13. 已知三角形三个内角∠A 、∠B 、∠C ,满足关系式∠B+∠C=2∠A ,则此三角形 A. 一定有一个内角为45° B. 一定有一个内角为60° C. 一定是直角三角形 D. 一定是钝角三角形4. 如图,已知∠ABC=∠DCB,添加以下条件不能判定∆ABC ≌∆DCB 的是A .∠A=∠DB .∠ACB=∠DBC C .AC=DBD .AB=DC第4题 第5题第6题5.观察图中尺规作图痕迹,下列说法错误的是A.OE是∠AOB的平分线 B.OC=ODC.点C、D到OE的距离不相等 D、∠AOE=∠BOE6.如图,在Rt∆ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S∆ABD=15,则CD的长为A.3 B.4 C.5 D.67. 将一副直角三角板按如图所示位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是A.45° B.60° C.75° D.85°第7题第8题第9题8.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC②△ACE≌△BDE③点E在∠O的平分线上其中正确的结论是A. 只有①B. 只有②C. 只有①②D. 有①②③9.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则等于∠ACE=A.15° B.30° C.45 D.60°10.将一个n边形变成n+1边形,内角和将A.减少180∘B.增加90∘C.增加180∘D.增加360∘11.如图,△ABC中,∠A=36∘,AB=AC,BD平分∠ABC,下列结论错误的是A. ∠C=2∠AB. BD=BCC. △ABD是等腰三角形D. 点D为线段AC的中点第11题第12题第13题12.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是A. AB=ADB. AC平分∠BCDC. AB=BDD. △BEC≌△DEC13.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F分别为垂足,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③AD平分∠EDF;④AD垂直平分EF.其中正确结论有()A.1个B.2个C.3个D.4个14.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A. 30°B. 35°C. 45°D. 60°第14题第17题第18题二、填空题(本题共4小题,每小题5分,共20分)15.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.16.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是___17.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是______.18. 在△ABC 中,AB=AC,CD=CB,若∠ACD=42∘,则∠BAC=______∘.19. 含角30°的直角三角板与直线1l ,2l 的位置关系如图所示,已知12l l ,∠1=60°,以下三个结论中正确的是____(只填序号)。

2018-2019学年 八年级(上)期末数学试卷(有答案和解析)

2018-2019学年 八年级(上)期末数学试卷(有答案和解析)

2018-2019学年八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.如图所示的图案是我国几家银行标志,其中不是轴对称图形的是()A.B.C.D.2.下列运算中,正确的是()A.a2•a4=a8B.a10÷a5=a2C.(a5)2=a10D.(2a)4=8a43.下列变形属于因式分解的是()A.4x+x=5x B.(x+2)2=x2+4x+4C.x2+x+1=x(x+1)+1D.x2﹣3x=x(x﹣3)4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣115.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1等于()A.72°B.60°C.50°D.58°6.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.16C.8D.107.下列各式成立的是()A.B.(﹣a﹣b)2=(a+b)2C.(a﹣b)2=a2﹣b2D.(a+b)2﹣(a﹣b)2=2ab8.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF9.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④10.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.12二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:2a2﹣8=.12.若代数式有意义,则实数x的取值范围是.13.一个n边形的内角和是540°,那么n=.14.如图,Rt△ABC中,∠C=90°,AD为△ABC的角平分线,与BC相交于点D,若CD=4,AB =15,则△ABD的面积是.15.如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为.16.如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有(填序号).三、解答题17.(10分)计算(1)(2﹣)0﹣()﹣2(2)(﹣3a2)3÷6a+a2•a318.(10分)计算(1)(x+1)2﹣(x+1)(x﹣1)(2)﹣x﹣219.(10分)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.20.(10分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).21.(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.22.(10分)已知代数式.(1)先化简,再求当x=3时,原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?23.(12分)如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE =AB.(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;(3)若AC=8,∠E=15°,求三角形ABE的面积.24.(14分)因式分解是把多项式变形为几个整式乘积的形式的过程.(1)设有多项式x2+2x﹣m分解后有一个因式是x+4,求m的值.(2)若有甲、乙两个等容积的长方体容器,甲容器长为x﹣1,宽为x﹣2.体积为x4﹣x3+ax2+bx ﹣6,(x为整数),乙容器的底面是正方形.①求出a,b的值;②分别求出甲、乙两容器的高.(用含x的代数式表示)25.(14分)在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据同底数幂的乘除法则,及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a2•a4=a6,计算错误,故本选项错误;B、a10÷a5=a5,计算错误,故本选项错误;C、(a5)2=a10,计算正确,故本选项正确;D、(2a)4=16a4,计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘除运算及幂的乘方的运算,属于基础题,掌握运算法则是关键.3.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.【解答】解:A、是整式的计算,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.【点评】本题考查了因式分解的意义,属于基础题,掌握因式分解的定义是关键.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】根据全等三角形的性质即可求出答案.【解答】解:由于两个三角形全等,∴∠1=180﹣50°﹣72°=58°,故选:D.【点评】本题考查了全等三角形的性质,属于基础题型.解答本题的关键是熟练运用全等三角形的性质6.【分析】由于△ABC是等腰三角形,底边BC=5,周长为21,由此求出AC=AB=8,又DE是AB的垂直平分线,根据线段的垂直平分线的性质得到AE=BE,由此得到△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB,然后利用已知条件即可求出结果.【解答】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.7.【分析】根据完全平方公式和分式的化简判断即可.【解答】解:A、,错误;B、(﹣a﹣b)2=(a+b)2,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(a+b)2﹣(a﹣b)2=4ab,错误;故选:B.【点评】此题考查完全平方公式,关键是根据完全平方公式和分式的化简判断.8.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.9.【分析】根据等边三角形的判定判断,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③三个外角相等,则三个内角相等,则其是等边三角形;④根据等边三角形的性质,可得该等腰三角形的腰与底边相等,则三角形三边相等.所以都正确.故选:A.【点评】此题主要考查等边三角形的判定,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.10.【分析】依据x﹣3y=5两边平方,可得x2﹣6xy+9y2=25,再根据x2﹣7xy+9y2=24,即可得到xy的值,进而得出x2y﹣3xy2的值.【解答】解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.【点评】本题主要考查了完全平方公式的运用,应用完全平方公式时,要注意:公式中的a,b 可是单项式,也可以是多项式;对形如两数和(或差)的平方的计算,都可以用这个公式.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.【分析】根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.13.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.14.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=,故答案为:30【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【分析】设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF的度数.【解答】解:∵AB=AC,BD=BC=AD,∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,∵△ABC中,∠A+∠ABC+∠C=180°,∴α+2α+2α=180°,∴α=36°,∴∠C=72°,又∵DF⊥BC,∴Rt△CDF中,∠CDF=90°﹣72°=18°,故答案为:18°.【点评】本题主要考查了等腰三角形的性质以及三角形内角和定理的运用,解题时注意:等腰三角形的两个底角相等.16.【分析】①利用三角形的内角和定理以及角平分线的定义即可判断.②利用反证法进行判断.③根据∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),由此即可判断.④利用全等三角形的性质证明CA=CB即可判断.【解答】解:∵△ABC角平分线AE、CF交于点P,∴∠CAP=∠BAC,∠ACP=∠ACB,∴∠APC=180°﹣(∠CAP+∠ACP)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=90°+∠ABC,故①正确,∵PA=PA,∠PAF=∠PAH,AF=AH,∴△PAF≌△PAH(SAS),∴∠APF=∠APH,若PH是∠APC的平分线,则∠APF=60°,显然不可能,故②错误,∵∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),故③错误,∵BD⊥AC,PH∥BD,∴PH⊥AC,∴∠PHA=∠PFA=90°,∵∠ACF=∠BCF,CF=CF,∠CFA=∠CFB=90°,∴△CFA≌△CFB(ASA),∴CA=CB,故④正确,故答案为①④.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=﹣27a6÷6a+a2•a3=﹣a5+a5=﹣3a5.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.18.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+2x+1﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2;(2)原式=﹣=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减混合运算顺序和运算法则及完全平方公式、平方差公式.19.【分析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.【解答】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.20.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【解答】解:(1)如图1所示,△A1B1C1即为所求;C1的坐标为(2,1).(2)如图所示,连接AB1,交x轴于点P,点P的坐标为(2,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21.【分析】(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由提前完成的天数=工作总量÷原计划工作效率﹣工作总量÷现在工作效率,即可得出结论.【解答】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)﹣=20﹣15=5(天).答:现在比原计划提前5天完成.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)根据题意得出=﹣1,解之求得x的值,再根据分式有意义的条件即可作出判断.【解答】解:(1)原式=[﹣]•=(﹣)•=•=,当x=3时,原式==2;(2)若原代数式的值等于﹣1,则=﹣1,解得x=0,而x=0时,原分式无意义,所以原代数式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.23.【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG =4,根据三角形面积公式可得结论.【解答】(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠ABE=∠E,∴∠ABE=∠ACF.(3)解:如图,过E作EG⊥AB,交BA的延长线于G,∵AB=AC=AE=8,∴∠ABE=∠AEB=15°,∴∠GAE=∠ABE+∠AEB=30°,∴EG=AE=4,∴三角形ABE的面积===16.【点评】本题考查了全等三角形的判断与性质,等腰三角形的性质,角平分线的作法,确定出全等三角形的条件是解题的关键.24.【分析】(1)根据分解因式的定义,假设未知数,进行求解;(2)同上一问,假设未知数,进行求解;然后对体积的表达式进行因式分解,得到乙容器的高;【解答】解:(1)设原式分解后的另一个因式为x+n,则有:x2+2x﹣m=(x +4)(x +n )=x 2+(4+n )x +4n∴4+n =2可得n =﹣24n =﹣m 可得m =8综上所述:m =8(2)①设甲容器的高为x 2+mx ﹣3,则有:(x ﹣1)(x ﹣2)(x 2+mx ﹣3)=x 4﹣x 3+ax 2+bx ﹣6 ∴x •(﹣2)•x 2+(﹣1)•x •x 2+x •x •mx =﹣2x 3﹣x 3+mx 3=(m ﹣3)x 3=﹣x 3从而得m ﹣3=﹣1m =2原甲容器的体积=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=x 4﹣x 3﹣9x 2+13x ﹣6从而得a =﹣9,b =13②由乙容器的底面为正方形可得:x 4﹣x 3﹣9x 2+13x ﹣6=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=(x ﹣1)(x ﹣2)(x +3)(x ﹣1)=(x ﹣1)2(x 2+x ﹣6)故答案为:甲容器的高为x 2+2x ﹣3,乙容器的高为x 2+x ﹣6【点评】该题通过设置未知数,运用多项式乘多项式的方法求解未知数的值.25.【分析】(1)根据路程=速度×时间,可用含t 的代数式表示BN ,CM 的长,即可用含t 的代数式表示AN 的长;(2)①由题意可得S △ABM =S △BNC ,根据三角形面积公式可求t 的值;②过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,可证四边形PGBF 是矩形,可得PF =BG ,根据三角形的面积公式,可得方程组,求出PG ,PF 的长,根据勾股定理可求PN 的长,通过证△ANE ∽△CNB ,可求AE ,NE 的长,即可求∠APN 的度数.【解答】解:(1)∵M ,N 两点均以1个单位/秒的速度匀速运动,∴CM =BN =t ,∴AN =8﹣t ,故答案为:8﹣t ,t ;(2)①若△CPM 和△APN 的面积相等∴S △CPM +S 四边形BMPN =S △APN +S 四边形BMPN ,∴S △ABM =S △BNC ,∴=∴8×(5﹣t )=5t∴t =∴当t =时,△CPM 和△APN 的面积相等;②如图,过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,∵PG ⊥AB ,PF ⊥BC ,∠B =90°,∴四边形PGBF 是矩形,∴PF =BG ,∵t =3,∴CM =3=BN ,∴BM =2,AN =5,∵S △ABM =S △ABP +S △BPM ,∴∴16=8PG +2PF ①∵S △BCN =S △BCP +S △BPN ,∴×5×3=∴15=3PG +5PF ②由①②组成方程组解得:PG =,PF =,∴BG =∴NG =BN ﹣BG =3﹣=在Rt△PGN中,PN==,在Rt△BCN中,CN==∵∠B=∠E=90°,∠ANE=∠BNC∴△ANE∽△CNB∴∴∴AE=,NE=∵PE=EN+PN∴PE=+=∴AE=PE,且AE⊥PE∴∠APN=45°【点评】本题是三角形综合题,考查了三角形的面积公式,勾股定理,矩形的判定,相似三角形的判定和性质等知识,本题的关键是求出PN的长.。

最新2018-2019学年苏教版数学八年级上册期末模拟检测卷及答案解析-精品试卷

最新2018-2019学年苏教版数学八年级上册期末模拟检测卷及答案解析-精品试卷

苏教版八年级第一学期期末模拟考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是(,).9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为人.11.比较大小:1(填“>”、“<”或“=”).12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= .16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是(填序号).三、解答题(本大题共10小题,共68分)17.(4分)计算:.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= km,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数就是无限不循环小数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔的寿命,调查具有破坏性,适合抽样调查,故A错误;B、检查一枚用于发射卫星的运载火箭的各零部件是精确度要求高的调查,适合普查,故B正确;C、考察人们保护海洋的意识,调查范围广适合抽样调查,故C错误;D、了解全国九年级学生的身高现状,调查范围广适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【解答】解:A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、线段有2条对称轴,故此选项错误;B、角有1条对称轴,故此选项错误;C、等腰三角形有1条或3条对称轴,故此选项错误;D、正方形有4条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,关键是正确确定对称轴.5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【解答】解:∵y=2x﹣3,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选:B.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是≈0.67>0.16,故此选项错误;B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率=≈0.24>0.16,故此选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率==0.5>0.16,故此选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=≈0.16故此选项正确,故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是±2 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是( 1 ,﹣1 ).【分析】让横坐标不变,纵坐标加1可得到所求点的坐标.【解答】解:∵﹣2+1=﹣1,∴点B的坐标是(1,﹣1),故答案为:1,﹣1.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为①③②.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【解答】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;②面朝上的点数大于2的有4种结果,其概率为=;③面朝上的点数是奇数的有3种结果,其概率为=;所以按事件发生的可能性大小,按从小到大排列为①③②,故答案为:①③②.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120 人.【分析】用学校总人数乘以教师所占的百分比,计算即可得解.【解答】解:1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.11.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.【解答】解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.【点评】此题主要考查了实数大小比较,正确得出的取值范围是解题关键.12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b .【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.【点评】本题考查了一次函数的性质,解题的关键是找出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数的性质,找出该函数的单调性是关键.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为x>﹣1 .【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【解答】解:当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为:x>﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.【分析】根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE==,故答案为:.【点评】本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= 2 .【分析】求出∠BDE=∠FEC=∠AFD=30°,求出∠DEF=∠DFE=∠EDF=60°,推出DF=DE=EF,即可得出等边三角形DEF,根据全等三角形性质推出三个三角形全等即可.求出AB=3BE,即可解答.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠C=∠A=60°,∵DE⊥BC、EF⊥AC、FD⊥AB,∴∠DEB=∠EFC=∠FDA=90°,∴∠BDE=∠FEC=∠AFD=30°,∴∠DEF=∠DFE=∠EDF=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形,在△ADF、△BED、△CFE中∴△ADF≌△BED≌△CFE,∴AD=BE=CF,∵∠DEB=90°,∠BDE=30°,∴BD=2BE,∴AB=3BE,∴BE=AB=2.故答案为:2.【点评】本题考查了等边三角形性质,含30度角的直角三角形性质,解决本题的关键是熟记含30度角的直角三角形性质.16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是①②③(填序号).【分析】根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【解答】解:由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19﹣9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000﹣1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点评】此题主要考查了一次函数的应用,利用数形结合得出乙的运动速度是解题关键.三、解答题(本大题共10小题,共68分)17.(4分)计算:.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣2﹣2+1=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50 ,并补全频数分布直方图;(2)C组学生的频率为0.32 ,在扇形统计图中D组的圆心角是72 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【解答】解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=人,故答案为:(1)50;(2)0.32;72.【点评】此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.【分析】欲证明DE∥CF,只要证明∠ADE=∠BCF,只要证明△AED≌△BFC即可;【解答】证明:∵AE∥BF,∴∠A=∠B,∵AC=BD,∴AC+BD=BD+CD,即:AD=BC,在△AED和△BFC中,∴△AED≌△BFC(SAS),∴∠ADE=∠BCF,∴DE∥CF.【点评】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.【分析】(1)根据角平分线的尺规作图即可得;(2)作DE⊥AB,由△ADB的面积为15cm2求得DE=3cm,再根据角平分线的性质可得.【解答】解:(1)如图所示,AD即为所求;(2)过D作DE⊥AB,E为垂足,由△ADB的面积为15cm2,得AB•ED=15,解得:ED=3cm,∵AD平分∠BAC,DE⊥AB,∠ACB=90°∴CD=ED=3cm.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线的尺规作图及角平分线的性质.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.【分析】(1)根据平行一次函数的定义可知:k=2,再利用待定系数法求出b的值即可;(2)过点A作AD⊥x轴于D点,利用三角形面积公式解答即可.【解答】解:(1)由已知可设l1对应的函数表达式为y=2x+b,把x=﹣2,y=1代入表达式解得:b=5,∴l1对应的函数表达式为y=2x+5,画图如下:,(2)设l1与l2的交点为A,过点A作AD⊥x轴于D点,由题意得,解得即A(,),则AD=,设l1、l2分别交x轴的于点B、C,由y=﹣2x+4=0,解x=2,即C(2,0)由y=2x+5=0解得,即B(,0)∴BC=,∴即l2与l1及x轴所围成的三角形的面积为.【点评】本题考查了函数的平移和两条直线的平行问题;同时还要熟练掌握若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= 240 km,AB两地的距离为390 km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【分析】(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【解答】解:(1)由题意和图象可得,a=千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:y1=150﹣60xMN所表示的函数关系式为:y2=60x﹣150(3)由y1=60得 150﹣60x=60,解得:x=1.5由y2=60得 60x﹣150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.【分析】(1)只要证明△BDH≌△CEK,即可解决问题;(2)只要证明△DHO≌△EKO即可解决问题;【解答】解:(1)∵DH⊥BC,EK⊥BC,∴∠DHB=∠K=90°,∵AB=AC,∴∠B=∠ACB,又∵∠ACB=∠ECK,∴∠B=∠ECK,在△BDH和△CEK中∵∠ACB=∠ECK,∠B=∠ECK,BD=CE∴△BDH≌△CEK(AAS).∴DH=EK.(2)∵DH⊥AC,EK⊥BC,∴∠DHO=∠K=90°,由(1)得EK=DH,在△DHO和△EKO中,∵∠DHO=∠K,∠DOH=∠EOK,DH=EK∴△DHO≌△EKO(AAS),∴DO=EO.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?【分析】(1)根据总成本y=A种购物袋x个的成本+B种购物袋x个的成本即可得到答案.(2)列出不等式,根据函数的增减性解决.【解答】解:(1)根据题意得:y=(2.3﹣2)x+(3.5﹣3)(4500﹣x)=﹣0.2x+2250即y与x的函数表达式为:y=﹣0.2x+2550,(2)根据题意得:﹣x+13500≤10000,解得:x≥3500元,∵k=﹣0.2<0,∴y随x增大而减小,∴当x=3500时,y取得最大值,最大值y=﹣0.2×3500+2250=1550,答:该厂每天最多获利1550元.【点评】本题考查了销售量、成本、售价、利润之间的关系,正确理解这些量之间的关系是解决问题的关键,学会用函数的增减性解决实际问题.26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.【分析】(1)作△ADC关于CD的对称图形△A′DC,再证明AD=BA′即可;(2)如图,作△ADC关于AC的对称图形△A′DC.过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.由此构建方程即可解决问题;【解答】(1)证明:作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°﹣∠A=30°,∵CD平分∠ACB,∴∠ACD=45°在△ACD中,∠ADC=180°﹣∠A﹣∠A CD=75°∴∠A′DC=∠ADC=75°,∴∠A′DB=180°﹣∠ADC﹣∠A′DC=30°,∴∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=C A′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△A′DC.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点评】本题考查全等三角形的判定和性质、直角三角形30度角性质、轴对称、勾股定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.。

2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)

2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)

2018-2019学年八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.点A(﹣3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A.x>4B.x>2C.0<x<2D.2<x<46.已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定7.把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9B.y=3x﹣6C.y=3x﹣5D.y=3x﹣18.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC =15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空(本大共4小,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.若点(a,3)在函数y=2x﹣3的图象上,a的值是.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A 点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三、解答题(本题共2小题,每小题8分,共16分)15.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.16.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.四、解答题(本大題共2小题,每小题8分,计16分)17.如图,一次函数图象经过点A(0,2),且与正比例函数y=﹣x的图象交于点B,B点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.18.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.五、解答题(20分)19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.20.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是.(2)根据你添加的条件,再写出图中的一对全等三角形.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)六、解答题(本大题12分)21.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.七、解答题(本大题12分)22.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.八、解答題(本大题14分23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.【解答】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.【点评】此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.4.【分析】根据单项式、三角形外角性质、线段公理、平行线性质解答即可.【解答】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.【点评】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【分析】首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.【解答】解:△ABC中,∠B+∠C=180°﹣∠A=110°;△BED中,BE=BD,∴∠BDE=(180°﹣∠B);同理,得:∠CDF=(180°﹣∠C);∴∠BDE+∠CDF=180°﹣(∠B+∠C)=180°﹣∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.【点评】此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC 为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(本大共4小,每小题5分,满分20分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故答案为40°或140°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【分析】设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB 或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.【点评】本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.三、解答题(本题共2小题,每小题8分,共16分)15.【分析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【点评】本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.16.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.四、解答题(本大題共2小题,每小题8分,计16分)17.【分析】(1)根据点B在函数y=﹣x上,点B的横坐标为﹣1,可以求得点B的坐标,再根据一次函数过点A和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【点评】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.五、解答题(20分)19.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.20.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、解答题(本大题12分)21.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.七、解答题(本大题12分)22.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,=1125.∴m=75时,W最小∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【点评】本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.八、解答題(本大题14分23.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P 坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA '交x 轴于点C ,过B 作BD ⊥直线AA '于点D (如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。

2018-2019学年度八年级上数学期末试卷(解析版) (2)

2018-2019学年度八年级上数学期末试卷(解析版) (2)

2018-2019学年八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义; 所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解. 答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE . (1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明; (3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题; 【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

2018-2019学年九年级(上)期末数学试卷(含解析)

2018-2019学年九年级(上)期末数学试卷(含解析)

2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣12.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥43.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣15.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.16.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.610.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为cm.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣1【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选:B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q 的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)【分析】根据二次函数的顶点式方程可地直接写出其顶点坐标.【解答】解:∵抛物线为y=(x+2)2﹣2,∴顶点坐标为(﹣2,﹣2),故选:D.【点评】本题主要考查二次函数的顶点坐标的求法,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣1【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物找y=2x2向左平移4个单位所得直线解析式为:y=2(x+4)2;再向下平移1个单位为:y=2(x+4)2﹣1.故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.1【分析】根据中心对称图形的概念判断即可.【解答】解:矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.6.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,根据圆周角定理解答.【解答】解:连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=∠AOB=57°,故选:A.【点评】本题考查的是切线的性质,圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、任意画一个三角形,其内角和为180°是必然事件;B、经过有交通信号的路口,遇到红灯是随机事件;C、太阳从东方升起是必然事件;D、任意一个五边形的外角和等于540°是不可能事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.【分析】利用黑色区域的面积除以游戏板的面积即可.【解答】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.10.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π【分析】根据勾股定理得到AC,然后根据扇形的面积公式即可得到结论.【解答】解:∵∠AB⊥OB,AB=2,OB=4,∴OA=2,∴边AB扫过的面积=﹣=π,故选:C.【点评】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.【分析】先把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得到满足条件的m的值为﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,利用根与系数的关系得到0+t=,然后求出t即可.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.【分析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【解答】解:∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣1),∴当y=0时,0=(x﹣3)(x﹣1),解得,x1=3,x2=1,∵3﹣1=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2,故答案为:2.【点评】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为20cm.【分析】作OC⊥AB于C,连接OA,根据垂径定理求出AC,根据勾股定理计算即可.【解答】解:作OC⊥AB于C,连接OA,则AC=AB=20,在Rt△OAC中,OC==20(cm)故答案为:20.【点评】本题考查的是垂径定理和勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为4.【分析】作DE⊥x轴于点E,易证△OAB≌△EDA,求得A、B的坐标,根据全等三角形的性质可以求得D的坐标,从而利用待定系数法求得反比例函数的解析式,即可求解.【解答】解:作DE⊥x轴于点E.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAE=90°,又∵Rt△ABO中,∠BAO+∠OBA=90°,∴∠DAE=∠OBA,在△OAB和△EDA中,∵,∴△OAB≌△EDA(AAS),∴AE=OB=3,DE=OA=1,故D的坐标是(4,1),代入y=得:k=4,故答案为:4.【点评】本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得D的坐标是关键.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为4.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD 中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,=EC•AD=4.则S△AEC故答案为:4.【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理以及等腰三角形的性质的运用,熟练掌握性质及定理是解本题的关键.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.【分析】由切线的性质可知∠ODE=90°,纵坐标OD∥AE即可解决问题;【解答】证明:连接OD.∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【点评】本题考查切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.【分析】如果设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x);那么根据题意即可得出方程.【解答】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x).根据题意即可得出方程为:(16﹣2x)(9﹣x)=112,解得x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点评】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.【分析】(1)由题意可得该顾客至多可得到购物券:50+20=70(元);(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客所获得购物券的金额不低于50元的情况,再利用概率公式即可求得答案.【解答】解:(1)则该顾客至多可得到购物券:50+20=70(元);故答案为:70;(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,∴该顾客所获得购物券的金额不低于50元的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点评】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.【分析】(1)连接OD,根据角平分线的定义得到∠ACD=∠BCD,根据圆周角定理,等腰三角形的定义证明;(2)作AE⊥CD于E,根据等腰直角三角形的性质求出AD,根据勾股定理求出AE、CE,DE,结合图形计算,得到答案.【解答】(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.【点评】本题考查的是圆周角定理,勾股定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC【分析】(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.【解答】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∵B(﹣3,n)在反比例函数图象上,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,=×2×5=5.∴S△ABC【点评】此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.【分析】(1)连接OC,根据等腰三角形的性质得到OC⊥AB,OC平分∠ACB,求得∠AOD=∠COE,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到四边形CDOE的面积=△AOC的面积,根据三角形的面积公式即可得到结论;(3)当四边形CDFE是正方形时,其面积最大,根据正方形的面积公式即可得到结论.【解答】解:(1)△ODE是等腰直角三角形,理由:连接OC,在等腰Rt△ABC中,∵O是AB的中点,∴OC⊥AB,OC平分∠ACB,∴∠OCE=45°,OC=OA=OB,∠COA=90°,∵∠DOE=90°,∴∠AOD=∠COE,在△AOD与△COE中,,∴△AOD≌△COE,(ASA),∴OD=OE,∴△ODE是等腰直角三角形;(2)在旋转过程中,四边形CDOE的面积不发生变化,∵△AOD≌△COE,∴四边形CDOE的面积=△AOC的面积,∵AC=6,∴AB=6,∴AO=OC=AB=3,∴四边形CDOE的面积=△AOC的面积=×3×3=9;(3)当四边形CDFE是正方形时,其面积最大,四边形CDFE面积的最大值=9,故四边形CDFE的面积S的取值范围为:0<S≤9.【点评】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,连接OC构造全等三角形是解题的关键.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)由点A,B的坐标,利用待定系数法可求出抛物线的解析式;(2)利用一次函数图象上点的坐标特征可得出点C,D的坐标,进而可得出0<m<4,由点P的横坐标为m可得出点P,E的坐标,进而可得出PE=﹣m2+m+2,再利用二次函数的性质即可解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况考虑,由平行四边形的性质(对角线互相平分)结合点P,C,D的坐标可求出点Q的坐标,此题得解.【解答】解:(1)将A(﹣1,0),B(5,0)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+4x+5.(2)∵直线y=﹣x+3与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,3),点D的坐标为(4,0),∴0<m<4.∵点P的横坐标为m,∴点P的坐标为(m,﹣m2+4m+5),点E的坐标为(m,﹣m+3),∴PE=﹣m2+4m+5﹣(﹣m+3)=﹣m2+m+2=﹣(m﹣)2+.∵﹣1<0,0<<4,∴当m=时,PE最长.(3)由(2)可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+4﹣0,+0﹣3),即(,);②以PC为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+0﹣4,+3﹣0),即(﹣,);③以CD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(0+4﹣,3+0﹣),即(,﹣).综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为(,)、(﹣,)或(,﹣).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线的解析式;(2)利用二次函数的性质解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况,利用平行四边形的性质求出点Q的坐标.。

八年级上册数学期末试卷(含答案)

八年级上册数学期末试卷(含答案)

八年级上册数学期末试卷(含答案)题目一一辆汽车从甲地驶向乙地,每小时行驶60公里。

另一辆汽车从乙地往甲地驶来,每小时行驶80公里。

两车相距480公里时,开始同时驶向彼此。

问他们相遇需要多长时间?答案:要计算相遇的时间,我们可以找到两辆车每小时的相对速度,然后用总距离除以相对速度来计算时间。

两辆车的相对速度是60公里/小时 + 80公里/小时 = 140公里/小时。

所以,相遇需要的时间是480公里 ÷ 140公里/小时 = 3.43小时。

:要计算相遇的时间,我们可以找到两辆车每小时的相对速度,然后用总距离除以相对速度来计算时间。

两辆车的相对速度是60公里/小时 + 80公里/小时 = 140公里/小时。

所以,相遇需要的时间是480公里 ÷ 140公里/小时 = 3.43小时。

题目二小明有一批铅笔,小明将这些铅笔按每盒装12支进行包装,结果剩余2支铅笔。

如果按每盒装10支包装,会剩余8支铅笔。

问小明有多少支铅笔?答案:设小明有x支铅笔。

根据题目的描述,我们可以列出以下方程::设小明有x支铅笔。

根据题目的描述,我们可以列出以下方程:- x ≡ 2 (mod 12)- x ≡ 8 (mod 10)解这个方程组,可以用中国剩余定理。

将方程组转换为:- x ≡ 2 (mod 6)- x ≡ 3 (mod 10)根据中国剩余定理,我们可以得到:- x ≡ 17 (mod 30)所以小明有17支铅笔。

以上是八年级上册数学期末试卷的一部分题目和答案。

更多题目请参考试卷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

邢台市2019年八年级(上)期末数学试卷
一、选择题(本大题有14个小题,每小题3分,共42分,在每小题给出的四个选项中,
只有一项是符合题目要求的)
1.下列式子,表示4的平方根的是()
A.B.42C.﹣D.±
2.把8.973精确到十分位是()
A.9 B.9.00 C.8.97 D.9.0
3.用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是()
A.假定CD∥EF B.假定CD不平行于EF
C.已知AB∥EF D.假定AB不平行于EF
4.若是无理数,则a的值可以是()
A.B.1 C.2 D.9
5.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()
A.B.。

相关文档
最新文档