初二函数和图像(经典练习题和讲解)

合集下载

八年级函数练习题及答案解析答案

八年级函数练习题及答案解析答案

八年级函数练习题及答案解析答案1. 用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是.2. 已知正比例函数y=kx的图象经过点,则这个正比例函数的解析式为A.y=2x B.y=-2x C.y=11x D.y=?x23. 甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l1,l2分别表示甲、乙两辆摩托车到A地的距离s与行驶时间t的函数关系.则下列说法错误的是A.乙摩托车的速度较快B.经过0.3小时甲摩托车行驶到A,B两地的中点C.经过0.25小时两摩托车相遇D.当乙摩托车到达A地时,甲摩托车距离A地50km 4. 如图,直线y=kx+b交坐标轴于A,B两点,则不等式kx+b>0的解集是A.x>B.-2<x<C.x<-D.x>-25. 一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过A.第二、四象限 B.第一、二、三象限C.第一、三象限D.第二、三、四象限6. 把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是A.1<m<B.3<m<C.m>1D.m<47. 在一次函数y=x+1中,y随x的增大而增大,则k 的取值范围为.8. 如图,一个正比例函数图像与一次函数y??x?1的图像相交于点P,则这个正比例函数的表达式是____________9. 若一条直线经过点和点,则这条直线与x轴的交点坐标为.10. 一次函数y??2x?b中,当x?1时,y<1;当x??1时,y>0则b的取值范围是____.11. 如图,经过点B的直线y=kx+b与直线y=4x+2相交于点A,则不等式4x+2<kx+b<0的解集为.12. 李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y与行驶里程x之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是升.13.某生物小组观察一植物生长,得到植物高度y与观察时间x的关系,并画出如图所示的图象.该植物从观察时起,多少天以后停止长高?求直线AC的解析式,并求该植物最高长多少厘米?14. 某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x 的部分对应值如下表:求y与x之间的函数关系式,并写出自变量x的取值范围;求该机器的生产数量;市场调查发现,这种机器每月销售量z与售价a之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.351555a15. 某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为yA,在B 超市购买羽毛球拍和羽毛球的费用为yB.请解答下列问题:分别写出yA、yB与x之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.答案第十四章一次函数练习题1. C 解析:由题意知,杯子里水面的高度和注水时间不是一次函数关系,所以A、B两选项错误,杯子里水面的高度随着注水时间的增加面增加,所以D选项错,故正确的选项是C.4. D 解析:∵直线y=kx+b交x轴于A,∴不等式kx+b>0的解集是x>-2.5.D 解析:∵k+b=﹣5、kb=6,∴k<0,b<0∴直线y=kx+b经过二、三、四象限.6. C 解析:直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,联立两直线解析式得:,解得:,即交点坐标为,∵交点在第一象限,∴,解得:m>1.八年级数学单元目标检测题一.选择题1.判断下列变化过程中,两变量存在函数关系的是A.x,y是变量,y??2xB.人的身高与年龄C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间.;③y?x2?x?1;④y? .下列函数关系式:①y??x;②y?2x?11A. 1个B.2个C.3个D.4个1.其中一次函数的个数是 x3.在直角坐标系中,既是正比例函数y?kx,又是y的值随x值的增大而减小的图像是A B C D4.如图,直线y?kx?b经过A和B两点,那么这个一次函数关系式是2A.y?2x?B.y??x?C.y?3x?D.y?x?135.大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系:44x?24x的图象得到直线y?,就要将直线y?x3322A.向上平移个单位B. 向下平移个单位33C. 向上平移个单位D. 向下平移个单位6.要从y?yaxbxm7.如图一次函数y1?ax?b和y2?cx?d在同一坐标系内的图象,则?的解?中ycxdynA.m>0,n>0B.m>0,n0 D.m 8.图1是水滴进玻璃容器的示意图,图2是容器中水高度随滴水时间变化的图像.给出下列对应::——:——:——h :——其中正确的是和和和和二.填空题1. 如果函数f?x?15?x,那么f?________2.小明将RMB1000元存入银行,年利率为2%,利息税为20%,那么x年后的本息和y与年数x的函数关系式是 .3.已知一次函数y?x+3,则k4.已知一次函数y?x?1,函数y的值随x值的增大而增大,则m的取值范围是 ..已知一次函数y=2x+4的图像经过点,则m=________。

初二函数图像画图练习题

初二函数图像画图练习题

初二函数图像画图练习题函数是数学中的重要概念,它描述了数值之间的关系。

而函数图像则是将函数的数值关系以图形的方式展示出来,使我们更直观地理解函数的性质和特点。

在初二阶段学习函数图像的过程中,我们需要通过实际的练习来提高自己的画图能力。

本文将提供一些初二函数图像画图练习题,帮助读者巩固所学知识。

1. 线性函数 y = 2x - 1线性函数的图像是一条直线,可以通过绘制两个点再将它们连线来描绘这条直线。

例如,我们可以选择 x = 0 和 x = 1 作为两个点,计算对应的 y 值,并将它们标在坐标系中,再将它们用直线连起来。

2. 平方函数 y = x^2 - 4平方函数的图像是一个开口朝上或朝下的抛物线。

为了画出这个图像,我们可以首先找到其顶点,然后确定对称轴和焦点的位置。

例如,我们可以将 x 值取为 -2、-1、0、1、2,并计算对应的 y 值,再将它们标在坐标系中,最后用平滑的曲线将这些点连起来。

3. 立方函数 y = x^3立方函数的图像是一条从第三象限经过原点到第一象限的递增曲线。

为了画出这个图像,我们可以选择不同的 x 值,计算对应的 y 值,并将它们标在坐标系中,再将它们用平滑的曲线连接起来。

4. 绝对值函数 y = |x - 2|绝对值函数的图像是一个 V 形,在 x = 2 处有一个顶点。

为了画出这个图像,我们可以选择 x 值为 0、1、2、3、4,计算对应的 y 值,并将它们标在坐标系中,再将它们用两条直线连接起来,形成一个V 形。

5. 正弦函数 y = sin(x)正弦函数的图像是一个周期性的波形。

为了画出这个图像,我们可以选择不同的 x 值,计算对应的 y 值,并将它们标在坐标系中。

由于正弦函数是周期性的,我们可以通过这个周期性来描绘出整个图像。

通过以上的练习题,我们可以巩固对初二函数图像的理解,并提高我们的画图能力。

在实际的学习中,我们还可以尝试更复杂的函数图像,并通过使用计算机软件或在线图形绘制工具来绘制函数的图像,提高我们的效率和准确性。

八年级数学-函数的图象练习题(含解析)

八年级数学-函数的图象练习题(含解析)

八年级数学-函数的图象练习题(含解析)基础闯关全练1.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校的路程s(单位:m)与时间t(单位:min )之间函数关系的大致图象是()A. B. C. D.2.某日上午,静怡同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,静怡立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,静怡继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A. B. C. D.3.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速骑行1.5小时后,其中一辆自行车出现故障,因此二人在自行车修理点修车,用了半小时,然后以原速继续前行,骑行1小时后到达目的地,请在如图19-1-2-1所示的平面直角坐标系中画出符合他们骑行的路程s(千米)与骑行时间t (小时)之间的函数图象.4.已知两个变量x和y它们之间的3组对应值如下表所示:x -1 0 1y -1 1 3则y与x对应的函数关系可能是()A.y=x B.y=2x+1 C.y=x²+x+1 D.y=x35.商场进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其数量x(米)与售价y(元)如下表:数量x(米) 1 2 3 4 …售价y(元)8+0.3 16+0.624+0.932+1.2…下列用数量x(米)表示售价y(元)的关系式中,正确的是()A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x能力提升全练1.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始时领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行,最终赢得比赛,下列函数图象可以体现这一故事过程的是()A. B. C. D.2.小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图19-1-2-2反映了这个过程中,小明离家的距离y与时间x之间的对应关系,根据图象,下列说法正确的是()A.小明吃早餐用了25min B.小明读报用了30minC.食堂到图书馆的距离为0.8km D.小明从图书馆回家的速度为0.8km/min3.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x … 1 2 3 5 7 9 …y … 1.983.952.63 1.581.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图19-1-2-3,在平面直角坐标系xOy中,描出了以表中各组对应值为坐标的点,根据描出的点,画出该函数的图象:(2)根据画出的函数图象,写出:①x=4对应的函数值y约为________;②该函数的一条性质:____________________.三年模拟全练一、选择题1.如图19-1-2-4,在矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发,沿A→B→C→D运动,到达点D后运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间的函数关系的图象是()A. B. C. D.2.一支蜡烛长20 cm,若点燃后每小时燃烧5cm,则燃烧剩余的长度y(cm)与燃烧时间x(h)之间的函数关系的图象大致为()A. B. C. D.二、填空题3.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图19-1-2-5所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是_______分钟.4.快车和慢车同时从甲地出发以不同的速度匀速前往乙地,快车到达乙地后停留了一段时间,立即从原路以原速度匀速返回,在途中与慢车相遇,相遇后两车朝各自的方向继续行驶,两车之间的距离y (千米)与慢车行驶的时间t(小时)之间的函数图象如图19-1-2-6所示,则两车相遇时距甲地_______千米.五年中考全练一、选择题1.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C. D.2.在物理实验课上,老师用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起,直到铁块完全露出水面一定的高度,如图19-1-2-7所示,则下列选项能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A .B .C .D .3.甲、乙两地相距80 km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h,并继续匀速行驶至乙地,汽车行驶的路程y( km)与时间x(h)之间的函数关系如图19-1-2-8所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:504.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图19-1-2-9所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有 ( )A.1个 B.2个 C.3个 D.4个二、填空题5.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来的一半.小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的函数关系如图19-1-2-10所示(小玲和妈妈上、下楼以及妈妈将学习用品交给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为_______米.核心素养全练1.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图19-1-2-11所示,中国创新综合排名全球第22,创新效率排名全球第_______.2.小红帮弟弟荡秋千(如图19-1-2-12a),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图19-1-2-12b所示.(1)根据函数的定义,请判断变量h是不是关于t的函数.(2)结合图象回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义:②秋千摆动第一个来回需多少时间?3.图19-1-2-13①表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),若0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间);北京时间7:30 _______ 2:50首尔时间_______12:15 ________(2)图19-1-2-13②表示同一时刻的英国伦敦(夏时制)时间和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?19.1.2 函数的图象1.B小刚从家到学校的路程s(m)应随他行走的时间t(min)的增大而增大,因而选项A一定错误;而在等车的时候离家的路程不变,因此C、D错误;所以能反映小刚从家到学校行走路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是B,故选B.2.C接到通知后,静怡立即在电脑上打字录入这篇文稿,所以函数图象平缓上升;录入一段时间后因事暂停,录入字数不变,函数图象保持水平;过了一会儿,静怡继续录入并加快了录入速度,函数图象上升,且比开始时上升得快,综合这些信息可知答案为C.3.解析由题意可知,共骑行2.5小时走完全程50千米,所以前1.5小时走了30千米,修车用了0.5小时后继续骑行1小时,走了20千米,由此作图如图所示.4.B将3组x、y的对应值分别代入A、B、C、D四个选项中的函数关系式,都成立的是选项B.5.B依题意得y=(8+0.3)x.故选B.1.B乌龟匀速爬行,兔子因在比赛中间睡觉,导致开始时领先,最后输掉比赛,所以线段表示乌龟比赛中路程与时间的关系,折线表示兔子比赛中路程与时间的关系,跑到终点兔子用的时间多于乌龟所用的时间.A中,乌龟用时多,不合题意:C中,兔子和乌龟用时相同,不合题意;D中,乌龟虽然用时少,但图象显示比赛一开始,乌龟就领先,不合题意,只有B选项符合题意.2.B吃早餐用的时间为25-8=17 min,故选项A错误:食堂到图书馆距离应为0.8-0.6=0.2 km,故选项C 错误;小明从图书馆回家的速度应为108.0=0.08 km/min,故选项D错误,故选B.3.解析本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)(2)①1.98.②当x>2时,y随x的增大而减小.一、选择题1.A △APM的面积随x的变化而变化,当点P由A到B,即x由0到1时,y匀速增大至最大值1,当点P由B到C,即x由1到3时,y取得最大值0.5且不变;当点P由C到D,即x由3到4时,y匀速减小.故选A.2.C 由题意,得y=20-5x.∵O≤y≤20,∴ 0≤20-5x≤20,∴0≤x≤4,∴y=20-5x的图象是一条线段,当x=0时,y=20;当x=4时,y=0.故选C . 二、填空题 3.答案15解析 根据图象可知上班时走平路、上坡路和下坡路的速度分别为215131和、(千米/分钟),且平路长度为1千米,A ,B 之间距离为1千米,B 与单位之间距离为2千米,所以他从单位到家门口需要的时间是2÷31121151÷+÷+=15(分钟).4.答案 220解析根据题意,结合图象得,OA 段表示两车同时同地同向往乙地行驶5小时后快车到达乙地,AB 段表示慢车继续行驶1小时,快车在乙地停留1小时,由此得慢车速度为(150-120)÷(5-4)=30千米/小时,设快车速度为x 千米/小时,则5x-30×5=150.解得x=60(千米/小时).甲乙两地之间的距离为5×60=300(千米),慢车行驶6小时后,快车准备从乙地返回,此时两车相距120千米,BC 段表示两车走这120千米直至相遇的情况,设6小时后再经过t 1.小时两车相遇,则30t ₁+60t ₁=120,解得t ₁=34,故慢车又行驶了30×34=40千米,所以此时两车相距甲地150+30+40=220千米. 一、选择题1.D 由题意可知,2x+y=10,根据“三角形任意两边之和大于第三边”可得2x >y 且2x <10,解得2.5<x <5,故选D .2.C 因为铁块在水中受到浮力的影响,所以铁块上底面离开水面前读数y 不变,铁块上底面离开水面后y 逐渐增大,铁块下底面离开水面后y 不变.3.B 由图象知,汽车行驶前一半路程(40 km)所用的时间是1 h .所以速度为40÷1=40(km/h),故行驶后一半路程的速度是40+20=60( km/h),所以行驶后一半路程所用的时间为40÷60=32(h),因为32h=32×60=40 min ,所以该车一共行驶了1小时40分钟到达乙地,故到达乙地的时间是当天上午10:40.4.A 由图象知,甲4分钟步行了240米,∴甲步行的速度为4240=60(米/分),∴结论①正确;∵乙用了16-4=12分钟迫上甲,乙步行的速度比甲快12240=20(米/分),∴乙步行的速度为60+20=80米/分,∴结论③不正确;∴甲走完全程需要602400=40分钟,乙走完全程需要802400=30分钟,∴结论②不正确,∴乙到达终点时,甲用了34分钟,甲还有40-34=6分钟到达终点,离终点还有60×6=360米,∴结论④不正确.故选A . 二、填空题 5.答案200解析由图可知,小玲用30分钟从家里步行到距家1 200米的学校,因此小玲的速度为40米/分;妈妈在小玲步行10分钟后从家时出发,用5分钟追上小玲,因此妈妈的速度为40×15÷5=120米/分,故妈妈返回家时的速度为120÷2=60米/分.设妈妈用x 分钟返回到家里,则60x=40×15,解得x=10,此时小玲已行走了25分钟,共步行了25×40=1 000米,所以距离学校还有1200-1000=200(米). 1.答案3解析从图①可知,创新综合排名全球第22,对应创新产出排名全球第11;从图②可知,创新产出排名全球第11,对应创新效率排名全球第3.2.解析(1)∵对于每一个摆动时间t ,都有唯一一个确定的h 值与其对应,∴变量h 是关于t 的函数.(2)①由题图b 知,当t=0.7时,h=0.5 m ,它的实际意义是秋千摆动0.7 s 时,距离地面的高度为0.5 m .②由题图b 知,秋千摆动第一个来回需2.8 s .3.解析(1)从题图①看出,同一时刻,首尔时间比北京时间早1小时,所以,y 关于x 的函数表达式是y=x+1,O ≤x ≤12.填表如下: 北京时间 7:30 11:15 2:50首尔时8:30 12:15 3:50(2)设伦敦(夏时制)时间为t时,则北京时间为(t+7)时,结合(1)可得,韩国首尔时间为(t+8)时,所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.。

19.1.2 函数的图象 人教版数学八年级下册同步练习(含解析)

19.1.2 函数的图象 人教版数学八年级下册同步练习(含解析)

第十九章 一次函数19.1.2 函数的图象基础过关全练知识点1 函数的图象1.【主题教育·中华优秀传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片:用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③立夏和立秋,白昼时长大致相等;④立春是一年中白昼时长最短的节气.其中正确的结论有( )A.1个B.2个C.3个D.4个2.【新独家原创】疫情期间,为保障学校师生安全,某校每天进行全员核酸检测,小邦下课后从教室去160米的检测点做核酸检测,他用了2分钟到达检测点,扫码检测共用了2分钟,做完核酸检测后,他及时回教室,用了2.5分钟.下列图象能正确表示小邦离教室的距离与时间关系的是( )A B C D3.【主题教育·革命文化】为“传承红色基因,共筑中国梦”,八年级的师生开展了共赴井冈山红色革命根据地红色研学之旅,下图描述了汽车在一段时间内路程s(千米)与时间t(小时)的函数关系,下列说法中正确的是( )A.汽车在0~1小时的平均速度是60千米/时B.汽车在2~3小时的速度比0~0.5小时的速度快C.汽车行驶的平均速度为60千米/时D.汽车在0.5~1.5小时的速度是80千米/时4.【跨学科·化学】实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为镭的放射规律的函数图象,据此可计算32 mg镭缩减为1 mg所用的时间大约是 年.5.【教材变式·P83T9变式】小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.如图所示的是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答问题:(1)小明家到学校的路程是多少米?小明在书店停留了多少分钟?(2)本次上学途中,小明一共骑行了多少米?(3)当骑单车的速度超过300米/分时就超过了安全限度.问:在整个上学途中,哪个时间段小明的骑车速度最快?速度在安全限度内吗? (4)小明出发多长时间离家1 200米?知识点2 函数图象的画法6.画出函数y=2x-1的图象.(1)列表:x…-2-10123…y……(2)在如图所示的坐标系中描点并连线;(3)判断点A(-3,-5),B(2,-3),C(3,5)是否在函数y=2x-1的图象上;(4)若点P(m,9)在函数y=2x-1的图象上,求出m的值.知识点3 函数的三种表示方法7.【跨学科·物理】弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧的长度y(cm)与所挂重物的质量x(kg)之间的关系式为( )x(kg)0123456y(cm)1212.51313.51414.515A.y=0.5x+12B.y=x+10.5C.y=0.5x+10D.y=x+128.甲、乙两人分别从相距18 km的A、B两地同时相向而行,甲以4 km/h 的平均速度步行,乙以比甲快1 km/h的平均速度步行,相遇而止. (1)求甲、乙两人之间的距离y(km)和所用的时间x(h)之间的函数关系式;(2)求出函数图象与x轴、y轴的交点坐标,画出函数的图象,并求出自变量x的取值范围.9.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x…123579…y…1.983.952.631.581.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整.(1)如图,在平面直角坐标系xOy中,描出了以表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为 ;②该函数的一条性质: .能力提升全练10.【主题教育·革命文化】(2022湖南永州中考,10,★☆☆)学校组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动.师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈士陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校.设师生队伍离学校的距离为y米,离校的时间为x分钟,则下列图象能大致反映y与x关系的是( )A B C D11.(2021安徽合肥四十五中模拟,6,★★☆)将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为( )A B C D12.【主题教育·生命安全与健康】(2022山西太原期末,9,★★☆)骑行是一种健康自然的运动旅游方式,长期坚持骑自行车可增强心血管功能,提高人体新陈代谢和免疫力.下图是骑行爱好者小李某日骑自行车行驶路程(km)与时间(h)的图象,观察图象得到下列信息,其中正确的是( )A.小李实际骑行时间为6 hB.点P表示出发6 h,小李共骑行80 kmC.3~6 h小李的骑行速度比0~2 h慢D.0~3 h小李的平均速度是15 km/h13.(2022山东临沂中考,12,★★☆)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示.下列说法中不正确的是( )A.甲车行驶到距A城240 km处,被乙车追上B.A城与B城的距离是300 kmC.乙车的平均速度是80 km/hD.甲车比乙车早到B城14.(2021黑龙江牡丹江中考,7,★★☆)春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是 天.素养探究全练15.【创新意识】(2022浙江舟山中考)6月13日,某港口的潮水高度y(cm)和时间x(h)的部分数据及函数图象如下:x(h)…1112131415161718…y(cm)…18913710380101133202260…(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当x=4时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论;(3)数学应用:根据研究,当潮水高度超过260 cm时,货轮能够安全进出该港口,请问当天什么时间段适合货轮进出此港口?答案全解全析基础过关全练1.B 由题图可知,从立春到大寒,白昼时长先增大再减小后增大,∴结论①不正确;夏至时白昼时长最长,∴结论②正确;立夏和立秋,白昼时长大致相等,∴结论③正确;冬至是一年中白昼时长最短的节气,∴结论④不正确.故选B.2.C 去做核酸检测时用了2分钟,距离随时间的增加而增大;扫码检测共用了2分钟,离教室的距离没有发生变化;回教室用了2.5分钟,距离随时间的增加而减小.故选C.3.D 汽车在0~0.5小时的速度是30÷0.5=60千米/时,0.5~1.5小时的速度为(110-30)÷(1.5-0.5)=80千米/时,所以0~1小时的平均速度为(60+80)÷2=70千米/时,故A说法错误,不符合题意;汽车在2~3小时的速度为(150-110)÷(3-2)=40千米/时,所以汽车在2~3小时的速度比0~0.5小时的速度慢,故B说法错误,不符合题意;汽车行驶的平均速度为150÷3=50千米/时,故C说法错误,不符合题意;汽车在0.5~1.5小时的速度是80千米/时,故D说法正确,符合题意.故选D.4.答案 8 100解析 由题图可知,经过1 620年时,镭质量缩减为原来的12,经过1 620×2=3 240年时,镭质量缩减为原来的14=122,经过1 620×3=4 860年时,镭质量缩减为原来的18=123,经过1 620×4=6 480年时,镭质量缩减为原来的116=124,∴经过1 620×5=8 100年时,镭质量缩减为原来的125=132,∵32×132=1(mg),∴32 mg镭缩减为1 mg所用的时间大约是8 100年.故答案为8 100.5.解析 (1)根据题图可知,小明家到学校的路程是1 500米,小明在书店停留了12-8=4分钟.(2)1 500+(1 200-600)×2=2 700(米).故本次上学途中,小明一共骑行了2 700米.(3)根据题图可知,从12分钟至14分钟小明的骑车速度最快,这个过程中,骑车速度为(1 500-600)÷(14-12)=450(米/分钟),∵450>300,∴在12分钟至14分钟时,小明的骑车速度超过了安全限度.(4)设小明出发t分钟时,离家1 200米,①根据题图可知,当t=6时,小明离家1 200米;②根据题意,得600+450(t-12)=1 200,解得t=403.∴小明出发6分钟或403分钟时离家1 200米.6.解析 (1)列表:x…-2-10123…y…-5-3-1135…(2)描点并连线,画出函数图象如图所示.(3)把x=-3代入y=2x-1,得y=-7≠-5,把x=2代入y=2x-1,得y=3≠-3,把x=3代入y=2x-1,得y=5,所以点C在函数y=2x-1的图象上,点A和B不在函数y=2x-1的图象上.(4)∵点P(m,9)在函数y=2x-1的图象上,∴9=2m-1,解得m=5.7.A 由题表数据可得出弹簧的长度y(cm)与所挂重物的质量x(kg)之间的关系式为y=0.5x+12.8.解析 (1)y=18-(5x+4x)=-9x+18,故甲、乙两人之间的距离y(km)和所用的时间x(h)之间的函数关系式为y=-9x+18.(2)当x=0时,y=18,当y=0时,-9x+18=0,解得x=2,故函数图象与x轴、y 轴的交点坐标分别为(2,0)、(0,18).列表:x/h02y/km180描点、连线,画出的函数图象如图.自变量x的取值范围为0≤x≤2.9.解析 本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)如图.(2)①1.98.②当x>2时,y随x的增大而减小.能力提升全练10.A 由题意易知,当0≤x<30时,y随x的增大而增大,当30≤x≤90时,y是一个定值,当90<x≤135时,y随x的增大而减小,∴能大致反映y与x关系的是选项A中的图象.11.B 将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小水杯,因而这段时间h不变,当大容器中的水面的高度与小水杯的高度齐平时,开始向小水杯内流水,h随t的增大而增大,当水注满小水杯后,小水杯内水面的高度h不再变化.故选B.12.B A.小李实际骑行时间为5 h,故本选项不合题意;B.点P表示出发6 h,小李共骑行80 km,故本选项符合题意;(km/h),0~2 h小李的骑行C.3~6 h小李的骑行速度为(80-30)÷(6-3)=503=15(km/h),速度为302>15,所以3~6 h小李的骑行速度比0~2 h快,故本选项不合题意;因为503=10(km/h),故本选项不合题意.D.3 h内,小李的平均速度是303故选B.13.D 由题图可知,A城与B城的距离是300 km,故选项B说法正确;甲车的平均速度是300÷5=60(km/h),所以甲车4小时行驶60×4=240 km,即甲车行驶到距A城240 km处,被乙车追上,故选项A说法正确;乙车的平均速度是240÷(4-1)=80(km/h),故选项C说法正确;由题图可知,乙车比甲车早到B城,故选项D说法不正确.故选D.14.答案 10解析 调进化肥的速度是30÷6=5(吨/天),由题图知在第6天时,库存物资有30吨,在第8天时库存物资有20吨,=10(吨/天),所以销售化肥的速度是30―20+5×22所以剩余的20吨化肥完全售出需要20÷10=2(天),故该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是8+2=10(天).故答案为10.素养探究全练15.解析 (1)①补全图象如图:②观察函数图象,当x=4时,y=200,当y的值最大时,x=21.(2)(答案不唯一)该函数的两条性质如下:①当2≤x≤7时,y随x的增大而增大;②当x=14时,y取得最小值,为80.(3)由图象可知,当y=260时,x=5或x=10或x=18或x=23,∴当5<x<10或18<x<23时,y>260,即当5<x<10或18<x<23时,适合货轮进出此港口.。

初二数学函数概念与图像练习题及答案

初二数学函数概念与图像练习题及答案

初二数学函数概念与图像练习题及答案函数是数学中非常重要的概念,在初二数学中也是学习的重点之一。

理解函数的概念以及掌握函数图像的绘制对于学习数学非常关键。

下面将为大家提供一些初二数学函数概念与图像的练习题及答案,以帮助大家更好地掌握这一知识点。

练习题一:给出以下函数,判断它们是否为函数,并画出它们的图像。

1. 函数f(x) = 2x + 12. 函数g(x) = √x3. 函数h(x) = x^2 + 14. 函数k(x) = |x|答案一:1. 函数f(x) = 2x + 1 是函数。

它的图像为一条直线,斜率为2,截距为1.2. 函数g(x) = √x 是函数。

它的图像为一条抛物线,开口向上,过点(0,0).3. 函数h(x) = x^2 + 1 是函数。

它的图像为一条抛物线,开口向上,顶点为(0,1).4. 函数k(x) = |x| 是函数。

它的图像为以原点为对称中心的一条直线段.练习题二:给出以下函数的图像,写出它们的解析式。

1.图像描述:一条斜率为1,截距为2的直线段。

解析式:f(x) = x + 22.图像描述:一条横纵坐标均为正的对数曲线。

解析式:g(x) = ln(x)3.图像描述:一个顶点在坐标原点的开口向下的抛物线。

解析式:h(x) = -x^24.图像描述:一条横坐标为负的直线段。

解析式:k(x) = -2答案二:1. 图像描述所给出的直线的斜率为1,截距为2,因此解析式为f(x) = x +2.2. 图像描述所给出的曲线是对数曲线,横纵坐标均为正,因此解析式为g(x) = ln(x).3. 图像描述所给出的抛物线是一个顶点在坐标原点的开口向下的抛物线,因此解析式为h(x) = -x^2.4. 图像描述所给出的直线段横坐标为负,因此解析式为k(x) = -2.练习题三:根据函数的图像,判断它们的性质。

1. 以下函数图像是否为奇函数?图像描述:一条关于y轴对称的曲线。

答案:是奇函数。

八年级数学-函数的图象练习题(含解析)

八年级数学-函数的图象练习题(含解析)

八年级数学-函数的图象练习题(含解析)基础闯关全练1.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校的路程s(单位:m)与时间t(单位:min )之间函数关系的大致图象是()A. B. C. D.2.某日上午,静怡同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,静怡立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,静怡继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A. B. C. D.3.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速骑行1.5小时后,其中一辆自行车出现故障,因此二人在自行车修理点修车,用了半小时,然后以原速继续前行,骑行1小时后到达目的地,请在如图19-1-2-1所示的平面直角坐标系中画出符合他们骑行的路程s(千米)与骑行时间t (小时)之间的函数图象.4.已知两个变量x和y它们之间的3组对应值如下表所示:x -1 0 1y -1 1 3则y与x对应的函数关系可能是()A.y=x B.y=2x+1 C.y=x²+x+1 D.y=x35.商场进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其数量x(米)与售价y(元)如下表:数量x(米) 1 2 3 4 …售价y(元)8+0.3 16+0.624+0.932+1.2…下列用数量x(米)表示售价y(元)的关系式中,正确的是()A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x能力提升全练1.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始时领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行,最终赢得比赛,下列函数图象可以体现这一故事过程的是()A. B. C. D.2.小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图19-1-2-2反映了这个过程中,小明离家的距离y与时间x之间的对应关系,根据图象,下列说法正确的是()A.小明吃早餐用了25min B.小明读报用了30minC.食堂到图书馆的距离为0.8km D.小明从图书馆回家的速度为0.8km/min3.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x … 1 2 3 5 7 9 …y … 1.983.952.63 1.581.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图19-1-2-3,在平面直角坐标系xOy中,描出了以表中各组对应值为坐标的点,根据描出的点,画出该函数的图象:(2)根据画出的函数图象,写出:①x=4对应的函数值y约为________;②该函数的一条性质:____________________.三年模拟全练一、选择题1.如图19-1-2-4,在矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发,沿A→B→C→D运动,到达点D后运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间的函数关系的图象是()A. B. C. D.2.一支蜡烛长20 cm,若点燃后每小时燃烧5cm,则燃烧剩余的长度y(cm)与燃烧时间x(h)之间的函数关系的图象大致为()A. B. C. D.二、填空题3.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图19-1-2-5所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是_______分钟.4.快车和慢车同时从甲地出发以不同的速度匀速前往乙地,快车到达乙地后停留了一段时间,立即从原路以原速度匀速返回,在途中与慢车相遇,相遇后两车朝各自的方向继续行驶,两车之间的距离y (千米)与慢车行驶的时间t(小时)之间的函数图象如图19-1-2-6所示,则两车相遇时距甲地_______千米.五年中考全练一、选择题1.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C. D.2.在物理实验课上,老师用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起,直到铁块完全露出水面一定的高度,如图19-1-2-7所示,则下列选项能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A .B .C .D .3.甲、乙两地相距80 km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h,并继续匀速行驶至乙地,汽车行驶的路程y( km)与时间x(h)之间的函数关系如图19-1-2-8所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:504.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图19-1-2-9所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有 ( )A.1个 B.2个 C.3个 D.4个二、填空题5.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来的一半.小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的函数关系如图19-1-2-10所示(小玲和妈妈上、下楼以及妈妈将学习用品交给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为_______米.核心素养全练1.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图19-1-2-11所示,中国创新综合排名全球第22,创新效率排名全球第_______.2.小红帮弟弟荡秋千(如图19-1-2-12a),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图19-1-2-12b所示.(1)根据函数的定义,请判断变量h是不是关于t的函数.(2)结合图象回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义:②秋千摆动第一个来回需多少时间?3.图19-1-2-13①表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),若0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间);北京时间7:30 _______ 2:50首尔时间_______12:15 ________(2)图19-1-2-13②表示同一时刻的英国伦敦(夏时制)时间和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?19.1.2 函数的图象1.B小刚从家到学校的路程s(m)应随他行走的时间t(min)的增大而增大,因而选项A一定错误;而在等车的时候离家的路程不变,因此C、D错误;所以能反映小刚从家到学校行走路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是B,故选B.2.C接到通知后,静怡立即在电脑上打字录入这篇文稿,所以函数图象平缓上升;录入一段时间后因事暂停,录入字数不变,函数图象保持水平;过了一会儿,静怡继续录入并加快了录入速度,函数图象上升,且比开始时上升得快,综合这些信息可知答案为C.3.解析由题意可知,共骑行2.5小时走完全程50千米,所以前1.5小时走了30千米,修车用了0.5小时后继续骑行1小时,走了20千米,由此作图如图所示.4.B将3组x、y的对应值分别代入A、B、C、D四个选项中的函数关系式,都成立的是选项B.5.B依题意得y=(8+0.3)x.故选B.1.B乌龟匀速爬行,兔子因在比赛中间睡觉,导致开始时领先,最后输掉比赛,所以线段表示乌龟比赛中路程与时间的关系,折线表示兔子比赛中路程与时间的关系,跑到终点兔子用的时间多于乌龟所用的时间.A中,乌龟用时多,不合题意:C中,兔子和乌龟用时相同,不合题意;D中,乌龟虽然用时少,但图象显示比赛一开始,乌龟就领先,不合题意,只有B选项符合题意.2.B吃早餐用的时间为25-8=17 min,故选项A错误:食堂到图书馆距离应为0.8-0.6=0.2 km,故选项C 错误;小明从图书馆回家的速度应为108.0=0.08 km/min,故选项D错误,故选B.3.解析本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)(2)①1.98.②当x>2时,y随x的增大而减小.一、选择题1.A △APM的面积随x的变化而变化,当点P由A到B,即x由0到1时,y匀速增大至最大值1,当点P由B到C,即x由1到3时,y取得最大值0.5且不变;当点P由C到D,即x由3到4时,y匀速减小.故选A.2.C 由题意,得y=20-5x.∵O≤y≤20,∴ 0≤20-5x≤20,∴0≤x≤4,∴y=20-5x的图象是一条线段,当x=0时,y=20;当x=4时,y=0.故选C . 二、填空题 3.答案15解析 根据图象可知上班时走平路、上坡路和下坡路的速度分别为215131和、(千米/分钟),且平路长度为1千米,A ,B 之间距离为1千米,B 与单位之间距离为2千米,所以他从单位到家门口需要的时间是2÷31121151÷+÷+=15(分钟).4.答案 220解析根据题意,结合图象得,OA 段表示两车同时同地同向往乙地行驶5小时后快车到达乙地,AB 段表示慢车继续行驶1小时,快车在乙地停留1小时,由此得慢车速度为(150-120)÷(5-4)=30千米/小时,设快车速度为x 千米/小时,则5x-30×5=150.解得x=60(千米/小时).甲乙两地之间的距离为5×60=300(千米),慢车行驶6小时后,快车准备从乙地返回,此时两车相距120千米,BC 段表示两车走这120千米直至相遇的情况,设6小时后再经过t 1.小时两车相遇,则30t ₁+60t ₁=120,解得t ₁=34,故慢车又行驶了30×34=40千米,所以此时两车相距甲地150+30+40=220千米. 一、选择题1.D 由题意可知,2x+y=10,根据“三角形任意两边之和大于第三边”可得2x >y 且2x <10,解得2.5<x <5,故选D .2.C 因为铁块在水中受到浮力的影响,所以铁块上底面离开水面前读数y 不变,铁块上底面离开水面后y 逐渐增大,铁块下底面离开水面后y 不变.3.B 由图象知,汽车行驶前一半路程(40 km)所用的时间是1 h .所以速度为40÷1=40(km/h),故行驶后一半路程的速度是40+20=60( km/h),所以行驶后一半路程所用的时间为40÷60=32(h),因为32h=32×60=40 min ,所以该车一共行驶了1小时40分钟到达乙地,故到达乙地的时间是当天上午10:40.4.A 由图象知,甲4分钟步行了240米,∴甲步行的速度为4240=60(米/分),∴结论①正确;∵乙用了16-4=12分钟迫上甲,乙步行的速度比甲快12240=20(米/分),∴乙步行的速度为60+20=80米/分,∴结论③不正确;∴甲走完全程需要602400=40分钟,乙走完全程需要802400=30分钟,∴结论②不正确,∴乙到达终点时,甲用了34分钟,甲还有40-34=6分钟到达终点,离终点还有60×6=360米,∴结论④不正确.故选A . 二、填空题 5.答案200解析由图可知,小玲用30分钟从家里步行到距家1 200米的学校,因此小玲的速度为40米/分;妈妈在小玲步行10分钟后从家时出发,用5分钟追上小玲,因此妈妈的速度为40×15÷5=120米/分,故妈妈返回家时的速度为120÷2=60米/分.设妈妈用x 分钟返回到家里,则60x=40×15,解得x=10,此时小玲已行走了25分钟,共步行了25×40=1 000米,所以距离学校还有1200-1000=200(米). 1.答案3解析从图①可知,创新综合排名全球第22,对应创新产出排名全球第11;从图②可知,创新产出排名全球第11,对应创新效率排名全球第3.2.解析(1)∵对于每一个摆动时间t ,都有唯一一个确定的h 值与其对应,∴变量h 是关于t 的函数.(2)①由题图b 知,当t=0.7时,h=0.5 m ,它的实际意义是秋千摆动0.7 s 时,距离地面的高度为0.5 m .②由题图b 知,秋千摆动第一个来回需2.8 s .3.解析(1)从题图①看出,同一时刻,首尔时间比北京时间早1小时,所以,y 关于x 的函数表达式是y=x+1,O ≤x ≤12.填表如下: 北京时间 7:30 11:15 2:50首尔时8:30 12:15 3:50(2)设伦敦(夏时制)时间为t时,则北京时间为(t+7)时,结合(1)可得,韩国首尔时间为(t+8)时,所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.。

初二数学函数及其图像试题

初二数学函数及其图像试题

初二数学函数及其图像试题1.如图,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间与火车在隧道内的长度之间的关系用图象描述大致是( )【答案】A【解析】根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,故反映到图象上应选A.故选A.2.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与卖瓜的千克数之间的关系如图所示,那么小李赚了()A.32元B.36元C.38元D.44元【答案】B【解析】根据题意得:由降价前40千克西瓜卖了64元,那么售价为:64÷40=1.6元,降价0.4元后单价变为1.6-0.4=1.2,钱变为了76元,说明降价后卖了76-64=12元,那么降价后卖了12÷1.2=10千克.总质量将变为40+10=50千克,那么小李的成本为:50×0.8=40元,赚了76-40=36元.故选B3.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为.【答案】y=2x+1【解析】把点A(1,3)和B(-1,-1)代入y=kx+b得:,解得,所以函数的解析式为:y=2x+1.【考点】待定系数法求解析式.4.一次函数与的图像如图,则下列结论:①k<0 ;②a>0;③当时,;④当x<3时,y1<y2中,正确的序号有.【答案】①③【解析】根据y1=kx+b和y2=x+a的图象可知:k<0,故①正确;a<0,故②错误;当x=3时,它们的函数值相等,即,故③正确;当x<3时,相应的x的值,y1图象均高于y2的图象,因此y1>y2,故④错误.【考点】一次函数的图像与性质5.(本题10分)已知一次函数的图像经过点,,且与正比例函数的图像相交于点,.(1)求的值;(2)求一次函数的解析式;(3)求这两个函数图像与轴所围成的三角形面积.(画图解答)【答案】(1)m=4 (2) y=x+2 (3) s=4【解析】(1)要求的a值,就需要把点(2,m)代入正比例函数y=2x中,即可以求得a的值;(2)要求出字母k,b的值,就需要把点(1,3),点(2,m),代入一次函数y=kx+b中即可得k,b的值;(3)根据求出的两个函数图象,画出相关函数图像,即可得到图形,与它们与y轴相交得到的三角形的面积等于(2)得到的直线与y轴的交点的绝对值与两直线交点的横坐标的积的一半.试题解析:解:(1)将点(2,m)代入正比例函数y=2x,解得m=4.(2)将点(1,3)、(2,4)分别代入y=kx+b,得解得k=1,b=2.因此一次函数的解析式为y=x+2(3)因为直线交y=x+2与x轴交于点(-2,0),又直线y=x+2与y=2x交点的纵坐标为4,所以围成的三角形的面积为×2×4=4.【考点】一次函数的图像与性质,三角形的面积6.(本小题满分8分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.(1)求直线AC的解析式;(2)动点P从点A出发,沿折线ABC的方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)动点P从点A出发,沿线段AB方向以2个单位/秒的速度向终点B匀速运动,当∠MPB与∠BCO互为余角时,试确定t的值.【答案】(1)y=-x+.(2)S=-t+(0≤t<).S=-(<t≤5)(3).【解析】(1)要求出AC的解析式,需要知道两点坐标,A点坐标是已知的,由A点坐标可知AO的长,因为是菱形,OA=OC,这样C点坐标就知道了,于是求出直线AC的解析式;(2)分两个时间段建立函数关系,①当0≤t<时,P在AB上,由直线AC解析式求出M点坐标,再求出M,用t表示出PB,建立S△PMB与t之间的函数关系式;②当<t≤5时,P在BC上,可证△MOC≌△MBC(SAS),∴∠MBP=90°,BM=MO,用t表示出PB的长,建立S△PMB与t之间的函数关系式;(3)此题关键是求出PA的长度,由题意可得到∠AOM=∠ABM,∠BAO=∠BCO,∠BAO+∠AOM=90°,又∵∠MPB与∠BCO互为余角∴∠MPB=∠AOM,∴∠MPB =∠ABM.△PMB是等腰三角形,PH=BH,,可求出PH长度,于是求出PA长度,t值就求出来了.试题解析:(1)如图1,过点A作AE⊥x轴,垂足为E.∵A(-3,4),∴AE=4,OE=3,∴OA==5.∵四边形ABCO是菱形,∴OC=CB=BA=OA=5,∴C(5,0).设直线AC的解析式为y=kx+b,将A(-3,4),C(5,0)代入得:,解得,∴直线AC的解析式为y=-x+.(2)由(1)得点M的坐标为(0,),∴OM=.如图1,当点P在AB边上运动时.由题意得OH=4,∴HM=.∴S=BP·MH=(5-2t)×,∴S=-t+(0≤t<).如图2,当点P在BC边上运动时.∵∠OCM=∠BCM,OC=BC,MC=MC.∴△MOC≌△MBC.∴BM=OM=,∠MBC=∠MOC=90°,∴S=BP·BM=(2t-5)×,∴S=-(<t≤5).(3)∵∠AOC=∠ABC,∠MOC=∠MBC,∴∠AOM=∠ABM.∵∠MPB+∠BCO=90°,∠BAO=∠BCO,∠BAO+∠AOM=90°,∴∠MPB=∠AOM,∴∠MPB=∠ABM.如图3,当点P在AB边上运动时,∵∠MPB=∠ABM,∴PM=BM,∵MH⊥PB,∴PH=HB=5-3=2,∴PA=3-2=1.∴t=.【考点】1.一次函数的实际应用;2.图形的动点问题;3.与三角形有关的知识;3.菱形性质.7.(6分)下面的图象反映的过程是:小明从家里跑步去书店,在那里买了一本书,又步行到小洪家,借了一本书,然后跑回家,其中x表示时间,y表示小明离家的距离.问:(1)书店离小明家多远?小明从家到书店用了多少时间?(2)书店离小洪家多远?小明在小洪家逗留时间?(3)小明从小洪家回家的平均速度是多少?【答案】(1)2km,10分钟;(2)1km,10分钟;(3)0.2km/分.【解析】(1)x表示时间,y表示小明离家的距离.到书店买书时,第一次出现时间增多,路程没有增加.y此时为2千米,∴书店离小明家2千米.(2)小明最远到小洪家,函数图象中最大是3千米,那么书店离小洪家3-2=1千米,逗留时间为50-40=10分;(3)平均速度=总路程÷总时间.试题解析:(6分)(1)x表示时间,y表示小明离家的距离.由图可知书店离小明家2km,所用的时间为10分钟;(2)根据函数图象可知书店离小洪家3-2=1km;50-40=10分钟;(3)根据求平均速度的公式可得:=0.2km/分.【考点】函数的图象.8.对于一次函数y= -2x-1来说,下列结论中错误的是()A.函数值y随自变量x的减小而增大B.函数的图像不经过第一象限C.函数图像向上平移2个单位后得到函数y= -2x+1D.函数图像上到x轴距离为3的点的坐标为(2,-3)【答案】D.【解析】选项A,由一次函数y=﹣2x-1中k=﹣2<0,可得函数值随x的增大而减小,故本选项正确;选项B,一次函数y=﹣2x-1中k=﹣2<0,b=-1<0,可得此函数的图象经过二、三、四象限,不经过第一象限,故本选项正确;选项C,由“上加下减”的原则可知,函数的图象向上平移2个单位长度得y=﹣2x+1的图象,故本选项正确;选项D,令y=3或-3,,则x=-2或2,函数图像上到x轴距离为3的点的坐标为(-2,3)或(2,-3),故本选项错误.故答案选D.【考点】一次函数的性质.9.若A(-1,y1)、B(-2,y2)是反比例函数y=(m为常数,m≠)图象上的两点,且y1>y2,则m的取值范围是.【答案】m>0.5.【解析】因为-1>-2,y1>y2,所以y随x的增大而增大,所以反比例函数y=中,1-2m<0,解得m>0.5.【考点】反比例函数的性质.10.一次函数y=﹣2x+4与y轴的交点坐标是.【答案】(0,4).【解析】把x=0代入y=2x+4得:y=4,即可得一次函数y=2x+4与y轴的交点坐标是(0,4),【考点】一次函数图象与坐标轴的交点坐标.11.如图,反比例函数的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()A.y>1B.0<y<l C.y>2D.0<y<2【答案】D.【解析】已知反比例函数的图象经过点A(﹣1,﹣2),可求得,把x=1代入可得y=2,结合反比例函数的图象即可得当x>1时,函数值y的取值范围是0<y<2.故答案选D.【考点】反比例函数的图象;反比例函数图象上点的坐标特征.12.如图,已知函数y=2x和函数y=的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则k= ,满足条件的P点坐标是.【答案】8,P1(0,-4),P2(-4,-4),P3(4,4).【解析】如图∵△AOE的面积为4,函数y=的图象过一、三象限,∴S△AOE=•OE•AE=4,∴OE•AE=8,∴xy=8,∴k=8,∵函数y=2x和函数y=的图象交于A、B两点,∴2x=,∴x=±2,当x=2时,y=4,当x=-2时,y=-4,∴A、B两点的坐标是:(2,4)(-2,-4),∵以点B、O、E、P为顶点的平行四边形共有3个,∴满足条件的P点有3个,分别为:P1(0,-4),P2(-4,-4),P3(4,4).【考点】反比例函数综合题.13.反比例函数y1=(x>0,k≠0)的图象经过点(1,3),P点是直线y2=-x+6上一个动点,如图所示,设P点的横坐标为m,且满足-m+6>,过P点分别作PB⊥x轴、PA⊥y轴,垂足分别为B、A,与双曲线分别交于D、C两点,连接OC、OD、CD.(1)求k的值并结合图象求出m的取值范围;(2)在P点运动过程中,求线段OC最短时P点的坐标;(3)将三角形OCD沿着CD翻折,点O的对应点为O′,得到四边形O′COD,问:四边形O′COD能否为菱形?若能,求出P点坐标;若不能,说明理由.【答案】(1)k=3,3-<m<3+;(2)P(6-,);(3)P(3,3).【解析】(1)先把(1,3)代入y1=求出k的值,再由两函数有交点求出m的值,根据函数图象即可得出结论;(2)根据线段OC最短可知OC为∠AOB的平分线,对于y1=,令x=y1,即可得出C点坐标,把y=代入y=-x+6中求出x的值即可得出P点坐标;(3)当OC=OD时,四边形O′COD为菱形,由对称性得到△AOC≌△BOD,即OA=OB,由此时P横纵坐标相等且在直线y=-x+6上即可得出结论.试题解析:(1)∴反比例函数y1=(x>0,k≠0)的图象进过点(1,3),∴把(1,3)代入y1=,解得k=3,∵=-m+6,∴m=3±,∴由图象得:3-<m<3+;(2)∵线段OC最短时,∴OC为∠AOB的平分线,∵对于y1=,令x=y1,∴x=,即C(,),∴把y=代入y=-x+6中,得:x=6-,即P(6-,);(3)四边形O′COD能为菱形,∵当OC=OD时,四边形O′COD为菱形,∴由对称性得到△AOC≌△BOD,即OA=OB,∴此时P横纵坐标相等且在直线y=-x+6上,即x=-x+6,解得:x=3,即P(3,3).【考点】反比例函数综合题.14.函数y=中,自变量x的取值范围是.【答案】x≤2【解析】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.根据题意得:2﹣x≥0,解得:x≤2.【考点】函数自变量的取值范围15.点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是().A.y1>y2B.y1>y2>0C.y1<y2D.y1=y2【答案】A.【解析】根据题意,k=﹣4<0,y随x的增大而减小,因为x1<x2,所以y1>y2.故选:A.【考点】一次函数图象上点的坐标特征.16.星期天晚饭后,小红从家里出去散步,如图描述了她散步过程中离家的距离s(米)与散步所用时间t(分)之间的关系.依据图象,下面描述符合小红散步情景的是().A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,就找同学去了,18min后才开始返回【答案】B.【解析】由纵坐标看出,0到4分钟从家到了报亭,由横坐标看出4到10分钟在报亭读报,由纵坐标看出10到12分钟看报后继续前行,由纵坐标看出12到18分钟返回家,故B正确.故选:B.【考点】函数的图象.17.如图1,已知直线y=﹣2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.(l)当点C与点O重合时,DE= ;(2)当CE∥OB时,证明此时四边形BDCE为菱形;(3)在点C的运动过程中,直接写出OD的取值范围.【答案】(1)1;(2)证明详见解析;(3)≤OD≤2.【解析】(1)画出图形,根据DE垂直平分BC,可得出DE是△BOA的中位线,从而利用中位线的性质求出DE的长度;(2)先根据中垂线的性质得出DB=DC,EB=EC,然后结合CE∥OB判断出BE∥DC,得出四边形BDCE为平行四边形,结合DB=DC可得出结论.(3)求两个极值点,①当点C与点A重合时,OD取得最小值,②当点C与点O重合时,OD 取得最大值,继而可得出OD的取值范围.试题解析:解:∵直线AB的解析式为y=﹣2x+4,∴点A的坐标为(2,0),点B的坐标为(0,4),即可得OB=4,OA=2,(1)当点C与点O重合时如图所示,∵DE垂直平分BC(BO),∴DE是△BOA的中位线,∴DE=OA=1;(2)当CE∥OB时,如图所示:∵DE为BC的中垂线,∴BD=CD,EB=EC,∴∠DBC=∠DCB,∠EBC=∠ECB,∴∠DCE=∠DBE,∵CE∥OB,∴∠CEA=∠DBE,∴∠CEA=∠DCE,∴BE∥DC,∴四边形BDCE为平行四边形,又∵BD=CD,∴四边形BDCE为菱形.(3)当点C与点O重合时,OD取得最大值,此时OD=OB=2;当点C与点A重合时,OD取得最小值,如图所示:在Rt△AOB中,AB==2,∵DE垂直平分BC(BA),∴BE=BA=,易证△BDE∽△BAO,∴,即,解得:BD=,则OD=OB﹣BD=4﹣=.综上可得:≤OD≤2.【考点】一次函数综合题.18.为使我市冬季“天更蓝、房更暖”、政府决定实施“煤改气”供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③当x=4时,甲、乙两队所挖管道长度相同;④甲队比乙队提前2天完成任务.正确的个数有()A.1个B.2个C.3个D.4个【答案】D【解析】由图象,得①600÷6=100米/天,故①正确;②(500﹣300)÷4=50米/天,故②正确;③甲队4天完成的工作量是:100×4=400米,乙队4天完成的工作量是:300+2×50=400米,∵400=400,∴当x=4时,甲、乙两队所挖管道长度相同,故③正确;④由图象得甲队完成600米的时间是6天,乙队完成600米的时间是:2+300÷50=8天,∵8﹣6=2天,∴甲队比乙队提前2天完成任务,故④正确;故选D.【考点】一次函数的应用.19.(3分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0B.1C.2D.3【答案】B.【解析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.∵y1=kx+b的函数值随x的增大而减小,∴k<0;故①正确∵y2=x+a的图象与y轴交于负半轴,∴a<0;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故②③错误.故选:B.【考点】两条直线相交或平行问题.20.一次函数y=(2m-6)x+5中,y随x的增大而减小,则m的取值范围是.【答案】m<3.【解析】∵一次函数y=(2m-6)x+5中,y随x的增大而减小,∴2m-6<0,解得,m<3.【考点】一次函数图象与系数的关系.21.下列函数,y随x增大而减小的是()A.y="x"B.y=x﹣1C.y=x+1D.y=﹣x+1【答案】D.【解析】A、k=1>0,y随x的增大而增大,所以A选项错误;B、k=1>0,y随x的增大而增大,所以B选项错误;C、k=1>0,y随x的增大而增大,所以C选项错误;D、k=﹣1<0,y随x的增大而减小,所以D选项正确.故选D.【考点】一次函数的性质;正比例函数的性质.22.已知一次函数y=ax﹣1的图象经过点(﹣2,2),则该一次函数的解析式为.【答案】y=x-1【解析】把(﹣2,2)代入y=ax﹣1得:﹣2a﹣1=2,解得:a=,即y=x﹣1.故答案为:y=x-1.【考点】一次函数图象上点的坐标特征.23.若一次函数的图象经过点(,),则的值为.【答案】4.【解析】把点(,)代入可得10=2k+2,解得k=4.【考点】一次函数图象上点的特征.24.(6分)如图是一次函数的图象,请根据给出的图象写出一个一元一次方程和一元一次不等式,并用图象求解所写的方程和不等式.【答案】,解为x=2.5;,解为x>2.5.【解析】一次函数与x轴的交点横坐标,即是当y=0时,2x-5=0的x值;一次函数图象与x轴的交点上方部分,即是当y>0时,2x-5>0的解集,一次函数图象与x轴的交点下方部分,即是当y<0时,2x-5<0的解集.试题解析:解:例如:,因为函数图象与x轴的交点横坐标为2.5,(根据所写方程,在图中表示也可以),所以方程的解为x=2.5.,因为从图象上看当y>0时,函数值对应的自变量的值x>2.5,所以不等式的解集为x>2.5.【考点】一次函数与一元一次方程的关系;一次函数与一元一次不等式的关系.25.在直角坐标系中,等腰直角三角形A1B1O、A2B2B1、A3B3B2、…、AnBnBn-1按如图所示的方式放置,其中点A1、A2、A3、…、An均在一次函数的图像上,点B1、B2、B3、…、Bn均在x轴上。

函数的图像经典例题

函数的图像经典例题

函数的图象一、典型例题例1 设函数2()45f x x x =-- (1)在区间[2,6]-上画出函数()f x 的图像;(2)设集合{}()5,(,2][0,4][6,)A x f x B =≥=-∞-+∞ ,试判断集合A 和B 之间的关系,并给出证明;(3)当2k >时,求证:在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方。

例2(1)若把函数()y f x =的图像作平移,可以使图像上的点()1,0P 变换成点()2,2Q ,则函数()y f x =的图像经此变换后所得图像对应的函数为 ( )A .(1)2y f x =-+ B.(1)2y f x =--C . (1)2y f x =++D . (1)2y f x =+-(2)己知函数33(),()232x f x x x -=≠-,若(1)y f x =+的图像是1C ,它关于直线y x =对称图像是22,C C 关于原点对称的图像为33,C C 则对应的函数解析式是__________(3)作出下列函数的大致图象: ①()21y x x =-+;② 21x y x -=+; ③ lg 1y x =-④ 11xy x -=-例3 (1)设函数()x f 的定义域为R ,它的图像关于直线1x =对称,且当1≥x 时()13-=x x f 则( ) ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛322331A.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛312332B.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛233132C.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛313223D.f f f (2)已知()f x 是定义域为(-∞,0)∪(0,+∞)的奇函数,在区间(0,+∞)上单调递增, ()f x 的图象如图所示,若[]()()0x f x f x --<,则x 的取值范围是__________________例3 已知函数()()()()1212()211xx f x x x x ⎧⎛⎫-≤-⎪ ⎪=⎝⎭⎨⎪-->-⎩,如果方程()f x a =有四个不同的实根,求实数a 的取值范围。

八年级数学:一次函数的图像练习(含解析)

八年级数学:一次函数的图像练习(含解析)

八年级数学:一次函数的图像练习(含解析)1.一次函数y=x+2的图像大致是下图中的( A )解析:根据直线y=x+2与y轴和x轴的交点分别是(0,2)和(-2,0),观察得到选项A.故选A.2.若一次函数y=3x+k的图像过点(1,2),则函数y=kx+2的图像大致为下图中的( A )解析:把(1,2)代入y=3x+k,得k=-1,则y=kx+2为y=-x+2,故图像为A.故选A.3.直线y=kx-1一定经过点( D )A.(1,0) B.(1,k) C.(0,k) D.(0,-1)解析:当x=0时,y=-1.故选D.4.(2017·沈阳)在平面直角坐标系中,一次函数y=x-1的图像是( B )解析:一次函数y=x-1,其中k=1,b=-1,其图像为,故选B.5.若k≠0,b<0,则y=kx+b的图像可能是( B )解析:一次函数,k≠0,不可能与x轴平行,排除D选项;b<0,说明图像过第三、四象限,排除A,C选项.故选B.6.已知一条直线y=kx+b,其中k+b=-5,kb=6,那么该直线经过( D )A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限解析:由kb=6,k+b=-5.知k<0,b<0,∴图像经过第二、三、四象限.故选D.7.如图,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图像是( A )解析:由A中正比例函数图像可知mn<0,∴m与n异号.由一次函数可知m<0,n>0,∴A 选项中图像与描述一致,故选A.8.如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的表达式为y=-2x-2.解析:正比例函数为y=-2x,图像向左平移一个单位长度则x+1,即y=-2(x+1)=-2x-2.9.一次函数y=3x-6的图像与坐标轴围成的三角形的面积是6.解析:y=3x-6与x轴交于(2,0),与y轴交于(0,-6),∴S=12×2×6=6.10.已知y+1与2-x成正比,且当x=-1时,y=5,则y与x的函数关系式是y=-2x+3.解析:设y+1=k(2-x)(k≠0),把x=-1,y=5代入得5+1=k(2+1),解得k=2,则y+1=2(2-x),即y=-2x+3.11.已知一次函数y=kx+2的图像经过A(-1,1).(1)求此一次函数的表达式;(2)求这个一次函数图像与x轴的交点B的坐标,画出函数图像;(3)求△AOB的面积.解:(1)将A(-1,1)的坐标代入一次函数y=kx+2,解得k=1,故其表达式为y=x+2.(2)令y=0,解得x=-2,故该一次函数的图像与x轴交于点B(-2,0).函数图像如图.(3)过A作AC⊥x轴于点C,△AOB的面积=12OB·AC=12×2×1=1.12.在同一平面直角坐标系中画出一次函数y=32x与y=32x+3的图像,并根据图像回答:(1)两个函数的图像有什么位置关系?你是怎样看出的?(2)其中一个函数图像能否通过平移得到另一个函数图像?若能,说出你的平移方法.解:对于y=32x,当x=0时,y=0;当x=2时,y=3.对于y=32x+3,当x=0时,y=3;当y=0时,解得x=-2.过点(0,0)与(2,3)画直线,则得到y=32x的图像;过点(-2,0)与(0,3)画直线,则得到y=32x+3的图像,如图所示.(1)两个函数图像互相平行.理由为:因为点A与B的纵坐标相同、横坐标相差2,点O与C的纵坐标相同、横坐标相差2,所以两个函数图像互相平行.(2)能.平移方法不唯一,如:把函数y=32x的图像向左平移2个单位长度则得到函数y=32x+3的图像.。

人教版八年级数学下册一次函数的图象和性质(基础)典型例题讲解+练习及答案.doc

人教版八年级数学下册一次函数的图象和性质(基础)典型例题讲解+练习及答案.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】一次函数的图象与性质(基础)责编:杜少波【学习目标】1. 理解一次函数的概念,理解一次函数y kx b =+的图象与正比例函数y kx =的图象之间的关系;2. 能正确画出一次函数y kx b =+的图象.掌握一次函数的性质.利用函数的图象解决与一次函数有关的问题,还能运用所学的函数知识解决简单的实际问题.3. 对分段函数有初步认识,能运用所学的函数知识解决实际问题.【要点梳理】要点一、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,k ≠0)的函数,叫做一次函数.要点诠释:当b =0时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k ,b 的要求,一次函数也被称为线性函数.要点二、一次函数的图象与性质1.函数y kx b =+(k 、b 为常数,且k ≠0)的图象是一条直线 ;当b >0时,直线y kx b =+是由直线y kx =向上平移b 个单位长度得到的;当b <0时,直线y kx b =+是由直线y kx =向下平移|b |个单位长度得到的.2.一次函数y kx b =+(k 、b 为常数,且k ≠0)的图象与性质:3. k 、b 对一次函数y kx b =+的图象和性质的影响:k 决定直线y kx b =+从左向右的趋势,b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.4. 两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定:(1)12k k ≠⇔1l 与2l 相交; (2)12k k =,且12b b ≠⇔1l 与2l 平行;【:391659 一次函数的图象和性质,待定系数法求函数的解析式】要点三、待定系数法求一次函数解析式一次函数y kx b =+(k ,b 是常数,k ≠0)中有两个待定系数k ,b ,需要两个独立条件确定两个关于k ,b 的方程,这两个条件通常为两个点或两对x ,y 的值.要点诠释:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数y kx b =+中有k 和b 两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式.要点四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点诠释:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.【典型例题】类型一、待定系数法求函数的解析式1、根据函数的图象,求函数的解析式.【思路点拨】由于此函数的图象过(0,2),因此b =2,可以设函数的解析式为2y kx =+,再利用过点(1.5,0),求出相应k 的值.【答案与解析】利用待定系数法求函数的解析式.解:设函数的解析式为y kx b =+.Q 它的图象过点(1.5,0),(0,2)41.50322k b k b b ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩∴∴ ∴该函数的解析式为423y x =-+. 【总结升华】用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式.举一反三:【变式1】已知一次函数的图象与正比例函数2y x =的图象平行且经过(2,1)点,则一次函数的解析式为________.【答案】 23y x =-;提示:设一次函数的解析式为y kx b =+,它的图象与2y x =的图象平行,则2k =,又因为一次函数的图象经过(2,1)点,代入得1=2×2+b .解得3b =-. ∴ 一次函数解析式为23y x =-.【变式2】(2015春•广安校级月考)已知函数y1=2x﹣3,y2=﹣x+3.(1)在同一坐标系中画出这两个函数的图象.(2)求出函数图象与x轴围成三角形的面积.【答案】解:(1)函数y1=2x﹣3与x轴和y轴的交点是(1.5,0)和(0,﹣3),y2=﹣x+3与x轴和y轴的交点是(3,0)和(0,3),其图象如图:(2)设y1=2x﹣3,y2=﹣x+3的交点为点A,可得:,可得:,S△ABC=BC•1=×(3﹣1.5)×1=.类型二、一次函数图象的应用2、(2016春•南昌期末)电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解答下列问题.(1)分别写出当0≤x≤100和x>100时,y与x之间的函数关系式;(2)若该用户某月用电80度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?【思路点拨】(1)对0≤x≤100段,列出正比例函数y=kx,对x≥100段,列出一次函数y=kx+b;将坐标点代入即可求出.(2)根据(1)的函数解析式以及图标即可解答即可.【答案与解析】解:(1)当0≤x≤100时,设y=kx,则有65=100k,解得k=0.65.∴y=0.65x .当x >100时,设y=ax +b ,则有, 解得 ∴y=0.8x ﹣15.(2)当用户用电80度时,该月应缴电费0.65×80=52(元).当用户缴费105元时,由105=0.8x ﹣15,解得x=150.∴该用户该月用电150度.【总结升华】本题主要考查一次函数的应用,关键考查从一次函数的图象上获取信息的能力. 举一反三:【变式】小高从家骑自行车去学校上学,先走上坡路到达点A ,再走下坡路到达点B ,最后走平路到达学校C ,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( )A.14分钟B.17分钟C.18分钟D.20分钟【答案】D ;提示:由图象可知,上坡速度为80米/分;下坡速度为200米/分;走平路速度为100米/分.原路返回,走平路需要8分钟,上坡路需要10分钟,下坡路需要2分钟,一共20分钟.类型三、一次函数的性质3、已知一次函数()()243y m x n =++-.(1)当m 、n 是什么数时,y 随x 的增大而增大;(2)当m 、n 是什么数时,函数图象经过原点;(3)若图象经过一、二、三象限,求m 、n 的取值范围.【答案与解析】解:(1)240m +>,即m >-2,n 为任何实数时,y 随x 的增大而增大;(2)当m 、n 是满足24030m n +≠⎧⎨-=⎩即23m n ≠-⎧⎨=⎩时,函数图象经过原点;(3)若图象经过一、二、三象限,则24030mn+>⎧⎨->⎩,即23mn>-⎧⎨<⎩.【总结升华】一次函数y kx b=+的图象有四种情况:①当k>0,b>0时,函数y kx b=+的图象经过第一、二、三象限,y的值随x 的值增大而增大;②当k>0,b<0时,函数y kx b=+的图象经过第一、三、四象限,y的值随x 的值增大而增大;③当k<0,b>0时,函数y kx b=+的图象经过第一、二、四象限,y的值随x 的值增大而减小;④当k<0,b<0时,函数y kx b=+的图象经过第二、三、四象限,y的值随x 的值增大而减小.4、(2015春•咸丰县期末)已知点A(4,0)及在第一象限的动点P(x,y),且x+y=5,0为坐标原点,设△OPA的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)当S=4时,求P点的坐标.【思路点拨】(1)根据题意画出图形,由x+y=5可知y=5﹣x,再由三角形的面积公式即可得出结论;(2)由点P(x,y)在第一象限,且x+y=5得出x的取值范围即可;(3)把S=4代入(1)中的关系式求出x的值,进而可得出y的值.【答案与解析】解:(1)如图所示,∵x+y=5,∴y=5﹣x,∴S=×4×(5﹣x)=10﹣2x;(2)∵点P(x,y)在第一象限,且x+y=5,∴0<x<5;(3)∵由(1)知,S=10﹣2x,∴10﹣2x=4,解得x=3,∴y=2,∴P(3,2).【总结升华】本题考查的是一次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.举一反三: 【变式】函数(0)y kx k k =+≠在直角坐标系中的图象可能是( ).【答案】B ;提示:不论k 为正还是为负,k 都大于0,图象应该交于x 轴上方,故选B.。

八年级数学(下)第十九章《函数的图像》同步练习(含答案)

八年级数学(下)第十九章《函数的图像》同步练习(含答案)

八年级数学(下)第十九章《函数的图像》同步练习一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.足球比赛时,守门员大脚踢出去的球的高度h随时间t变化而变化,下列各图中,能刻画h与t的关系的是A.B.C.D.【答案】A【解析】A、足球受力的作用后会升高,并向前运动,当足球动能减小后,足球不再升高,而逐渐下落.正确;B、球在飞行过程中,受重力的影响,不会一直保持同一高度,所以错误;C、球在飞行过程中,总是先上后下,不会一开始就往下,所以错误;D、受重力影响,球不会一味的上升,所以错误.故选A.2.某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v(米/分钟)是时间t(分钟)的函数,能正确反映这一函数关系的大致图象是A.B.C.D.【答案】A【解析】纵坐标表示的是速度、横坐标表示的是时间,由题意知:小明走路去学校应分为三个阶段:①匀速前进的一段时间,此时的函数是平行于横坐标的一条线段,可排除C、D选项;②加速前进的一段时间,此时的函数是一段斜率大于0的一次函数;③最后匀速前进到达学校,此时的函数是平行于横坐标的一条线段,可排除B选项,故选A.3.如图所示的是水滴入一个玻璃容器的示意图(滴水速度保持不变),下列图象能正确反映容器中水的高度(h)与时间(t)之间的关系的是A.B.C.D.【答案】C【解析】由于容器的形状是下宽上窄,所以水的深度上升是先慢后快.表现出的函数图形为先缓,后陡.故选C.4.某市春天经常刮风,给人们的出行带来很多不便,小明观测了4月6日连续12个小时风力变化的情况,并画出了风力随时间变化的图象如图所示,则下列说法正确的是A.在8时至14时,风力不断增大B.在8时至12时,风力最大为7级C.8时风力最小D.20时风力最小【答案】D【解析】A、11时至12时风力减小,选项A错误;B、在8时至12时,风力最大不超过4级,选项B错误;C、20时风力最小,选项C错误;D、20时风力最小,选项D正确.故选D.5.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走路程为s(米),s与t之间的函数关系如图所示,则下列说法中,错误的是A.小明中途休息用了20分钟B.小明休息前爬山的速度为每分钟60米C.小明在上述过程中所走路程为7200米D.小明休息前后爬山的平均速度相等【答案】C【解析】A、小明中途休息的时间是:60-40=20分钟,故本选项正确;B、小明休息前爬山的速度为240040=60(米/分钟),故本选项正确;C、小明在上述过程中所走路程为4800米,故本选项错误;D、因为小明休息后爬山的速度是4800240010060--=60(米/分钟),所以小明休息前后爬山的平均速度相等,故本选项正确,故选C.6.小明从家里出发到超市进行购物后返回,小明离开家的路程y(米)与所用时间x(分)之间的关系如图,则下列说法不正确的是A.小明家到超市的距离是1000米B.小明在超市的购物时间为30分钟C.小明离开家的时间共55分钟D.小明返回的速度比去时的速度快【答案】D【解析】A.观察图象发现:小明家距离超市1000米,故正确;B.小明在超市逗留了40−10=30分钟,故正确;C.小明离开家的时间共55分钟,故正确;D.小明去时用了10分钟,回时用了15分钟,所以小明从超市返回的速度慢,故错误,故选D.二、填空题:请将答案填在题中横线上.7.某型号汽油的数量与相应金额的关系如图所示,那么这种汽油的单价是每升__________元.【答案】5.22【解析】单价=522÷100=5.22元,故答案为:5.22.8.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是__________.【答案】-1<x<1或x>2【解析】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2,故答案为:-1<x<1或x>2.9.已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A 地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为__________.【答案】8点40【解析】因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5−13)小时,所以乙的速度为:2÷16=12,所以乙走完全程需要时间为:4÷12=13(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40,故答案为:8点40.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的平面直角坐标系中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的函数图象.【解析】如图,11.如图所示是某港口从8 h到20 h的水深情况,根据图象回答下列问题:(1)在8 h到20 h,这段时间内大约什么时间港口的水位最深,深度是多少米?(2)大约什么时候港口的水位最浅,是多少?(3)在这段时间里,水深是如何变化的?【解析】(1)根据函数图象可得:13时港口的水最深,深度约是7.5 m.(2)根据函数图象可得:8时港口的水最浅,深度约是2 m.(3)根据函数图象可得:8 h~13 h,水位不断上升;13 h~15 h,水位不断下降;15 h~20 h,水位又开始上升.12.一游泳池长90 m,甲、乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,根据图形回答:(1)甲、乙两人分别游了几个来回?(2)甲游了多长时间?游泳的速度是多少?(3)在整个游泳过程中,甲、乙两人相遇了几次?【解析】(1)观察图形甲游了三个来回,乙游了两个来回.(2)观察图形可得甲游了180 s,游泳的速度是90×6÷180=3米/秒.(3)在整个游泳过程中,两个图象共有5个交点,所以甲、乙两人相遇了5次.13.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距__________千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为__________小时;(3)乙从出发起,经过__________小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?【解析】(1)由图象可知,乙出发时,乙与甲相距10千米.故答案为:10.(2)由图象可知,走了一段路程后,乙的自行车发生故障,停下来修车的时间为=1.5-0.5=1小时,故答案为:1.(3)图图象可知,乙从出发起,经过3小时与甲相遇.故答案为:3.(4)乙骑自行车出故障前的速度与修车后的速度不一样,理由如下:乙骑自行车出故障前的速度7.50.5=15千米/小时.与修车后的速度22.57.53 1.5--=10千米/小时.因为15>10,所以乙骑自行车出故障前的速度与修车后的速度不一样.。

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析1.如图,小手盖住的点的坐标可能为A B C D【答案】A【解析】解:小手盖住的点在第三象限,故选A。

2.已知正比例函数和反比例函数的图象交于点A(m,一2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量的取值范围;(3)若双曲线上点c(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.【答案】(1)反比例函数的解析式为y=;(2)-1<x<0或x>1;(3)四边形OABC是菱形.证明见解析.【解析】(1)设反比例函数的解析式为y=(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式;(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CB∥OA且CB=,判断出四边形OABC是平行四边形,再证明OA=OC即可判定出四边形OABC的形状.试题解析:(1)设反比例函数的解析式为y=(k>0),∵A(m,-2)在y=2x上,∴-2=2m,∴m=-1,∴A(-1,-2),又∵点A在y=上,∴k=2,∴反比例函数的解析式为y=;(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为-1<x<0或x>1;(3)四边形OABC是菱形.证明:∵A(-1,-2),∴OA=,由题意知:CB∥OA且CB=,∴CB=OA,∴四边形OABC是平行四边形,∵C(2,n)在y=上,∴n=1,∴C(2,1),OC=,∴OC=OA,∴四边形OABC是菱形.【考点】反比例函数综合题.3.在平面直角坐标系中,把直线沿y轴向上平移两个单位后,得到的直线的函数关系式为____________________.【答案】y="2x-1"【解析】根据平移法则上加下减可得出平移后的解析式.由题意得:平移后的解析式为:y=2x-3+2=-2x-1.【考点】函数图像的平移4.如图,一次函数y1=x+1的图象与反比例函数y2=(k为常数,且k≠0)的图象都经过点A(m,2).(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1与y2的大小.【答案】(1)(1,2);y=;(2)当0<x<1时,;当x=1时,;当x>1时,;【解析】首先将点A的坐标代入一次函数解析式得出点A的坐标,将点A的坐标代入反比例函数解析式得出反比例函数的解析式;根据函数图象进行比较大小.试题解析:(1)将点A(m,2)代入一次函数可得:2=m+1 解得:m=1 ∴A(1,2),将A(1,2)代入反比例函数解析式可得:k=2 则反比例函数的解析式为:(2)根据函数图象可得:当0<x<1时,;当x=1时,;当x>1时,.【考点】反比例函数与一次函数.5.一次函数y=2x﹣4的图象与两坐标轴交点的距离是()A.B.C.D.【答案】B【解析】令y=2x﹣4=0,则x=2,令x=0,则y=-4,∴一次函数y=2x﹣4的图象与坐标轴交于A、B两点的坐标是A(0,﹣4),B(2,0),∴OA=4,OB=2,∴AB=,故选:B【考点】一次函数图象上点的坐标特征.6.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()【答案】A【解析】∵当k>0时,正比例函数y=kx的函数值y随x的增大而增大,∴一次函数y=x+k中,x的系数1>0,b=k>0,∴一次函数y=x+k的图象经过一、二、三象限,故选:A.【考点】1.一次函数的图象;2.正比例函数的性质.7.(10分)如图,直线y=kx+b经过A(2,1),B(-1,-2)两点,(1)求直线y=kx+b的表达式;(2)求不等式>kx+b>-2的解集.【答案】(1)y=x-1;(2)-1<x<2【解析】(1)由于直线y=kx+b经过点A(2,1),和B(-1,-2)两点,利用待定系数法求出函数解析式;(2)再组成不等式方程组解答.试题解析:(1)直线y=kx+b经过a(2,1),B(-1,-2)得方程组:解得:k=1,b=-1,∴y=x-1,(2)不等式x>kx+b>-2可化为不等式组:解得:-1<x<2.【考点】一次函数,不等式组8.对于一次函数y= -2x-1来说,下列结论中错误的是()A.函数值y随自变量x的减小而增大B.函数的图像不经过第一象限C.函数图像向上平移2个单位后得到函数y= -2x+1D.函数图像上到x轴距离为3的点的坐标为(2,-3)【答案】D.【解析】选项A,由一次函数y=﹣2x-1中k=﹣2<0,可得函数值随x的增大而减小,故本选项正确;选项B,一次函数y=﹣2x-1中k=﹣2<0,b=-1<0,可得此函数的图象经过二、三、四象限,不经过第一象限,故本选项正确;选项C,由“上加下减”的原则可知,函数的图象向上平移2个单位长度得y=﹣2x+1的图象,故本选项正确;选项D,令y=3或-3,,则x=-2或2,函数图像上到x轴距离为3的点的坐标为(-2,3)或(2,-3),故本选项错误.故答案选D.【考点】一次函数的性质.9.请写出一个图像经过第一、三象限的正比例函数的解析式____________________.【答案】y=2x(答案不唯一,只要k>0即可).【解析】根据正比例函数的性质可得只要k>0即可.【考点】正比例函数的性质.10.(10分)如图,某公司组织员工假期去旅游,租用了一辆耗油量为每百公里约为25L的大巴车,大巴车出发前油箱有油100L,大巴车的平均速度为80km/h,行驶若干小时后,由于害怕油箱中的油不够,在途中加了一次油,油箱中剩余油量y(L)与行驶时间x(h)之间的关系如图所示,请根据图像回答下列问题:(1)汽车行驶__________h后加油,中途加油__________L;(2)求加油前油箱剩余油量y与行驶时间x的函数解析式;(3)若当油箱中剩余油量为10L时,油量表报警,提示需要加油,大巴车不再继续行驶,则该车最远能跑多远?此时,大巴车从出发到现在已经跑了多长时间?【答案】(1)2,190;(2)y=-20x+100;(3)该车从出发到现在已经跑了1120km,用时14h.【解析】(1)观察图象可知,汽车行驶2h后加油,所加油量为250-(100-25×1.6)=190L;(2)根据题意可得大巴车每公里油耗为0.25L;大巴车以速度为80km/h行驶x小时的油耗为0.25×80xL,所以加油前油箱剩余油量y与行驶时间x的函数解析式为y=100-80×0.25▪x=-20x+100;(3)由于速度相同,因此每小时耗油量也是相同的,所以加油前和加油后的函数解析式的k值相同,加油后的解析式经过(2,250),可求得加油后y与x的函数关系式,把y=10代入求得大巴车油箱中剩余油量为10L时行驶的时间,再根据路程=速度×时间即可求得大巴车所跑的最远路程.试题解析:(1)2,190;(2)y=100-80×0.25▪x=-20x+100;(3)由于速度相同,因此每小时耗油量也是相同的,设此时油箱剩余油量y与行驶时间x的解析式为y=kx+b,把k=-20代入,得到y="-20x+b"再把(2,250)代入,得b=290所以y="-20x+290"当y=10时,x=14,所以14×80=1120因此该车从出发到现在已经跑了1120km,用时14h.【考点】一次函数的应用.11.已知函数中自变量的取值范围是().A.B.C.D.【答案】C.【解析】此式要满足x-1≥0,且≠0,解x≥1,且x≠1,所以x>1,故选C.【考点】1.二次根式意义;2.分母不能为0.12.(9分)为保护学生视力,课桌椅的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度为ycm,椅子的高度为xcm,则y是x的一次函数,下表列出两套符合条件的课桌椅的高度.(1)请确定课桌高度与椅子高度的函数关系式;(2)现有一张高80cm的课桌和一张高为43cm的椅子,它们是否配套?为什么?【答案】y=x+32;不配套.【解析】本题利用待定系数法求出一次函数的解析式;求x=43代入函数解析式求出y的值,看求出的y值是否等于80,若相等则说明配套,否则不配套.试题解析:(1)设一次函数的解析式为y=kx+b,把点(42,74)(38,70)代入,得到,解得:,∴函数解析式为:y=x+32,(2)当x=43时,y=43+32=75≠80,∴它们不能配套.【考点】一次函数的应用13.在一个可以改变容积的密闭容器内,装有一定质量m的某种气体,当改变容积v时,气体的密度也随之改变.与v在一定范围内满足,图象如图所示,该气体的质量m为 kg.【答案】7.【解析】由图象可知,的图象经过(5,1.4),代入即可得m=7.【考点】反比例函数的应用.14.(本题满分8分)如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y.(l)如果∠BAC=300,∠DAE=l050,试确定y与x之间的函数关系式;(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(l)中y与x之间的函数关系式还成立?试说明理由.【答案】(1);(2)当α、β满足关系式时,函数关系式成立,理由见解析.【解析】(1)根据已知条件证明△ADB∽△EAC即可得,代入x、y得值即可得y与x之间的函数关系式;(2)要使,即成立,须且只须△ADB∽△EAC.由于∠ABD=∠ECA,故只须∠ADB=∠EAC.又因∠ADB+∠BAD=∠ABC=,∠EAC+∠BAD=β-α,所以只=β-α,须即.试题解析:(l)在△ABC中,AB="AC" =1,∠BAC=300,∴∠ABC=∠ACB=750,∴∠ABD=∠ACE=1050,1分∵∠DAE=1050.∴∠DAB+∠CAE=750,又∠DAB+∠ADB=∠ABC=750,∴∠CAE=∠ADB∴△ADB∽△EAC∴即;(2)当α、β满足关系式时,函数关系式成立理由如下:要使,即成立,须且只须△ADB∽△EAC.由于∠ABD=∠ECA,故只须∠ADB=∠EAC.又∠ADB+∠BAD=∠ABC=,∠EAC+∠BAD=β-α,所以只=β-α,须即.【考点】相似三角形的综合题.15.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【答案】B.【解析】∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.【考点】反比例函数图象上点的坐标特征.16.(8分)如图,直线AC是一次函数y=2x+3的图象,直线BC是一次函数y=﹣2x﹣1的图象.(1)求A、B、C三点的坐标;(2)求△ABC的面积.【答案】(1)A(0,3),B(0,﹣1),C(﹣1,1);(2)2.【解析】(1)在两个一次函数解析式中,令x=0,求得y的值,即可得到A和B的坐标,把两个一次函数的解析式组成的方程组,解方程组,方程组的解即为点C的坐标;(2)根据A和B的坐标求出AB的长,利用三角形面积公式即可求解.(3)试题解析:(1)在y=2x+3中,令x=0,解得:y=3,则A点的坐标为(0,3),同理,B点的坐标为(0,﹣1),∵解得.∴C点的坐标为(﹣1,1);(2)∵AB=4,∴.【考点】一次函数与二元一次方程组.17.在平面直角坐标系中,直线y1=x+a和y2=﹣x+b交于点E(3,3),点P(m,n)在直线y1=x+a上,过点P(m,n)作x轴的垂线,交直线y2=﹣x+b于点F.(1)若n=2,求△PEF的面积;(2)若PF=2,求点P的坐标.【答案】(1);(2)P(﹣,)或P(,).【解析】(1)已知直线y1=+a和直线y2=﹣+b的交点为E(3,3),代入即可得a、b的值,点P(m,n)在直线y1=x+a上且n=2,即可求得m的值,所以可得点P的坐标,根据已知条件可得点F的坐标,根据三角形的面积公式即可得△PEF的面积;(2)已知点P在y1=x+2,点F在y2=,可设(m,),F(m,),根据PF=|()﹣()|=2即可得m的值,再求点P的坐标即可.试题解析:(1)解:∵直线y1=+a和直线y2=﹣+b的交点为E(3,3)∴3=×3+a,3=﹣×3+b,∴a=2,b=,得直线y1=和直线y2=,如图所示,又∵n=2,∴2=,m=0,∴P(0,2),过点P(0,2)作x轴的垂线,交y2=直线于点F,F(0,),∴PF=,∴,(2)解:由(1)知,点P在y1=x+2,点F在y2=,∵PF⊥x轴,可设P(m,),F(m,),∴PF=|()﹣()|=2,∴m=﹣或m=,∴P(﹣,)或P(,).【考点】一次函数的综合题.18.如图,一次函数y=﹣x+m的图象和y轴交于点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.【答案】m=5,n=3;5.【解析】先把P(2,n)代入y=x即可得到n的值,从而得到P点坐标为(2,3),然后把P点坐标代入y=﹣x+m可计算出m的值;先利用一次函数解析式确定B点坐标,然后根据三角形面积公式求解.试题解析:(1)把P(2,n)代入y=x得n=3,所以P点坐标为(2,3),把P(2,3)代入y=﹣x+m得﹣2+m=3,解得m=5,即m和n的值分别为5,3;(2)把x=0代入y=﹣x+5得y=5,所以B点坐标为(0,5),所以△POB的面积=×5×2=5.【考点】两条直线相交或平行问题;二元一次方程组的解.19.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴并交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中点C,D在x轴上,则▱ABCD的面积为()A.3B.5C.7D.9【答案】B【解析】连结OA、OB,如图,AB交y轴于E,根据反比例函数k的几何意义得到S△OAE=1,S△OBE =,则S△OAB=,然后根据平行四边形的面积公式求解.连结OA、OB,如图,AB交y轴于E,∵AB∥x轴,∴S△OAE =×|2|=1,S△OBE=×|﹣3|=,∴S△OAB=,∵四边形ABCD为平行四边形,∴▱ABCD的面积=2S△OAB=5.【考点】反比例函数系数k的几何意义20.要使y=(m-2)是关于x的一次函数,则m= .【解析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,即可得出m 的值.根据一次函数的定义可得:m﹣2≠0,=1,由=1,解得:m=0或2,又m﹣2≠0,m≠2,∴m=0.【考点】一次函数的定义21.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是.【答案】﹣1.【解析】∵点(m,n)在函数y=2x+1的图象上,∴2m+1=n,即2m﹣n=﹣1.【考点】一次函数图象上点的坐标特征.22.直线y=﹣x+3与x轴、y轴所围成的三角形的面积为()A.3B.6C.D.【答案】A【解析】根据一次函数图象上点的坐标特点,直线y=﹣x+3与x轴、y轴的交点坐标分别为(2,0),(0,3),故可求出三角形的面积.当x=0时,y=3,即与y轴交点是(0,3),当y=0时,x=2,即与x轴的交点是(2,0),所以与x轴、y轴所围成的三角形的面积为×2×3=3.【考点】一次函数图象上点的坐标特征23.如图,一次函数y1=mx+n的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=(x<0)交于点C,过点C分别作x轴、y轴的垂线,垂足分别为点E、F.若OB=2,CF=6,.(1)求点A的坐标;(2)求一次函数和反比例函数的表达式.【答案】(1)(-2,0);(2)y=-x-2、y=-.【解析】利用,OE=CF=6,可计算出OA=2,于是得到A点坐标为(﹣2,0);由于B 点坐标为(0,﹣2),则可利用待定系数法求出一次函数解析式为y1=﹣x﹣2,再利用一次函数解析式确定C点坐标为(﹣6,4),根据反比例函数图象上点的坐标特征计算出k=﹣24,所以反比例函数解析式为y2=﹣.试题解析:(1)∵,而OE=CF=6,∴OA=2,∴A点坐标为(﹣2,0);(2)B点坐标为(0,﹣2),把A(﹣2,0)B(0,﹣2)代入y1=mx+n得,解得:,∴一次函数解析式为y1=﹣x﹣2;把x=﹣6代入y1=﹣x﹣2得y=6﹣2=4,∴C点坐标为(﹣6,4),∴k=﹣6×4=﹣24,∴反比例函数解析式为y2=﹣.【考点】反比例函数与一次函数的交点问题24.已知点(a,1)在函数y=3x+4的图象上,则a= .【答案】-1.【解析】把(a,1)代入y=3x+4得3a+4=1,解得a=﹣1.故答案为:﹣1.【考点】一次函数图象上点的坐标特征.25.直线y=x+3与x轴,y轴所围成的三角形的面积为.【答案】3.【解析】当x=0时,y=x+3=3,则直线与y轴的交点坐标为(0,3),当y=0时,x+3=0,解得x=﹣2,则直线与x轴的交点坐标为(﹣2,0),所以直线y=x+3与x轴,y轴所围成的三角形的面积=×3×2=3.故答案为:3.【考点】一次函数图象上点的坐标特征.26.如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.【答案】(1)(6,0);(2)4.【解析】(1)先利用直线y=x上的点的坐标特征得到点M的坐标为(2,2),再把M(2,2)代入y=﹣x+b可计算出b=3,得到一次函数的解析式为y=﹣x+3,然后根据x轴上点的坐标特征可确定A点坐标为(6,0);(2)先确定B点坐标为(0,3),则OB=CD=3,再表示出C点坐标为(a,﹣a+3),D点坐标为(a,a),所以a﹣(﹣a+3)=3,然后解方程即可.试题解析:解:(1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为(2,2),把M(2,2)代入y=﹣x+b得﹣1+b=2,解得b=3,∴一次函数的解析式为y=﹣x+3,把y=0代入y=﹣x+3得﹣x+3=0,解得x=6,∴A点坐标为(6,0);(2)把x=0代入y=﹣x+3得y=3,∴B点坐标为(0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为(a,﹣a+3),D点坐标为(a,a)∴a﹣(﹣a+3)=3,∴a=4.【考点】两条直线相交或平行问题.27.均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的().A.B.C.D.【答案】B.【解析】根据图象可得水面高度开始增加的慢,后来增加的快,从而可判断容器下面粗,上面细,即B图形满足题意.故选:B.【考点】函数的图象.28.一次函数y=-2x+4的图象与x轴交点坐标是,与y轴交点坐标是 .【答案】(2,0),(0,4).【解析】令y=0,得x=2,令x=0,得y=4;所以,图象与x轴交点坐标是(2,0),图象与y轴交点坐标是(0,4).【考点】一次函数图象上点的坐标特征.29.在直角坐标系中,直线与坐标轴围成的三角形的面积为 .【答案】【解析】先求出直线与x轴,y轴的交点为(,0)(0,-2),根据面积公式计算即可得出三角形的面积【考点】一次函数30.一个有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的若干分内既进水又出水,之后只出水不进水.每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图.则a= .【答案】15.【解析】由图象可得出:进水速度为:20÷4=5(升/分钟),出水速度为:5﹣(30﹣20)÷(12﹣4)=3.75(升/分钟),(a﹣4)×(5﹣3.75)+20=(24﹣a)×3.75,解得:a=15.故答案为:15.【考点】一次函数的应用.31.将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为.【答案】y=3x+2.【解析】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=3x﹣1+3,即y=3x+2.故答案为:y=3x+2.【考点】一次函数图象与几何变换.32.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?【答案】(1)方案一:y=0.95x;方案二:y=0.9x+300;(2)方案一【解析】(1)根据两种购物方案让利方式分别列式整理即可;(2)分别把x=5880,代入(1)中的函数求得数值,比较得出答案即可.试题解析:(1)方案一:y=0.95x;方案二:y=0.9x+300;(2)当x=5880时,方案一:y=0.95x=5586(元),方案二:y=0.9x+300=5592(元),5586<5592所以选择方案一更省钱.【考点】一次函数的应用.33.已知反比例函数y=(k≠0),当x>0时,y随着x的增大而增大,试写出一个符合条件的整数k= .【答案】﹣1(答案不唯一).【解析】∵反比例函数y=(k≠0),当x>0时,y随着x的增大而增大,∴k<0,∴k可以为﹣1.故答案为:﹣1(答案不唯一).【考点】反比例函数的性质.34.已知一次函数中,随着的增大而减小,则这个函数的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A.【解析】已知一次函数y=kx-3,y随x的增大而减小可得k<0,b=-3<0,即可得此函数的图象经过二、三、四象限,不经过第一象限.故答案选A.【考点】一次函数的性质;一次函数的图象与系数的关系.35.(本题满分8分)已知一次函数(1)为何值时,随的增大而减小?(2)为何值时,它的图象经过原点?【答案】k>4;k=-4【解析】对于一次函数y=kx+b,y随x的增大而减小,则k>0;当图象经过原点,则b=0且k≠0.试题解析:(1)∵一次函数y=(4﹣k)x﹣2k2+32,y随x的增大而减小,∴4﹣k<0 ∴k>4;(2)∵一次函数y=(4﹣k)x﹣2k2+32,它的图象经过原点∴﹣2k2+32=0 解得:k=±4∵4﹣k≠0∴k=﹣4.【考点】一次函数的性质36.已知函数y=k x+b和y=k x+b图像如图所示,直线y与直线 y交于A点(0,3)(1)求函数y和y的函数关系式(2)求三角形ABC的面积(3)已知点D在x轴上,且满足三角形ACD是等腰三角形,直接写出D点坐标【答案】(1)y=—3x+3,y=—x+3;(2)3;(3)(0,0)(—3,0)(3—3,0)(3+3,0)【解析】(1)根据图像可知B、C点的坐标,代入函数解析式分别求出解析式;(2)根据图像可知三角形的底为BC,高为AO,然后由三角形的面积公式可求解;(3)由图像可知,当AC=CD1,AC=CD2,AC=CD3,AD4=CD4时,分别写出点的坐标.试题解析:【考点】由图像,根据勾股定理AC=,当AC=CD1时,D1为(-3,0);当AC=CD2时,D2为(3+2);当AC=CD3时,D3为(3-2);当AD4=CD4时,D4为(0,0).【考点】勾股定理,等腰三角形,一次函数的图像与性质37.若直线经过二、三、四象限,则m的取值范围是()A.B.m>0C.D.m<0【答案】D.【解析】试题分析∵直线经过第二,三,四象限;∴m<0,2m﹣1<0,即m<0.故选D.【考点】一次函数图象与系数的关系.38.已知A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是【答案】A【解析】∵A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A,∴两人同时出发,2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,故两人之间的距离为s(千米),甲行驶的时间为t(小时),则正确反映s与t之间函数关系的是A.故选:A.【考点】函数的图像.39.甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行.乙车出发2h休息.与甲车相遇.继续行驶.设甲、乙两车与B地的距离y(km)与行驶的时间x(h)之间的函数图象如图所示.(1)写出甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式;(2)乙车休息的时间为;(3)写出休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式;休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式;(4)求行驶多长时间两车相距100km.【答案】(1)y=-80x+400;(2)0.5小时;(3)y=100x,y乙=80x;(4)x=1或x=3.125.【解析】(1)设甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式为y=kx+b,利用待定系数法解答即可;(2)先把y=200代入甲的函数关系式中,可得x的值,再由图象可知乙车休息的时间;(3)根据待定系数法,可得休息前,休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式;(4)分类讨论,0≤x≤2.5,y甲减y乙等于100千米,2.5≤x≤5时,y乙减y甲等于100千米即可.试题解析:(1)设甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式为y=kx+b,可得:,解得:.所以函数解析式为:y=-80x+400;(2)把y=200代入y=-80x+400中,可得:200=-80x+400,解得:x=2.5,所以乙车休息的时间为:2.5-2=0.5小时;(3)设休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式为:y=kx,∴200=2k,∴k=100,∴休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式为:y=100x,设休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式为:y乙=kx+b,y乙=kx+b图象过点(2.5,200),(5,400),得,解得,乙车与甲车相遇后y乙与x的函数解析式y乙=80x;(4)设乙车与甲车相遇前y乙与x的函数解析式y乙=kx,图象过点(2,200),解得k=100,∴乙车与甲车相遇前y乙与x的函数解析式y乙=100x,0≤x≤2.5,y甲减y乙等于100千米,即400-80x-100x=100,解得 x=1;2.5≤x≤5时,y乙减y甲等于100千米,即2.5≤x≤5时,80x-(-80x+400)=100,解得x=3.125,综上所述:x=1或x=3.125.【考点】一次函数的应用.40.如图,点A的坐标为(-2,0),点B在直线y=x上运动,当线段AB最短时点B的坐为()A.(-1,-1)B.(-2,-2)C.(-,-)D.(0,0)【答案】A.【解析】试题解析:过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴OE=OA=1,∴D(-1,-1).故选A.【考点】1.一次函数图象上点的坐标特征;2.垂线段最短.41.已知过点(-2,4)的直线()不经过第三象限.设,则s的取值范围是.【答案】-4≤s﹤4.【解析】由题意得m<0且n≥0,把(﹣2,4)代入y=mx+n得﹣2m+n=4,则n=2m+4,所以2m+4≥0,解得m≥﹣2,所以m的取值范围为﹣2≤m<0,因为s=2m+n=2m+2m+4=4m+4,所以﹣4≤s<4.故答案为:﹣4≤s<4.【考点】一次函数图象与系数的关系.42.已知y-3与4x-2成正比例,且当x=1时,y=5.(1)求与的函数关系式;(2)求当时的函数值.【答案】(1)y=4x+1;(2)函数值-7.【解析】(1)由正比例函数的定义设出函数解析式,再把当x=1时,y=5代入求出k的值;(2)把x=﹣2代入(1)中的解析式进行计算即可.试题解析:(1)设y﹣3=k(4x﹣2)(k≠0),把x=1,y=5代入,得:5﹣3=k(4×1﹣2),解得k=1,则y与x之间的函数关系式是y=4x+1;(2)由(1)知,y=4x+1.当x=﹣2时,y=4×(﹣2)+1=﹣7.即当x=﹣2时的函数值是7.【考点】待定系数法求一次函数解析式.43.一棵新栽的树苗高1米,若平均每年都长高5厘米.请写出树苗的高度y(cm)与时间x (年)之间的函数关系式:.【答案】y=5x+100.【解析】由题意得,树苗x年后长高5xcm,1米=100cm,所以树苗的高度y(cm)与时间x (年)之间的函数关系式是y=5x+100.【考点】列一次函数关系式.44.表示函数的方法一般有、、.【答案】列表法;关系式法;图象法.【解析】根据函数的定义,可得答案.表示函数的方法一般有列表法、关系式法、图象法.故答案为:列表法、关系式法、图象法.【考点】函数的表示方法.45.已知等腰三角形的周长是20cm,底边长y(cm)是腰长x(cm)的函数关系式为,自变量x的取值范围是.【答案】y=20-2x;5<x<10.【解析】试题解析:∵2x+y=20∴y=20-2x,即x<10,∵两边之和大于第三边∴x>5,综上可得5<x<10.【考点】根据实际问题列一次函数关系式.46.杨佳明周日骑车从家里出发,去图书馆看书,(1)若杨佳明骑车行驶的路程y(km)与时间t(min)的图象如图1所示,请说出线段AB所表示的实际意义:;若杨佳明在第30分钟时以来时的速度原路返回,请在图上补出她返回时行驶的路程y(km)与时间t(min)的图象;(2)在整个骑行过程中,若杨佳明离家的距离y(km)与时间t(min)的图象如图2所示,请说出线段AB所表示的实际意义:;若杨佳明在第30分钟时以来时的速度原路返回,请在图上补出她返回时离家的距离y(km)与时间t(min)的图象;(3)在整个骑行过程中,若杨佳明骑车的速度y(km/min)与时间t(min)的图象如图3所示,那么当她离家最远时,时间是在第分钟,并求出她在骑行30分钟时的路程是.【答案】(1)杨佳明在图书馆看书的时间为20min;(2)杨佳明在图书馆看书的时间为20min;(3)20-30;2km.【解析】(1)根据图中提供的信息路程不变,时间为30-20=10分钟,即可得到答案;(2)根据图中提供的信息路程不变,时间为30-20=10分钟,即可得到答案;(3)根据图中提供的信息即可得到结论.试题解析:(1)如图1,线段AB所表示的实际意义:杨佳明在图书馆看书的时间为20min,(2)如图2,线段AB所表示的实际意义:杨佳明在图书馆看书的时间为20min,(3)当她离家最远时,时间是在第20-30分钟,并求出她在骑行30分钟时的路程是2km.【考点】一次函数的应用.47.直线y=-x+1经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【答案】B.【解析】试题解析:由于k=-1<0,b=1>0,故函数过一、二、四象限,故选B.【考点】一次函数图象与系数的关系.48.如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为.【答案】(﹣,﹣).【解析】试题解析:先过点A作AB′⊥OB,垂足为点B′,由垂线段最短可知,当B′与点B重合时AB最短,∵点B在直线y=x上运动,∴△AOB′是等腰直角三角形,过B′作B′C⊥x轴,垂足为C,∴△B′CO为等腰直角三角形,∵点A的坐标为(﹣1,0),∴OC=CB′=OA=×1=,∴B′坐标为(﹣,﹣),即当线段AB最短时,点B的坐标为(﹣,﹣).【考点】一次函数综合题.49.(2015秋•常熟市校级月考)如图是某汽车行驶的路程s(km)与时间t(m/n)的函数关系图,观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是 km/min;(2)汽车在中途停了 min;(3)当16≤t≤30时,s与t的函数关系式:.【答案】(1)km/min;(2)7min.(3),7,S=2t﹣20.【解析】(1)根据速度=路程÷时间,列式计算即可得解;(2)根据停车时路程没有变化列式计算即可;(3)利用待定系数法求一次函数解析式解答即可.解:(1)平均速度==km/min;(2)从9分到16分,路程没有变化,停车时间t=16﹣9=7min.(3)设函数关系式为S=kt+b,将(16,12),C(30,40)代入得,,解得.所以,当16≤t≤30时,求S与t的函数关系式为S=2t﹣20,故答案为:,7,S=2t﹣20.【考点】一次函数的应用.50.若有一条直线与直线y=2x平行,且过点A(-1,2),则该直线解析式为_____________.【答案】y=2x+4【解析】根据两直线平行,可知k=2,设该直线的解析式为y=2x+b,把A(-1,2)代入可得2×(-1)+b=2,解得b=4,因此可得该一次函数的解析式为y=2x+4.【考点】一次函数的解析式51.如图,在平面直角坐标系中,点A(0,b),点B(a,0),点D(2,0),其中a、b满足DE⊥x轴,且∠BED=∠ABO,直线AE交x轴于点C.(1)求A、B两点的坐标;(2)求直线AE的解析式;(3)若以AB为一边在第二象限内构造等腰直角三角形△ABF,请直接写出点F的坐标.【答案】(1)A(0,3),B(-1,0);(2)AE:y=-x+3;(3)(-3,4)(-4,1)(-2,2)。

初二数学函数练习题有答案

初二数学函数练习题有答案

初二数学函数练习题有答案今天,我们来练习一些关于数学函数的习题。

这些题目适合初二学生,每道题都有详细的解答,帮助你加深对函数的理解。

让我们一起来挑战这些题目吧!1. 函数f(x) = 2x + 3,求f(4)的值。

解答:将x的值代入函数中,得到f(4) = 2 * 4 + 3 = 11。

所以,f(4)的值为11。

2. 已知函数g(x) = x^2 - 5x + 6,求g(-1)的值。

解答:将x的值代入函数中,得到g(-1) = (-1)^2 - 5 * (-1) + 6 = 1 + 5 + 6 = 12。

所以,g(-1)的值为12。

3. 函数h(x) = 3x^2 - 2x,求满足h(x) = 0的解。

解答:将h(x)置为0,得到3x^2 - 2x = 0。

通过因式分解或求根公式,我们可以得到x = 0 或 x = 2/3。

所以,满足h(x) = 0的解为x = 0或x =2/3。

4. 函数k(x) = |x - 3|,求k(5)的值。

解答:将x的值代入函数中,得到k(5) = |5 - 3| = 2。

所以,k(5)的值为2。

5. 函数m(x) = 2x + 1,将m(x)的图像上下平移2个单位,写出新函数。

解答:上下平移2个单位意味着将函数m(x)的每个点的y坐标都加2。

因此,新函数应为m(x) + 2。

即新函数为2x + 1 + 2,简化得到2x + 3。

6. 函数n(x) = x^2 - 4x + 3,求n(x)的最小值。

解答:对于一元二次函数,最小值出现在顶点处。

通过求导数,我们可以得到n'(x) = 2x - 4。

令n'(x) = 0,解得x = 2。

将x = 2代入原函数,得到n(2) = 2^2 - 4 * 2 + 3 = -1。

所以,函数n(x)的最小值为-1。

这些是初二数学函数的练习题,每道题都有详细的解答。

通过完成这些题目,你可以加深对函数的理解,提高解题能力。

初二数学函数及函数图象(含答案)

初二数学函数及函数图象(含答案)

函数及函数图象例题精讲一、函数的相关概念1.常量与变量在某一变化过程中,可以取不同数值的量叫做变量,取值始终保持不变的量叫做常量.如在圆的面积公式2πS R =中,π是常数,是一个常量,而S 随R 的变化而变化,所以S 、R 是变量. 2.自变量、因变量与函数在某一变化过程中,有两个量,例如x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,其中x 是自变量,y 是因变量,此时也称y 是x 的函数.函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系. 注意:⑴对于每一个给定的x 值,y 有一个唯一确定的值与之对应,否则y 就不是x 的函数.例如2y x =就不是函数,因为当4x =时,2y =±,即y 有两个值与x 对应.⑵对于每一个给定的y 值,x 可以有一个值与之对应,也可以有多个值与之对应.例如在函数2(3)y x =-中,2x =时,1y =;4x =时,1y =.二、函数自变量的取值范围函数自变量的取值范围是指是函数有意义的自变量的取值的全体.求自变量的取值范围通常从两方面考虑,一是要使函数的解析式有意义;二是符合客观实际.在初中阶段,自变量的取值范围考虑下面几个方面: ⑴整式:自变量的取值范围是任意实数.⑵分式:自变量的取值范围是使分母不为零的任意实数. ⑶根式:当根指数为偶数时,被开方数为非负数. ⑷零次幂或负整数次幂:使底数不为零的实数.注意:在一个函数关系式中,同时有各种代数式,函数自变量的取值范围是各种代数式中自变量取值范围的公共部分.在实际问题中,自变量的取值范围应该符合实际意义,通常往往取非负数,整数之类.三、函数的表示方法1.函数的三种表示方法:⑴列表法:通过列表表示函数的方法.⑵解析法:用数学式子表示函数的方法叫做解析法.譬如:30S t =,2S R π=. ⑶图象法:用图象直观、形象地表示一个函数的方法. 2.对函数的关系式(即解析式)的理解:⑴函数关系式是等式.例如4y x =就是一个函数关系式. ⑵函数关系式中指明了那个是自变量,哪个是函数.通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数.例如:y =x 是自变量,y 是x 的函数.⑶函数关系式在书写时有顺序性.例如:31y x =-+是表示y 是x 的函数,若写成13yx -=就表示x 是y 的函数.求y 与x 的函数关系时, 必须是只用变量x 的代数式表示y ,得到的等式右边只含x 的代数式.三、函数的图象1.函数图象的概念:对于一个函数,如果把自变量x 和函数y 的每对值分别作为点的横坐标与纵坐标,在平面直角坐标系内描出相应的点,这些点所组成的图形,就是函数的图象. 2.函数图象的画法⑴列表; ⑵描点; ⑶连线. 3.函数解析式与函数图象的关系:由函数图象的定义可知,图象上任意一点(),P x y 中的x ,y 都是解析式方程的一个解.反之,以解析式方程的任意一个解为坐标的点一定在函数的图象上.判断一个点是否在函数图象上的方法是:将这个点的坐标值代入函数的j 解析式,如果满足函数解析式,这个店就在函数的图象上,否则就不在这个函数的图象上.一、函数的相关概念【例1】 分别指出下列关系式中的变量与常量:球的表面积2cm S ()与球半径(cm)R 的关系式是24S R π=; 设圆柱的底面半径()R m 不变,圆柱的体积3()V m 与圆柱的高()h m 的关系式是2V R h π=.【答案】(1)变量是S 、R ;常量是4π(2)变量是V 、h ;常量是2πR【例2】 判断下列式子中y 是否是x 的函数.⑴22(35)y x =-⑵y =⑶12y x =-⑷8y x =-【答案】⑴、⑶不是,⑵、⑷是.“y 有唯一值与x 对应”. 【巩固】判断下列式子中y 是否是x 的函数.⑴22(21)y x =-⑵y =⑶2y x =-⑷3y x =-【答案】⑴、⑶不是,⑵、⑷是.“y 有唯一值与x 对应”. 【例3】 下列图形中的曲线不表示y 是x 的函数的是( ).DCBA【答案】C【巩固】下列四个图象中,不是表示某一函数图象的是()A B C D【答案】D二、实际问题中的函数及其图象【例4】你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为y,下面能大致表示上面故事情节的图象是()A B C D【答案】B【巩固】如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水,在这个乌鸦喝水的故事中,设从乌鸦看到瓶的那一刻起向后的时间为x,瓶中水位的高度为y,下列图象中最符合故事情景的是()AxOyyOxByOxCyOxD【解析】由于乌鸦看到水瓶,沉思一会儿的过程中,水位不发生变化,可排除C项;再由瓶中放入小石子,水位上升可知排除A项;最后由乌鸦喝到水的水位一定大于瓶中开始的水位排除B项,选D.【答案】D【例5】 边长为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t ,大正方形内除去小正方形部分的面积为s (阴影部分),则s 与t 的大致图象为( )tsO tsO O st t sOABCD【解析】当小正方形完全进入大正方形中时,所剩面积为3,是大正方形面积的34,所以选择A ,C 的描述比例不符合.【答案】A【巩固】如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为S ,则S 关于t 的函数图象大致为( )【答案】C三、函数自变量的取值范围BAOA .B .C .D .St StSt St OOOO【例6】 函数25y x =-自变量的取值范围是 . 【解析】x 取全体实数,函数都有意义; 【答案】自变量x 的取值范围是全体实数;【巩固】函数3231y x x =++的自变量x 的取值范围是 . 【答案】x 为任意实数 【例7】 函数52x y x -=-自变量的取值范围是 . 【解析】只需保证分母20x -≠,就能使函数有意义. 【答案】自变量的取值范围是2x ≠. 【巩固】在函数 121y x =-中,自变量x 的取值范围是 . 【答案】12x ≠【巩固】函数214y x =-的自变量x 的取值范围是 . 【答案】2x ≠± 【巩固】函数211y x=+的自变量x 的取值范围是 .【答案】0x ≠,且1x ≠-【例8】函数y =x 的取值范围是( )A .12x -≥B .12x ≥C .12x ≤-D .12x ≤【答案】B【巩固】函数y 的自变量x 的取值范围是 . 【解析】由230730x x -≥⎧⎨-≥⎩,解得3723x ≤≤【答案】3723x ≤≤【例9】函数y 的自变量x 的取值范围是 .【答案】1x >【巩固】函数y 的自变量x 的取值范围是 .【答案】0x > 【例10】 函数y 的自变量x 的取值范围是 .【解析】由34010x x -≥⎧⎨-≠⎩,解得431x x ⎧≥⎪⎨⎪≠⎩,因此43x ≥【答案】43x ≥【巩固】函数y =的自变量x 的取值范围是 . 【解析】由2403x x -≥⎧⎨≠⎩,解得2x ≥,且3x ≠;【答案】2x ≥,且3x ≠【例11】 根据你的理解写出下列y 与x 的函数关系式,并写出自变量的取值范围(我们称为定义域).⑴ 某人骑车以6/m s 是速度匀速运动的路程y 与时间x ,解析式: ,定义域: ;⑵ 正方形的面积y 与边长x ,解析式: ,定义域: ;【答案】⑴6y x =,0x ≥; ⑵2y x =,0x >【巩固】写出下列各问题中的关系式,指出其中的常量、自变量、因变量及自变量取值范围.⑴直角三角形中一锐角的度数y 与另一锐角的度数x 之间的函数关系.⑵如果水的流速量是a m/min (一个定量),那么每分钟的进水量Q (3m )与所选择的水管直径D (m )之间的函数关系.⑶某种储蓄的月利率是0.2%,存入100元本金后,则利息(y 元)与所存月数x 之间函数关系.【答案】⑴90y x =-,常量:90,自变量:x ,因变量:y ,自变量取值范围:090x <<;⑵2π4a D Q =,常量:π4a ,自变量:D ,因变量:Q ,自变量取值范围:0D <;⑶0.2y x =,常量:0.2,自变量:x ,因变量:y ,自变量取值范围:0x >的整数.【例12】 等腰ABC ∆周长为10cm ,底边BC 长为cm y ,腰长为cm x .⑴写出y 关于x 的函数关系式; ⑵求x 的取值范围; ⑶求y 的取值范围.【解析】⑴由题意,得10x x y ++=,即102y x =-⑵因为x 、y 为线段,所以0x >,0y >.所以1020x ->,即05x <<;又因为x 、y 为三角形的边长,所以x x y +>,即2102x x >-,所以 2.5x >.所以2.55x <<⑶由2.55x <<,得5210x <<,所以1025x -<-<-,所以01025x <-<.因此y 的取值范围是05y <<.【答案】⑴102y x =-;⑵2.55x <<;⑶05y <<【巩固】等腰三角形的周长为60,写出它的底边长y 与腰长x 之间的函数关系,并写出自变量的取值范围?【解析】602y x =-,由三角形的三边关系可得:2x y >,0x >,0y >,可得1530x <<. 【答案】602y x =-,1530x <<【例13】 某礼堂共有25排座,第一排有20个座位,后面每排比前一排多1个座位.求每排座位数y 与这排的排数x 的函数关系,并写出自变量的取值范围.【解析】20(1)119y x x =+-⋅=+,自变量取值范围:125x ≤≤,且是整数. 【答案】19y x =+,125x ≤≤,且是整数.【巩固】小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.请写出小张的存款y 与从现在开始的月份数x 之间的函数关系式及自变量x 的取值范围.【答案】5012y x =+(1x ≥且x 是整数).课后作业1.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x (分钟)之间满足某种函数关系,其函数图象大致为( )ABCD【答案】D 2.函数223x y x -=-的自变量x 的取值范围是 .【答案】3x ≠ 3.函数2113y x =+的自变量x 的取值范围是 .【答案】x 为任意实数 4.函数y =x 的取值范围是 .【答案】由720x -≥,解得72x ≤ 5.函数y 的自变量x 的取值范围是 .【答案】1x ≥ 6.写出等腰三角形中一底角的度数y 与顶角的度数x 之间的函数关系.【答案】1902y x =-7.等腰三角形的周长为20,写出它的底边长y 与腰长x 之间的函数关系,并写出自变量的取值范围.【解析】202y x =-,由三角形的三边关系可得:2x y >,0x >,0y >,可得510x <<. 【答案】202y x =-,510x << 8.如图,周长为24的凸五边形ABCDE 被对角线BE 分为等腰ABE ∆ 及矩形BCDE ,AE DE =,设AB 的长为x ,CD 的长为y ,求y 与 x 之间的函数关系式,写出自变量的取值范围.yx x xx DCE B A【解析】244y x =-,在ABE ∆中,2244x x >-,所以4x >,故46x <<. 【答案】244y x =-,46x <<。

函数的三种表示方法对应典型练习题(图像法、列表法、解析法)

函数的三种表示方法对应典型练习题(图像法、列表法、解析法)

函数的三种表示方法对应典型练习题(图像法、列表法、解析法)祖π数学之高分速成新人教八年级下册基础知识3 函数的表示1.函数的表示方法可以用解析式法、列表法和图像法。

解析式法是用公式表示函数,列表法是将函数的定义域和值域列成表格,图像法是用函数的图像来表示函数。

2.描点法画函数图形的一般步骤是先确定定义域和值域,然后选择若干个自变量值,计算出相应的函数值,最后在平面直角坐标系中标出这些点,连接起来就是函数的图形。

题型1】图像法表示函数1.2008年5月12日,四川汶川发生8.0级大地震,我解放军某部火速向灾区推进。

官兵们坐车以某一速度匀速前进,但中途被阻停下。

为了尽快赶到灾区救援,官兵们下车急行军匀速步行前往。

根据函数的图像,可以判断出官兵们行进的距离S与行进时间t之间的关系。

2.故事中的乌鸦喝水问题可以用函数的图像来表示。

设从乌鸦看到瓶的那刻起向后的时间为x,瓶中水位的高度为y,可以画出函数的图像来表示乌鸦喝水的情景。

3.在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止。

设点E运动的路程为x,△BCE的面积为y。

根据函数的图像,可以求出当x=7时,点E应运动到哪个位置。

4.在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B-C-D作匀速运动。

根据函数的图像,可以求出△ABP的面积S与点P运动的路程x之间的函数图像。

5.XXX骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,加快了骑车速度。

根据XXX到学校剩下的路程s关于时间t的函数图像,可以判断出符合XXX行驶情况的图像。

6.XXX每天坚持体育锻炼,星期天从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家。

根据XXX离家的距离y(米)与时间t(分钟)之间关系的函数图像,可以判断出当天XXX的运动情况。

7.小以400米/分叶的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地。

八年级数学下册《函数的图像》练习题及答案(人教版)

八年级数学下册《函数的图像》练习题及答案(人教版)

八年级数学下册《函数的图像》练习题及答案(人教版)班级姓名考号1.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原来的速度返回,父亲在报亭看报10分钟,然后用15分钟返回家,下面给出的图象中表示父亲离家距离与离家时间的函数关系是()A.B.C.D.2.下列各曲线中不能..表示y是x的函数的是()A.B.C.D.3.梦想从学习开始,事业从实践起步.近来,每天登录“学习强国”APP,学精神增能量、看文化长见识已经成为一种学习新风尚.下面是爸爸上周“学习强国”周积分与学习天数的有数据,则下列说法错误的是()学习天数n(天)1234567周积分w(分)55110160200254300350A.在这个变化过程中,学习天数是自变量,周积分是因变量B.周积分随学习天数的增加而增加C.从第3天到第4天,周积分的增长量为50分D.天数每增加1天,周积分的增长量不一定相同4.函数图象是研究函数的重要工具.探索函数性质时,我们往往要经历列表、描点、连线画出函数的图象,然后观察分析图象特征,概括函数性质,小明在探索函数284x y x =-+的性质时,根据如下的列表,画出了该函数的图象并进行了观察表现.x … 4- 3-2- 1- 0 1 2 3 4 … y … 85 2413 a 85 0 b 2- 2413- 85- … 小明根据他的发现写出了以下三个命题:①当22x -≤≤时,函数图象关于直线y x =对称;①2x =时,函数有最小值,最小值为2-;①11x -<<时,函数y 的值随x 点的增大而减小.其中正确的是( )A .①①B .①①C .①①D .①①①5.“利用描点法画出函数图像,探究函数的一些简单性质”是初中阶段研究函数的主要方式,请试着探究函数3y x =-,其图像经过( )A .第一、二象限B .第三、四象限C .第一、三象限D .第二、四象限.6.小明和小强两个人开车从甲地出发匀速行驶至乙地,小明先出发.在整个行驶过程中,小明和小强两人的车离开甲地的距离y (千米)与行驶的时间t (小时)之间的函数关系如图所示,有下列结论:①甲、乙两地相距300千米;①小强的车比小明的车晚出发1小时,却早到1个小时;①小强的车出发后1.5小时追上小明的车.其中正确的结论有( )A .①①B .①①C .①①D .①①①7.科学家就蟋蟀鸣叫的次数与室外温度的数量关系做了如下记录:温度/① 76 78 80 82 84蜂每分钟鸣叫的次数 144 152 160 168 176如果这种数量关系不变,那么当室外温度为88①时,蟋蜂每分钟鸣叫的次数是( )A .178B .184C .190D .1928.如图,在长方形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,ABP 的面积为y ,y 关于x 的函数图象如图2所示,若25b a -=,则长方形ABCD 的周长为( )A .20B .18C .16D .249.如图1,点P 从矩形ABCD 的顶点A 出发,沿A →D →B 以2cm/s 的速度匀速运动到点B ,图2是点P 运动时,PBC 的面积y (cm 2)随时间x (s )变化的关系图像,则a 的值为( )A .8B .6C .4D .310.将盛有凉牛奶的瓶子放在热水中(如图甲所示),通过热传递方式改变牛奶的内能,图乙是凉牛奶与热水的温度随时间变化的图像.假设热水放出热量全部被牛奶吸收,下列回答错误..的是( )A .08min 时,热水的温度随时间的增加逐渐降低;B .08min 时,凉牛奶的温度随时间的增加逐渐上升;C .8min 时,热水和凉牛奶的温度相同;D .0min 时,两者的温度差为80C ︒.二、填空题11.一空水池深4.8m ,现以均匀的速度往进注水,注水时间与水池内水的深度之间的关系如表,由表可知,注满水池所需要的时间为______h . 注水时间()h t0.5 1 1.5 2 2.5 … 水的深度()m h0.8 1.6 2.4 3.2 4 …12.李玲用“描点法”画二次函数2y a bx c =++的图象时,列了如下表格,根据表格上的信息回答问题:该二次函数2y a bx c =++当3x =时,y =________.13.甲、乙两车沿同一平直公路由A 地匀速行驶(中途不停留),前往终点B 地,甲、乙两车之间的距离S (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.下列说法其中正确的结论有 ___________.①A 、B 两地相距210千米;①甲车速度为60千米/小时;①乙车速度为120千米/小时;①乙车共行驶132小时.14.如图1,在菱形ABCD 中,∠A=60°,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为_______.15.育红学校七年级学生步行到郊外旅行.七(1)班出发1h 后,七(2)班才出发,同时七(2)班派一名联络员骑自行车在两班队伍之间进行联络,联络员和七(1)班的距离s (km )与七(2)班行进时间t (h )的函数关系图象如图所示.若已知联络员用了2h 3第一次返回到自己班级,则七(2)班需要_________ h 才能追上七(1)班.三、解答题16.如图所示的是一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分钟)变化而变化的图像.(1)摩托车从出发到最后停止共经过了多长时间?离家最远的跑离是多少?(2)摩托车在哪一段时间内速度最快?最快速度是多少?17.在一次实验中,马达同学把一根弹簧的上端固定,在其下端悬挂物体,所挂物体的质量与弹簧长度的几组对应值如下:x012345所挂物体质量/kgy182022242628弹簧长度/cm(1)上表反映了哪两个变量之间的关系,并指出哪个是自变量,哪个是因变量;(2)不挂物体时,弹簧长________cm;(3)当所挂物体的质量为7kg时,弹簧长度是多少?(4)当弹簧长度为34cm(在弹性限度内)时,所挂物体的质量是多少?18.上海磁悬浮列车在一次运行中速度V(千米/小时)关于时间t(分钟)的函数图象如图,回答下列问题.(1)列车共运行了___分钟(2)列车开动后,第3分钟的速度是___千米/小时.(3)列车的速度从0千米/小时加速到300千米/小时,共用了___分钟.(4)列车从___分钟开始减速.19.测得一弹簧的长度L (厘米)与悬挂物体的质量x (千克)有下面一组对应值:悬挂物体的质量x (千克) 01 2 3 4 5 6 7 8 弹簧的长度L (厘米) 12 12.5 13 13.5 14 14.5 15 15.5 16试根据表中各对对应值解答下列问题:(1)用代数式表示挂质量为x 千克的物体时的弹簧的长度L .(2)求所挂物体的质量为10千克时,弹簧的长度是多少?(3)若测得弹簧的长度是18厘米,则所挂物体的质量为多少千克?20.如图1,在Rt ABC △中,AC=BC ,点D 在AC 边上,以CD 为边在AC 的右侧作正方形CDEF .点P 以1cm/s 的速度由F 点出发,沿F E D A B →→→→的路径运动,连接BP ,CP ,BCP 的面积2/cm y 与运动时间/s x 之间的图象关系如图2所示.根据相关信息,解答下列问题:(1)判断EF 的长度;(2)求a ,b 的值;(3)当10x =时,连接,此时与的有怎样的数量关系,请说明理由.1---10CCCCD DDBCD11.312.113.①①①14.2315.216.(1)解:根据距离(千米)随行驶时间(分钟)变化而变化的图像可知摩托车从出发到最后停止共经过了100分钟,离家最远的距离是40千米.(2)解:当020t <≤时,S=10速度为100.5(km /min)20=; 当2050t <≤时401030S =-=速度为40101(km /min)5020-=-; 当50100t <≤时,S=40,速度为400.8(km /min)10050=-; ①20~50分钟这一时段内速度最快,最快速度为1千米/分钟.17.解:表格中反映的是弹簧的长度随所挂物体质量之间的变化关系,其中所挂物体的质量是自变量,弹簧的长度是因变量;(2)解:当所挂物体质量为0时,所对应的弹簧长度是18cm故答案为:18;(3)解:由表格中弹簧的长度随所挂物体质量之间的变化关系可知,当所挂物体质量每增加1kg ,弹簧的长度就增长2cm ,所以当所挂物体质量为7kg 时,弹簧的长度为18+2×7=32(cm )答:当所挂物体的质量为7kg 时,弹簧长度是32cm ;(4)解:由弹簧的长度随所挂物体质量之间的变化关系可知,当弹簧长度为34cm 时,所挂物体的质量为34182-=8(kg )答:当弹簧长度为34cm (在弹性限度内)时,所挂物体的质量是8kg .18.(1)解:列车共运行了8分钟;故答案为:8;(2)列车开动后,第3分钟的速度是300千米/小时;故答案为:300;(3)列车的速度从0千米/小时加速到300千米/小时,共用了2分钟;故答案为:2;(4)列车从5分钟开始减速.故答案为:5.19.(1)解①由表格可知,弹簧的长度L 的初始值为12厘米,当弹簧称所挂重物质量x 每增加1千克,弹簧长度L 就增加0.5厘米①L =0.5x +12 ;(2)解:当x =10时,L =0.5x +12=17=0.5×10+12=17(厘米)答①当所挂物体的质量为10千克时,弹簧的长度是17厘米;(3)解:当L = 18厘米时,则18=0.5x + 12 解得①x =12(千克)答①所挂物体质量是12千克.20.(1)解:由图2可知,点P 从点F 到点E 用了5秒 ①()155cm EF =⨯=.(2)解:①四边形CDEF 是正方形①5cm DE EF CD ===①()()55110s a =+÷=由图2可知,点P 从点D 到点A 用了()1313103s a -=-= ①()133cm AD =⨯=①()8cm AC CD AD =+=①8cm AC BC ==当点P 在DE 上时,()2118520cm 22BCP SBC EF =⋅=⨯⨯= ①20b =综上:10,20a b ==;(3)解:当10x =时,如图,点P 和点D 重合 ①四边形CDEF 是正方形①,90CD CF BCD ACF =∠=∠=︒在BCD △和ACF △中 90AC BC BCD ACF CD CF =⎧⎪∠=∠=︒⎨⎪=⎩①()SAS BCD ACF ≌①AF BD =①点P 和点D 重合①AF BP =.。

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析1.如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水。

在这则乌鸦喝水的故事中,从乌鸦看到瓶的那刻起开始计时并设时间为,瓶中水位的高度为,下列图象中最符合故事情景的是:【答案】D【解析】观察瓶子形状,下边较细,中间最粗,上面最细,乌鸦向瓶中放石子的过程中,水位不断上升,由于瓶子粗细不同,所以水位上升也不是均匀的,等到水位上升到一定程度时,乌鸦开始喝水,水位开始下降,据此,选D2.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图所示)(1)10时和13时,他分别离家多远?(2)他到达离家最远的地方是什么时间?离家多远?(3)他由离家最远的地方返回时的平均速度是多少?【答案】(1)10时和13时,分别离家15千米和30千米;(2分)(2)到达离家最远的时间是12时(或12-13),离家30千米;(2分)(3)共用了2时,因此平均速度为15千米/时.(3分)【解析】(1)根据图象可以直接看出纵坐标表示离家的距离,从横坐标中找到时间点,可直接得到答案;(2)首先根据图象找到离家最远的距离,由此即可确定他到达离家最远的地方是什么时间,离家多远;(3)根据返回时所走路程和使用时间即可求出返回时的平均速度.3.如图,已知函数和的图象交于点P,则根据图象可得,关于的二元一次方程组的解是【答案】.【解析】函数和的图象交点P的坐标是二元一次方程组的解,所以二元一次方程组的解为.【考点】一次函数与二元一次方程组方程组的关系.4.(本小题6分)如图,直线AB与y轴交于点A,与x轴交于点B,点A的纵坐标、点B的横坐标如图所示.(1)求直线AB的解析式;(2)点P在直线AB上,是否存在点P使得△AOP的面积为1,如果有请直接写出所有满足条件的点P的坐标【答案】(1)y=-x+2;(2)存在,P(1,) P(-1,).【解析】(1)设一次函数解析式,将A,B两点坐标代入这个解析式,求出k,b即确定了一次函数解析式.(2)因为OA是2作为△AOP的底,利用△AOP的面积为1,把P点的横坐标求出来,代入一次函数解析式求出纵坐标,这样满足条件的P点就求出来了.试题解析:(1)根据题意得,A(0,2),B(4,0),设直线AB的解析式为y=kx+b,则∴,∴直线AB的解析式为y=-x+2.(2)设P点横坐标为x,S△AOP=×2×=1,∴x=±1,分别代入直线AB解析式得:y1=,y2=∴P(1,) P(-1,).【考点】一次函数与三角形综合题.5.(本小题满分7分)甲、乙两人沿同一路线登山,图中线段、折线分别是甲、乙两人登山的路程(米)与登山时间(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?【答案】(1);(2)分钟,200米.【解析】(1)由图像可知甲登山的路程(米)与登山时间(分)之间的函数是正比例函数,设正比例函数解析式为y=kx,将点(30,600)代入求k,即得其函数解析式,自变量的取值范围可以看图像得出;(2)所求第一个问题为AB与OC交点的横坐标,第二个问题为AB与OC交点的纵坐标.先求AB的解析式,然后和OC的解析式组成方程组求解.试题解析:(1)设甲登山的路程与登山时间之间的函数解析式为.∵点在函数的图象上,∴.解得.∴.(2)设乙在段登山的路程与登山时间之间的函数解析式为,依题意,得,解得∴.设点为与的交点,∴,解得∴乙出发后分钟追上甲,此时乙所走的路程是米.【考点】1.一次函数的实际应用;2.一次函数与二元一次方程组的关系.6.如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1S2.(填“>”或“<”或“=”)【答案】=【解析】令PM与QB的交点为C,根据反比例函数的性质可知矩形AOMP和矩形QBON的面积均为,然后可知矩形PCBA的面积等于矩形QNMC的面积,由PB、QM为对角线,因此△ABP的面积等于矩形PCBA的面积的一半,△QMN的面积等于矩形QNMC的面积的一半,因此△ABP的面积等于△QMN的面积,即填“=”.【考点】反比例函数的图像与性质,矩形的面积,矩形的性质7.已知函数中自变量的取值范围是().A.B.C.D.【答案】C.【解析】此式要满足x-1≥0,且≠0,解x≥1,且x≠1,所以x>1,故选C.【考点】1.二次根式意义;2.分母不能为0.8.如图,函数y=3x和y=ax+4的图象相交于点A(1,3),则不等式3x≥ax+4的解集为().A.B.C.D.【答案】A.【解析】利用图像比较大小,以交点A为界,看A的横坐标,大于等于1时,函数y=3x高于等于y=ax+4,因此x≥1时,不等式3x≥ax+4,故选A.【考点】利用图像比较一次函数大小.9.已知一次函数y=(k+2)x-k,函数y的值随自变量x的值的增大而增大,则k的取值范围是为.【答案】k>-2.【解析】因为函数y的值随自变量x的值的增大而增大,所以k+2>0,所以k>-2.【考点】一次函数性质.10.)冷冻一个0℃的物体.使它每分钟下降2℃,物体的温度T(单位℃)与冷冻时间t(单位:分)的函数关系式是.【答案】T=﹣2t.【解析】由题意可知,它每分下降2℃,即可得t分钟下降2t℃,所以T=0+(﹣2t)=﹣2t.【考点】列函数关系式.11.将直线y=﹣2x+1向下平移4个单位得到直线l,则直线l的解析式为()A.y=﹣6x+1B.y=﹣2x﹣3C.y=﹣2x+5D.y=2x﹣3【答案】B【解析】一次函数的平移法则为“左加右减,上加下减”,直接根据平移规律求解即可.根据平移法则可得直线l的解析式为y=﹣2x+1﹣4,即y=﹣2x﹣3.【考点】一次函数图象与几何变换.12.在同一坐标系中,函数y=和y=kx+3(k≠0)的图象大致是()【答案】C.【解析】分两种情况讨论:①当k>0时,y=kx+3与y轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;②当k<0时,y=kx+3与y轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限.故选C.【考点】1.反比例函数的图象;2.一次函数的图象.13.若反比例函数的图象经过点A(2,﹣1),则k= ,该函数的图象还经过点B(-2,).【答案】﹣2,1.【解析】∵k=xy,过(2,﹣1)点,∴k=2×(﹣1)=﹣2.∵B点的横坐标为﹣2.∴y==1.【考点】1.待定系数法求反比例函数解析式;2.反比例函数图象上点的坐标特征.14.(8分)如图,直线AC是一次函数y=2x+3的图象,直线BC是一次函数y=﹣2x﹣1的图象.(1)求A、B、C三点的坐标;(2)求△ABC的面积.【答案】(1)A(0,3),B(0,﹣1),C(﹣1,1);(2)2.【解析】(1)在两个一次函数解析式中,令x=0,求得y的值,即可得到A和B的坐标,把两个一次函数的解析式组成的方程组,解方程组,方程组的解即为点C的坐标;(2)根据A和B的坐标求出AB的长,利用三角形面积公式即可求解.(3)试题解析:(1)在y=2x+3中,令x=0,解得:y=3,则A点的坐标为(0,3),同理,B点的坐标为(0,﹣1),∵解得.∴C点的坐标为(﹣1,1);(2)∵AB=4,∴.【考点】一次函数与二元一次方程组.15.下列各式中,y随x的变化关系式是正比例函数的是()A.y="2x"B.y=C.y=x﹣1D.y=x2﹣1【答案】A.【解析】形如y=kx,k为常数且k≠0,这样的函数称为正比例函数,符合条件的只有选项A,故答案选A.【考点】正比例函数的定义.16.一次函数y=(m﹣3)x﹣m的图象经过一、二、四象限,则m的取值范围是()A.m<0B.m<3C.0<m<3D.m>0【答案】A【解析】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象在一、二、四象限.根据题意可得:m-3<0,-m>0,解得:m<0.【考点】一次函数图象与系数的关系17.若一次函数y=﹣2x+3的图象经过点P1(﹣5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空)【答案】>【解析】根据一次函数y=kx+b的增减性:当k>0时,y随x的增大而增大,当k<0时,y随x 的增大而减小。

函数练习题初二必考

函数练习题初二必考

函数练习题初二必考函数是数学中的重要概念之一,也是初二数学必考的内容之一。

掌握函数的定义、性质和运算方法,对于理解和解决各类函数相关题目具有重要意义。

本文将介绍几个常见的函数练习题,以帮助初二学生巩固函数知识。

1. 【函数的定义】例题:已知函数 f(x) = x + 2,求 f(3) 的值。

解析:根据函数的定义,将 x = 3 代入函数表达式 f(x) = x + 2 中,可得 f(3) = 3 + 2 = 5。

答案:f(3) = 5。

2. 【函数的性质】例题:已知函数 f(x) = 2x + 3,求函数 f 的定义域和值域。

解析:函数的定义域是指所有可以作为自变量 x 取值的集合,对于本题中的函数 f(x) = 2x + 3,由于任意实数均可以取代 x,所以定义域为全体实数集 R。

函数的值域是指函数在定义域内所有可能的取值所组成的集合。

由于函数 f(x) = 2x + 3 是一次函数,它的图像是一条直线,该直线的斜率为 2,说明函数的值随着自变量的增大而增大,值域为全体实数。

答案:定义域为 R,值域为 R。

3. 【函数的运算】例题:已知函数 f(x) = 3x + 2,g(x) = x^2 - 1,求复合函数 f(g(x)) 的表达式。

解析:复合函数 f(g(x)) 的意思是将 g(x) 的输出值作为 f(x) 的输入值进行运算。

将 g(x) 的表达式带入 f(x) 的表达式,可得 f(g(x)) = f(x^2 - 1) = 3(x^2 - 1) + 2 = 3x^2 - 1。

答案:f(g(x)) = 3x^2 - 1。

通过以上几个例题的分析,我们可以看到函数的定义、性质和运算方法在解题中的重要性。

掌握了这些基本概念和运算规则,初二学生可以更加熟练地应对函数相关的题目。

练习题只是理解函数的一个重要环节,更重要的是理解函数的概念和性质。

只有对函数的基本概念有深入的理解,才能在解题过程中提供正确的思路和方法。

八年级数学下册《函数的图象》练习题及答案(人教版)

八年级数学下册《函数的图象》练习题及答案(人教版)

八年级数学下册《函数的图象》练习题及答案(人教版)班级姓名考号一、单选题1.小明步行到学校参加联欢会,到学校时发现演出道具忘在家中,于是他马上按照原来的速度步行回家取道具,随后骑自行车加快速度返回学校,下面是小明离开家的距离S(米)和时间t(分)的函数图象,那么最符合小明实际情况的大致图象是()A.B.C.D.2.小明晚饭后出门散步,行走的路线如图所示.则小明离家的距离h与散步时间t之间的函数关系可能是()A.B.C.D.3.一天晚饭后,小明陪妈妈从家里出去散步,下图描述了他们散步过程中离家的距离s(米)与散步时间t(分)之间的函数关系,下面的描述符合他们散步情景的是【】A.从家出发,到了一家书店,看了一会儿书就回家了B.从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,到了一家书店,看了—会儿书,继续向前走了一段,18分钟后开始返回4.下列是y关于x的函数是().A.B.C.D.5.甲、乙二人从学校出发去新华书店看书,甲步行一段时间后,乙骑自行车沿相同路线行进两人均匀速前行,他们之间的距离s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法错误的是()A.乙的速度是甲速度的2.5倍B.a=15C.学校到新华书店共3800米D.甲第25分钟到达新华书店6.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上下坡的速度仍然保持不变,那么他从学校回到家需要的时间是().A .8.6分钟B .9分钟C .12分钟D .16分钟7.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程y (km )与行进时间t (h )之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;①乙用了4.5个小时到达目的地:①乙比甲迟出发0.5小时;①甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个8.如图1,点P 从菱形ABCD 的顶点A 出发,沿着折线ABCDA 匀速运动,图2是线段AP 的长度y 与时间x 之间的函数关系的图像(不妨设当点P 与点A 重合时,y =0),则菱形ABCD 的面积为( )A .12B .6C .5D .2.59.铅笔每支售价0.20元,在平面直角坐标系内表示小明买1支到10支铅笔需要花费的钱数的图像是( ) A .一条直线 B .一条射线 C .一条线段 D .10个不同的点10.如图,60MAN ∠=︒,点B 在射线AN 上,2AB =.点P 在射线AM 上运动(点P 不与点A 重合),连接BP ,以点B 为圆心,BP 为半径作弧交射线AN 于点Q ,连接PQ .若,AP x PQ y ==,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A.B.C.D.13.如图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止,右图为P运动的路与ABP的面积14.学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.15.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是____米/分钟.三、解答题16.写出下列各问题中的函数关系式,并指出自变量的取值范围.(1)如果直角三角形中一个锐角的度数为α,另一个锐角的度数β与α之间的关系;(2)一支蜡烛原长为20cm,每分钟燃烧0.5cm,点燃x(分钟)后,蜡烛的长度y(cm)与x(分钟)之间的关系;(3)有一边长为2cm的正方形,若其边长增加xcm,则增加的面积y(cm2)与x之间的关系.17.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校.他本次上学所用的时间与路程的关系示意图如图所示.(1)小明在书店停留了______分钟;(2)本次上学途中,小明一共行驶的路程为______;(1)在上升或下降过程中,无人机的速度是米/分;20.小雪和小松分别从家和图书馆出发,沿同一条笔直的马路相向而行.小雪开始跑步,中途在某地改为步行,且步行的速度为跑步速度的一半,小雪先出发5分钟后,小松才骑自行车匀速回家.小雪到达图书馆恰好用了35分钟.两人之间的距离()m y 与小雪离开出发地的时间()min x 之间的函数图象如图所示,请根据图象解答下列问题:(1)小雪跑步的速度为多少米/分?(2)小松骑自行车的速度为米/分?(3)当小松到家时,小雪离图书馆的距离为多少米?参考答案1.C2.C3.D4.C5.C6.C7.C8.B9.D10.C(3)由图象可知:图象关于直线x =2对称;故答案为:图象关于直线x =2对称;(4)进一步探究函数图象发现:①函数图象与x 轴有2个交点,对应的方程2|x ﹣2|﹣1=0有2个实数根; ①若关于x 的方程2|x ﹣2|﹣1=a 有两个实数根,则a 的取值范围是a >﹣1 故答案为2,2;a >﹣1.20.(1)解:由函数图象可知小雪跑步5分钟的路程为450035001000m -= ①小雪跑步的速度为10005200m /min ÷=;(2)解:由(1)得小雪步行的速度为100m/min设小雪在第t 分钟改为步行①()200100354500t t +-=解得10t =①由函数图象可知,当第10分钟时,小雪改为步行,此时两人相距1000m ①小松骑车的速度为()()4500200101000105300m /min -⨯-÷-=; (3)解:由(2)得小松到家的时间为4500300520min ÷+= ①小雪离图书馆的距离为()45002001010020101500m -⨯-⨯-=.。

初二函数练习题与答案

初二函数练习题与答案

初二函数练习题与答案1. 函数概念练习题1) 将下列关系用函数的语言描述出来:a) 一个人的身高与他的年龄的关系;b) 一辆汽车在运行过程中的路程与所花费的时间的关系;c) 一棵植物生长的高度与它种植的时间的关系。

答案:a) 一个人的身高与他的年龄的关系可以描述为:身高是年龄的函数,随着年龄的增长,身高也会相应增加。

b) 一辆汽车在运行过程中的路程与所花费的时间的关系可以描述为:路程是时间的函数,随着时间的增加,汽车行驶的路程也会增加。

c) 一棵植物生长的高度与它种植的时间的关系可以描述为:植物的高度是种植时间的函数,随着时间的增加,植物的高度也会增加。

2. 函数的构成练习题2) 下列各图是否表示函数?如果是函数,请说明定义域和值域;如果不是函数,请说明原因。

(图片省略)答案:a) 表示函数。

定义域:所有实数值域:所有实数b) 不是函数。

原因:一个横坐标对应多个纵坐标,无法满足函数的定义。

c) 不是函数。

原因:一个横坐标没有对应的纵坐标,无法满足函数的定义。

3. 函数的性质练习题3) 设函数 f(x) = 2x + 3,计算以下两个函数的值:a) f(2)b) f(-1)答案:a) f(2) = 2(2) + 3 = 4 + 3 = 7b) f(-1) = 2(-1) + 3 = -2 + 3 = 14. 函数的图像练习题4) 根据函数关系式,画出以下函数的图像:a) f(x) = x^2b) f(x) = -2x + 1答案:a) 函数图像为一个抛物线,开口朝上,顶点位于原点 (0, 0)。

(图片省略)b) 函数图像为一条直线,斜率为 -2,与 y 轴交于点 (0, 1)。

(图片省略)这些练习题旨在帮助初中二年级的学生巩固函数的基本概念、构成和性质。

通过理解函数的定义域、值域以及函数图像的特点,学生能够更好地掌握函数的运算和应用。

希望这些练习题和答案能对学生的学习有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考专题:函数及其图像【考试大纲】一、一次函数1. 定义:在定义中应注意的问题y =kx +b 中,k 、b 为常数,且k ≠0,x 的指数一定为1。

2. 图象及其性质 (1)形状、直线()时,随的增大而增大,直线一定过一、三象限时,随的增大而减小,直线一定过二、四象限200k y x k y x ><⎧⎨⎪⎩⎪()若直线::3111222l y k x b l y k x b =+=+当时,;当时,与交于,点。

k k l l b b b l l b 121212120===//()(4)当b>0时直线与y 轴交于原点上方;当b<0时,直线与y 轴交于原点的下方。

(5)当b=0时,y =kx (k ≠0)为正比例函数,其图象是一过原点的直线。

(6)二元一次方程组与一次函数的关系:两个一次函数图象的交点的坐标即为所对应方程组的解。

3. 应用:要点是(1)会通过图象得信息;(2)能根据题目中所给的信息写出表达式。

一次函数图象和性质【知识梳理】1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0). 2. 一次函数y kx b =+的图象是经过(kb-,0)和(0,b )两点的一条直线. 3. 一次函数y kx b =+的图象与性质【思想方法】 数形结合k 、b 的符号k >0,b >0k >0,b <0k <0,b >0k <0,b <0图像的大致位置经过象限 第 象限 第 象限第 象限第 象限 性质y 随x 的增大 而y 随x 的增大而而y 随x 的增大 而y 随x 的增大 而(二)反比例函数 1. 定义应注意的问题:中()是不为的常数;()的指数一定为“”y kxk x =-1021 2. 图象及其性质: (1)形状:双曲线()对称性:是中心对称图形,对称中心是原点是轴对称图形,对称轴是直线和212()()y x y x==-⎧⎨⎪⎩⎪()时两支曲线分别位于一、三象限且每一象限内随的增大而减小时两支曲线分别位于二、四象限且每一象限内随的增大而增大300k y x k y x ><⎧⎨⎪⎩⎪(4)过图象上任一点作x 轴与y 轴的垂线与坐标轴构成的矩形面积为|k|。

反比例函数图象和性质【知识梳理】1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y =或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质3.k 的几何含义:反比例函数y =kx(k≠0)中比例系数k 的几何意义,即过双曲线y =kx(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 k 绝对值 . 【思想方法】 数形结合k 的符号k >0 k <0 图像的大致位置经过象限 第 象限 第 象限 性质在每一象限内,y 随x 的增大而在每一象限内,y 随x 的增大而oy xy xo二、二次函数1. 定义:应注意的问题(1)在表达式y=ax2+bx+c中(a、b、c为常数且a≠0)(2)二次项指数一定为22. 图象:抛物线4. 应用:(1)最大面积;(2)最大利润;(3)其它y xO 二次函数图象和性质【知识梳理】1. 二次函数2()y a x h k =-+的图像和性质a >0a <0图 象 开 口 对 称 轴 顶点坐标最 值 当x = 时,y 有最 值 当x = 时,y 有最 值增减性 在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧y 随x 的增大而y 随x 的增大而平面直角坐标系、函数及其图像【知识梳理】一、平面直角坐标系1. 坐标平面上的点与有序实数对构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于⎪⎩⎪⎨⎧原点轴轴y x 对称点的坐标⎪⎩⎪⎨⎧----),(),(),(b a b a b a5.两点之间的距离6.线段AB 的中点C ,若),(),,(),,(002211y x C y x B y x A 则2,2210210y y y x x x +=+=【思想方法】 数形结合21212211P P )0()0()1(x x x P x P -=, , ,, 21212211P P )0()0()2(yy y P y P -=, ,,,【习题训练】1 (2013 苏州)已知二次函数y =x 2-3x +m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2-3x +m =0的两实数根是( )A .x 1=1,x 2=-1B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=32如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为( ) A .2x <- B .21x -<<- C .20x -<< D .10x -<<3(2013青岛)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )4 (2013 济宁) 9. 如图,P 1是反比例函数)0(>k x ky =在第一象限图像上的一点,点A 1的坐标为(2,0).若△P 1O A 1与△P 2 A 1 A 2均为等边三角形,则A 2点的坐标为( )A.2 B.2-1 C.2D.2-15(2013.成都)如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y =kx(x>0)的图象经过顶点B ,则k 的值为( )yOBA 1-1O xyxyO 3 2y x a =+1y kx b =+A .12B .20C .24D .326(2013桂林)如图,已知边长为4的正方形ABCD , P 是BC 边上一动点(与B 、C 不重合),连结AP ,作PE ⊥AP 交∠BCD 的外角平分线于E ,设BP =x ,△PCE 面积为y ,则y 与x 的函数关系式是( )A. 21y x =+B. 2122y x x =- C. 2122y x x =- D. 2y x =7(2013 漳州)15.如图,反比例函数xky =的图象经过点P ,则k =_________8 (2013桂林)函数y x =的图象与函数4y x=的图象在第一象限内交于点B ,点C 是函数4y x=在第一象限图象上的一个动点,当△OBC 的面积为3时,点C 的横坐标是9一次函数1y kx b =+与2y x a =+的图象如图,则下列结论:①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )A .0B .1C .2D .310 小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A .12分钟 B .15分钟ADBPEC(第15题图)第24题图BOxyC .25分钟D .27分钟11 (2013山东莱芜)M (1,a )是一次函数y =3x +2与反比例函数ky x=图象的公共点,若将一次函数y =3x +2的图象向下平移4个单位,则它与反比例函数图象的交点坐标为 .12 ( 2013滨州)13 (2013杭州) 给出下列命题及函数x y =,2x y =和x y 1=的图象( )①如果21a a a >>,那么10<<a ;②如果a a a 12>>,那么1>a ;③如果aa a >>21,那么01<<-a ;④如果a a a >>12时,那么1-<a 。

则A. 正确的命题是①④B. 错误的命题是②③④C. 正确的命题是①②D. 错误的命题只有③14 .如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3),点C 的坐标为(12,0),点P 为斜边OB 上的一动点,则PA +PC 的最小值为( )A .132B .312C .3192+D .27PAOBstOsOt OstOs tA .B .C .D .111- Oxy15 如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA AB BO --的路径运动一周.设OP 为s ,运动时间为t ,则下列图形能大致地刻画s 与t 之间关系的是( )16 .(2013广安)已知直线y = x+(n 为正整数)与坐标轴围成的三角形的面积为S n ,则S 1+S 2+S 3+…+S 2012= .17. 如图是二次函数y=ax 2+bx+c 的图象,则点(a+b ,ac)在( )。

A .第一象限 B .第二象限 C .第三象限 D .第四象限xyO18.如图,正方形OABC ADEF ,的顶点AD C ,,在坐标轴上,点F 在AB 上,点BE ,在函数1(0)y x x =>的图象上,则点E 的坐标是( ) A.5151+-⎝⎭,B.3535+-⎝⎭, C.5151-+⎝⎭,D.3535-+⎝⎭,19. (2009荆门中考)函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )20. (2009黄石中考)已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤A ODCEF xyBB .C .D . 1111xo y y o x y o x x o y1c a ->其中所有正确结论的序号是( )A .①②B . ①③④C .①②③⑤D .①②③④⑤21 (2013成都)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0k ≠)的图像都经过点(,2)A m(1)求点A 的坐标及反比例函数的表达式;(2)结合图像直接比较:当0x >时,1y 和2y 的大小.22 已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A (﹣2,0),与反比例函数在第一象限内的图象的交于点B (2,n ),连接BO ,若S △AOB =4. (1)求该反比例函数的解析式和直线AB 的解析式; (2)若直线AB 与y 轴的交点为C ,求△OCB 的面积.23 ( 2013青岛 )如图,抛物线23y ax bx =+-与x 轴交于AB ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M .(1) 求抛物线对应的函数表达式;(2) 经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过AB E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由;(4) 当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论).24 、某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y 件与销售单价x (x≥50)元/件的关系如下表: 销售单价x (元/件) … 55 60 70 75 … 一周的销售量y (件) … 450 400 300 250 … (1)直接写出y 与x 的函数关系式: y=﹣10x+1000(2)设一周的销售利润为S 元,请求出S 与x 的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?。

相关文档
最新文档