等差数列公式大全-等差公式大全
等差数列公式大全

等差数列公式大全等差数列是数学中的一个重要概念,指的是一个数列中的每个元素与它的前一个元素之差都相等。
等差数列的公式是求等差数列的通项公式,通常用字母a_n表示数列的第n个元素,d表示公差(即相邻两个元素之差)。
本文将为大家介绍等差数列的一些基本概念和相关公式。
1.等差数列的定义:等差数列是指一个数列中的每个元素与它的前一个元素之差都相等。
即对于等差数列{a_1,a_2,a_3,...,a_n},有a_n-a_(n-1)=d(常数d)。
2.第n个元素的通项公式:等差数列的第n个元素a_n可以通过通项公式求得,通项公式可以表示为:a_n=a_1+(n-1)d其中,a_1是数列的第一个元素,d是公差。
3.前n项和的公式:等差数列的前n项和可以通过求和公式求得,求和公式可以表示为:S_n=(n/2)(a_1+a_n)其中,S_n表示前n项和,a_1是数列的第一个元素,a_n是数列的第n个元素,n为自然数。
4.前n项和与末项的关系:等差数列的前n项和与数列的末项的关系可以表示为:S_n=(n/2)(a_1+a_n)=(n/2)[2a_1+(n-1)d]5.通项公式的推导:通过等差数列的基本概念可以推导出通项公式。
假设等差数列的第一个元素为a_1,公差为d。
那么:a_2=a_1+da_3=a_2+d=(a_1+d)+d=a_1+2d...a_n=a_(n-1)+d=a_1+(n-1)d可以看出,等差数列的第n个元素a_n与第一个元素a_1之间存在关系:a_n=a_1+(n-1)d6.递推公式的推导:通过等差数列的基本概念也可以推导出递推公式。
假设等差数列的第一个元素为a_1,公差为d。
那么:d=a_2-a_1d=a_3-a_2=(a_1+2d)-(a_1+d)=d...d=a_n-a_(n-1)=(a_1+(n-1)d)-(a_1+(n-2)d)=d可以看出,d等于a_n减去a_(n-1),且它等于两个数列元素之差。
等差数列公式大全

等差数列公式大全1、 a n =()1121)n n s s n s n -⎧-≥⎪⎨=⎪⎩( (注意:(1)此公式对于一切数列均成立(2)1--=n n n s s a 不是对一切正整数n 都成立,而是局限于n ≥2)2、 等差数列通项公式:n a =1a +(n-1)dn a =m a +(n-m)d ⇒ d=m n a a m n --(重要)3、若{n a }是等差数列,m+n=p+q ⇔m a +n a =p a +q a 4、若a,A,b 成等数列则2A=a+b (A 是a,b 的等差中项) 5、 {n a }是等差数列,若m 、n 、p 、q ∈N *且m ≠n,p ≠q,则m n a a m n --=q p a a q p --=d 6、 等差数列{n a }的前n 项和为n s ,则n s =()21na a n + (已知首项和尾项)=()211d n n na -+ (已知首项和公差)=n d a dn ⎪⎭⎫ ⎝⎛-+212112(二次函数可以求最值问题) 7、等差数列部分和性质:m m m m m s s s s s 232,,--…仍成等差数列。
8、 在等差数列中抽取新数列:一般地,对于公差为d 的等差数列{n a },若...,321k k k 成等差数列,那么,......,,,321kn k k k a a a a 仍成等差数列,而且公差为(12k k -)d 9、n s 的最值问题:若{n a }是等差数列,1a 为首项,d 为公差 ①首项1a >0,d <0,n 满足n a ≥0,1+n a <0时前n 项和n s 最大 ②首项1a <0,d >0,n 满足n a ≤0,1+n a >0时前n 项和n s 最小 10、 在等差数列{n a }中,奇s 与偶s 的关系:①当n 为奇数时,n s =n.a 21+n ,奇s -偶s =a 21+n ,偶奇s s =11-+n n ②当n 为奇数时,n s =n.2122++nn a a ,奇s -偶s =d n 2 偶奇s s =122+nna a 11、等差数列的判别方法:⑴定义法: 1+n a -n a =d (d 为常数) ⇔ {n a }是等差数 ⑵中项公式法: 21+n a =n a +a 2n + (n ∈N*)⇔ {n a }是等差数列 ⑶通项公式法: n a =pn+q (p,q 为常数) ⇔ {n a }是等差数列⑷前n项和公式法: n s =An 2+Bn (A,B 为常数) ⇔ {n a }是等差数列。
等差数列公式

分享到等差数列求助编辑百科名片等差数列,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列的通项公式为:an=a1+(n-1)d (1)前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 注意:以上n 均属于正整数。
目录多项式数列等差数列的基本公式通项公式(第n项)前n项和公式推论等差中项等差数列小故事等差数列的基本性质r次等差数列一次数列的性质等差数列的判定一道例题等差数列前n项和公式S 的基本性质等差数列的特殊性质多项式数列等差数列的基本公式通项公式(第n项)前n项和公式推论等差中项等差数列小故事等差数列的基本性质r次等差数列一次数列的性质等差数列的判定一道例题等差数列前n项和公式S 的基本性质等差数列的特殊性质展开编辑本段多项式数列等差数列是多项式数列的一种简称:A.P (arithmetic progression)多项式数列:p(n)=b(0)+b(1)*n+...+b(k)*n^k多项式数列的和可以用一个矩阵来转换。
令这个转换矩阵为A,做向量b=[b0,b1,...,bk]令向量c=A*b',c就是和公式的向量。
和项S(n)=c(1)*n+..+c(k)*n^k+c(k+1)*n^(k+1)。
3阶多项式数列的A=A有专门的算法,可以用于matlab中。
function p=leeqi(r)format ratp=zeros(r,r);for k=1:r,w=2:k; p(1,k)=1-sum(p(w,k));for n=2:r-k+1,p(n,n+k-1)=(n+k-2)/n*p(n-1,n+k-2);end等差数列是多项式数列的一次形式b(0)+b(1)*n,在这里把多项式数列的一次形式简称为(一次数列)。
一次数列的通项公式为:p(n)=b(0)+b(1)*n;前n项和的公式为:S(n)=[n,n^2]*[1,1/2;0,1/2]*[b(0);b(1)].编辑本段等差数列的基本公式通项公式(第n项)a(n)=a(1)+(n-1)×d ,注意:n是正整数即第n项=首项+第n-1项×公差前n项和公式S(n)=n*a(1)+n*(n-1)*d/2或S(n)=n*(a(1)+a(n))/2注意:n是正整数(相当于n个等差中项之和)等差数列前N项求和,实际就是梯形公式的妙用:上底为:a1首项,下底为a1+(n-1)d,高为n.即[a1+a1+(n-1)d]* n/2=a1 n+ n (n-1)d /2.推论一.从通项公式可以看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
等差数列求和公式运算

等差数列求和公式运算等差数列求和公式1、等差数列基本公式:末项=首项+(项数-1)__公差项数=(末项-首项)÷公差+1首项=末项-(项数-1)__公差和=(首项+末项)__项数÷2末项:最后一位数首项:第一位数项数:一共有几位数和:求一共数的总和。
2、Sn=na(n+1)/2n为奇数sn=n/2(An/2+An/2+1)n为偶数3、等差数列如果有奇数项,那么和就等于中间一项乘以项数,如果有偶数项,和就等于中间两项和乘以项数的一半,这就是中项求和。
4、公差为d的等差数列{an},当n为奇数是时,等差中项为一项,即等差中项等于首尾两项和的二分之一,也等于总和Sn除以项数n。
将求和公式代入即可。
当n为偶数时,等差中项为中间两项,这两项的和等于首尾两项和,也等于二倍的总和除以项数n。
等差数列求和解题技巧一.用倒序相加法求数列的前n项和如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的`和,这一求和方法称为倒序相加法。
我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。
例题1:设等差数列{an},公差为d,求证:{an}的前n项和Sn=n(a1+an)/2解:Sn=a1+a2+a3+...+an①倒序得:Sn=an+an-1+an-2+…+a1 ②①+②得:2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1)又∵a1+an=a2+an-1=a3+an-2=…=an+a1∴2Sn=n(a2+an) Sn=n(a1+an)/2二.用公式法求数列的前n项和对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。
运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
等差数列公式大全

等差数列公式大全
1、a n =1121)
n
n s s n s n ((注意:(1)此公式对于一切数列均成立
(2)1n n n s s a 不是对一切正整数n 都成立,而是局限于n ≥2)
2、等差数列通项公式:n a =1a +(n-1)d
n a =m a +(n-m)d d=m n a a m
n
(重要)
3、
若{n a }是等差数列,m+n=p+q m a +n a =p a +q a 4、
若a,A,b 成等数列则2A=a+b (A 是a,b 的等差中项){n a }是等差数列,若m 、n 、p 、q N 且m ≠n,p ≠q,则m n a a m n
=q p a a q p
=d
5、
6、等差数列{n a }的前n 项和为n s ,则
n s =
21n
a a n (已知首项和尾项)=211d n n na (已知首项和公差)=n d a dn 2121
12(二次函数可以求最值问题)
7、等差数列部分和性质:m m m m m s s s s s 232,,…仍成等差数列。
8、在等差数列中抽取新数列:一般地,对于公差为d 的等差数列{n a },若.
,321k k k 成等差数列,那么,......,,,321kn k k k a a a a 仍成等差数列,而且公差为(
12k k )d 9、
n s 的最值问题:若{n a }是等差数列,1a 为首项,d 为公差①首项1a >0,d <0,n 满足n a ≥0,1n a <0时前n 项和n s 最大。
小学奥数等差数列公式

小学奥数等差数列公式公式1:求和公式:等差数列求和=(首项+末项)×项数÷2,即:Sn=(a1+an)×n÷2;公式2:通项公式:第n项=首项+(n-1)×公差,即:an=a1+(n-1)×d;公式3:项数公式:项数=(末项-首项)÷公差+1,即n=(an-a1)÷d+1。
上述三个公式必须掌握此外,还有一个中项定理,也掌握:中项定理:对于作意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
例1:建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?解:如果我们把每层砖的块数依次记下来,2,6,10,14,…容易知道,这是一个等差数列.方法1:a1=2,d=4,利用公式求出an=2106,则:n=(an-a1)÷d+1=527这堆砖共有则中间一项为a264=a1+(264-1)×4=1054.方法2:(a1+an)×n÷2=(2+2106)×527÷2=555458(块).则中间一项为(a1+an)÷2=1054a1=2,d=4,an=2106,这堆砖共有1054×527=555458(块).此题利用中项定理和等差数列公式均可解!例2:求从1到2000的自然数中,所有偶数之和与所有奇数之和的差.解:根据题意可列出算式:(2+4+6+8+...+2000)-(1+3+5+ (1999)解法1:能够看出,2,4,6,…,2000是一个公差为2的等差数列,1,3,5,…,1999也是一个公差为2的等差数列,且项数均为1000,所以:原式=(2+2000)×1000÷2-(1+1999)×1000÷2=1000.解法2:注意到这两个等差数列的项数相等,公差相等,且对应项差1,所以1000项就差了1000个1,即原式=1000×1=1000.例3:100个连续自然数(按从小到大的顺序排列)的和是8450,取出其中第1个,第3个…第99个,再把剩下的50个数相加,得多少?解:方法1:要求和,我们能够先把这50个数算出来.100个连续自然数构成等差数列,且和为8450,则:由题可知:(首项+末项)×100÷2=8450,求出:(首项+末项)=169。
等差等比数列求和公式大全_等比数列怎么求和

等差等比数列求和公式大全_等比数列怎么求和等差等比数列求和公式大全等差数列公式:等差数列的通项公式为:an=a1+(n-1)d前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2从等差数列的定义、通项公式、前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1(类似地:p1+pn=p2+pn-1=p3+pn-2=…=pk+pn-k+1),k∈{1,2,…,n}.等比数列公式:(1)等比数列的通项公式是:An=A1×q^(n-1)若通项公式变形为an=a1/qxq^n(n∈Nx),当q0时,则可把an看作自变量n 的函数,点(n,an)是曲线y=a1/qxq^x上的一群孤立的点。
(2) 任意两项am,an的关系为an=am·q^(n-m)(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
(5) 等比求和:Sn=a1+a2+a3+.......+an①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)②当q=1时, Sn=n×a1(q=1)记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1等比数列的求和公式的应用1. 数学题目在一些数学题目中,需要计算等比数列的前 n 项的和。
通过使用等比数列的求和公式,可以快速计算出结果。
这类题目通常涉及金融、物理、几何等领域。
2. 财务和投资计算在财务和投资领域,等比数列的求和公式可以用来计算复利问题。
当利率保持不变,每期利息与本金的比值也保持不变时,可以将问题转化为等比数列,并使用求和公式计算出累积本金与利息的总和。
等差等比数列公式大全

等差等比数列公式大全等差数列是指一个数列中任意相邻两项的差都相等的数列,而等比数列是指一个数列中任意相邻两项的比都相等的数列。
这两种数列在数学中有着广泛的应用,因此掌握它们的公式是非常重要的。
下面我们将介绍等差数列和等比数列的公式大全。
一、等差数列公式。
1. 第n项公式。
对于等差数列$a_1, a_2, a_3, ..., a_n$,其第n项公式可以表示为:$a_n = a_1 + (n-1)d$。
其中,$a_n$表示第n项,$a_1$表示首项,n表示项数,d表示公差。
2. 前n项和公式。
等差数列的前n项和公式可以表示为:$S_n = \frac{n}{2}(a_1 + a_n)$。
其中,$S_n$表示前n项和。
3. 通项公式。
等差数列的通项公式可以表示为:$a_n = a_1 + (n-1)d$。
其中,$a_n$表示第n项,$a_1$表示首项,n表示项数,d表示公差。
二、等比数列公式。
1. 第n项公式。
对于等比数列$a_1, a_2, a_3, ..., a_n$,其第n项公式可以表示为:$a_n = a_1 r^{(n-1)}$。
其中,$a_n$表示第n项,$a_1$表示首项,n表示项数,r表示公比。
2. 前n项和公式。
等比数列的前n项和公式可以表示为:$S_n = \frac{a_1(1-r^n)}{1-r}$。
其中,$S_n$表示前n项和。
3. 通项公式。
等比数列的通项公式可以表示为:$a_n = a_1 r^{(n-1)}$。
其中,$a_n$表示第n项,$a_1$表示首项,n表示项数,r表示公比。
三、等差数列和等比数列的应用。
1. 等差数列和等比数列在数学中有着广泛的应用,特别是在数学建模和金融领域中。
2. 通过等差数列和等比数列的公式,可以快速计算数列中任意项的值和前n项和,为解决实际问题提供了便利。
3. 在金融领域,等差数列和等比数列常常用来描述利息的增长和贷款的还款情况,对于理解和计算复利有着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列公式大全-等差公式大全
(共2页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
等差数列公式大全
1、 a n =()1121)
n n s s n s n -⎧-≥⎪⎨=⎪⎩( (注意:(1)此公式对于一切数列均成立
(2)1--=n n n s s a 不是对一切正整数n 都成立,而是局限于n ≥2)
2、 等差数列通项公式:n a =1a +(n-1)d
n a =m a +(n-m)d ⇒ d=
m n a a m n --(重要)
3、
若{n a }是等差数列,m+n=p+q ⇔m a +n a =p a +q a 4、
若a,A,b 成等数列则2A=a+b (A 是a,b 的等差中项) 5、 {n a }是等差数列,若m 、n 、p 、q ∈N *且m ≠n,p ≠q,则
m n a a m n --=q
p a a q p --=d 6、 等差数列{n a }的前n 项和为n s ,则
n s =()21n
a a n + (已知首项和尾项)=()2
11d n n na -+ (已知首项和公差)=n d a dn ⎪⎭⎫ ⎝
⎛-+212112(二次函数可以求最值问题) 7、
等差数列部分和性质:m m m m m s s s s s 232,,--…仍成等差数列。
8、 在等差数列中抽取新数列:一般地,对于公差为d 的等差数列{n a },
若...,321k k k 成等差数列,那么,......,,,321kn k k k a a a a 仍成等差数列,而且公差为(12k k -)d
9、
n s 的最值问题:若{n a }是等差数列,1a 为首项,d 为公差 ① 首项1a >0,d <0,n 满足n a ≥0,1+n a <0时前n 项和n s 最大
② 首项1a <0,d >0,n 满足n a ≤0,1+n a >0时前n 项和n s 最小
10、 在等差数列{n a }中,奇s 与偶s 的关系: ①当n 为奇数时,n s =2
1+n ,
奇s -偶s =a 21+n ,
偶奇s s =1
1-+n n ②当n 为奇数时,n s =n.212
2++n
n a a ,
奇s -偶s =d n 2 偶奇s s =1
22+n
n a a 11、等差数列的判别方法:
⑴定义法: 1+n a -n a =d (d 为常数) ⇔ {n a }是等差数 ⑵中项公式法: 21+n a =n a +a 2n + (n ∈N*)⇔ {n a }是等差数列 ⑶通项公式法: n a =pn+q (p,q 为常数) ⇔ {n a }是等差数列 ⑷前n项和公式法: n s =An 2+Bn (A,B 为常数) ⇔ {n a }是等差数列。