动量定理练习含解析

合集下载

1.2动量定理(解析版)

1.2动量定理(解析版)

1.2动量定理同步练习一、单选题1.(2021·北京市第五十七中学高二期中)安全气囊是汽车安全保障的重要设施,它与座椅安全带配合使用,可以为乘员提供有效的防撞保护,在汽车相撞时,汽车安全气囊可使头部受伤率减少25%,面部受伤率减少80%左右。

若某次汽车安全测试中,汽车发生剧烈碰撞时,安全气囊未打开,与安全气囊顺利打开相比,下列说法正确的是(设每次测试汽车速度相同)()A.安全气囊未打开时,模拟乘员的动量变化量大B.安全气囊打开时,模拟乘员受到的撞击力小C.安全气囊未打开时,模拟乘员受到撞击力的冲量大D.安全气囊打开时,模拟乘员的动量变化快【答案】B【详解】=∆AC.无论安全气囊是否打开,模拟乘员的初末动量不变,动量变化量不变,根据I p受到撞击力的冲量不变,故AC错误;BD.安全气囊打开时,模拟乘员速度变化的时间增加,而动量变化量不变,则模拟乘员的动量变化慢,根据=∆Ft p可知,模拟乘员受到的撞击力小,故B正确D错误。

故选B。

2.(2021·河南·高三月考)为了减少汽车行驶过程中突发事故带来的危害,汽车前部会安装一部分“易碎”结构——折皱区,则下列说法中不正确的是()A.折皱区应制成易变形的结构B.事故发生时,折皱区能吸收部分碰撞的能量C.事故发生时,折皱区能有效减小驾驶员和乘客受到的冲击力D.事故发生后,若汽车碰撞损伤较轻,可直接加固折皱区【答案】D【详解】ABC.折皱区应制成易变形的结构,这样在事故发生时,折皱区能吸收部分碰撞的动能,折皱区发生形变一定程度上能够延长碰撞时间,进一步减小驾驶员和乘客受到的冲击力,ABC不符合题意;D.事故发生后,若汽车碰撞损伤较轻应替换折皱区,若直接对其加固,则无法应对下一次碰撞事故,D符合题意。

故选D。

3.(2021·河北·唐山市第十中学高二期中)下面关于动量和冲量的说法中正确的是()A.冲量与动量的单位在国际单位制下是相同的,所以冲量就是动量B.如果物体的速度发生变化,则可以肯定它受到的合外力的冲量不为零C.如果合外力对物体的冲量不为零,则合外力一定使物体的动能增大D.作用在物体上的合外力冲量一定能改变物体速度的大小【答案】B【详解】A.冲量与动量的单位在国际单位制下是相同的,物体受的冲量等于动量的变化量,所以冲量和动量是不同的,选项A错误;B.如果物体的速度发生变化,则动量一定变化,则可以肯定它受到的合外力的冲量不为零,选项B正确;C.如果合外力对物体的冲量不为零,动量一定变化,但是合外力不一定使物体的动能增大,例如匀速圆周运动,选项C错误;D.作用在物体上的合外力冲量不一定改变物体速度的大小,例如做匀速圆周运动的向心力的冲量只改变物体的方向,选项D错误。

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析

【答案】(1)
(2)
(3)增大 S 可以通过减小 q、
U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
解得:
(3)设单位时间内通过栅电极 A 的氙离子数为 n,在时间 t 内,离子推进器发射出的氙离 子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F = nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv 电场对氙离子做功的功率 P= nqU
﹣μ(m0+m)gt=(m0+m)(v2﹣v1) 解得:物块相对于木板滑行的时间
t v2 v1 1s g
3.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.
由动量定理 F Gt p
得小球受到地面的平均作用力是 F=12N
5.如图甲所示,足够长光滑金属导轨 MN、PQ 处在同一斜面内,斜面与水平面间的夹角 θ=30°,两导轨间距 d=0.2 m,导轨的 N、Q 之间连接一阻值 R=0.9 Ω 的定值电阻。金属杆 ab 的电阻 r=0.1 Ω,质量 m=20 g,垂直导轨放置在导轨上。整个装置处在垂直于斜面向上 的匀强磁场中,匀强磁场的磁感应强度 B=0.5 T。现用沿斜面平行于金属导轨的力 F 拉着金 属杆 ab 向上运动过程中,通过 R 的电流 i 随时间 t 变化的关系图像如图乙所示。不计其它 电阻,重力加速度 g 取 10 m/s2。

(物理)物理动量定理练习题20篇及解析

(物理)物理动量定理练习题20篇及解析

(物理)物理动量定理练习题20篇及解析一、高考物理精讲专题动量定理1.如图所示,固定在竖直平面内的4光滑圆弧轨道AB与粗糙水平地面BC相切于B点。

质量m=0.1kg的滑块甲从最高点A由静止释放后沿轨道AB运动,最终停在水平地面上的C 点。

现将质量m=0.3kg的滑块乙静置于B点,仍将滑块甲从A点由静止释放结果甲在B点与乙碰撞后粘合在一起,最终停在D点。

已知B、C两点间的距离x=2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s,两滑块均视为质点。

求:(1)圆弧轨道AB的半径R;(2)甲与乙碰撞后运动到D点的时间t【答案】(1) (2)【解析】【详解】(1)甲从B点运动到C点的过程中做匀速直线运动,有:v B2=2a1x1;根据牛顿第二定律可得:对甲从A点运动到B点的过程,根据机械能守恒:解得v B=4m/s;R=0.8m;(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到D点,由动量定理:解得t=0.4s2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不分开,C的v-t图象如图乙所示.求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1(3)4—12s内墙壁对物块B的冲量大小I【答案】(1) 2kg (2) 27J (3) 36N s【解析】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg.(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J(3)取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·s3.一质量为m的小球,以初速度v0沿水平方向射出,恰好垂直地射到一倾角为30°的固定斜面上,并立即沿反方向弹回.已知反弹速度的大小是入射速度大小的34.求在碰撞过程中斜面对小球的冲量的大小.【答案】72mv0【解析】【详解】小球在碰撞斜面前做平抛运动,设刚要碰撞斜面时小球速度为v,由题意知v的方向与竖直线的夹角为30°,且水平分量仍为v0,由此得v=2v0.碰撞过程中,小球速度由v变为反向的34v,碰撞时间极短,可不计重力的冲量,由动量定理,设反弹速度的方向为正方向,则斜面对小球的冲量为I=m3()4v-m·(-v)解得I=72mv0.4.在距地面20m高处,某人以20m/s的速度水平抛出一质量为1kg的物体,不计空气阻力(g取10m/s2)。

高考物理动量定理解题技巧及练习题(含答案)含解析

高考物理动量定理解题技巧及练习题(含答案)含解析

高考物理动量定理解题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.2.如图所示,质量M =1.0kg 的木板静止在光滑水平面上,质量m =0.495kg 的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。

质量m 0=0.005kg 的子弹以速度v 0=300m/s 沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够长,g取10m/s2。

求:(1)物块的最大速度v1;(2)木板的最大速度v2;(3)物块在木板上滑动的时间t.【答案】(1)3m/s ;(2)1m/s ;(3)0.5s。

动量定理习题参考答案及解答

动量定理习题参考答案及解答

动量定理习题参考答案及解答1.题图1所示系统中各杆都为均质杆。

已知:杆OA 、CD 的质量各为m ,杆AB 质量为2m ,且OA =AC =CB =CD =l ,杆OA 以角速度ω 转动,求图示瞬时各杆动量的大小并在图中标明其动量的方向。

答案:ωωωml p ml p ml p CD AB OA 22 ,22 ,2===,方向如图。

注意:图中所示仅是动量的方向,并不表示合动量的作用线。

2.一颗质量为m =30g 的子弹,以v 0=500m/s 的速度射入质量m A =4.5kg 的物块A 中。

物块A 与小车BC 之间的动摩擦系数f D =0.5。

已知小车的质量m BC =3.5kg ,可以在光滑的水平地面上自由运动。

试求:(1)车与物块的末速度v ;(2)物块A 在车上距离B 端的最终位置。

提示:整体而言,根据水平方向动量守恒可先求得车与物块的末速度v ;子弹射入物块瞬时物块与子弹的速度v 1;然后计算物块与小车之间的动滑动摩擦力F D ;进而求得小车和物块的加速度,再分别求得小车和物块的位移;最后求得相对位移和物块A 在车上距离B 端的最终位置。

答案:)(113)2(),/(868.1)1(mm s m v =3.如题图3所示,均质杆AB ,长l ,直立在光滑水平面上。

求它从铅直位置无初速地倒下时,端点A 相对图示坐标系的轨迹。

提示:水平方向质心守恒。

答案: 2224l y x =+4.质量为m 1的棱柱体A ,其顶部铰接一质量为m 2、边长为a 和b 的棱柱体B ,初始静止,如图所示。

忽略棱柱A 与水平面的摩擦,若作用在B 上的力偶使其绕O 轴转动90o (由图示的实线位置转至虚线位置),试求棱柱体A 移动的距离。

设A 与B 的各边平行。

提示:水平方向质心守恒。

答案:棱柱体A 移动的距离 )(2)(212m m b a m x ++= (向左) 5.如图所示水平面上放一均质三棱柱A ,在其斜面上又放一均质三棱柱B 。

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1. 2022年将在我国举办第二十四届冬奥会, 跳台滑雪是其中最具观赏性的项目之一. 某滑道示意图如下, 长直助滑道AB 与弯曲滑道BC 平滑衔接, 滑道BC 高h=10 m, C 是半径R=20 m 圆弧的最低点, 质量m=60 kg 的运动员从A 处由静止开始匀加速下滑, 加速度a=4.5 m/s2, 到达B 点时速度vB=30 m/s. 取重力加速度g=10 m/s2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力, 画出运动员经过C 点时的受力图, 并求其所受支持力FN 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度, 则利用运动学公式可以求解斜面的长度, 即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:从B 运动到C 由动能定理可知:221122C B mgh mv mv =- 解得;3900N N =故本题答案是: (1) (2) (3)点睛:本题考查了动能定理和圆周运动, 会利用动能定理求解最低点的速度, 并利用牛顿第二定律求解最低点受到的支持力大小.2. 图甲为光滑金属导轨制成的斜面, 导轨的间距为 , 左侧斜面的倾角 , 右侧斜面的中间用阻值为 的电阻连接。

在左侧斜面区域存在垂直斜面向下的匀强磁场, 磁感应强度大小为 , 右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场, 磁感应强度为 。

在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab, 另一导体棒cd 置于左侧斜面轨道上, 与导轨垂直且接触良好, ab 棒和cd 棒的质量均为 , ab 棒的电阻为 , cd 棒的电阻为 。

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。

高考物理动量定理解题技巧及练习题(含答案)及解析

高考物理动量定理解题技巧及练习题(含答案)及解析

高考物理动量定理解题技巧及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A以v0=12 m/s 的水平速度撞上静止的滑块B并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m1=0.5 kg、m2=1.5 kg。

求:①A与B撞击结束时的速度大小v;②在整个过程中,弹簧对A、B系统的冲量大小I。

【答案】①3m/s;②12N•s【解析】【详解】①A、B碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m1v0=(m1+m2)v代入数据解得v=3m/s②以向左为正方向,A、B与弹簧作用过程由动量定理得I=(m1+m2)(-v)-(m1+m2)v代入数据解得I=-12N•s负号表示冲量方向向右。

2.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m=1.0kg、可视为质点的物体,以v0=6.0m/s的初速度沿斜面上滑。

已知sin37º=0.60,cos37º=0.80,重力加速度g取10m/s2,不计空气阻力。

求:(1)物体沿斜面向上运动的加速度大小;(2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值;(3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。

【答案】(1)6.0m/s2(2)18J(3)20N·s,方向竖直向下。

【解析】【详解】(1)设物体运动的加速度为a,物体所受合力等于重力沿斜面向下的分力为:F=mg sinθ根据牛顿第二定律有:F=ma ;解得:a =6.0m/s 2(2)物体沿斜面上滑到最高点时,克服重力做功达到最大值,设最大值为v m ;对于物体沿斜面上滑过程,根据动能定理有:2120m W mv -=-解得W =18J ;(3)物体沿斜面上滑和下滑的总时间为:02262s 6v t a ⨯=== 重力的冲量:20N s G I mgt ==⋅方向竖直向下。

动量定理练习题含答案及解析

动量定理练习题含答案及解析

动量定理练习题含答案及解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度;(2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上【解析】【分析】【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得:–μ Mg t =M v – M v 0解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ⋅,重力加速度g 取210m /s ,求:(1)小球运动到圆弧轨道1最低端时,对轨道的压力大小;(2)小球落到圆弧轨道2上时的动能大小。

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。

用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。

另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。

求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I;(3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。

【答案】(1)2kg ;(2)27J,36N·S;(3)9J【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg。

(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·S(3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v41 2(m A+m C)23v=12(m A+m B+m C)24v+E p2解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。

2.质量0.2kg的球,从5.0m高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g取10m/s2.求小球对钢板的作用力.【答案】78N【解析】【详解】自由落体过程v12=2gh1,得v1=10m/s;v1=gt1得t1=1s小球弹起后达到最大高度过程0− v22=−2gh2,得v2=9m/s0-v2=-gt2得t2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t′=mv2-(-mv1)其中t′=t-t1-t2=0.05s得F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作用力大小为78N,方向竖直向下;3.如图所示,质量的小车A静止在光滑水平地面上,其上表面光滑,左端有一固定挡板。

高考物理动量定理的技巧及练习题及练习题(含答案)及解析

高考物理动量定理的技巧及练习题及练习题(含答案)及解析

高考物理动量定理的技巧及练习题及练习题(含答案)及解析一、高考物理精讲专题动量定理1.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。

在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。

在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。

已知t =0时刻起,cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而ab 棒在水平拉力F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线与竖直方向的夹角37θ=︒。

其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支架。

(1)请通过计算分析cd 棒的运动情况; (2)若t =0时刻起,求2s 内cd 受到拉力的冲量;(3)3 s 内电阻R 上产生的焦耳热为2. 88 J ,则此过程中拉力对cd 棒做的功为多少? 【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s g ;(3)43.2J 【解析】 【详解】(1)设绳中总拉力为T ,对导体棒ab 分析,由平衡方程得:sin θF T BIl =+cos θT mg =解得:tan θ 1.50.5F mg BIl I =+=+由图乙可知:1.50.2F t =+则有:0.4I t =cd 棒上的电流为:0.8cd I t =则cd 棒运动的速度随时间变化的关系:8v t =即cd 棒在导轨上做匀加速度直线运动。

(2)ab 棒上的电流为:0.4I t =则在2 s 内,平均电流为0.4 A ,通过的电荷量为0.8 C ,通过cd 棒的电荷量为1.6C 由动量定理得:sin θ0F t I mg t BlI mv +-=-解得: 1.6N s F I =g(3)3 s 内电阻R 上产生的的热量为 2.88J Q =,则ab 棒产生的热量也为Q ,cd 棒上产生的热量为8Q ,则整个回路中产生的总热量为28. 8 J ,即3 s 内克服安培力做功为28. 8J 而重力做功为:G sin 43.2J W mg θ==对导体棒cd ,由动能定理得:F W W'-克安2G 102W mv +=- 由运动学公式可知导体棒的速度为24 m/s 解得:43.2J F W '=2.如图所示,质量M =1.0kg 的木板静止在光滑水平面上,质量m =0.495kg 的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。

物理动量守恒定律练习题20篇及解析

物理动量守恒定律练习题20篇及解析

物理动量守恒定律练习题20篇及解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。

高考物理动量定理的技巧及练习题及练习题(含答案)及解析

高考物理动量定理的技巧及练习题及练习题(含答案)及解析

高考物理动量定理的技巧及练习题及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.2.两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.5T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l=0.20m ,两根质量均m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω.在t=0时刻,两杆都处于静止状态.现有一与导轨平行,大小0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动.经过T=5.0s,金属杆甲的加速度为a=1.37 m/s2,求此时两金属杆的速度各为多少?【答案】8.15m/s 1.85m/s【解析】设任一时刻两金属杆甲、乙之间的距离为,速度分别为和,经过很短时间,杆甲移动距离,杆乙移动距离,回路面积改变由法拉第电磁感应定律,回路中的感应电动势:回路中的电流:杆甲的运动方程:由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量变化(时为0)等于外力F的冲量:联立以上各式解得代入数据得=8.15m/s =1.85m/s【名师点睛】两杆同向运动,回路中的总电动势等于它们产生的感应电动势之差,即与它们速度之差有关,对甲杆由牛顿第二定律列式,对两杆分别运用动量定理列式,即可求解.3.冬奥会短道速滑接力比赛中,在光滑的冰面上甲运动员静止,以10m/s运动的乙运动员从后去推甲运动员,甲运动员以6m/s向前滑行,已知甲、乙运动员相互作用时间为1s,甲运动员质量m1=70kg、乙运动员质量m2=60kg,求:⑴乙运动员的速度大小;⑵甲、乙运动员间平均作用力的大小。

(物理)物理动量定理专项习题及答案解析

(物理)物理动量定理专项习题及答案解析
(1)取竖直向上为正方向,碰撞地面前小球的动量 p1 mv1 1.2kg.m / s
碰撞地面后小球的动量 p2 mv2 0.8kg.m / s
小球与地面碰撞前后的动量变化 p p2 p1 2kg.m / s 方向竖直向上
(2)小球与地面碰撞,小球受到重力 G 和地面对小球的作用力 F,
由欧姆定律得
E 4V
I2
E R
4 0.5
A
8A
(2)由图 2 可知, Bx 1(T m)
由图 3 可知,E 与时间成正比,有
E=2t(V)
I E 4t R
因 =53°,可知任意 t 时刻回路中导体棒有效切割长度 L 4x 3
又由
F安 BIL
所以
16 F安 3 t
即安培力跟时间成正比 所以在 1~2s 时间内导体棒所受安培力的平均值
16 32 F 3 3 N 8N
2

(3)因为 所以
I安 Ft 8Ns E BLv 4Bx v
3 v 1.5t(m/s)
可知导体棒的运动时匀加速直线运动,加速度
a 1.5m/s2
又 x 1 at 2 ,联立解得 2 F 6 32 3x 9
【名师点睛】 本题的关键首先要正确理解两个图象的数学意义,运用数学知识写出电流与时间的关系,
【答案】(1)3m/s ;(2)1m/s ;(3)0.5s。
【解析】
【详解】
(1)子弹射入物块后一起向右滑行的初速度即为物块的最大速度,取向右为正方向,根据
子弹和物块组成的系统动量守恒得:
解得:
m0v0=(m+m0)v1
v1=3m/s (2)当子弹、物块和木板三者速度相同时,木板的速度最大,根据三者组成的系统动量守

高考物理动量定理解题技巧及练习题(含答案)及解析

高考物理动量定理解题技巧及练习题(含答案)及解析

高考物理动量定理解题技巧及练习题(含答案)及解析一、高考物理精讲专题动量定理1.蹦床运动是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。

一个质量为60kg 的运动员,从离水平网面3.2m 高处自由下落,着网后沿竖直方向蹦回离水平网面5.0m 高处。

已知运动员与网接触的时间为1.2s ,若把这段时间内网对运动员的作用力当作恒力来处理,求此力的大小和方向。

(g 取10m/s 2) 【答案】1.5×103N ;方向向上 【解析】 【详解】设运动员从h 1处下落,刚触网的速度为18m /s v =运动员反弹到达高度h 2,,网时速度为210m /s v ==在接触网的过程中,运动员受到向上的弹力F 和向下的重力mg ,设向上方向为正,由动量定理有()21()F mg t mv mv -=--得F =1.5×103N方向向上2.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F 0时,安全气囊爆开.某次试验中,质量m 1=1 600 kg 的试验车以速度v 1 = 36 km/h 正面撞击固定试验台,经时间t 1 = 0.10 s 碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响. (1)求此过程中试验车受到试验台的冲量I 0的大小及F 0的大小;(2)若试验车以速度v 1撞击正前方另一质量m 2 =1 600 kg 、速度v 2 =18 km/h 同向行驶的汽车,经时间t 2 =0.16 s 两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)I 0 = 1.6×104N·s , 1.6×105N ;(2)见解析 【解析】 【详解】(1)v 1 = 36 km/h = 10 m/s ,取速度v 1 的方向为正方向,由动量定理有 -I 0 = 0-m 1v 1 ①将已知数据代入①式得 I 0 = 1.6×104 N·s ② 由冲量定义有I 0 = F 0t 1 ③将已知数据代入③式得 F 0 = 1.6×105 N ④(2)设试验车和汽车碰撞后获得共同速度v ,由动量守恒定律有m 1v 1+ m 2v 2 = (m 1+ m 2)v ⑤对试验车,由动量定理有 -Ft 2 = m 1v -m 1v 1 ⑥ 将已知数据代入⑤⑥式得 F = 2.5×104 N ⑦可见F <F 0,故试验车的安全气囊不会爆开 ⑧3.如图所示,一个质量为m 的物体,初速度为v 0,在水平合外力F (恒力)的作用下,经过一段时间t 后,速度变为v t 。

(物理)物理动量定理练习题20篇及解析

(物理)物理动量定理练习题20篇及解析

(物理)物理动量定理练习题 20 篇及解析一、高考物理精讲专题动量定理1.如图所示,固定在竖直平面内的 4 光滑圆弧轨道AB 与粗糙水平地面 BC 相切于B 点。

质量 m =0.1kg 的滑块甲从最高点A 由静止释放后沿轨道 AB 运动,最终停在水平地面上的 C 点。

现将质量 m =0.3kg 的滑块乙静置于 B 点,仍将滑块甲从A 点由静止释放结果甲在 B 点与乙碰撞后粘合在一起,最终停在D 点。

已知B、C 两点间的距离x =2m,甲、乙与地面间的动摩擦因数分别为=0.4、 =0.2,取g=10m/s ,两滑块均视为质点。

求:(1)圆弧轨道AB 的半径 R;(2)甲与乙碰撞后运动到 D 点的时间t【答案】(1)(2)【解析】【详解】(1)甲从 B 点运动到C 点的过程中做匀速直线运动,有:v2=2a1x1;B根据牛顿第二定律可得:对甲从A 点运动到B 点的过程,根据机械能守恒:=4m/s;R=0.8m;解得vB(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到 D 点,由动量定理:解得t=0.4s2.如图甲所示,物块A、B 的质量分别是m A =4.0kg 和m B =3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块 B 右侧与竖直墙壁相接触.另有一物块 C 从t=0 时以一定速度向右运动,在 t=4s 时与物块A 相碰,并立即与A 粘在一起不分开, C 的v-t 图象如图乙所示.求:;(1)C 的质量mC(2)t=8s 时弹簧具有的弹性势能 Ep1(3)4—12s 内墙壁对物块B 的冲量大小I【答案】(1)2kg(2)27J(3)36N s【解析】【详解】(1)由题图乙知, C 与 A 碰前速度为 v 1=9m/s ,碰后速度大小为 v 2=3m/s ,C 与 A 碰撞过 程动量守恒m C v 1 =(m A +m C )v 2解得 C 的质量m C =2kg . (2)t =8s 时弹簧具有的弹性势能1E p1 = (m A +m C )v 22=27J(3)取水平向左为正方向,根据动量定理, 4~12s 内墙壁对物块 B 的冲量大小I=(m A +m C )v 3-(m A +m C )(-v 2 )=36N·s3.一质量为 m 的小球,以初速度 v 0 沿水平方向射出,恰好垂直地射到一倾角为 30°的固3定斜面上,并立即沿反方向弹回.已知反弹速度的大小是入射速度大小的 .求在碰撞过程4中斜面对小球的冲量的大小.【答案】 【解析】【详解】 7mv 02小球在碰撞斜面前做平抛运动,设刚要碰撞斜面时小球速度为 v ,由题意知 v 的方向与竖 直线的夹角为 30°,且水平分量仍为 v 0, 由此得 v =2v 0.碰撞过程中,小球速度由 v 变为反3向的 v ,碰撞时间极短,可不计重力的冲量,由动量定理,设反弹速度的方向为正方4向,则斜面对小球的冲量为 I =m (v) -m · (-v)43 27解得I=mv 0.24.在距地面 20m 高处,某人以20m/s 的速度水平抛出一质量为 1kg 的物体,不计空气阻力(g 取10m/s2 )。

【物理】物理动量定理练习题20篇

【物理】物理动量定理练习题20篇

【物理】物理动量定理练习题2 0 篇一、高考物理精讲专题动量定理1. 质量为m 的小球,从沙坑上方自由下落,经过时间t₁到达沙坑表面,又经过时间t₂停在沙坑里.求:(1)沙对小球的平均阻力F;(2)小球在沙坑里下落过程所受的总冲量1.【答案】(1) (2)mgt₁【解析】试题分析:设刚开始下落的位置为A, 刚好接触沙的位置为B, 在沙中到达的最低点为C.(1)在下落的全过程对小球用动量定理:重力作用时间为ti+tz, 而阻力作用时间仅为t2,以竖直向下为正方向,有:mg(ti+t2)-Ft₂=0,解得:(2)仍然在下落的全过程对小球用动量定理:在t₁时间内只有重力的冲量,在t₂时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:mgt₁-I=0,∴I=mgt₁方向竖直向上考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2. 如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A 以vo=12m/s 的水平速度撞上静止的滑块B 并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m₁=0.5 kg、m₂=1.5kg。

求:①A 与B 撞击结束时的速度大小v;②在整个过程中,弹簧对A 、B 系统的冲量大小1。

【答案】①3m/s; ②12N·s【解析】【详解】①A 、B 碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m₁Vo=(m₁+m₂)v 代入数据解得v=3m/s②以向左为正方向, A 、B 与弹簧作用过程由动量定理得l=(m₁+m₂) (-v)-(m₁+m₂)v代入数据解得l=-12N ·s负号表示冲量方向向右。

3. 汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值B 时,安全气囊爆开.某次试验中,质量m=1600 kg 的试验车以速度v₁= 36 km/h 正面撞击固定试验台,经时间t₁= 0.10 s 碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I 的大小及F 的大小;(2)若试验车以速度v 撞击正前方另一质量m=1600 kg、速度v₂=18 km/h 同向行驶的汽车,经时间t₂=0. 16s 两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)1。

1.2动量定理-同步练习(含解析)【新教材】-人教版(2019)高中物理选修第一册(机构 )

1.2动量定理-同步练习(含解析)【新教材】-人教版(2019)高中物理选修第一册(机构 )

1.2动量定理-同步练习(含解析)一、单选题1.行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬间充满气体。

若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作用,下列说法正确的是()A.增加了司机单位面积的受力大小B.减少了碰撞前后司机动量的变化量C.将司机的动能全部转换成汽车的动能D.延长了司机的受力时间并增大了司机的受力面积2.人从高处跳到低处时,为了安全,一般都是前脚掌先着地,并在着地的过程中屈腿下蹲,这是为了()A.减小人的动量变化量B.减小人脚所受的冲量C.增大人对地的压强,使人站立得更稳,起到安全作用D.延长人体速度变化所经历的时间,从而减小地面对人脚的作用力3.古时有“守株待兔”的寓言.假设兔子质量约为2kg,以15m/s的速度奔跑,撞树后反弹的速度为1m/s,则兔子受到撞击力的冲量大小为()A.28 N·sB.29N·sC.31 N·sD.32 N·s4.从同一高度自由下落的玻璃杯,掉在水泥地面上易碎,掉在软泥地面上不易碎,这是因为()A.掉在水泥地面上,玻璃杯的动量大B.掉在水泥地面上,玻璃杯的动量变化大C.掉在水泥地面上,玻璃杯受到的冲量大D.掉在水泥地面上,玻璃杯受到的冲量和掉在软泥地面上一样大,但与水泥地面作用时间短,因而受到的水泥地的作用力大5.鸟撞飞机是导致空难的重要因素之一。

假设在某次空难中,鸟的质量为0.6kg,飞行的速度为3m/s,迎面撞上速度为720km/h的飞机,对飞机的撞击力达到1.6×106N。

则鸟撞飞机的作用时间大约为()A.7.6×10-6sB.7.6×10-5sC.1.5×10-5sD.1.5×10-4s6.如图所示,把茶杯压在一张白纸上,第一次用水平力迅速将白纸从茶杯下抽出;第二次以较慢的速度将白纸从茶杯下抽出。

下列说法中正确的是()A.第二次拉动白纸过程中,纸对茶杯的摩擦力大一些B.第一次拉动白纸过程中,纸对茶杯的摩擦力大一些C.第二次拉出白纸过程中,茶杯增加的动量大一些D.第一次拉出白纸过程中,纸给茶杯的冲量大一些二、多选题7.质量为m的物体以初速度v0开始做平抛运动,经过时间t,下降的高度为h,速度变为v,在这段时间内物体动量变化量的大小可能是()A.m(v-v0)B.mgtC.mD.m8.一质量为2kg的物块在合外力F的作用下从静止开始沿直线运动。

高中物理动量定理专题训练答案及解析

高中物理动量定理专题训练答案及解析

高中物理动量定理专题训练答案及解析一、高考物理精讲专题动量定理1.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小球A 以速度v 0=2m/s 向右运动与B 球发生弹性正碰,取重力加速度g =10m/s 2.求:(1)碰撞结束时A 球的速度大小及方向; (2)碰撞过程A 对B 的冲量大小及方向.【答案】(1)-1m/s ,方向水平向左(2)3N·s ,方向水平向右 【解析】【分析】A 与B 球发生弹性正碰,根据动量守恒及能量守恒求出碰撞结束时A 球的速度大小及方向;碰撞过程对B 应用动量定理求出碰撞过程A 对B 的冲量; 解:(1)碰撞过程根据动量守恒及能量守恒得:0A B mv mv Mv =+2220111222A B mv mv Mv =+ 联立可解得:1m/s B v =,1m/s A v =- 负号表示方向水平向左 (2)碰撞过程对B 应用动量定理可得:0B I Mv =- 可解得:3I N s =⋅ 方向水平向右2.如图所示,一个质量为m 的物体,初速度为v 0,在水平合外力F (恒力)的作用下,经过一段时间t 后,速度变为v t 。

(1)请根据上述情境,利用牛顿第二定律推导动量定理,并写出动量定理表达式中等号两边物理量的物理意义。

(2)快递公司用密封性好、充满气体的塑料袋包裹易碎品,如图所示。

请运用所学物理知识分析说明这样做的道理。

【答案】详情见解析 【解析】 【详解】(1)根据牛顿第二定律F ma =,加速度定义0i v v a t-=解得 0=-i Ft mv mv即动量定理, Ft 表示物体所受合力的冲量,mv t -mv 0表示物体动量的变化 (2)快递物品在运送途中难免出现磕碰现象,根据动量定理0=-i Ft mv mv在动量变化相等的情况下,作用时间越长,作用力越小。

充满气体的塑料袋富有弹性,在碰撞时,容易发生形变,延缓作用过程,延长作用时间,减小作用力,从而能更好的保护快递物品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量定理练习含解析一、高考物理精讲专题动量定理1.如图所示,固定在竖直平面内的4光滑圆弧轨道AB 与粗糙水平地面BC 相切于B 点。

质量m =0.1kg 的滑块甲从最高点A 由静止释放后沿轨道AB 运动,最终停在水平地面上的C 点。

现将质量m =0.3kg 的滑块乙静置于B 点,仍将滑块甲从A 点由静止释放结果甲在B 点与乙碰撞后粘合在一起,最终停在D 点。

已知B 、C 两点间的距离x =2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s ,两滑块均视为质点。

求:(1)圆弧轨道AB 的半径R;(2)甲与乙碰撞后运动到D 点的时间t【答案】(1) (2) 【解析】【详解】(1)甲从B 点运动到C 点的过程中做匀速直线运动,有:v B 2=2a 1x 1; 根据牛顿第二定律可得:对甲从A 点运动到B 点的过程,根据机械能守恒:解得v B =4m/s ;R=0.8m ; (2)对甲乙碰撞过程,由动量守恒定律: ;若甲与乙碰撞后运动到D 点,由动量定理:解得t=0.4s2.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。

一质量为60kg 的运动员在高度为80h m =,倾角为30θ=︒的斜坡顶端,从静止开始沿直线滑到斜面底端。

下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问:(1)运动员到达斜坡底端时的速率v ;(2)运动员刚到斜面底端时,重力的瞬时功率;(3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。

【答案】(1)40/m s (2)41.210W ⨯(3)34.810N s ⨯⋅ 方向为竖直向下【解析】【分析】(1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可;(3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可;【详解】(1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212mgh mv =到达底端时的速率为:40/v m s =;(2)滑雪者由滑到斜面底端时重力的瞬时功率为:4sin 30 1.210G P mg v W =⋅⋅︒=⨯; (3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动根据牛顿第二定律0sin 30mg ma =,可以得到:2sin 305/a g m s =︒=根据速度与时间关系可以得到:08v t s a-== 则重力的冲量为:34.810G I mgt N s ==⨯⋅,方向为竖直向下。

【点睛】本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率的求法。

3.如图所示,质量为m =245g 的木块(可视为质点)放在质量为M =0.5kg 的木板左端,足够长的木板静止在光滑水平面上,木块与木板间的动摩擦因数为μ= 0.4,质量为m 0 = 5g 的子弹以速度v 0=300m/s 沿水平方向射入木块并留在其中(时间极短),子弹射入后,g 取10m/s 2,求:(1)子弹进入木块后子弹和木块一起向右滑行的最大速度v 1(2)木板向右滑行的最大速度v 2(3)木块在木板滑行的时间t【答案】(1) v 1= 6m/s (2) v 2=2m/s (3) t =1s【解析】【详解】(1)子弹打入木块过程,由动量守恒定律可得:m 0v 0=(m 0+m )v 1解得:v 1= 6m/s(2)木块在木板上滑动过程,由动量守恒定律可得:(m 0+m )v 1=(m 0+m +M )v 2解得:v 2=2m/s(3)对子弹木块整体,由动量定理得:﹣μ(m0+m)gt=(m0+m)(v2﹣v1)解得:物块相对于木板滑行的时间211sv vtgμ-==-4.如图所示,真空中有平行正对金属板A、B,它们分别接在输出电压恒为U=91V的电源两端,金属板长L=10cm、两金属板间的距离d=3.2cm,A、B两板间的电场可以视为匀强电场。

现使一电子从两金属板左侧中间以v0=2.0×107m/s的速度垂直于电场方向进入电场,然后从两金属板右侧射出。

已知电子的质量m=0.91×10-30kg,电荷量e=1.6×10-19C,两极板电场的边缘效应及电子所受的重力均可忽略不计(计算结果保留两位有效数字),求:(1)电子在电场中运动的加速度a的大小;(2)电子射出电场时在沿电场线方向上的侧移量y;(3)从电子进入电场到离开电场的过程中,其动量增量的大小。

【答案】(1)1425.010m/s⨯;(2)0.63m;(3)242.310kg m/s-⨯⋅。

【解析】【详解】(1)设金属板A、B间的电场强度为E,则UEd=,根据牛顿第二定律,有Ee ma=电子在电场中运动的加速度19214223091 1.610m/s 5.010m/s3.2100.9110Ee Ueam dm---⨯⨯====⨯⨯⨯⨯(2)电子以速度v进入金属板A、B间,在垂直于电场方向做匀速直线运动,沿电场方向做初速度为零的匀加速直线运动,电子在电场中运动的时间为970.1s 5.010s2.010Ltv-===⨯⨯电子射出电场时在沿电场线方向的侧移量212y at=代入数据149215.010(5.010)0.63cm2cmy-=⨯⨯⨯⨯=(3)从电子进入电场到离开电场的过程中,由动量定理,有ΔEet p=其动量增量的大小Δp=1924271.6010910.1kg m/s=2.310kg m/s3.210 2.010eULdv---⨯⨯⨯=⋅⨯⋅⨯⨯⨯5.如图,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,某时刻物体A获得一大小为的水平初速度开始向右运动。

已知物体A的质量为m,物体B的质量为2m,求:(1)弹簧压缩到最短时物体B的速度大小;(2)弹簧压缩到最短时的弹性势能;(3)从A开始运动到弹簧压缩到最短的过程中,弹簧对A的冲量大小。

【答案】(1)(2)(3)【解析】【详解】(1)弹簧压缩到最短时,A和B共速,设速度大小为v,由动量守恒定律有①得②(2)对A、B和弹簧组成的系统,由功能关系有③得④(3)对A由动量定理得⑤得⑥6.如图所示,两个小球A和B质量分别是m A=2.0kg,m B=1.6kg,球A静止在光滑水平面上的M点,球B在水平面上从远处沿两球的中心连线向着球A运动,假设两球相距L≤18m时存在着恒定的斥力F,L>18m时无相互作用力.当两球相距最近时,它们间的距离为d=2m,此时球B的速度是4m/s.求:(1)球B的初速度大小;(2)两球之间的斥力大小;(3)两球从开始相互作用到相距最近时所经历的时间.【答案】(1) 09B m v s = ;(2) 2.25F N =;(3) 3.56t s = 【解析】试题分析:(1)当两球速度相等时,两球相距最近,根据动量守恒定律求出B 球的初速度;(2)在两球相距L >18m 时无相互作用力,B 球做匀速直线运动,两球相距L≤18m 时存在着恒定斥力F ,B 球做匀减速运动,由动能定理可得相互作用力(3)根据动量定理得到两球从开始相互作用到相距最近时所经历的时间.(1)设两球之间的斥力大小是F ,两球从开始相互作用到两球相距最近时所经历的时间是t 。

当两球相距最近时球B 的速度4B m v s =,此时球A 的速度A v 与球B 的速度大小相等, 4A B m v v s ==,由动量守恒定律可()0B B A B m v m m v =+得: 09B m v s=; (2)两球从开始相互作用到它们之间距离最近时,它们之间的相对位移Δx=L -d ,由功能关系可得: ()'2221122B B A A B B F X m v m v m v ∆=-+ 得:F=2.25N (3)根据动量定理,对A 球有0A Ft mv =-,得 3.56t s =点晴:本题综合考查了动量定理、动量守恒定律和能量守恒定律,综合性较强.知道速度相等时,两球相距最近,以及知道恒力与与相对位移的乘积等于系统动能的损失是解决本题的关键.7.如图所示,光滑水平面上放着质量都为m 的物块A 和B ,A 紧靠着固定的竖直挡板,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧压缩的弹性势能为.在A 、B 间系一轻质细绳,细绳的长略大于弹簧的自然长度。

放手后绳在短暂时间内被拉断,之后B 继续向右运动,一段时间后与向左匀速运动、速度为v 0的物块C 发生碰撞,碰后B 、C 立刻形成粘合体并停止运动,C 的质量为2m 。

求:(1)B 、C 相撞前一瞬间B 的速度大小;(2)绳被拉断过程中,绳对A 的冲量I 。

【答案】(1)(2) 【解析】(1)由动量守恒定律可知: 得:(2)由能量守恒可得:得:动量守恒:冲量:得:8.小物块电量为+q ,质量为m ,从倾角为θ的光滑斜面上由静止开始下滑,斜面高度为h ,空间中充满了垂直斜面匀强电场,强度为E ,重力加速度为g ,求小物块从斜面顶端滑到底端的过程中:(1)电场的冲量.(2)小物块动量的变化量.【答案】(1q 2sin E h gθ方向垂直于斜面向下(2)2m gh 方向沿斜面向下 【解析】 (1)小物块沿斜面下滑,根据牛顿第二定律可知:sin mg ma θ=,则:sin a g θ= 根据位移与时间关系可以得到:21sin sin 2h g t θθ=,则:12sin h t gθ= 则电场的冲量为:2sin Eqh I Eqt gθ==方向垂直于斜面向下 (2)根据速度与时间的关系,小物块到达斜面底端的速度为:gsin v at t θ==⋅ 则小物块动量的变化量为:12sin sin 2sin h p mv mg t mg m gh gθθθ∆====方向沿斜面向下. 点睛:本题需要注意冲量以及动量变化量的矢量性的问题,同时需要掌握牛顿第二定律以及运动学公式的运用.9.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.在正方体密闭容器中有大量某种气体的分子,每个分子质量为m ,单位体积内分子数量n 为恒量.为简化问题,我们假定:分子大小可以忽略;分子速率均为v ,且与器壁各面碰撞的机会均等;分子与器壁碰撞前后瞬间,速度方向都与器壁垂直,且速率不变.(1)求一个气体分子与器壁碰撞一次给器壁的冲量I 的大小;(2)每个分子与器壁各面碰撞的机会均等,则正方体的每个面有六分之一的几率.请计算在Δt 时间内,与面积为S 的器壁发生碰撞的分子个数N ;(3)大量气体分子对容器壁持续频繁地撞击就形成了气体的压强.对在Δt 时间内,与面积为S 的器壁发生碰撞的分子进行分析,结合第(1)(2)两问的结论,推导出气体分子对器壁的压强p 与m 、n 和v 的关系式.【答案】(1)2I mv =(2) 1.6N n Sv t =∆ (3)213nmv 【解析】 (1)以气体分子为研究对象,以分子碰撞器壁时的速度方向为正方向根据动量定理 2I mv mv mv -=--=-'由牛顿第三定律可知,分子受到的冲量与分子给器壁的冲量大小相等方向相反 所以,一个分子与器壁碰撞一次给器壁的冲量为 2I mv =;(2)如图所示,以器壁的面积S 为底,以vΔt 为高构成柱体,由题设条件可知,柱体内的分子在Δt 时间内有1/6与器壁S 发生碰撞,碰撞分子总数为16N n Sv t =⋅∆ (3)在Δt 时间内,设N 个分子对面积为S 的器壁产生的作用力为FN 个分子对器壁产生的冲量 F t NI ∆=根据压强的定义 F p S= 解得气体分子对器壁的压强 213p nmv = 点睛:根据动量定理和牛顿第三定律求解一个分子与器壁碰撞一次给器壁的冲量;以Δt 时间内分子前进的距离为高构成柱体,柱体内1/6的分子撞击柱体的一个面,求出碰撞分子总数;根据动量定理求出对面积为S 的器壁产生的撞击力,根据压强的定义求出压强;10.某汽车制造商研制开发了发动机额定功率P=30 kW 的一款经济实用型汽车,在某次性能测试中,汽车连同驾乘人员的总质量m=2000kg ,在平直路面上以额定功率由静止启动,行驶过程中受到大小f=600 N 的恒定阻力.(1)求汽车的最大速度v ;(2)若达到最大速度v 后,汽车发动机的功率立即改为P′=18 kW ,经过一段时间后汽车开始以不变的速度行驶,求这段时间内汽车所受合力的冲量I.【答案】(1)50/m s (2)44.010/kg m s -⨯⋅ 方向与初速度的方向相反【解析】【详解】(1)汽车匀速运动时,牵引力等于阻力,有:F=f=600N根据 P=Fv 代入数据解得:v=50m/s(2)设功率改为 P′=18kW 时,则有:P v F '='=30m/s 根据动量定理得:I=mv′−mv代入数据得:I=−4.0×104kg·m/s,负号表示方向与初速度的方向相反【点睛】(1)汽车匀速运动时,牵引力等于阻力,根据P=Fv 求解速度;(2)根据P=Fv 求出功率改为P′=18kW 的速度,然后根据动量定理求出合外力的冲量.11.飞机场有一架战斗机,质量3510m =⨯Kg ,发动机的额定功率900P =kW .在战备状态下,一开始启动,发动机就处于额定功率状态,在跑道上经过时间t =15s 运动,速度恰好达到最大速度m 60v =m/s 离开跑道.飞机在跑道上运动过程中,受到的阻力不断增大.求:(1)飞机速度达到最大时,所受到的阻力大小;(2)飞机从启动到最大速度的过程中,飞机所受合外力的冲量的大小;(3)飞机从启动到离开跑道,飞机克服阻力所做的功.【答案】(1)1.5×104N (2)5310I N s =⨯⋅合(3)4.5×106J【解析】(1)飞机速度达到最大时,设飞机的牵引力为F ,受到的阻力是f ,则F f =P Fv =解得f =1.5×104 N(2)对飞机由动量定理有 0I mv =-合解得5310I =⨯合N.s(3)从开始到离开跑道,设克服阻力做功是W ,则212Pt W mv -= 解得W =4.5×106 J【点睛】本题考查功及冲量的计算,要注意明确当飞机达最大速度时,牵引力等于阻力.12.有一水龙头以每秒800g 水的流量竖直注入盆中,盆放在磅秤上,如图所示.盆中原来无水,盆的质量500g ,注至5s 末时,磅秤的读数为57N ,重力加速度g 取10m/s 2,则此时注入盆中的水流的速度约为多大?【答案】15m/s【解析】5s时,杯子及水的总质量m=0.5+0.8×5=4.5kg;设注入水流的速度为t,取竖直向下为正方向,△t时间内注入杯中的水的质量△m=0.8△t 对杯子和杯子中的水进行分析,根据动量定理可知:(mg+△mg−F)△t=0−△mv由题意可知,F=57N;而△mg<<F所以上式可变式为:mg−F=−0.7v代入数据,解得v=15m/s.点睛:取极短时间内注入杯中的水为研究对象,根据动量定理列式,可求得注入水流的速度.。

相关文档
最新文档