全国大学生数学建模竞赛题
2023年数学建模国赛c题
2023年数学建模国赛c题
2023年全国大学生数学建模竞赛C题题目是“某类产品生产中,需要确定
最优的生产计划,包括生产数量、生产时间、生产批次等”。
这是一个涉及生产管理、库存管理和生产调度等多个领域的问题,需要综合考虑各种因素,制定最优的生产计划。
首先,要明确题目的背景和要求,理解题目所涉及的实际问题,分析问题中涉及的各种因素和约束条件。
在这个问题中,需要考虑的因素包括生产成本、库存成本、市场需求、生产能力等。
同时,还需要考虑各种约束条件,如生产时间、生产批次、库存容量等。
其次,要根据问题分析的结果,选择合适的数学建模方法和模型。
在这个问题中,可以使用线性规划、整数规划、动态规划等数学建模方法和模型。
这些方法和模型可以帮助我们找出最优的生产计划,使得生产成本和库存成本最低,同时满足市场需求和生产能力等约束条件。
最后,要利用数学软件或编程语言实现数学模型,并得出最优解。
在这个问题中,可以使用MATLAB、Python等数学软件或编程语言实现数学模型,并得出最优解。
最优解可以是生产数量、生产时间、生产批次等参数的最优组合。
需要注意的是,在解题过程中要注重团队协作和沟通。
数学建模竞赛需要多人协作完成,每个人负责不同的部分,但最终需要形成一个完整的解决方案。
因此,在解题过程中要注重团队协作和沟通,确保每个人都能够发挥自己的优势,共同完成题目。
2023国赛数学建模赛题
1. 问题描述:某城市的交通网络由多个路口和道路组成。
每个路口都有一个繁忙程度指标,表示该路口的交通流量。
现在需要选取一个路口作为交通枢纽,使得离该路口最近的其他路口的平均距离最短。
请设计一个数学模型,并找出最佳的交通枢纽路口。
2. 问题描述:某公司有多个产品线,每个产品线的市场需求量不同,并且不断变化。
公司想要确定产量的分配策略,使得总成本最小。
已知每个产品线的生产成本和市场需求,以及各个产品线的最大产能。
请设计一个数学模型,并确定最优的产量分配方案。
3. 问题描述:一家快递公司需要设计一个最优的快递路线,以便在规定时间内完成所有快递的派送任务。
已知快递员的工作时间、快递的数量和派送地点之间的距离。
请建立一个数学模型,确定最佳的快递路线,使得总路程最短。
4. 问题描述:某公司的生产线上有多个工序,每个工序的加工时间和工人数量都不同。
公司想要确定每个工序的工人数量,以保证整个生产线的产量最大。
请设计一个数学模型,并找出最佳的工人分配方案。
5. 问题描述:某城市的垃圾处理中心需要合理安排垃圾运输车辆的路线,以最小化运输成本。
已知垃圾产生的位置、垃圾处理中心的位置、路网的拓扑结构以及各路段的运输成本。
请建立一个数学模型,确定最佳的垃圾运输车辆路线,使得总运输成本最小。
全国大学生数学建模竞赛历年赛题
全国大学生数学建模竞赛历年赛题1992:A?施肥效果分析 B?实验数据分解1993:A?非线性交调的频率设计 B?足球队排名次1994:A?逢山开路 B?锁具装箱1995:A?一个飞行管理问题 B?天车与冶炼炉的作业调度1996:A?最优捕鱼策略 B?节水洗衣机1997:A?零件参数 B?截断切割1998:A?投资的收益和风险 B?灾情巡视路线1999:A?自动化车床管理 B?钻井布局 C?煤矸石堆积 D?钻井布局2000:A?DNA序列分类 B?钢管购运 C?飞越北极 D?空洞探测2001:A?血管三维重建 B?公交车调度 C?基金使用2002:A?车灯线光源 B?彩票中数学 D?赛程安排2003:A?SARS的传播 B?露天矿生产 D?抢渡长江2004:A?奥运会临时超市网点设计 B?电力市场的输电阻塞管理C?饮酒驾车 D?公务员招聘2005:A 长江水质的评价和预测 B?DVD在线租赁C?雨量预报方法的评价 D?DVD在线租赁?2006:A出版社的资源配置 B 艾滋病疗法的评价及疗效的预测C易拉罐形状和尺寸的最优设计D 煤矿瓦斯和煤尘的监测与控制2007:A 中国人口增长预测 B 乘公交,看奥运C 手机“套餐”优惠几何D 体能测试时间安排2008:A 数码相机定位 B 高等教育学费标准探讨C 地面搜索D NBA赛程的分析与评价2009:A 制动器试验台的控制方法分析 B 眼科病床的合理安排C 卫星和飞船的跟踪测控 D会议筹备2010:A储油罐的变位识别与罐容表标定B 2010年上海世博会影响力的定量评估C输油管的布置D对学生宿舍设计方案的评价2011: A 城市表层土壤重金属污染分析B 交巡警服务平台的设置与调度C 企业退休职工养老金制度的改革D 天然肠衣搭配问题2012: A 葡萄酒的评价B 太阳能小屋的设计C 脑卒中发病环境因素分析及干预D 机器人避障问题2013: A 车道被占用对城市道路通行能力的影响B 碎纸片的拼接复原C 古塔的变形D 公共自行车服务系统2014: A 嫦娥三号软着陆轨道设计与控制策略B 创意平板折叠桌C 生猪养殖场的经营管理D 储药柜的设计2015: A ?太阳影子定位B?“互联网+”时代的出租车资源配置C? 月上柳梢头D? 众筹筑屋规划方案设计。
2023全国数学建模题目
2023全国数学建模题目一、选择题(每题3分,共15分)下列哪个数不是质数?A. 2B. 3C. 9D. 13若一个圆的半径是5cm,则它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π下列哪个方程表示的是一条直线?A. y = x²B. y = 2x + 1C. y = 1/xD. xy = 1下列哪个数最接近√10?A. 2B. 3C. 4D. 5一个三角形的两边长分别为3和4,第三边的取值范围是多少?A. 1 < x < 7B. 2 < x < 8C. 3 < x < 9D. 4 < x < 10二、填空题(每题4分,共20分)绝对值等于5的数是_______。
已知|a - 3| + (b + 2)² = 0,则 a + b = _______。
已知一个正方体的棱长是6cm,则它的体积是_______ cm³。
方程2x - 3 = 5 的解是x = _______。
已知扇形的圆心角为120°,半径为3cm,则扇形的面积是_______ cm²。
三、计算题(每题10分,共30分)计算:√27 - | - 2| + (1/2)^(-1) - (π - 3)^0。
解方程组:{x + 2y = 5,3x - y = 8.}已知一个矩形的面积是48cm²,一边长为6cm,求另一边长。
四、应用题(每题15分,共30分)某商店购进一批苹果,进价为每千克5元,售价为每千克8元。
若商店想要获得至少300元的利润,则至少需要售出多少千克的苹果?一辆汽车从A地开往B地,前两小时行驶了120km,后三小时行驶了180km。
求这辆汽车的平均速度。
数学建模国赛题目
数学建模国赛题目一、关于校园生活类- 逻辑:同学们在食堂排队打饭的时候,总是希望能尽快拿到食物。
这里面涉及到食堂窗口的数量、每个窗口打饭的速度(比如打不同菜品的复杂程度、工作人员的熟练程度等)、同学们到达食堂的时间分布等因素。
可以通过建立数学模型,来分析怎样安排窗口的服务或者调整同学们的排队方式,能让整体的排队等待时间最短,就像指挥一场让大家都能快速填饱肚子的战斗。
- 逻辑:在宿舍里,每个舍友用电用水的习惯都不太一样。
有人喜欢长时间开着电脑,有人洗澡特别久,水电费总是一笔糊涂账。
通过收集每个舍友的电器使用时长、用水次数和时长等数据,建立数学模型,来找出到底谁在水电费上贡献最大,就像侦探破案一样,揭开隐藏在宿舍里的“耗能大户”的神秘面纱。
二、环境保护类- 逻辑:城市里种了很多小树苗来美化环境,但是有些树苗活不了多久就夭折了。
这可能和种植的土壤质量、浇水的频率和量、周围的空气污染程度、光照等因素有关。
我们要建立一个数学模型,就像给小树苗当医生一样,找出影响它们存活的关键因素,然后提出提高树苗存活率的最佳方案,让城市里能有更多茁壮成长的绿树。
- 逻辑:城市每天都会产生大量的垃圾,这些垃圾要从各个小区、街道收集起来,然后运到垃圾处理厂。
但是垃圾车的行驶路线、垃圾收集点的分布、不同区域垃圾产量的不同等因素都会影响垃圾处理的效率。
我们要像给垃圾规划一场旅行一样,建立数学模型找到垃圾从产生地到处理厂的最优路径,让垃圾能够高效地被处理,减少对城市环境的污染。
三、经济与商业类- 逻辑:校园小卖部里的商品琳琅满目,但是怎么给这些商品定价可是个大学问。
如果定价太高,同学们就不买了;定价太低,又赚不到钱。
这里面要考虑商品的进价、同学们的消费能力、不同商品的受欢迎程度等因素。
通过建立数学模型,就像寻找宝藏的密码一样,找到能让小卖部利润最大化的定价策略。
- 逻辑:现在有很多网红店,门口总是排着长长的队伍。
这背后可能是因为独特的营销策略、美味的食物或者时尚的装修。
2023全国大学生数学建模竞赛真题解析
2023全国大学生数学建模竞赛真题解析在2023年的全国大学生数学建模竞赛中,参赛选手们面临了一系列的真题挑战。
本文将对其中的一道题目进行解析,帮助读者更好地理解和应对类似问题。
一、题目描述题目:某城市的市区内有3个公交车站A、B、C,它们之间的路程如图所示。
假设每个公交站点的乘客增长速率与已经站点的乘客数量成正比关系。
已知当C站的乘客数量达到300人时,C、A两站的总乘客数量为500人,当C站和A站的乘客数量总和达到540人时,A、B、C三站的总乘客数量为800人。
求出初始时刻各个站点的乘客数量。
二、问题分析本题要求根据已知条件求解初始时刻各个站点的乘客数量。
根据题目中给出的两个条件,我们可以建立起关于乘客数量的方程,通过求解这些方程,得到所需的结果。
三、问题求解设初始时刻A、B、C三个站点的乘客数量分别为x、y、z。
根据题目条件可列出两个方程:1. z = k1 * 300,其中k1为C站的乘客增长速率;2. x + z = 500,即A、C两站的总乘客数量为500人。
由第二个方程可得:x = 500 - z根据另一个题目条件可列出另一个方程:x + y + z = 800,即A、B、C三站的总乘客数量为800人。
将x代入上述方程中,得到:(500 - z) + y + z = 800化简得:y = 300将y代入第一个方程中,得到:z = k1 * 300综上所述,初始时刻各个站点的乘客数量分别为:A站:x = 500 - z = 500 - k1 * 300B站:y = 300C站:z = k1 * 300四、问题验证为了验证上述答案的正确性,我们可以将得到的答案代入原方程进行验证。
根据题目条件可知,当C站的乘客数量达到300人时,C、A两站的总乘客数量为500人。
将初始时刻各个站点的乘客数量代入原方程,得到:500 - k1 * 300 + k1 * 300 = 500等式两边相等,原方程成立。
全国大学生数学建模竞赛历年试题
全国大学生数学建模竞赛历年试题1.1992年A题:施肥效果分析;B题:试验数据分析;2.1993年A题:非线性交调的频率设计;B题:足球队拍名次;3.1994年A题:逢山开路;B题:锁具开箱;4.1995年A题:一个飞行管理问题;B题:天车与冶炼炉的作业调度;5.1996年A题:最优捕鱼策略;B题:节水洗衣机;6.1997年A题:零件的参数设计;B题:截断切割;7.1998年A题:投资的收益和风险B题:灾情巡视路线8.1999年A题:自动化车床管理B题:钻井布局C题:煤矸石堆积D题:钻井布局9.2000年A题:DNA序列分类B题:钢管订购和运输C题:飞越北极D题:空洞探测10.2001年A题:血管的三维重建B题:公交车调度C题:基金使用计划D题:公交车调度11.2002年A题:车灯线光源的优化设计B题:彩票中的数学C题:车灯线光源的计算D题:赛程安排12.2003年A题:SARS的传播B题:露天矿生产的车辆安排C题:SARS的传播D题:抢渡长江13.2004年A题:奥运会临时超市网点设计B题:电力市场的输电阻塞管理C题:饮酒驾车D题:公务员招聘14.2005年A题:长江水质的评价和预测B题:DVD在线租赁C题:雨量预报方法的评价D题:DVD在线租赁15.2006年A题:出版社的资源配置B题:艾滋病疗法的评价及疗效的预测C题:易拉罐形状和尺寸的最优设计D题:煤矿瓦斯和煤尘的监测与控制16.2007A题:中国人口增长预测;B题:乘公交,看奥运;C题:手机“套餐”优惠几何;D题:体能测试时间安排17.2008A题数码相机定位;B题高等教育学费标准探讨;C题地面搜索;D题NBA赛程的分析与评价.18.2009A题制动器试验台的控制方法分析B题眼科病床的合理安排C题卫星和飞船的跟踪测控D题会议筹备19.2010A题储油罐的变位识别与罐容表标定B题2010年上海世博会影响力的定量评估C题输油管的布置D题对学生宿舍设计方案的评价19.2011A题城市表层土壤重金属污染分析B题交巡警服务平台的设置与调度C题企业退休职工养老金制度的改革D题天然肠衣搭配问题20.2012A题葡萄酒的评价B题太阳能小屋的设计C题脑卒中发病环境因素分析及干预D题机器人避障问题21.2013 A题车道被占用对城市道路通行能力的影响B题碎纸片的拼接复原C题古塔的变形D题公共自行车服务系统。
高教社杯全国大学生数学建模竞赛题目
高教社杯全国大学生数学建模竞赛题目高教社杯全国大学生数学建模竞赛已经成为了我国大学生数学建模领域一项极具影响力的赛事之一。
作为一项旨在提高大学生数学建模能力和创新能力的比赛,其题目的设计非常关键。
从2009年开始,高教社杯全国大学生数学建模竞赛就引入了“数学、建模和计算机”三个方面相结合来设置竞赛题目,旨在充分体现创新性、实际性和时代性。
每年的竞赛题目独具特色,既注重基础,又注重应用,给参赛选手提供了一个广泛展示科技创新成果的舞台,极大地推动了我国大学生数学建模水平的提升。
以下是近几年高教社杯全国大学生数学建模竞赛的题目:2019年:多元时空数据的融合与应用该题目要求选手用数据分析和模型建模技术进行多元时空数据融合,制作出能应用于数据分析、可视化和预测等领域的模型。
该题目考验选手的计算机应用能力和数据处理能力。
2018年:海洋环境与生态建设该题目需要选手从海洋生态、环境污染、资源利用、气候变化等方面出发,结合数学模型和计算机技术,探究关键问题。
选手要能积极运用大数据技术,分析丰富的海洋数据,并针对不同海洋问题给出行之有效的数学和计算模型。
2017年:共享单车智能管理与优化该题目以共享单车为研究对象,要求选手分析共享单车智能管理的效能,探究如何在现有的单车停放、调度、维修等方面研究出更优的管理模式,实现精准的数量分配和智能的管理系统。
以上三个题目从不同的角度出发,分别涉及了数据分析、海洋环境、共享单车等多个领域。
它们都融合了计算机技术和数学建模思想,是一道技术与创新相结合的精彩之作。
总体而言,高教社杯全国大学生数学建模竞赛的题目设计体现了需求实际、具有挑战性和创新性等特点,能够有效地提高大学生的数学建模和创新能力。
同时,它也为推进我国大学生数学建模水平的提升做出了重大贡献。
相信未来会有更多具有前瞻性和实践性的竞赛题目出现,让更多大学生通过数学建模实现梦想。
99创维杯全国大学生数学建模竞赛题目
'99创维杯全国大学生数学建模竞赛题目A题自动化车床管理一道工序用自动化车床连续加工某种零件,由于刀具损坏等原因该工序会出现故障,其中刀具损坏故障占95%, 其它故障仅占5%。
工序出现故障是完全随机的, 假定在生产任一零件时出现故障的机会均相同。
工作人员通过检查零件来确定工序是否出现故障。
现积累有100次刀具故障记录,故障出现时该刀具完成的零件数如附表。
现计划在刀具加工一定件数后定期更换新刀具。
已知生产工序的费用参数如下:故障时产出的零件损失费用 f=200元/件;进行检查的费用 t=10元/次;发现故障进行调节使恢复正常的平均费用 d=3000元/次(包括刀具费);未发现故障时更换一把新刀具的费用 k=1000元/次。
1)假定工序故障时产出的零件均为不合格品,正常时产出的零件均为合格品, 试对该工序设计效益最好的检查间隔(生产多少零件检查一次)和刀具更换策略。
2)如果该工序正常时产出的零件不全是合格品,有2%为不合格品;而工序故障时产出的零件有40%为合格品,60%为不合格品。
工序正常而误认有故障仃机产生的损失费用为1500元/次。
对该工序设计效益最好的检查间隔和刀具更换策略。
3)在2)的情况, 可否改进检查方式获得更高的效益。
附:100次刀具故障记录(完成的零件数)459 362 624 542 509 584 433 748 815 505 612 452 434 982 640 742 565 706 593 680 926 653 164 487 734 608 428 1153 593 844 527 552 513 781 474 388 824 538 862 659 775 859 755 649 697 515 628 954 771 609 402 960 885 610 292 837 473 677 358 638699 634 555 570 84 416 606 1062 484 120 447 654 564 339 280 246 687 539 790 581 621 724 531 512 577 496 468 499 544 645 764 558 378 765 666 763 217 715 310 851B题钻井布局勘探部门在某地区找矿。
2023数学建模国赛题
2023数学建模国赛题一、选择题(每题3分,共30分)下列函数中,最小正周期为π的是()A. y=sin2xB. y=cos2xC. y=tanxD. y=∣sinx∣若实数a,b满足a>b,则下列不等式一定成立的是()A. a2>b2B. ac2>bc2C. a+a1>b+b1D. ab<1已知loga2<logb2<0,则下列不等式成立的是()A. a>b>1B. b>a>1C. 0<a<b<1D. 0<b<a<1二、填空题(每题4分,共16分)已知等差数列{an}的前n项和为Sn,若a1=1,S5=15,则公差d= _______。
已知圆x2+y2=4与直线y=kx+b相切,且直线在y轴上的截距为2,则k= _______。
若a,b是两个不共线的向量,且AB⟶=2a+kb,CB⟶=a+b,CD⟶=−2a−b,则k= _______时,A,B,D三点共线。
三、解答题(共54分)1.(本题满分12分)已知函数f(x)=lnx−xa。
(1)求函数f(x)的单调区间;(2)若函数f(x)在[1,e]上的最小值为23,求实数a的值。
2.(本题满分14分)在ΔABC中,角A,B,C的对边分别为a,b,c,且a=2,b=3,cosC=41。
(1)求sinC的值;(2)求ΔABC的面积。
3.(本题满分14分)已知椭圆C:a2x2+b2y2=1(a>b>0)的离心率为23,且过点P(1,23)。
(1)求椭圆C的方程;(2)过点E(4,0)的直线l与椭圆C交于A,B两点,若线段AB的中点坐标为(m,n),求m的取值范围。
4.(本题满分14分)已知函数f(x)=31x3−21x2+cx+d有极值点x1,x2,且x1<x2,x1+2x2=0。
(1)求c的取值范围;(2)证明:f(x1)>41。
2023全国大学生数学建模竞赛模拟题
2023全国大学生数学建模竞赛模拟题第一部分:问题描述在2023年全国大学生数学建模竞赛中,我们将考虑以下问题:问题一:某大学计划对校园内的停车管理进行优化。
假设校园内有N个停车位(N为正整数),每个停车位只能停放一辆车。
现在需要设计一个停车系统,使得所有车辆能够尽可能高效地停放在停车位上。
请你们给出一个数学模型,以及相应的优化策略,以满足停车位利用效率最大化的要求。
问题二:某电商公司为了提高货物的配送效率,需要选址一些配送中心,以覆盖尽可能多的用户。
假设已知用户的分布情况和需求量,在这些信息的基础上,请你们设计一个数学模型,并给出选址策略,以最大化用户的满意度,同时尽量减少配送的时间和成本。
第二部分:问题分析与数学模型建立问题一:停车管理优化我们首先定义问题的目标函数,即停车位利用效率的优化目标。
假设停车场内每个停车位的编号为i(i=1,2,...,N),对于每个停车位,我们引入二进制变量x_i,表示该停车位是否被使用,其中x_i=1表示被占用,x_i=0表示空闲。
接着,我们需要确定约束条件。
显然,每个停车位只能被一辆车使用,即∑x_i ≤ 1 (i=1,2,...,N)其中,∑表示求和。
为了使停车位利用效率最大化,我们可以引入一个系数p_i,表示第i个停车位的利用效率,取值范围为[0,1]。
利用效率越高,则p_i越接近1,反之越接近0。
我们可以根据停车位距离出入口的远近、停车位所在区域的拥挤程度等因素来确定p_i的取值。
然后,我们可以构建目标函数:Maximize ∑p_i*x_i (i=1,2,...,N)最后,我们将目标函数和约束条件整合,形成一个数学模型。
问题二:配送中心选址对于问题二,我们可以将用户的需求量作为权重,即需求量越高的用户对配送中心的选择影响越大。
假设有M个可能的配送中心位置(M为正整数),每个位置编号为j(j=1,2,...,M),我们引入二进制变量y_j,表示第j个位置是否选址为配送中心,其中y_j=1表示选址,y_j=0表示不选址。
2023年历年全国数学建模试题及解法归纳
历年全国数学建模试题及解法归纳赛题93A非线性交调的频率设计93B足球队排名94A逢山开路94B锁具装箱问题95A飞行管理问题95B天车与冶炼炉的作业调度96A最优捕鱼策略96B节水洗衣机97A零件的参数设计97B截断切割的最优排列98A一类投资组合问题98B灾情巡视的最佳路线99A自动化车床管理99B钻井布局OOA DNA序列分类00B钢管订购和运送01A血管三维重建解法拟合、规划图论、层次分析、整数规划图论、插值、动态规划图论、组合数学非线性规划、线性规划动态规划、排队论、图论微分方程、优化非线性规划非线性规划随机模拟、图论多目的优化、非线性规划图论、组合优化随机优化、计算机模拟0-1规划、图论模式辨认、Fisher判别、人工神经网络组合优化、运送问题曲线拟合、曲面重建赛题01B 公交车调度问题02A 车灯线光源的优化02B 彩票问题03A SARS 的传播03B 露天矿生产的车辆安排04A 奥运会临时超市网点设计04B 电力市场的输电阻塞管理05A 长江水质的评价和预测05B DVD 在线租赁06A 出版社书号问题06B Hiv 病毒问题07A 人口问题07B 公交车问题08A 照相机问题08B 大学学费问题2023年A 题制动器实验台的控制方法分析2023年B 题眼科病床的合理安排2023年C 题卫星监控 解法多目的规划非线性规划单目的决策微分方程、差分方程整数规划、运送问题记录分析、数据解决、优化数据拟合、优化预测评价、数据解决随机规划、整数规划整数规划、数据解决、优化线性规划、回归分析微分方程、数据解决、优化 多目的规划、动态规划、图论、0-1规划非线性方程组、优化数据收集和解决、记录分析、回归分析工程控制排队论,优化,仿真,综合评价几何问题,搜集数据2023年D题会议筹备优化赛题发展的特点:1.对选手的计算机能力提出了更高的规定:赛题的解决依赖计算机,题目的数据较多,手工计算不能完毕,如03B,某些问题需要使用计算机软件,01A。
全国数学建模大赛题目
全国数学建模大赛题目
题目一:城市交通优化方案
某城市的交通状况日益拥堵,为了解决交通问题,需要制定一个交通优化方案。
假设该城市的道路网络呈现网状结构,拥有多个交叉口和道路,每个交叉口都有多个入口和出口道路。
现在需要你们设计一个算法,以找到最优的交通优化方案,使得城市的车辆数最小化,同时满足交通流量平衡和道路容量约束。
题目二:无人机配送路径规划
某公司使用无人机进行货物配送,无人机需要从指定的起点出发,依次经过多个目标点进行货物的投放,最后返回起点。
每个目标点有不同的货物量和不同的时间窗限制。
现在需要你们设计一个路径规划算法,以最小化无人机在配送过程中的总飞行距离,同时满足货物量和时间窗的要求。
题目三:自然灾害预测与应急响应
某地区常常受到洪水的威胁,为了及时应对洪水灾害,需要建立一个洪水预测和应急响应系统。
现有该地区多个监测站点,能够实时测量水位、降雨量等数据,并预测洪水的发生时间和范围。
现在需要你们设计一个预测模型,以准确预测洪水的发生时间和范围,并制定相应的应急响应措施,以最大程度地减少洪灾对人民生命和财产的威胁。
题目四:物流中心选址与配送路径规划
某公司计划在某区域新建一个物流中心,以提高货物配送的效率。
现在需要你们选取一个最佳的物流中心位置,并设计一个配送路径规划算法,以最小化货物配送的总距离和成本。
同时,
由于该区域存在不同的道路类型和限制条件,需要考虑不同道路类型的通行能力和限制,以确保货物配送的顺利进行。
2024高教社杯全国数学建模c题
全国数学建模c 题一、单选题1.已知函数()2,01ln ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞2.某学校党支部评选了5份优秀学习报告心得体会(其中教师2份,学生3份),现从中随机抽选2份参展,则参展的优秀学习报告心得体会中,学生、教师各一份的概率是( ) A .120 B .35 C .310 D .9103.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( )A.1B.2C.3D.124.若()2,01,0x m x f x nx x +<⎧=⎨+>⎩是奇函数,则( ) A.1m =-,2n = B. 1m =,2n =-C. 1m =,2n =D. 1m =-,2n =-5.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( ) A.25255 D.56.若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分也非必要条件7.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( )A .16B .13C .34D .568.已知函数()11f x x x =-,在下列区间中,包含()f x 零点的区间是( )A .14 ,12⎛⎫ ⎪⎝⎭B .12 ,1⎛⎫ ⎪⎝⎭C .(1,2)D .(2,3)9.已知集合{}3,1,0,2,3,4A =--,{|0R B x x =≤或3}x >,则A B =( )A.∅B.{}3,1,0,4--C.{}2,3D.{}0,2,3 10.命题:00x ∃≤,20010x x -->的否定是( )A .0x ∀>,210x x --≤B .00x ∃>,20010x x -->C .00x ∃≤,20010x x --≤ D .0x ∀≤,210x x --≤ 11.已知m 3=n 4,那么下列式子中一定成立的是( )A .4m =3nB .3m =4nC .m =4nD .mn =1212.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =5,c =2acosA ,则cosA =( )A .13 B .24 C .3 D .613.tan 3π=( )A .33B .32 C .1 D 314.设集合{}{}234345M N ==,,,,,, 那么M N ⋃=( )A.{} 2345,,,B.{}234,, C .{}345,, D .{}34,二、填空题15.某校高一、高二、高三年级的学生人数之比为4:4:3,现按年级用分层抽样的方法抽取若干人,若抽取的高三年级的学生数为15,则抽取的样本容量为_______16.定义25(0),()8(0).x x f x x x ⎧+≤⎪=⎨>⎪⎩在(1,1)-上的函数()f x 满足()()()1f x g x g x =--+,对任意的1212,(1,1),x x x x ∈-≠,恒有()()()12120f x f x x x -->⎡⎤⎣⎦,则关于x 的不等式(21)()2f x f x ++>的解集为( )。
2022 年高教社杯全国大学生数学建模竞赛题目 C题
2022年高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)C题古代玻璃制品的成分分析与鉴别丝绸之路是古代中西方文化交流的通道,其中玻璃是早期贸易往来的宝贵物证。
早期的玻璃在西亚和埃及地区常被制作成珠形饰品传入我国,我国古代玻璃吸收其技术后在本土就地取材制作,因此与外来的玻璃制品外观相似,但化学成分却不相同。
玻璃的主要原料是石英砂,主要化学成分是二氧化硅(SiO2)。
由于纯石英砂的熔点较高,为了降低熔化温度,在炼制时需要添加助熔剂。
古代常用的助熔剂有草木灰、天然泡碱、硝石和铅矿石等,并添加石灰石作为稳定剂,石灰石煅烧以后转化为氧化钙(CaO)。
添加的助熔剂不同,其主要化学成分也不同。
例如,铅钡玻璃在烧制过程中加入铅矿石作为助熔剂,其氧化铅(PbO)、氧化钡(BaO)的含量较高,通常被认为是我国自己发明的玻璃品种,楚文化的玻璃就是以铅钡玻璃为主。
钾玻璃是以含钾量高的物质如草木灰作为助熔剂烧制而成的,主要流行于我国岭南以及东南亚和印度等区域。
古代玻璃极易受埋藏环境的影响而风化。
在风化过程中,内部元素与环境元素进行大量交换,导致其成分比例发生变化,从而影响对其类别的正确判断。
如图1的文物标记为表面无风化,表面能明显看出文物的颜色、纹饰,但不排除局部有较浅的风化;图2的文物标记为表面风化,表面大面积灰黄色区域为风化层,是明显风化区域,紫色部分是一般风化表面。
在部分风化的文物中,其表面也有未风化的区域。
图1 未风化的蜻蜓眼玻璃珠样品图2 风化的玻璃棋子样品现有一批我国古代玻璃制品的相关数据,考古工作者依据这些文物样品的化学成分和其他检测手段已将其分为高钾玻璃和铅钡玻璃两种类型。
附件表单1给出了这些文物的分类信息,附件表单2给出了相应的主要成分所占比例(空白处表示未检测到该成分)。
这些数据的特点是成分性,即各成分比例的累加和应为100%,但因检测手段等原因可能导致其成分比例的累加和非100%的情况。
高教社杯数学模型竞赛赛题
高教社杯数学模型竞赛赛题
高教社杯全国大学生数学建模竞赛赛题涵盖了多个领域,如附件1提供了企业近5年402家原材料供应商的订货量和供货量数据,附件2给出了8家
转运商的运输损耗率数据。
这些赛题要求参赛者结合实际情况,对相关数据进行深入分析,研究问题如下:
1. 根据附件1,对402家供应商的供货特征进行量化分析,建立反映保障企业生产重要性的数学模型,在此基础上确定50家最重要的供应商,并在论
文中列表给出结果。
2. 参考问题1,该企业应至少选择多少家供应商供应原材料才可能满足生产的需求?针对这些供应商,为该企业制定未来24周每周最经济的原材料订
购方案,并据此制定损耗最少的转运方案。
请制定新的订购方案及转运方案,并分析方案的实施效果。
3. 该企业通过技术改造已具备了提高产能的潜力。
根据现有原材料的供应商和转运商的实际情况,确定该企业每周的产能可以提高多少,并给出未来
24周的订购和转运方案。
以上赛题仅供参考,如需更多信息,可访问中国大学生在线网站获取。
2022 年高教社杯全国大学生数学建模竞赛题目 A题
2022年高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题波浪能最大输出功率设计随着经济和社会的发展,人类面临能源需求和环境污染的双重挑战,发展可再生能源产业已成为世界各国的共识。
波浪能作为一种重要的海洋可再生能源,分布广泛,储量丰富,具有可观的应用前景。
波浪能装置的能量转换效率是波浪能规模化利用的关键问题之一。
图1为一种波浪能装置示意图,由浮子、振子、中轴以及能量输出系统(PTO,包括弹簧和阻尼器)构成,其中振子、中轴及PTO被密封在浮子内部;浮子由质量均匀分布的圆柱壳体和圆锥壳体组成;两壳体连接部分有一个隔层,作为安装中轴的支撑面;振子是穿在中轴上的圆柱体,通过PTO系统与中轴底座连接。
在波浪的作用下,浮子运动并带动振子运动(参见附件1和附件2),通过两者的相对运动驱动阻尼器做功,并将所做的功作为能量输出。
考虑海水是无粘及无旋的,浮子在线性周期微幅波作用下会受到波浪激励力(矩)、附加惯性力(矩)、兴波阻尼力(矩)和静水恢复力(矩)。
在分析下面问题时,忽略中轴、底座、隔层及PTO的质量和各种摩擦。
图1 波浪能装置示意图请建立数学模型解决以下问题:问题1如图1所示,中轴底座固定于隔层的中心位置,弹簧和直线阻尼器一端固定在振子上,一端固定在中轴底座上,振子沿中轴做往复运动。
直线阻尼器的阻尼力与浮子和振子的相对速度成正比,比例系数为直线阻尼器的阻尼系数。
考虑浮子在波浪中只做垂荡运动(参见附件1),建立浮子与振子的运动模型。
初始时刻浮子和振子平衡于静水中,利用附件3和附件4提供的参数值(其中波浪频率取1.4005 s−1,这里及以下出现的频率均指圆频率,角度均采用弧度制),分别对以下两种情况计算浮子和振子在波浪激励力f cosωt(f为波浪激励力振幅,ω为波浪频率)作用下前40个波浪周期内时间间隔为0.2 s的垂荡位移和速度:(1) 直线阻尼器的阻尼系数为10000 N·s/m;(2) 直线阻尼器的阻尼系数与浮子和振子的相对速度的绝对值的幂成正比,其中比例系数取10000,幂指数取0.5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1998年全国大学生数学建模竞赛题目B题灾情巡视路线下图为某县的乡(镇)、村公路网示意图,公路边的数字为该路段的公里数。
今年夏天该县遭受水灾。
为考察灾情、组织自救,县领导决定,带领有关部门负责人到全县各乡(镇)、村巡视。
巡视路线指从县政府所在地出发,走遍各乡(镇)、村,又回到县政府所在地的路线。
(1)若分三组(路)巡视,试设计总路程最短且各组尽可能均衡的巡视路线。
(2)假定巡视人员在各乡(镇)停留时间T=2小时,在各村停留时间t=1小时,汽车行驶速度V=35公里/小时。
要在24小时内完成巡视,至少应分几组;给出这种分组下你认为最佳的巡视路线。
(3)在上述关于T,t和V的假定下,如果巡视人员足够多,完成巡视的最短时间是多少;给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。
(4)若巡视组数已定(如三组),要求尽快完成巡视,讨论T,t和V改变对最佳巡视路线的影响。
灾情巡视路线模型摘要本文将求最佳巡视路线间题转化为图论中求最佳推销员回路(哈米尔顿回路)的问题,并用近似算法去寻求近似最优解。
对赋权图中的路径分组问题定义了均衡度用以衡量分组的均衡性。
对问题1和问题2先定出几个分的准则进行初步分组,并用近似算法求每一组的近似最佳推销员回路,再根据均衡度进行微调,得到较优的均衡分组和每组的近似最佳推销员回路。
对问题1,运用求任意两点间最短路的Floyd算法,得出总路程较短且各组尽可能均衡的路线,各组的巡视路程分别为公里,公里,公里,总路程公里。
对问题2,证明了应至少分为4组,并求出了分为4组时各组的较优巡视路线,各组的巡视时间分别为小时,小时,小时,小时。
对问题3,求出完成巡视的最短时间为小时,并用较为合理的分组的准则,分成22个组对问题4,研究了在不影响分组的均衡条件下,T,t,V的允许变化范围,并得出了这三个变量的关系式,并由此对分三个组的情况进行了具体讨论。
关键词:最佳推销员回路问题哈米尔顿回路赋权图近似算法均衡度一、问题重述1998年夏天某县遭受水灾。
为考察灾情、组织自救,县领导决定,带领有关部门负责人到全县各17个乡(镇)、35个村巡视。
巡视路线指从县政府所在地出发,走遍各乡(镇)、村,又回到县政府所在地的路线。
(1)若分三组(路)巡视,试设计总路程最短且各组尽可能均衡的巡视路线。
(2)假定巡视人员在各乡(镇)停留时间T=2小时,在各村停留时间t=1小时,汽车行驶速度V=35公里/小时。
要在24小时内完成巡视,至少应分几组;给出这种分组下你认为最佳的巡视路线。
(3)在上述关于T,t 和V 的假定下,如果巡视人员足够多,完成巡视的最短时间是多少;给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。
(4)若巡视组数已定(如三组),要求尽快完成巡视,讨论T ,t 和V 改变对最佳巡视路线的影响。
二、问题分析本题给出了某县的公路网络图,要求的是在不同的条件下,灾情巡视的最分组方案和路线.将每个乡(镇)或村看作一个图的顶点,各乡镇、村之间的公路看作此图对应顶点间的边,各条公路的长度(或行驶时间)看作对应边上的权,所给公路网就转化为加权网络图,问题就转化图论中一类称之为旅行售货员问题,即在给定的加权网络图中寻找从给定点O 出发,行遍所有顶点至少一次再回到点O ,使得总权(路程或时间)最小.本题是旅行售货员问题的延伸-多旅行售货员问题.本题所求的分组巡视的最佳路线,也就是m 条经过同一点并覆盖所有其他顶点又使边权之和达到最小的闭链(闭迹).如第一问是三个旅行售货员问题,第二问是四个旅行售货员问题.众所周知,旅行售货员问题属于NP 完全问题,即求解没有多项式时间算法.显然本问题更应属于NP 完全问题.有鉴于此,一定要针对问题的实际特点寻找简便方法,想找到解决此类问题的一般方法是不现实的,对于规模较大的问题可使用近似算法来求得近似最优解.三、模型假设1.汽车在路上的速度总是一定,不会出现抛锚等现象;忽略天气、故障等因素的影响。
2.巡视当中,在每个乡镇、村的停留时间一定,不会出现特殊情况而延误时间;3.每个小组的汽车行驶速度完全一样;4.分组后,各小组只能走自己区内的路,不能走其他小组的路,除公共路外。
四、符号说明(,)w i j ……………………………………..任意两点i ,j 间的间距。
i e ……………………………………..各点的停留时间,即点权。
V ………………………………………汽车行驶速度。
ij d ………………………………从任意点i 至点j 的时间,则(,)/ij d w i j V 。
五、模型建立与求解公路网图中,每个乡(镇)或村看作图中的一个节点,各乡(镇)、村之间的公路看作图中对应节点间的边,各条公路的长度(或行驶时间)看作对应边上的权,所给公路网就转化为加权网络图,问题就转化为在给定的加权网络图中寻找从给定点O 出发,行遍所有顶点至少一次再回到O 点,使得总权(路程或时间)最小,此即最佳推销员回路问题。
在加权图G 中求最佳推销员回路问题是NP —完全问题,我们采用一种近似算法求出该问题的一个近似最优解,来代替最优解,算法如下:算法一求加权图G (V ,E )的最佳推销员回路的近似算法:1. 用图论软件包求出G 中任意两个顶点间的最短路,构造出完备图),(E V G '',()E y x '∈∀,,()()y x Mind y x G ,,=ω;2. 输入图G '的一个初始H 圈;3. 用对角线完全算法(见[23])产生一个初始H 圈;4. 随机搜索出G '中若干个H 圈,例如2000个;5. 对第2、3、4步所得的每个H 圈,用二边逐次修正法进行优化,得到近似最佳H 圈;6. 在第5步求出的所有H 圈中,找出权最小的一个,此即要找的最佳H 圈的近似解.由于二边逐次修正法的结果与初始圈有关,故本算法第2、3、4步分别用三种方法产生初始圈,以保证能得到较优的计算结果。
问题一:此问题是多个推销员的最佳推销员回路问题.即在加权图G 中求顶点集V 的划分12,,.......n V V V ,将G 分成n 个生成子图[][][]n V G V G V G ,......,21,使得(1)顶点i O V ∈i=1,2,3……n(2)()1ni i V V G ==(3)()()(),i ji j i i w Max C w C Max w C α-≤,其中i C 为i V 的导出子图[]i V G 中的最佳推销员回路,()i C ω为i C 的权,i ,j=1,2,3……n(4)()1ni i w C Min ==∑定义称()()(),0i j i j i i Max w C w C Max w C α-=为该分组的实际均衡度。
α为最大容许均衡度。
显然100≤≤α,0α越小,说明分组的均衡性越好.取定一个α后,0α与α满足条件(3)的分组是一个均衡分组.条件(4)表示总巡视路线最短。
此问题包含两方面:第一、对顶点分组;第二、在每组中求最佳推销员回路,即为单个推销员的最佳推销员问题。
由于单个推销员的最佳推销员回路问题不存在多项式时间内的精确算法,故多个推销员的问题也不存在多项式时间内的精确算法.而图中节点数较多,为53个,我们只能去寻求一种较合理的划分准则,对图11-9进行粗步划分后,求出各部分的近似最佳推销员回路的权,再进一步进行调整,使得各部分满足均衡性条件(3)。
从O点出发去其它点,要使路程较小应尽量走O点到该点的最短路.故用图论软件包求出O点到其余顶点的最短路,这些最短路构成一棵O为树根的树,将从O点出发的树枝称为干枝,见图11-10,从图中可以看出,从O点出发到其它点共有6条干枝,它们的名称分别为①,②,③,④,⑤,⑥。
根据实际工作的经验及上述分析,在分组时应遵从以下准则:准则一:尽量使同一干枝上及其分枝上的点分在同一组;准则二:应将相邻的干枝上的点分在同一组;准则三:尽量将长的干枝与短的干枝分在同一组.由上述分组准则,我们找到两种分组形式如下:分组一:(⑥,①),(②,③),(⑤,④)分组二:(①,②),(③,④),(⑤,⑥)显然分组一的方法极不均衡,故考虑分组二。
对分组二中每组顶点的生成子图,用算法一求出近似最优解及相应的巡视路线.使用算法一时,在每个子图所构造的完备图中,取一个尽量包含图11-10中树上的边的H圈作为其第2步输入的初始圈。
分组二的近似解见表1。
表1(单位:公里)小组名称路线总路线长度路线的总长度I O-P-28-27-26-N-24-23-22-17-16-I-15-I-18-K-21-20-25-M-OII O-2-5-6-L-19-J-11-G-13-14-H-12-F-10-F -9-E-7-E-8-4-D-3-CIII O-R-29-Q-30-32-3A-B-1-O图11-10O点到任意点的最短路图(单位:公因为该分组的均衡度0α=()()()=-=-=9.2415.1259.2413,2,121i i C Max C C ωωω%所以此分法的均衡性很差。
为改善均衡性,将第Ⅱ组中的顶点C ,2,3,D ,4分给第Ⅲ组(顶点2为这两组的公共点),重新分组后的近似最优解见表2。
表2因该分组的均衡度=0α()===4.2163,2,113i i C Max ω% 所以这种分法的均衡性较好。
问题二由于T=2小时,t=1小时,V=35公里/小时,需访问的乡镇共有17个,村共有35个.计算出在乡(镇)及村的总停留时间为17⨯2+35=69小时,要在24小时内完成巡回,若不考虑行走时间,有:2469<i(i 为分的组数).得i 最小为4,故至少要分4组。
由于该网络的乡(镇)、村分布较为均匀,故有可能找出停留时间尽量均衡的分组,当分4组时各组停留时间大约为25.17469=小时,则每组分配在路途上的时间大约为=小时.而前面讨论过,分三组时有个总路程公里的巡视路线,分4组时的总路程不会比公里大太多,不妨以公里来计算.路上时间约为17358.599=小时,若平均分配给4个组,每个组约需417=小时〈小时,故分成4组是可能办到的。
现在尝试将顶点分为4组.分组的原则:除遵从前面准则一、二、三外,还应遵从以下准则:准则四:尽量使各组的停留时间相等。
用上述原则在图11-10上将图分为4组,同时计算各组的停留时间,然后用算法一算出各组的近似最佳推销员巡回,得出路线长度及行走时间,从而得出完成巡视的近似最佳时间.用算法一计算时,初始圈的输入与分三组时同样处理。
这4组的近似最优解见表3:加框的表示此点只经过不停留。
该分组实际均衡度0α==-74.2269.2174.22% 可以看出,表3分组的均衡度很好,且完全满足24小时完成巡视的要求。