初二公式法因式分解练习题
八年级数学上册《因式分解》练习题
八年级数学上册《因式分解》练习题八年级数学上册《因式分解》练题一、本节课的知识要点:1、平方差公式分解因式的公式:$a^2-b^2=(a+b)(a-b)$;1)多项式的项数有两项;平方差结构特点:2)多项式的两项的符号相反;3)多项式的两项能写成的形式。
2、完全平方公式法分解因式的公式:(1)$a^2+2ab+b^2=(a+b)^2$;(2)$a^2-2ab+b^2=(a-b)^2$。
完全平方式的特点:(1)、必须是二项式;2)、有两个的“项”;3)、有这两平方“项”底数积的两倍。
二、本节课的课堂练:一)选择题:1.下列多项式,能用平方差公式分解的是(C)。
A.-$x^2$-$4y^2$。
B.$9x^2+4y^2$。
C.-$x^2+4y^2$。
D.$x^2+(-2y)^2$2、化简$x^3(-x)^3$的结果是(A)。
A、$-x^6$。
B、$x^6$。
C、$x^5$。
D、$-x^5$3、下列运算正确的是(B)。
A、$(a+b)^2=a^2+b^2+2a$。
B、$(a-b)^2=a^2-b^2$C、$(x+3)(x+2)=x^2+6$。
D、$(m+n)(-m+n)=-m^2+n^2$4、$36x+kx+16$是一个完全平方式,则$k$的值为(B)。
A.48.B.24.C.-48.D.±485、已知$a$、$b$是$\triangle ABC$的的两边,且$a^2+b^2=2ab$,则$\triangle ABC$的形状是(B)。
A、等腰三角形。
B、等边三角形。
C、锐角三角形。
D、不确定6、下列四个多项式是完全平方式的是(D)。
1、$x^2+xy+y^2$。
2、$x^2-2xy-y^2$。
3、$4m^2+2mn+4n^2$。
4、$a^2+ab+b^2$7、把$(a+b)+4(a+b)+4$分解因式得(A)。
A、$(a+b+1)$。
B、$(a+b-1)$。
C、$(a+b+2)$。
D、$(a+b-2)$8、下面是某同学的作业题:13a+2b=5ab$○$24m^3n-5mn^3=-m^3n$○$33x^3(-2x^2)=-6x^5$○$44a^3b÷5(a^3)^2=a^5$○$6(-a)^3÷(-a)=-a^2$其中正确的个数是(3)。
公式法因式分解分类练习题
1、 2、 3、
4、 5、 6、
题型(三):把下列各式分解因式
1、 2、 3、
题型(四):把下列各式分解因式
20、在观星过程中,我们看到的天空中有一条闪亮的“银河”光带,实际是由许许多多的恒星组成的一个恒星集团,被人们称为银河系。我们生活的地球在银河系。1、 2、 3、
(1)-x2+(2x-3)2(2)(x+y)2+4-4(x+y)
例6、分解因式:(x-y)2-4(x-y-1)
例7、分解因式:(x2+4)2-16x2
题型(一):把下列各式分解因式
1、 2、 3、 4、
5、 6、 7、 8、
9、 10、 11、 12、
13、 14、 15、 16、
题型(二):把下列各式分解因式
1、 2、 3、
4、 5、 6、
题型(三):把下列各式分解因式
1、 2、 3、
4、 5、 6、
7、 8、 9、
10、 11、 12、
题型(四):利用因式分解解答下列各题
1、计算
⑴ ⑵ ⑶
专题训练二:利用完全平方公式分解因式
题型(一):把下列各式分解因式
1、 2、 3、 4、
5、 6、 7、 8、
9、 10、 11、 12、
公式法因式分解练习题
例1、分解因式:
(1)x2-9(2)9x2-6x+1
例2、分解因式:
(1)x5y3-x3y5(2)4x3y+4x2y2+xy3
例3、分解因式:
(1)4x2-25y2(2)4x2-12xy2+9y4
因式分解 公式法
初二数学因式分解——公式法一.选择题(共19小题)1.下列多项式中能用平方差公式分解因式的是()A.x2+y2B.﹣a2﹣b2C.x3﹣y2D.a2﹣b22.已知下列多项式:①x2+y+y2;②﹣x2+2xy﹣y2;③x2+6xy﹣9y2;④x2﹣x+.其中,能用完全平方公式进行因式分解的有()A.②③④B.①③④C.②④D.①②③3.已知9x2+mxy+16y2能运用完全平方公式因式分解,则m的值为()A.12B.±12C.24D.±244.下列多项式中不能用公式法分解因式的是()A.a2+a+B.﹣a2﹣b2﹣2ab C.﹣a2+25b2D.﹣4﹣b25.下列各式中,能用平方差公式分解因式的是()A.x2﹣x B.x2+x+1C.x2+y2D.x2﹣16.因式分解:x2﹣2x+1的结果是()A.x(x﹣2)+1B.(x﹣1)2C.(x+1)2D.(x﹣2)(x+1)7.下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.a2﹣4b2C.a2﹣2ab+b2D.﹣a2﹣b28.计算:652﹣352=()A.30B.300C.900D.30009.下列各式中,哪项可以使用平方差公式分解因式()A.﹣a2﹣b2B.﹣(a+2)2+9C.p2﹣(﹣q2)D.a2﹣b310.下列各式中,能用完全平方公式进行因式分解的是()A.x2+x+1B.x2+2x﹣1C.x2+2x+2D.x2﹣2x+1 11.下列因式分解正确的是()A.2a﹣2b=2(a+b)B.a2﹣4=(a﹣2)2C.x2﹣1=(x+1)(x﹣1)D.x2﹣6x﹣9=(x﹣3)212.已知x2﹣16=(x﹣a)(x+a),那么a等于()A.16B.±4C.4D.±213.下列多项式中,可以用平方差公式进行因式分解的是()A.x2+4y2B.﹣9x2﹣y2C.4x﹣y2D.﹣16x2+25y2 14.下列多项式能用完全平方公式进行因式分解的是()A.a2﹣2a+4B.a2+2a﹣1C.a2+a﹣1D.a2﹣4a+4 15.下列各式中,能用完全平方公式分解因式的是()A.4x2﹣1B.x2+2x﹣1C.x2+2x+1D.x2﹣xy+y2 16.把多项式9a2﹣1分解因式,结果正确的是()A.(3a﹣1)2B.(3a+1)2C.(9a+1)(9a﹣1)D.(3a+1)(3a﹣1)17.下列因式分解正确的是()A.x2﹣8=(x+4)(x﹣4)B.4a2﹣8a=a(4a﹣8)C.a2+2a+2=(a+1)2+1D.x2﹣2x+1=(x﹣1)218.多项式x2﹣9因式分解正确的是()A.(x+9)(x﹣9)B.(x﹣3)2C.(x+3)(x﹣3)D.(x+3)2 19.下面从左到右的变形,进行因式分解正确的是()A.﹣2x2+4xy=﹣2x(x﹣2y)B.(x+1)(x﹣1)=x2﹣1C.x2+4x﹣4=(x+2)2D.x2+16=(x+4)2二.填空题(共41小题)20.分解因式:x2﹣9y2=.21.分解因式:y2+6y+9=.22.计算:13.32﹣11.72=.23.分解因式:m2﹣9n2=.24.因式分解x4﹣81=.25.如果多项式x2﹣kx+9可直接用公式法因式分解,那么k的值为.26.因式分解a2﹣2a+1的结果是.27.因式分解:9y2﹣x2=.28.因式分解:x2﹣16x+64=.29.计算:20232﹣20222=.30.1022﹣982=.31.因式分解:m(m+8)+9﹣2m=.32.多项式x2﹣y2分解因式的结果是.33.分解因式:x2+4(x+2)﹣4=.34.因式分解:﹣a2﹣4b2+4ab=.35.因式分解:(m+n)2﹣6(m+n)+9=.36.因式分解:(a+b)2﹣9b2=.37.因式分解:b2﹣2b+1=.38.因式分解:2m2﹣8mn+8n2=.39.因式分解:x2﹣y(2x﹣y)=.40.因式分解:(x+2)(x﹣8)+6x=.41.分解因式(a+b)2﹣b2的结果是.42.因式分解:16(x+y)2﹣(x﹣y)2=.43.因式分解:9(x+y)2﹣(x﹣y)2=.44.因式分解:x4+4x2+4=.45.分解因式:﹣a2+9b2=.46.分解因式:(a+4)2﹣9b2=.47.多项式(3x+2y)2﹣(2x+3y)2分解因式的结果是.48.分解因式:a2﹣4ab+4b2=.49.因式分解:x2+4y2﹣4xy=.50.因式分解a2﹣8a+16=.51.因式分解:(a+b)2﹣4b2=.52.因式分解:x2﹣4xy+4y2=.53.分解因式:9x2﹣6x+1=.54.分解因式:(a+b)2﹣4ab=.55.分解因式:(a+1)2﹣4a=.56.因式分解:(2x+y)2﹣(x+2y)2=.57.分解因式:﹣x2+4x﹣4=.58.分解因式:﹣a2+2a﹣2=.59.因式分解:81﹣18a+a2=.60.分解因式:(y+2x)2﹣(x+2y)2=.初二数学因式分解——公式法参考答案与试题解析一.选择题(共19小题)1.下列多项式中能用平方差公式分解因式的是()A.x2+y2B.﹣a2﹣b2C.x3﹣y2D.a2﹣b2【解答】解:A.x2+y2不能使用平方差公式分解因式,不符合题意;B.﹣a2﹣b2=﹣(a2+b2)不能使用平方差公式分解因式,不符合题意;C.x3﹣y2不能使用平方差公式分解因式,不符合题意;D.a2﹣b2能使用平方差公式分解因式,符合题意;故选:D.2.已知下列多项式:①x2+y+y2;②﹣x2+2xy﹣y2;③x2+6xy﹣9y2;④x2﹣x+.其中,能用完全平方公式进行因式分解的有()A.②③④B.①③④C.②④D.①②③【解答】解:①x2+y+y2;无法运用完全平方公式分解因式,故此选项错误;②﹣x2+2xy﹣y2=﹣(x2﹣2xy+y2)=﹣(x﹣y)2,能运用完全平方公式分解因式,故此选项正确;③x2+6xy﹣9y2,无法运用完全平方公式分解因式,故此选项错误;④x2﹣x+=(x﹣)2,能运用完全平方公式分解因式,故此选项正确;故选:C.3.已知9x2+mxy+16y2能运用完全平方公式因式分解,则m的值为()A.12B.±12C.24D.±24【解答】解:∵(3x±4y)2=9x2±24xy+16y2,∴在9x2+mxy+16y2中,m=±24.故选:D.4.下列多项式中不能用公式法分解因式的是()A.a2+a+B.﹣a2﹣b2﹣2ab C.﹣a2+25b2D.﹣4﹣b2【解答】解:A.a2+a+=,那么可用公式法进行因式分解,那么A符合题意.B.﹣a2﹣b2﹣2ab=﹣(a2+b2+2ab)=﹣(a+b)2,故﹣a2﹣b2﹣2ab可用公式法进行因式分解,那么B不符合题意.C.﹣a2+25b2=﹣(a2﹣25b2)=﹣(a+5b)(a﹣5b),故﹣a2+25b2能用公式法进行因式分解,那么C不符合题意.D.﹣4﹣b2=﹣(4+b2),那么﹣4﹣b2不能用公式法进行因式分解,那么D符合题意.故选:D.5.下列各式中,能用平方差公式分解因式的是()A.x2﹣x B.x2+x+1C.x2+y2D.x2﹣1【解答】解:A、原式=x(x﹣1),不符合题意;B、原式不能分解,不符合题意;C、原式不能分解,不符合题意;D、原式=(x+1)(x﹣1),符合题意.故选:D.6.因式分解:x2﹣2x+1的结果是()A.x(x﹣2)+1B.(x﹣1)2C.(x+1)2D.(x﹣2)(x+1)【解答】解:x2﹣2x+1=(x﹣1)2.故选:B.7.下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.a2﹣4b2C.a2﹣2ab+b2D.﹣a2﹣b2【解答】解:a2﹣4b2=(a+2b)(a﹣2b).故选:B.8.计算:652﹣352=()A.30B.300C.900D.3000【解答】解:652﹣352=(65+35)(65﹣35)=100×30=3000,故选:D.9.下列各式中,哪项可以使用平方差公式分解因式()A.﹣a2﹣b2B.﹣(a+2)2+9C.p2﹣(﹣q2)D.a2﹣b3【解答】解:∵﹣a2﹣b2不能因式分解,故A选项不符合题意;∵﹣(a+2)2+9=(3+a+2)(3﹣a﹣2)=(a+5)(1﹣a),故B选项符合题意;∵p2﹣(﹣q2)=p2+q2,不能因式分解,故C选项不符合题意;∵a2﹣b3不能因式分解,故D选项不符合题意,故选:B.10.下列各式中,能用完全平方公式进行因式分解的是()A.x2+x+1B.x2+2x﹣1C.x2+2x+2D.x2﹣2x+1【解答】解:A.x2+x+1不能因式分解,故A选项不符合题意;B.x2+2x﹣1不能因式分解,故B选项不符合题意;C.x2+2x+2不能因式分解,故C选项不符合题意;D.x2﹣2x+1=(x﹣1)2,符合题意,故选:D.11.下列因式分解正确的是()A.2a﹣2b=2(a+b)B.a2﹣4=(a﹣2)2C.x2﹣1=(x+1)(x﹣1)D.x2﹣6x﹣9=(x﹣3)2【解答】解:A、原式=2(a﹣b),不符合题意;B、原式=(a+2)(a﹣2),不符合题意;C、原式=(x+1)(x﹣1),符合题意;D、原式=(x﹣3﹣3)(x﹣3+3),不符合题意.故选:C.12.已知x2﹣16=(x﹣a)(x+a),那么a等于()A.16B.±4C.4D.±2【解答】解:∵x2﹣16=(x﹣a)(x+a),∴x2﹣16=x2﹣a2,∴a2=16,∴a=±4,故选:B.13.下列多项式中,可以用平方差公式进行因式分解的是()A.x2+4y2B.﹣9x2﹣y2C.4x﹣y2D.﹣16x2+25y2【解答】解:A.根据平方差公式(a+b)(a﹣b)=a2﹣b2,那么x2+4y2不能用平方差公式进行因式分解,故A不符合题意.B.根据平方差公式(a+b)(a﹣b)=a2﹣b2,那么﹣9x2﹣y2不能用平方差公式进行因式分解,故B不符合题意.C.根据平方差公式(a+b)(a﹣b)=a2﹣b2,那么4x﹣y2不能用平方差公式进行因式分解,故C不符合题意.D.根据平方差公式(a+b)(a﹣b)=a2﹣b2,那么﹣16x2+25y2=(5y+4x)(5y﹣4x),即﹣16x2+25y2能用平方差公式进行因式分解,故D符合题意.故选:D.14.下列多项式能用完全平方公式进行因式分解的是()A.a2﹣2a+4B.a2+2a﹣1C.a2+a﹣1D.a2﹣4a+4【解答】解:A.根据完全平方公式(a±b)2=a2±2ab+b2,那么a2﹣2a+4不能用完全平方公式进行因式分解,故A不符合题意.B.根据完全平方公式(a±b)2=a2±2ab+b2,那么a2+2a﹣1不能用完全平方公式进行因式分解,故B不符合题意.C.根据完全平方公式(a±b)2=a2±2ab+b2,那么a2+a﹣1不能用完全平方公式进行因式分解,故C不符合题意.D.根据完全平方公式(a±b)2=a2±2ab+b2,那么a2﹣4a+4=(a﹣2)2,即a2﹣4a+4能用完全平方公式进行因式分解,故D符合题意.故选:D.15.下列各式中,能用完全平方公式分解因式的是()A.4x2﹣1B.x2+2x﹣1C.x2+2x+1D.x2﹣xy+y2【解答】解:A、4x2﹣1可以用平方差公式因式分解为(2x+1)(2x﹣1).故选项A不符合题意;B、x2+2x﹣1不能用完全平方公式进行因式分解,故选项B不符合题意;C、x2+2x+1=(x+1)2,故选项C符合题意;D、x2﹣xy+y2不能用完全平方公式进行因式分解,故选项D不符合题意.故选:C.16.把多项式9a2﹣1分解因式,结果正确的是()A.(3a﹣1)2B.(3a+1)2C.(9a+1)(9a﹣1)D.(3a+1)(3a﹣1)【解答】解:9a2﹣1=(3a)2﹣1=(3a﹣1)(3a+1).故选:D.17.下列因式分解正确的是()A.x2﹣8=(x+4)(x﹣4)B.4a2﹣8a=a(4a﹣8)C.a2+2a+2=(a+1)2+1D.x2﹣2x+1=(x﹣1)2【解答】解:A.由于x2﹣16=(x+4)(x﹣4),因此选项A不符合题意;B.4a2﹣8a=4a(a﹣2),因此选项B不符合题意;C.a2+2a+2=(a+1)2+1,不符合因式分解的定义,因此选项C不符合题意;D.x2﹣2x+1=(x﹣1)2,因此选项D符合题意;故选:D.18.多项式x2﹣9因式分解正确的是()A.(x+9)(x﹣9)B.(x﹣3)2C.(x+3)(x﹣3)D.(x+3)2【解答】解:x2﹣9=(x﹣3)(x+3).故选:C.19.下面从左到右的变形,进行因式分解正确的是()A.﹣2x2+4xy=﹣2x(x﹣2y)B.(x+1)(x﹣1)=x2﹣1C.x2+4x﹣4=(x+2)2D.x2+16=(x+4)2【解答】解:A、﹣2x2+4xy=﹣2x(x﹣2y),故A符合题意;B、(x+1)(x﹣1)=x2﹣1,是整式乘法,不是因式分解,故B不符合题意;C、x2+4x+4=(x+2)2,故C不符合题意;D、x2+8x+16=(x+4)2,故D不符合题意;故选:A.二.填空题(共41小题)20.分解因式:x2﹣9y2=(x﹣3y)(x+3y).【解答】解:原式=(x﹣3y)(x+3y).故答案为:(x﹣3y)(x+3y).21.分解因式:y2+6y+9=(y+3)2.【解答】解:y2+6y+9=(y+3)2,故答案为:(y+3)2.22.计算:13.32﹣11.72=40.【解答】解:原式=(13.3+11.7)×(13.3﹣11.7)=25×1.6=40.故答案为:40.23.分解因式:m2﹣9n2=(m+3n)(m﹣3n).【解答】解:原式=(m+3n)(m﹣3n).故答案为:(m+3n)(m﹣3n).24.因式分解x4﹣81=(x﹣3)(x+3)(x2+9).【解答】解:x4﹣81=(x2﹣9)(x2+9)=(x﹣3)(x+3)(x2+9),故答案为:(x﹣3)(x+3)(x2+9).25.如果多项式x2﹣kx+9可直接用公式法因式分解,那么k的值为±6.【解答】解:∵多项式x2﹣kx+9可直接用公式法因式分解,∴x2﹣kx+9=x2±6x+9=(x±3)2,则k的值为±6.故答案为:±6.26.因式分解a2﹣2a+1的结果是(a﹣1)2.【解答】解:原式=(a﹣1)2.故答案为:(a﹣1)2.27.因式分解:9y2﹣x2=(3y+x)(3y﹣x).【解答】解:原式=(3y+x)(3y﹣x).故答案为:(3y+x)(3y﹣x).28.因式分解:x2﹣16x+64=(x﹣8)2.【解答】解:原式=(x﹣8)2.故答案为:(x﹣8)2.29.计算:20232﹣20222=4045.【解答】解:原式=(2023+2022)×(2023﹣2022)=4045.故答案为:4045.30.1022﹣982=800.【解答】解:原式=(102+98)×(102﹣98)=200×4=800.故答案为:800.31.因式分解:m(m+8)+9﹣2m=(m+3)2.【解答】解:m(m+8)+9﹣2m=m2+8m+9﹣2m=m2+6m+9=(m+3)2.故答案为:(m+3)2.32.多项式x2﹣y2分解因式的结果是(x+y)(x﹣y).【解答】解:原式=(x+y)(x﹣y),故答案为:(x+y)(x﹣y).33.分解因式:x2+4(x+2)﹣4=(x+2)2.【解答】解:x2+4(x+2)﹣4=x2+4x+4=(x+2)2.故答案是:(x+2)2.34.因式分解:﹣a2﹣4b2+4ab=﹣(a﹣2b)2.【解答】解:原式=﹣(a2﹣4ab+4b2)=﹣(a﹣2b)2.故答案为:﹣(a﹣2b)2.35.因式分解:(m+n)2﹣6(m+n)+9=(m+n﹣3)2.【解答】解:原式=(m+n)2﹣2•(m+n)•3+32=(m+n﹣3)2.故答案为:(m+n﹣3)2.36.因式分解:(a+b)2﹣9b2=(a﹣2b)(a+4b).【解答】解:原式=(a+b﹣3b)(a+b+3b)=(a﹣2b)(a+4b).故答案为:(a﹣2b)(a+4b).37.因式分解:b2﹣2b+1=(b﹣1)2.【解答】解:b2﹣2b+1=(b﹣1)2.故答案为:(b﹣1)2.38.因式分解:2m2﹣8mn+8n2=2(m﹣2n)2.【解答】解:原式=2(m2﹣4mn+4n2)=2(m﹣2n)2.故答案为:2(m﹣2n)2.39.因式分解:x2﹣y(2x﹣y)=(x﹣y)2.【解答】解:x2﹣y(2x﹣y)=x2﹣2xy+y2=(x﹣y)2.故答案为:(x﹣y)2.40.因式分解:(x+2)(x﹣8)+6x=(x+4)(x﹣4).【解答】解:原式=x2+2x﹣8x﹣16+6x=x2﹣16=(x+4)(x﹣4),故答案为:(x+4)(x﹣4).41.分解因式(a+b)2﹣b2的结果是a(a+2b).【解答】解:原式=(a+b+b)(a+b﹣b)=a(a+2b).故答案为:a(a+2b).42.因式分解:16(x+y)2﹣(x﹣y)2=(5x+3y)(3x+5y).【解答】解:原式=[4(x+y)]2﹣(x﹣y)2=[4(x+y)+(x﹣y)][4(x+y)﹣(x﹣y)]=(5x+3y)(3x+5y).故答案为:(5x+3y)(3x+5y).43.因式分解:9(x+y)2﹣(x﹣y)2=4(2x+y)(x+2y).【解答】解:原式=[3(x+y)]2﹣(x﹣y)2=(3x+3y+x﹣y)(3x+3y﹣x+y)=(4x+2y)(2x+4y)=4(2x+y)(x+2y).故答案为:4(2x+y)(x+2y).44.因式分解:x4+4x2+4=(x2+2)2.【解答】解:原式=(x2)2+2•x2•2+22=(x2+2)2.故答案为:(x2+2)2.45.分解因式:﹣a2+9b2=(3b+a)(3b﹣a).【解答】解:原式=(3b)2﹣a2=(3b+a)(3b﹣a).故答案为:(3b+a)(3b﹣a).46.分解因式:(a+4)2﹣9b2=(a+4+3b)(a+4﹣3b).【解答】解:(a+4)2﹣9b2=(a+4+3b)(a+4﹣3b).故答案为:(a+4+3b)(a+4﹣3b).47.多项式(3x+2y)2﹣(2x+3y)2分解因式的结果是5(x+y)(x﹣y).【解答】解:原式=(3x+2y+2x+3y)(3x+2y﹣2x﹣3y)=(5x+5y)(x﹣y)=5(x+y)(x﹣y).故答案为:5(x+y)(x﹣y).48.分解因式:a2﹣4ab+4b2=(a﹣2b)2.【解答】解:原式=a2﹣2×a×2b+(2b)2=(a﹣2b)2,故答案为:(a﹣2b)2.49.因式分解:x2+4y2﹣4xy=(x﹣2y)2.【解答】解:原式=x2﹣4xy+4y2=(x﹣2y)2,故答案为:(x﹣2y)2.50.因式分解a2﹣8a+16=(a﹣4)2.【解答】解:原式=(a﹣4)2,故答案为:(a﹣4)2.51.因式分解:(a+b)2﹣4b2=(a+3b)(a﹣b).【解答】解:原式=(a+b+2b)(a+b﹣2b)=(a+3b)(a﹣b).故答案为:(a+3b)(a﹣b)52.因式分解:x2﹣4xy+4y2=(x﹣2y)2.【解答】解:x2﹣4xy+4y2=x2﹣4xy+(2y)2=(x﹣2y)2,故答案为:(x﹣2y)253.分解因式:9x2﹣6x+1=(3x﹣1)2.【解答】解:原式=(3x﹣1)2,故答案为:(3x﹣1)254.分解因式:(a+b)2﹣4ab=(a﹣b)2.【解答】解:(a+b)2﹣4ab=a2+2ab+b2﹣4ab=a2+b2﹣2ab=(a﹣b)2.故答案为:(a﹣b)2.55.分解因式:(a+1)2﹣4a=(a﹣1)2.【解答】解:(a+1)2﹣4a=a2+2a+1﹣4a=a2﹣2a+1=(a﹣1)2.故答案为:(a﹣1)2.56.因式分解:(2x+y)2﹣(x+2y)2=3(x+y)(x﹣y).【解答】解:原式=(2x+y+x+2y)(2x+y﹣x﹣2y)=(3x+3y)(x﹣y)=3(x+y)(x﹣y).故答案为:3(x+y)(x﹣y).57.分解因式:﹣x2+4x﹣4=﹣(x﹣2)2.【解答】解:﹣x2+4x﹣4=﹣(x2﹣4x+4)=﹣(x﹣2)2.故答案为:﹣(x﹣2)2.58.分解因式:﹣a2+2a﹣2=﹣(a﹣2)2.【解答】解:原式=﹣(a2﹣4a+4)=﹣(a﹣2)2,故答案为:﹣(a﹣2)259.因式分解:81﹣18a+a2=(9﹣a)2.【解答】解:原式=(9﹣a)2.故答案为:(9﹣a)260.分解因式:(y+2x)2﹣(x+2y)2=3(x+y)(x﹣y).【解答】解:原式=(y+2x+x+2y)(y+2x﹣x﹣2y)=3(x+y)(x﹣y),故答案为:3(x+y)(x﹣y)。
八年级数学公式法因式分解练习题(K12教育文档)
八年级数学公式法因式分解练习题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学公式法因式分解练习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学公式法因式分解练习题(word版可编辑修改)的全部内容。
八年级数学公式法因式分解练习题1、24x -2、29y -3、21a -4、224x y -5、2125b -6、222x y z -7、2240.019m b -8、2219a x -9、2236m n - 10、2249x y - 11、220.8116a b - 12、222549p q -13、2422a x b y - 14、41x - 15、4416a b - 16、44411681a b m -17、22()()x p x q +-+ 18、 22(32)()m n m n +-- 19、2216()9()a b a b --+20、229()4()x y x y --+ 21、22()()a b c a b c ++-+- 22、224()a b c -+23、53x x - 24、224ax ay - 25、322ab ab - 26、316x x -24、 27、2433ax ay - 28、2(25)4(52)x x x -+- 29、324x xy -30、343322x y x - 31、4416ma mb - 32、238(1)2a a a -++ 33、416ax a -+34、2216()9()mx a b mx a b --+ 35、 22758258- 36、22429171-37、223.59 2.54⨯-⨯ 35、221x x ++ 37、2441a a ++ 38、 2169y y -+39、214m m ++ 40、 221x x -+ 42、2816a a -+ 43、2144t t -+44、21449m m -+ 45、222121b b -+ 46、214y y ++ 47、2258064m m -+48、243681a a ++ 49、2242025p pq q -+ 50、224x xy y ++ 51、2244x y xy +-52、2()6()9x y x y ++++ 53、222()()a a b c b c -+++ 54、2412()9()x y x y --+-55、22()4()4m n m m n m ++++ 56、)1(42-+-+y x y x )( 57、22(1)4(1)4a a a a ++++58、222xy x y -- 59、22344xy x y y -- 60、232a a a -+-61、221222x xy y ++ 62、42232510x x y x y ++ 63、2232ax a x a ++64、222224y x y x -+)( 65、2222()(34)a ab ab b +-+ 66、42()18()81x y x y +-++67、2222(1)4(1)4a a a a +-++ 68、42242()()a a b c b c -+++69、4224816x x y y -+ 70、2222()8()16()a b a b a b +--+- 71、x 2—972、9x 2-6x+1 73、x 5y 3-x 3y 5 74、4x 3y+4x 2y 2+xy 375、(x 2+4)2-16x2 76、 -x 2+(2x —3)2 77、(x —y)2—4(x —y-1)78、(x+y )2+4-4(x+y) 79、—x 2+(2x-3)2 80、(x+y )2+4-4(x+y )81、x 4-81y 4 82、16x 4-72x 2y 2+81y 4 83、x 5y 3-x 3y 584、4x 3y+4x 2y 2+xy 3 85、4+12(x ﹣y)+9(x ﹣y)286、2am 2﹣8a87、4x 3+4x 2y+xy 2 88、3x ﹣12x 3 89、(x 2+y 2)2﹣4x 2y 290、x 2y ﹣2xy 2+y 3 91、(x+2y )2﹣y 2 92、n 2(m ﹣2)﹣n(2﹣m)93、(x﹣1)(x﹣3)+1 94、a2﹣4a+4﹣b2 95、a2﹣b2﹣2a+196、 a4-9a²b² 97、ab(x²-y²)+xy(a²-b²) 98 、a²-a-b²-b99、(x+y)(a-b-c)+(x-y)(b+c-a) 100、(3a-b)²-4(3a-b)(a +3b)+4(a+3b)²。
初中数学用公式法进行因式分解(含问题详解)
实用文档用公式法进行因式分解一、填空题(本大题共20小题,共60.0分)1.分解因式:xy2+8xy+16x= ______ .2.因式分解:4m2-36= ______ .3.因式分解:2a3-8ab2= ______ .4.将多项式mn2+2mn+m因式分解的结果是 ______ .5.把多项式4ax2-9ay2分解因式的结果是 ______ .6.因式分解:2x2-32x4= ______ .7.因式分解:a2b-4ab+4b= ______ .8.分解因式:mx2-4m= ______ .9.分解因式a2b-a的结果为 ______ .10.分解因式:2ax2-8a= ______ .11.分解因式:2m2-8= ______ .12.分解因式:ma2+2mab+mb2= ______ .13.分解因式:a2b-b3= ______ .14.分解因式:x(x-1)-y(y-1)= ______ .15.分解因式:ax3y-axy= ______ .16.因式分解:3y2-12= ______ .17.因式分解:m2n-6mn+9n= ______ .18.因式分解:a2b-ab+b= ______ .19.分解因式-a3+2a2b-ab2= ______ .20.分解因式:a2b+4ab+4b= ______ .二、计算题(本大题共30小题,共180.0分)21.分解因式(1)a2(a-b)+4b2(b-a)(2)m4-1(3)-3a+12a2-12a3.22.把下列多项式分解因式:(1)6x2y-9xy;(2)4a2-1;(3)n2(n-6)+9n.23.把下列各式因式分解(1)ap-aq+am(2)a2-4(3)a2-2a+1(4)ax2+2axy+ay2.24.分解因式:(1)x+xy+xy2(2)(m+n)3-4(m+n)25.因式分解:(1)x(x-2)-3(2-x)(2)x2-10x+25.26.把下列各式进行因式分解:(1)a3-6a2+5a;(2)(x2+x)2-(x+1)2;(3)4x2-16xy+16y2.27.因式分解:(1)x2-y2(2)-4a2b+4ab2-b3.28.分解因式(1)x3-16x(2)8a2-8a+2.29.分解因式:(1)3m4-48;(2)b4-4ab3+4ab2.30.分解因式:(1)2x2-4x(2)a2(x-y)-9b2(x-y)(3)4ab2-4a2b-b3(4)(y2-1)2+6(1-y2)+9.实用文档31.分解因式:(1)3a2+6ab+3b2(2)9(m+n)2-(m-n)2.32.因式分解:(1)a(x-y)-b(y-x)(2)3ax2-12ay2(3)(x+y)2+4(x+y+1)33.分解因式:(1)a(x-y)-b(y-x);(2)16x2-64;(3)(x2+y2)2-4x2y2.34.分解因式(1)4x3y-xy3(2)-x2+4xy-4y2.35.分解下列因式:(1)9a2-1(2)p3-16p2+64p.36.因式分解:(1)x2-10xy+25y2(2)3a2-12ab+12b2(3)(x2+y2)2-4x2y2(4)9x4-81y4.37.将下列各式分解因式(1)16a2b2-1(2)12ab-6(a2+b2)38.把下列各式因式分解(1)4a2-16(2)(x2+4)2-16x2.39.把下列多项式因式分解:(1)x3y-2x2y+xy;(2)9a2(x-y)+4b2(y-x).40.分解因式(1)x3-xy2(2)(x+2)(x+4)+1.41.因式分解:-3a3b+6a2b2-3ab3.42.把下列各式分解因式:①4m(x-y)-n(x-y);②2t2-50;③(x2+y2)2-4x2y2.43.因式分解(1)x2-5x-6(2)2ma2-8mb2(3)a3-6a2b+9ab2.44.分解因式:2x2-12x+18.45.分解因式:(1)x3+2x2+x(2)x3y3-xy.实用文档46.因式分解:(1)ax2-2ax+a(2)24(a-b)2-8(b-a)47.因式分解:(1)4x2-16y2(2)x2-10x+25.48.分解因式(1)m(a-3)+2(3-a)(2)x2-6x+9.49.因式分解:6xy2-9x2y-y2.50.分解因式(1)x2(a+b)-a-b(2)a3b-2a2b2+ab3(3)y4-3y3-4y2(4)-(a2+2)2+6(a2+2)-9.用公式法进行因式分解答案和解析【答案】1.x(y+4)22.4(m+3)(m-3)3.2a(a+2b)(a-2b)4.m(n+1)25.a(2x+3y)(2x-3y)6.2x2(1+4x)(1-4x)7.b(a-2)28.m(x+2)(x-2)9.a(ab-1)10.2a(x+2)(x-2)11.2(m+2)(m-2)12.m(a+b)213.b(a+b)(a-b)14.(x-y)(x+y-1)15.axy(x+)(x-)16.3(y+2)(y-2)17.n(m-3)218.b(a-)219.-a(a-b)220.b(a+2)221.解:(1)原式=a2(a-b)-4b2(a-b)=(a-b)(a2-4b2)=(a-b)(a+2b)(a-2b);(2)原式=(m2+1)(m2-1)=(m2+1)(m+1)(m-1);(3)原式=-3a(4a2-4a+1)=-3a(2a-1)2.22.解:(1)原式=3xy(2x-3);(2)原式=(2a+1)(2a-1);(3)原式=n(n2-6n+9)=n(n-3)2.23.解:(1)原式=a(p-q+m);(2)原式=(a+2)(a-2);(3)原式=(a-1)2;(4)原式=a(x2+2xy+y2)=a(x+y)2.24.解:(1)原式=x(1+4y+4y2)=x(1+2y)2;(2)原式=(m+n)[(m+n)2-4]=(m+n)(m+n+2)(m+n-2).25.解:(1)原式=x(x-2)+3(x-2)=(x-2)(x+3);(2)原式=(x-5)2.26.解:(1)原式=a(a2-6a+5)=a(a-1)(a-5);(2)原式=(x2+x+x+1)(x2+x-x-1)=(x+1)2(x+1)(x-1);(3)原式=4(x2-4xy+4y2)=4(x-2y)2.27.解:(1)原式=(x+y)(x-y);实用文档(2)原式=2(4a2-4a+1)=2(2a-1)2.29.解:(1)原式=3(m4-16)=3(m2+4)(m+2)(m-2);(2)原式=b2(b2-4ab+4a).30.解:(1)原式=2x(x-2);(2)原式=(x-y)(a2-9b2)=(x-y)(a+3b)(a-3b);(3)原式=-b(b2-4ab+4a2)=-b(2a-b)2;(4)原式=(y2-1)2-6(y2-1)+9=(y2-4)2=(y+2)2(y-2)2.31.解:(1)原式=3(a2+2ab+b2)=3(a+b)2;(2)原式=[3(m+n)+m-n][3(m+n)-(m-n)]=(4m+2n)(2m+4n)=4(2m+n)(m+2n).32.解:(1)原式=a(x-y)+b(x-y)=(x-y)(a+b);(2)原式=3a(x2-4y2)=3a(x+2y)(x-2y);(3)原式=(x+y)2+4(x+y)+4=(x+y+2)2.33.解:(1)原式=a(x-y)+b(x-y)=(x-y)(a+b);(2)原式=16(x2-4)=16(x+2)(x-2);(3)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.34.解:(1)原式=4xy(x2-y2)=4xy(x+y)(x-y);(2)原式=-(x2-4xy+4y2)=-(x-2y)2.35.解:(1)原式=(3a+1)(3a-1);(2)原式=p(p2-16p+64)=p(p-8)2.36.解:(1)原式=(x-5y)2;(2)原式=3(a2-4ab+4b2)=3(a-2b)2;(3)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2;(4)原式=9(a2+3y2)(x2-3y2).37.解:(1)原式=(4ab+1)(4ab-1);(2)原式=-6(a2-2ab+b2)=-6(a-b)2.38.解:(1)原式=4(a2-4)=4(a+2)(a-2);(2)原式=(x2+4+4x)(x2+4-4x)=(x-2)2(x+2)2.39.解:(1)原式=xy(x2-2x+1)=xy(x-1)2;(2)原式=9a2(x-y)-4b2(x-y)=(x-y)(3a+2b)(3a-2b).40.解:(1)原式=x(x2-y2)=x(x+y)(x-y);(2)原式=(x+3)2.41.解:原式=-3ab(a2-2ab+b2)=-3ab(a-b)2.42.解:①4m(x-y)-n(x-y)=(x-y)(4m-n);②2t2-50=2(t2-25)=2(t+5)(t-5);③(x2+y2)2-4x2y2=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.43.解:(1)原式=(x-6)(x+1);(2)原式=2m(a2-4b2)=2m(a+2b)(a-2b);(3)原式=a(a2-6ab+9b2)=a(a-3b)2.44.解:原式=2(x2-6x+9)=2(x-3)2.45.解:(1)原式=x(x2+2x+1)=x(x+1)2;(2)原式=xy(x2y2-1)=xy(xy+1)(xy-1).46.解:(1)原式=a(x2-2x+1)=a(x-1)2;(2)原式=24(a-b)2+8(a-b)=8(a-b)[3(a-b)+1]=8(a-b)(3a-3b+1).47.解:(1)原式=(2x+4y)(2x-4y);(2)原式=(x-5)2.49.解:原式=-y(9x2-6xy+y).50.解:(1)原式=x2(a+b)-(a+b)=(a+b)(x2-1)=(a+b)(x+1)(x-1);(2)原式=ab(a2-2ab+b2)=ab(a-b)2;(3)原式=y2(y2-3y-4)=y2(y-4)(y+1);(4)原式=-[(a2+2)-3]2=-(a-1)2(a+1)2.。
公式法分解因式经典练习题分类汇编
【基础知识】公式法分解因式(1)平方差公式: a 2-b 2= .(2)完全平方公式:a 2+2ab +b 2= . a 2-2ab +b 2= .(3)立方和公式:3322()()a b a b a ab b +=+-+.(4)立方差公式:3322()()a b a b a ab b -=-++.【题型1】利用平方差公式分解因式分解因式:(1)4x 2-y 2; (2)-16+a 2b 2; (3)x 2100-25y 2; (4)(x +2y)2-(x -y)2.【变式训练】 1.分解因式(1)4a 2-y 2; (2)x 2y 4-49; (3)4a 2-(3b -c)2; (4)(x +y)2-4x 2; (5)x 4-16;(6)(4x -3y)2-25y 2 (7)25(a +b)2-4(a -b)2; (8)9x 2-(2x -y)2;(9)(a +b)4-(a -b)4;(10)(2x +y)2-(x -2y)2; (11)9(a +b)2-16(a -b)2; (12)9(3a +2b)2-25(a -2b)2.2.分解因式(1)a 3-9a ; (2)3x 2-12; (3)8m 3-2m ; (4)12 m 2n 2-8; (5)31a 2b 2-3.(6)3m(2x -y)2-3mn 2; (7)(a -b)b 2-4(a -b); (8)x ²-y ²-3x-3y ; (9)a 2(a-b )+b 2(b-a ).【题型2】完全平方式已知x 2+kxy +16y 2是一个完全平方式,则k 的值是 .【变式训练】1.下列式子为完全平方式的是( )A.a 2+ab +b 2B.a 2+2a +2C.a 2-2b +b 2D.a 2+2a +12.若9a 2+6(k -3)a +1是完全平方式,则 k 的值是( )A.±4B.±2C.3D.4或23.已知a 2x 2±2x+b 2是完全平方式,且a ,b 都不为零,则a 与b 的关系为( )A.互为倒数或互为负倒数B.互为相反数C.相等的数D.任意有理数4.下列各式能组成完全平方式的个数是 .①x 6-31128x ②x 8+4x 4+4 ③3m 2+2m+3 ④m 2-2m+4 5.若x 2+8x +k 是完全平方式,则k = .6.若x 2+mx +9是完全平方式,则m 的值是 .【题型3】利用完全平方公式分解因式分解因式: (1)a 2+4a +4; (2)x 2+4y 2-4xy ; (3)9+12a +4a 2; (4)a 2-2a +1.【变式训练】1.因式分解:(1)4x 2+y 2-4xy ; (2)9-12a +4a 2; (3)(m +n)2-6(m +n)+9.2.分解因式:(1)ab2-4ab+4a;(2)-3x+12x-12;(3)4x2-8x+4;(4)2a3-8a2+8a; (5)-2x2y+12xy-18y; (6)3x2-6x+3; (7)-4a2+24a-36.(8)2a3b-8a2b+8ab; (9)4x3y-24x2y+39xy; (10)-3x2y+6xy-3y; (11)4a2b2+24ab+36.3.分解因式(1)x(x-1)-3x+4; (2)(x-2y)2+8xy;(3)(2a+b)2-4ab;(4)(x-y)2-z2+4xy;(5)ab(ab+2)+2ab+4; (6)(x+2y)2-8xy;(7)(x-y)2+4xy;(8)(2a-b)2-c2+8ab.。
初中数学用公式法进行因式分解(含答案)
用公式法进行因式分解一、填空题(本大题共20小题,共60.0分)1.分解因式:xy2+8xy+16x= ______ .2.因式分解:4m2-36= ______ .3.因式分解:2a3-8ab2= ______ .4.将多项式mn2+2mn+m因式分解的结果是______ .5.把多项式4ax2-9ay2分解因式的结果是______ .6.因式分解:2x2-32x4= ______ .7.因式分解:a2b-4ab+4b= ______ .8.分解因式:mx2-4m= ______ .9.分解因式a2b-a的结果为______ .10.分解因式:2ax2-8a= ______ .11.分解因式:2m2-8= ______ .12.分解因式:ma2+2mab+mb2= ______ .13.分解因式:a2b-b3= ______ .14.分解因式:x(x-1)-y(y-1)= ______ .15.分解因式:ax3y-axy= ______ .16.因式分解:3y2-12= ______ .17.因式分解:m2n-6mn+9n= ______ .18.因式分解:a2b-ab+b= ______ .19.分解因式-a3+2a2b-ab2= ______ .20.分解因式:a2b+4ab+4b= ______ .二、计算题(本大题共30小题,共180.0分)21.分解因式(1)a2(a-b)+4b2(b-a)(2)m4-1(3)-3a+12a2-12a3.22.把下列多项式分解因式:(1)6x2y-9xy;(2)4a2-1;(3)n2(n-6)+9n.23.把下列各式因式分解(1)ap-aq+am(2)a2-4(3)a2-2a+1(4)ax2+2axy+ay2.24.分解因式:(1)x+xy+xy2(2)(m+n)3-4(m+n)25.因式分解:(1)x(x-2)-3(2-x)(2)x2-10x+25.26.把下列各式进行因式分解:(1)a3-6a2+5a;(2)(x2+x)2-(x+1)2;(3)4x2-16xy+16y2.27.因式分解:(1)x2-y2(2)-4a2b+4ab2-b3.28.分解因式(1)x3-16x(2)8a2-8a+2.29.分解因式:(1)3m4-48;(2)b4-4ab3+4ab2.30.分解因式:(1)2x2-4x(2)a2(x-y)-9b2(x-y)(3)4ab2-4a2b-b3(4)(y2-1)2+6(1-y2)+9.31.分解因式:(1)3a2+6ab+3b2(2)9(m+n)2-(m-n)2.32.因式分解:(1)a(x-y)-b(y-x)(2)3ax2-12ay2(3)(x+y)2+4(x+y+1)33.分解因式:(1)a(x-y)-b(y-x);(2)16x2-64;(3)(x2+y2)2-4x2y2.34.分解因式(1)4x3y-xy3(2)-x2+4xy-4y2.35.分解下列因式:(1)9a2-1(2)p3-16p2+64p.36.因式分解:(1)x2-10xy+25y2(2)3a2-12ab+12b2(3)(x2+y2)2-4x2y2(4)9x4-81y4.37.将下列各式分解因式(1)16a2b2-1(2)12ab-6(a2+b2)38.把下列各式因式分解(1)4a2-16(2)(x2+4)2-16x2.39.把下列多项式因式分解:(1)x3y-2x2y+xy;(2)9a2(x-y)+4b2(y-x).40.分解因式(1)x3-xy2(2)(x+2)(x+4)+1.41.因式分解:-3a3b+6a2b2-3ab3.42.把下列各式分解因式:①4m(x-y)-n(x-y);②2t2-50;③(x2+y2)2-4x2y2.43.因式分解(1)x2-5x-6(2)2ma2-8mb2(3)a3-6a2b+9ab2.44.分解因式:2x2-12x+18.45.分解因式:(1)x3+2x2+x(2)x3y3-xy.46.因式分解:(1)ax2-2ax+a(2)24(a-b)2-8(b-a)47.因式分解:(1)4x2-16y2(2)x2-10x+25.48.分解因式(1)m(a-3)+2(3-a)(2)x2-6x+9.49.因式分解:6xy2-9x2y-y2.50.分解因式(1)x2(a+b)-a-b(2)a3b-2a2b2+ab3(3)y4-3y3-4y2(4)-(a2+2)2+6(a2+2)-9.用公式法进行因式分解答案和解析【答案】1.x(y+4)22.4(m+3)(m-3)3.2a(a+2b)(a-2b)4.m(n+1)25.a(2x+3y)(2x-3y)6.2x2(1+4x)(1-4x)7.b(a-2)28.m(x+2)(x-2)9.a(ab-1)10.2a(x+2)(x-2)11.2(m+2)(m-2)12.m(a+b)213.b(a+b)(a-b)14.(x-y)(x+y-1)15.axy(x+)(x-)16.3(y+2)(y-2)17.n(m-3)218.b(a-)219.-a(a-b)220.b(a+2)221.解:(1)原式=a2(a-b)-4b2(a-b)=(a-b)(a2-4b2)=(a-b)(a+2b)(a-2b);(2)原式=(m2+1)(m2-1)=(m2+1)(m+1)(m-1);(3)原式=-3a(4a2-4a+1)=-3a(2a-1)2.22.解:(1)原式=3xy(2x-3);(2)原式=(2a+1)(2a-1);(3)原式=n(n2-6n+9)=n(n-3)2.23.解:(1)原式=a(p-q+m);(2)原式=(a+2)(a-2);(3)原式=(a-1)2;(4)原式=a(x2+2xy+y2)=a(x+y)2.24.解:(1)原式=x(1+4y+4y2)=x(1+2y)2;(2)原式=(m+n)[(m+n)2-4]=(m+n)(m+n+2)(m+n-2).25.解:(1)原式=x(x-2)+3(x-2)=(x-2)(x+3);(2)原式=(x-5)2.26.解:(1)原式=a(a2-6a+5)=a(a-1)(a-5);(2)原式=(x2+x+x+1)(x2+x-x-1)=(x+1)2(x+1)(x-1);(3)原式=4(x2-4xy+4y2)=4(x-2y)2.27.解:(1)原式=(x+y)(x-y);(2)原式=-b(4a2-4ab+b2)=-b(2a-b)2.28.解:(1)原式=x(x2-16)=x(x+4)(x-4);(2)原式=2(4a2-4a+1)=2(2a-1)2.29.解:(1)原式=3(m4-16)=3(m2+4)(m+2)(m-2);(2)原式=b2(b2-4ab+4a).30.解:(1)原式=2x(x-2);(2)原式=(x-y)(a2-9b2)=(x-y)(a+3b)(a-3b);(3)原式=-b(b2-4ab+4a2)=-b(2a-b)2;(4)原式=(y2-1)2-6(y2-1)+9=(y2-4)2=(y+2)2(y-2)2.31.解:(1)原式=3(a2+2ab+b2)=3(a+b)2;(2)原式=[3(m+n)+m-n][3(m+n)-(m-n)]=(4m+2n)(2m+4n)=4(2m+n)(m+2n).32.解:(1)原式=a(x-y)+b(x-y)=(x-y)(a+b);(2)原式=3a(x2-4y2)=3a(x+2y)(x-2y);(3)原式=(x+y)2+4(x+y)+4=(x+y+2)2.33.解:(1)原式=a(x-y)+b(x-y)=(x-y)(a+b);(2)原式=16(x2-4)=16(x+2)(x-2);(3)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.34.解:(1)原式=4xy(x2-y2)=4xy(x+y)(x-y);(2)原式=-(x2-4xy+4y2)=-(x-2y)2.35.解:(1)原式=(3a+1)(3a-1);(2)原式=p(p2-16p+64)=p(p-8)2.36.解:(1)原式=(x-5y)2;(2)原式=3(a2-4ab+4b2)=3(a-2b)2;(3)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2;(4)原式=9(a2+3y2)(x2-3y2).37.解:(1)原式=(4ab+1)(4ab-1);(2)原式=-6(a2-2ab+b2)=-6(a-b)2.38.解:(1)原式=4(a2-4)=4(a+2)(a-2);(2)原式=(x2+4+4x)(x2+4-4x)=(x-2)2(x+2)2.39.解:(1)原式=xy(x2-2x+1)=xy(x-1)2;(2)原式=9a2(x-y)-4b2(x-y)=(x-y)(3a+2b)(3a-2b).40.解:(1)原式=x(x2-y2)=x(x+y)(x-y);(2)原式=(x+3)2.41.解:原式=-3ab(a2-2ab+b2)=-3ab(a-b)2.42.解:①4m(x-y)-n(x-y)=(x-y)(4m-n);②2t2-50=2(t2-25)=2(t+5)(t-5);③(x2+y2)2-4x2y2=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.43.解:(1)原式=(x-6)(x+1);(2)原式=2m(a2-4b2)=2m(a+2b)(a-2b);(3)原式=a(a2-6ab+9b2)=a(a-3b)2.44.解:原式=2(x2-6x+9)=2(x-3)2.45.解:(1)原式=x(x2+2x+1)=x(x+1)2;(2)原式=xy(x2y2-1)=xy(xy+1)(xy-1).46.解:(1)原式=a(x2-2x+1)=a(x-1)2;(2)原式=24(a-b)2+8(a-b)=8(a-b)[3(a-b)+1]=8(a-b)(3a-3b+1).47.解:(1)原式=(2x+4y)(2x-4y);(2)原式=(x-5)2.48.解:(1)原式=m(a-3)-2(a-3)=(a-3)(m-2);(2)原式=(x-3)2.49.解:原式=-y(9x2-6xy+y).50.解:(1)原式=x2(a+b)-(a+b)=(a+b)(x2-1)=(a+b)(x+1)(x-1);(2)原式=ab(a2-2ab+b2)=ab(a-b)2;(3)原式=y2(y2-3y-4)=y2(y-4)(y+1);(4)原式=-[(a2+2)-3]2=-(a-1)2(a+1)2.。
最新公式法因式分解典型练习题
《公式法因式分解》典型练习题一、选择题(每小题4分,共32分)2、下列多项式中能用完全平方公式分解因式的是( )A .22y xy x ++B .1442-+x xC .2161x +D .2244y xy x +-3、若81-k x 4=(9+ 4x 2)(3+2x )(3-2x ),则k 的值为( )A 、1B 、4C 、8D 、16 4、多项式2244x xy y -+-分解因式的结果是( ) (A)2(2)x y -(B)2(2)x y -- (C)2(2)x y --(D)2()x y +5、代数式42281969x x x x ---+,,的公因式为( ) A.3x -B.2(3)x +C.3x +D.29x +6、222516a kab a ++是一个完全平方式,那么k 之值为( ) A.40B.40±C.20D.20±二、填空题1、利用因式分解计算2100991981=++ . 2、若实数a 满足22210245a a a a -+=-+=,则________.3、若16)4(292+-+x a x 是一个完全平方式,则a 的值为___________。
4、若 x 2-6x y+9y 2=0,则13--y x 的值为 5、已知:x 2+4x y=3,2x y+9y 2=1。
则x +3y 的值为 三、分解因式1、x 2-12x +362、224169x y -3、2125a -+4、2816a a ++1.在多项式x 2+y 2 、 x 2-y 2、 -x 2+y 2 、-x 2-y 2中能利用平方差公式分解因式的有( ) A 、1 个 B 、2 个 C 、3个 D 、4个5、216(23)a b -+6、2(2)6(2)9a b a b ++++7、228001600798798-+×8、2244mn m n ---9、22)(289)(361b a b a +-- 10、22)y -x (169)y x (225-+ 11、2)(9)(124y x y x -+--12、4224168b b a a +- 13、222224)(b a b a -+四、解答题:1、如图,大正方形与小正方形的周长之差为96,面积之差为960,求正方形的边长.2.有人说,无论x 取何实数,代数式x 2+y 2-10x+8y+45的值总是正数。
初二数学因式分解50道题及答案
初中因式分解50题及答案学校:___________姓名:___________班级:___________考号:___________一、解答题1.因式分解(1)22363ax axy ay +﹣(2)()44m m -+.2.(1)计算:()3222x x x ⋅⋅- (2)计算:()()3223x x +-(3)因式分解:32x xy -(4)因式分解:244a b ab b -+3.(1)计算:2(3)(2)(4)(4)a a a a -+-+-;(2)分解因式:229()4()a x y b y x -+-;4.因式分解:244x y xy y -+.5.因式分解(1)22312x y -;(2)29124m m -+.6.分解因式:(1)22x xy xy -+(2)()222224a b a b +- (3)()()269x y x y ---+7.因式分解:(1)39x x -(2)244m m -+-8.分解因式(1)21236x x -+;(2)32312a ab -.9.因式分解(1)224a a -(2)22169mn m n -+10.因式分解(1)()222224x y x y +- (2)22369xy x y y --11.分解因式(1)3228a ab -.(2)()()269b a a b ---+.12.分解因式:(1)2269m n n -+-(2)()226(2)714x y x x y x x y +++--. 13.分解因式:22944a ab b -+-.14.因式分解:(1)3223242x y x y xy -+-;(2)()()222211a b b b -+-.15.因式分解:(1)282abc bc -;(2)()()26x x y x y +-+;16.在实数范围内分解下列因式:(1) 4265y y -+;(2) 211x -;(3) 23-+a ;(4)252x -.17.分解因式∶(1)26mx my -;(2)222510m mn n -+(3)()()229a x y b y x -+-.18.把下列多项式分解因式.(1)329a ab -;19.分解因式:(1)22364m n -(2)22(()())x x y x y x y x ----+.20.分解因式(1)216x -(2)3a a -(3)24(2)4(2)1a b a b +-++;(4)2221y y x ++-21.将下列各式因式分解:(1)24xy xy -.(2)4224816x x y y -+.(3)()()222x x y y x -+-.22.因式分解:(1)()()2222x a y a -+-(2)()()22211216x x x x -+-+ 23.因式分解:()()22254a x y b y x -+-.24.分解因式(1)32x xy -(2)(2)(4)1x x +++25.分解因式:(1)323812a b ab c +(2)22344ab a b b --.26.分解因式.(1)2()4()a x y y x -+-;(2)()222221664x y x y +-. 27.分解因式(2)22()()x a x b +--(3)22(32)(27)x x --+28.分解因式:(1)2344x x x --;(2)2(2)(3)(2)x y x y x y -+--;(3)22222()4x y x y +-.29.分解因式:(1)22338124a b ab a b -+-(2)()()24a x y y x -+-30.分解因式2812x x -+:.31.分解因式:()()229x y z x y z -++--.32.因式分解(直接写出结果)(1)2()()y x y x y ---=_________;(2)41x -=_____________;(3)2(1)4x x +-=____________.33.把下列各式分解因式:(1)()()26a x y b y x ---;(2)()()2221619y y ---+ 34.分解因式:(1)2961x x ++(2)322321218x y x y xy -+35.分解因式:()()()111xy x y xy ++++36.因式分解(1)3x y xy -;(2)()()21449x y x y -+++-.37.分解因式:(1)22363a ab b -+-;(2)()()2294a x y b y x -+-.38.因式分解:(1)24ab a -;(2)()()22258516x x +--+. 39.分解因式:(1)29x -(2)222050x x -+40.分解因式:2(()9)x m n n m -+-41.把下列各式因式分解:(1)323812a b ab c +;(2)2231212x xy y -+;(3)()()229+4a x y b y x --;(4)44x y -+;(5)292)(2a x y x y +--.42.因式分解(1)22862ab a b ab -+-; (2)214x x -+;(3)()22214x x +-. 43.把下列各式因式分解:(1)()222416a a +-. (2)()()229m n m n +--.(3)222232448a x a x a -+-.44.分解因式(1)2221a b a --+;(2)3-a b ab .45.分解因式:(1)2ax a -;(2)2363x y xy y -+.46.把下列多项式分解因式:(1)34x x -(2)2292a b ab +-+47.因式分解(1)32m mn(2)22288x xy y -+48.因式分解:(1)29x -;(2)232a a a -+;(3)()()22258516x x +--+. 49.分解因式:223242x y xy y ++.50.分解因式:(1)321510x x +;(2)269x y xy y -+;(3)22()4()a x y b y x -+-.参考答案:1.(1)()23-a x y(2)()22m -【分析】(1)先提公因式,再运用完全平方公式即可作答;(2)先去括号,再运用完全平方公式即可作答.【详解】(1)223-63ax axy ay +()2232a x xy y =-+()23a x y =-; (2)()44m m -+244m m =-+()22m =-.【点睛】本题考查因式分解,用到了提公因式法与公式法,解题的关键是注意如果多项式的各项含有公因式,必须先提公因式.2.(1)98x -(2)2656x x --(3)()()x x y x y +-(4)()22b a -【分析】(1)根据积的乘方,同底数幂的乘法运算法则计算即可;(2)根据多项式乘多项式的法则计算即可;(3)先提取公因式,再利用平方差公式分解因式;(4)先提取公因式,再利用完全平方公式分解因式;【详解】(1)解:原式()268x x x =⋅⋅- 98x =-;(2)解:原式26946x x x =-+-2656x x =--;(3)解:原式()22x x y =-()()x x y x y =+-;(4)解:原式()244b a a =-+ ()22b a =-. 【点睛】本题考查了积的乘方,同底数幂的乘法,多项式乘多项式,综合提公因式和公式法分解因式,熟练掌握运算法则是解题的关键.3.(1)23228a a --(2)()()()3232x y a b a b -+-【分析】(1)先去括号,再合并同类项即可;(2)先提取公因式,然后利用平方差公式分解即可.【详解】解:(1)原式()22221216a a a =----22221216a a a =---+23228a a =--;(2)原式()()2294a x y b x y =---()()2294x y a b =--()()()3232x y a b a b =-+-.【点睛】本题主要考查整式的乘法以及乘法公式,因式分解,掌握因式分解的方法,整式运算的法则是解题的关键.4.2(21)y x -【分析】先提取y ,再根据公式法分解因式即可.【详解】原式2(441)y x x =-+2(21)y x =-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 5.(1)()()322x y x y +-(2)()232m -【分析】(1)先提取公因式,再用平方差公式;(2)用完全平方公式.【详解】(1)解:22312x y -()2234x y =- ()()322x y x y =+-(2)29124m m -+()2232322m m =-⨯⨯+ ()232m =-【点睛】本题主要考查了公式法与提公因式法因式分解;熟练掌握平方差公式与完全平方公式的特征是解题的关键.6.(1)()21x y -(2)()()22a b a b +-(3)()23x y --【分析】(1)先提取公因式x ,再利用完全平方公式进行因式分解即可;(2)先利用平方差公式分解为()()222222a b ab a b ab +++-,再利用完全平方公式分解因式即可;(3)把()x y -看作整体利用完全平方公式进行因式分解即可.【详解】(1)22x xy xy -+()212x y y =-+()21x y =-.(2)()222224a b a b +-()()222222a b ab a b ab =+++-()()22a b a b =+-. (3)()()269x y x y ---+ ()23x y =--.【点睛】此题考查了因式分解,注意因式分解要彻底,熟练掌握因式分解并灵活选择方法是解题的关键.7.(1)()()33x x x +-;(2)()22m --.【分析】(1)先提取公因式x ,再用平方差公式继续分解;(2)先提取公因式1-,再用完全平方公式继续分解.【详解】(1)解:()3299x x x x -=- ()()33x x x =+-;(2)解:244m m -+-()244m m =--+()22m =--.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 8.(1)()26x -(2)()()322a a b a b -+【分析】(1)式利用完全平方公式分解即可;(2)先提取公因式,再利用平方差公式分解即可.【详解】(1)解:21236x x -+22266x x =-⨯⋅+()26x =-(2)解:32312a ab - ()2234a a b =-()2232a a b ⎡⎤=-⎣⎦()()322a a b a b =-+【点睛】本题考查了提公因式法与公式法的综合运用,灵活选择合适的因式分解方法是解本题的关键.9.(1)()22a a -(2)()231mn -【分析】(1)直接提取公因式2a 即可得到答案;(2)利用完全平方公式分解因式即可.【详解】(1)解:224a a -()22a a =-;(2)解:22169mn m n -+()231mn =-.【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.10.(1)()()22x y x y +-(2)()23y x y --【分析】(1)先利用平方差公式因式分解,再利用完全平方公式进行因式分解,即可求解;(2)先提公因式,再利用完全平方公式进行因式分解,即可求解.【详解】(1)解:()222224x y x y +- ()()222222x y xy x y xy =+++-()()22x y x y =+-(2)解:22369xy x y y --()2296y x xy y =--+()23y x y =--【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.11.(1)()()222a a b a b +-(2)()23a b --【分析】(1)先提出公因式2a ,再用平方差公式进行求解即可,(2)先将()()269b a a b ---+转化为()()269a b a b ---+,再利用完全平方公式进行求解即可.【详解】(1)3228a ab - ()2224a a b =-()()222a a b a b =+-(2)()()269b a a b ---+()()269a b a b =---+()23a b =-- 【点睛】本题主要考查因式分解,解题的关键是掌握因式分解的方法——提公因式法和公式法,要注意分解要彻底.12.(1)()()33m n m n +--+(2)()()()271x y x x ++-【分析】(1)通过添括号,将2269m n n -+-转化为()2269m n n --+,再利用平方差公式进行分解因式即可求解.(2)将()226(2)714x y x x y x x y +++--转化为()()226(2)72x y x x y x x y +++-+,先提出公因式,再利用十字相乘法进行分解因式即可求解.【详解】(1)2269m n n -+-()2269m n n =--+()223m n =-- ()()33m n m n =+--+(2)()226(2)714x y x x y x x y +++--()()226(2)72x y x x y x x y =+++-+()()2267x y x x =++-()()()271x y x x =++-【点睛】本题考查分解因式的方法,解题的关键是掌握提公因式法,公式法和十字相乘法. 13.()()3232a b a b +--+【分析】先将多项式分组为()22944a ab b --+,再分别利用完全平方公式和平方差公式分解即可.【详解】解:22944a ab b -+-()22944b a a b =--+()292a b =--()()3232a b a b =+---⎡⎤⎡⎤⎣⎦⎣⎦()()3232a b a b =+--+.【点睛】本题考查了因式分解-分组分解,熟练掌握完全平方公式和平方差公式,能根据多项式特点进行适当分组是解题关键.14.(1)()22xy x y --(2)()()()()11a b a b b b ++--【分析】(1)先提取公因式2xy -,再利用完全平方公式继续分解即可;(2)先对原式变形,再利用平方差公式进行分解即可.【详解】(1)解:原式()2222xy x xy y =--+()22xy x y =--;(2)解:原式()()222211a b b b =--- ()()2221b a b =--()()()()11a b b b b a =++--.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:∶提公因式法;∶公式法;∶十字相乘法;∶分组分解法.因式分解必须分解到每个因式都不能再分解为止.15.(1)()24bc a c -(2)()()23x y x +-【分析】(1)用提公因式法解答;(2)用提公因式法解答.【详解】(1)解:原式()24bc a c =-(2)解:原式()()23x y x =+-【点睛】此题考查了因式分解——提公因式法,熟练掌握提取公因式的方法是解本题的关键.16.(1)()()(11y y y y +-(2)(x x(3)(2a(4)【分析】(1)原式先利用十字相乘法分解后,再利用平方差公式“()()22a b a b a b -=+-”分解即可;(2)原式利用平方差公式分解即可;(3)原式利用完全平方公式“()2222a ab b a b ±+=±”分解即可;(4)原式利用平方差公式分解即可.【详解】(1)解:原式()()2215y y --= ()()(11y y y y =+-;(2)解:原式22x =- (x x =;(3)解:原式(2a =;(4)解:原式=. 【点睛】本题考查了在实数范围内因式分解,掌握因式分解的方法是解决本题的关键. 17.(1)()23-m x y(2)()25m n -(3)()()()33x y a b a b +--【分析】(1)直接提公因式2m 即可分解;(2)利用完全平方公式分解即可;(3)先提公因式x y -,再利用平方差公式分解.【详解】(1)解:26mx my - ()23m x y =-;(2)222510m mn n -+()25m n =-;(3)()()229a x y b y x -+- ()()229a b x y =--()()()33y a b a b x +-=-【点睛】本题考查的是因式分解,在解答此类题目时要注意乘法公式的运用.18.(1)()()33a a b a b -+(2)23(2)x y -【分析】(1)先提公因式,再用公式法分解因式即可;(2)先提公因式,再用公式法分解因式即可.【详解】(1)解:329a ab -()229a a b =- ()()33a a b a b =-+;(2)解:2231212x xy y -+()22344x xy y =-+23(2)x y =-. 【点睛】本题主要考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.19.(1)()()433m n m n +-(2)()()21x y x --【分析】(1)直接根据平方差公式因式分解即可得到答案;(2)先提取公因式,再利用完全平方公式分解即可得到答案.【详解】(1)解:原式22(6)(2)m n =- ()()6262m n m n =+-()()433m n m n =+-;(2)解:原式22(())()x x y x y x x y =--+-+()()221x y x x =--+()()21x y x =--.【点睛】本题考查因式分解,解题的关键是熟练掌握有公因式先提取公因式,再看符不符合公式,利用公式法分解.20.(1)()()44x x +-(2)()()11a a a +-(3)()2421a b +-(4)()()11y x y x -+--【分析】(1)根据平方差公式进行因式分解即可求解;(2)先提公因式a ,然后根据平方差公式进行因式分解即可求解;(3)根据完全平方公式进行因式分解即可求解;(4)先分组,然后根据完全平方公式与平方差公式因式分解即可求解.【详解】(1)解:216x - ()()44x x =+-;(2)解:3a a -()21a a =-()()11a a a =+-;(3)解:24(2)4(2)1a b a b +-++()2221a b =+-⎡⎤⎣⎦()2421a b =+-; (4)2221y y x ++-()2221y y x ++-=()221y x =-- ()()11y x y x =-+--.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.21.(1)(4)xy y -(2)22(2)(2)x y x y -+(3)2()(1)(1)x y x x --+【分析】(1)提取公因式即可.(2)先利用完全平方公式进行因式分解,再利用平方差公式进行因式分解.(3)先提取公因式,再把剩下的部分提取2后,按照平方差公式展开.【详解】(1)解:原式(4)xy y =-(2)解:原式()22222224(4)x x y y =-⋅⋅+ 222(4)x y =-22(2)(2)x y x y =-+(3)解:原式2()(22)x y x =--2()2(1)x y x =-⋅⋅-2()(1)(1)x y x x =--+【点睛】本题考查的是因式分解,解题的关键是要识别出可以使用平方差公式和完全平方公式之处,分解彻底.22.(1)()()()2a x y x y -+- (2)412x ⎛⎫- ⎪⎝⎭【分析】(1)先变形,然后提取公因式,再利用平方差公式因式分解即可;(2)利用完全平方公式进行因式分解即可.【详解】(1)解∶原式()()2222x a y a =---()()222a x y =--()()()2a x y x y =-+-;(2)解:原式2214x x ⎛⎫=-+ ⎪⎝⎭2212x ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 412x ⎛⎫=- ⎪⎝⎭. 【点睛】本题主要考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23.()(52)(52)x y a b a b --+【分析】将()y x -变形为()x y --,提取公因式,运用平方差公式即可求解.【详解】解:()()22254a x y b y x -+-()()22254a x y b x y =---()22(254)x y a b =--()(52)(52)x y a b a b =--+.【点睛】本题主要考查因式分解,掌握提取公因式,乘法公式进行因式分解是解题的关键. 24.(1)()()x x y x y +-(2)2(3)x +【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【详解】(1)解:原式22()()()x x y x x y x y =-=+-;(2)解:原式269x x =++2(3)x =+.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.25.(1)()22423ab a bc +;(2)()22--b a b .【分析】(1)提取公因式24ab ,即可求解;(2)先提取公因式b -,再利用完全平方公式继续分解即可.【详解】(1)解:323812a b ab c +()22423ab a bc =+;(2)解:22344ab a b b --()2244b ab a b =--++ ()22b a b =--.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 26.(1)()()()22a a x y +--(2)()()2244x y x y +-【分析】(1)原式提取公因式,再利用平方差公式分解;(2)原式利用平方差公式变形,再利用完全平方公式分解.【详解】(1)解:2()4()a x y y x -+- ()()24a x y =--()()()22a a x y =+--;(2)解:()222221664x y x y +- ()()2222168168x y xy x y xy =+++-()()2244x y x y =+-【点睛】此题考查了因式分解—提公因式法,以及公式法,熟练掌握因式分解的方法是解本题的关键.27.(1)()2xy x y -(2)()()2x a b a b +-+(3)()()519x x +-【分析】(1)先提取公因式,再用完全平方公式分解;(2)用平方差公式分解即可;(3)先用平方差公式分解,再提取公因式.【详解】(1)32232x y x y xy -+()222xy x xy y =-+()2xy x y =- (2)22()()x a x b +--[][]()()()()x a x b x a x b =++-+--()()x a x b x a x b =++-+-+()()2x a b a b =+-+(3)22(32)(27)x x --+[][](32)(27)(32)(27)x x x x =-++--+()()32273227x x x x =-++---()()559x x =+-()()519x x =+-【点睛】本题考查了因式分解的应用,熟练掌握因式分解的方法是解答本题的关键.因式分解常用的方法有:∶提公因式法;∶公式法;∶十字相乘法;∶分组分解法.28.(1)2(2)x x --(2)5(2)y x y -(3)22()()x y x y +-【分析】(1)先提公因式x -,再利用完全平方公式即可;(2)先提公因式(2)x y -,再合并同类项即可;(3)先利用平方差公式,再利用完全平方公式进行计算即可.【详解】(1)解:(1)原式2(44)x x x =--+2(2)x x =--;(2)解:原式(2)[(3)(2)]x y x y x y =-+--(2)(32)x y x y x y =-+-+5(2)y x y =-;(3)解:原式22222()4x y x y =+-2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查因式分解,掌握提公因式法和公式法是解题的关键.29.(1)()22423ab a b a b --+(2)()()()22x y a a -+-【分析】(1)提取4ab -,即可求解;(2)提取()x y -,再根据平方差公式继续分解即可求解.【详解】(1)解:22338124a b ab a b -+-()22423ab a b a b --+=;(2)解:()()24a x y y x -+-()()24x y a =-- ()()()22x y a a =-+-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 30.()()26x x --【分析】根据十字相乘法,进行因式分解即可.【详解】解:()()281226x x x x -+=--.【点睛】本题考查因式分解.熟练掌握十字相乘法因式分解,是解题的关键.31.()()4222x y z x y z ++++【分析】利用平方差公式先将原式进行分解因式得到()()422244x y z x y z ++++,再提取公因式2即可得到答案.【详解】解:()()229x y z x y z -++-- ()()()()33x y z x y z x y z x y z =+++--++---⎡⎤⎡⎤⎣⎦⎣⎦()()333333x y z x y z x y z x y z =+++--++-++()()422244x y z x y z =++++()()4222x y z x y z =++++.【点睛】本题主要考查了分解因式,正确利用平方差公式将原式分解成()()422244x y z x y z ++++是解题的关键.32.(1)()(2)x y y x --(2)()21(1)(1)x x x ++-(3)2(1)x -【分析】(1)提取公因式()x y -;(2)利用平方差公式分解;(3)先展开多项式,再利用完全平方公式.【详解】(1)解:原式()[1()]x y x y =---()(1)x y x y =--+;故答案为:()(1)x y x y --+;(2)解:原式22(1)(1)x x =+-2(1)(1)(1)x x x =++-;故答案为:2(1)(1)(1)x x x ++-;(3)解:原式2214x x x =++-221x x =-+2(1)x =-.故答案为:2(1)x -.【点睛】本题考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.33.(1)()()23a b x y +-(2)()()2222+-y y【分析】(1)利用提取公因式法分解因式;(2)利用完全平方公式和平方差公式分解因式.【详解】(1)解:()()26a x y b y x --- ()()26a x y b x y =-+-()()26a b x y =+-()()23a b x y =+-;(2)解:()()2221619y y ---+ ()2213y =-- ()2222y =- ()()2222y y =+-.【点睛】本题考查因式分解,属于基础题,掌握提取公因式法和公式法是解题的关键. 34.(1)()231+x(2)()223xy x y -【分析】(1)利用完全平方公式进行因式分解,即可求解;(2)先提出公因式,再利用完全平方公式进行因式分解,即可求解.【详解】(1)解:2296131x x x ; (2)解:322321218x y x y xy -+22269xy x xy y()223xy x y =-.【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.35.(1)(1)xy x xy y ++++【分析】先展开原式,得()()11xy xy x y xy +++++,令1xy a +=,式子变形为:()2xy a x y a xy a ax ay +++=+++,再根据十字相乘法,即可.【详解】()()()()()11111xy x y xy xy xy x y xy ++++=+++++,令1xy a +=,∶()()()111xy x y xy ++++()xy a x y a =+++2xy a ax ay =+++()2a a x y xy =+++()()a x a y =++,把1xy a +=代入()()a x a y ++,∶()()()()11a x a y xy x xy y ++=++++,∶()()()()()11111xy x y xy xy x xy y ++++=++++.【点睛】本题考查因式分解的知识,解题的关键是把1xy +看成一个整体,熟练掌握因式分解-十字相乘法的运用.36.(1)()()11xy x x -+(2)()27x y -+-【分析】(1)先提取公因式,再用平方差公式展开即可(2)直接用完全平方公式即可【详解】(1)解:3x y xy -()21xy x =-()()11xy x x =-+(2)解:()()21449x y x y -+++-()()21449x y x y ⎡⎤=-+-++⎣⎦ ()27x y =-+-【点睛】本题考查了用平方差公式和完全平方公式因式分解,熟练掌握公式是解决问题的关键37.(1)()23a b --;(2)()()()3232x y a b a b -+-.【分析】(1)先提公因式,再利用完全平方公式分解因式,即可;(2)先提公因式,再利用平方差公式分解因式,即可.【详解】(1)解:原式()2232a ab b =--+ ()23a b =--;(2)解:原式()()2294a x y b x y =--- ()()2294x y a b =--()()()3232x y a b a b =-+-.【点睛】本题考查了因式分解,掌握提公因式与公式法分解因式是解题的关键. 38.(1)()()22a b b +-(2)()()2233+-x x【分析】(1)先提取公因式a ,再利用平方差公式分解因式即可;(2)利用完全平方公式和平方差公式分解因式即可.【详解】(1)解:24ab a -()24a b =-()()22a b b =+-;(2)解:()()22258516x x +--+ ()2254x ⎡⎤=--⎣⎦ ()229x =- ()()2233x x =+-. 【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.39.(1)()()33x x +-;(2)225x -().【分析】(1)根据平方差公式直接分解因式;(2)先题公因式,在用完全平方差公式分解.【详解】(1)解:29x -()()33x x =+-;(2)222050x x -+()221025x x =-+225x =-(). 【点睛】本题考查因式分解,熟练运用提公因式法和公式法进行因式分解是解题的关键. 40.()()()33m n x x -+-【分析】先提公因式()m n -,然后根据平方差公式因式分解即可求解.【详解】解:2(()9)x m n n m -+-()()29x m n m n =---()()29m n x =--()()()33m n x x =-+-.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.41.(1)224(23)ab a bc +(2)23(2)x y -(3)()(32)(32)x y a b a b -+-(4)()()()22x y x y y x ++-(5)(2)(31)(31)x y a a ++-【分析】(1)原式提取公因式即可;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式变形后,提取公因式,再利用平方差公式分解即可;(4)原式利用平方差公式分解即可;(5)原式变形后,提取公因式,再利用平方差公式分解即可.【详解】(1)解:原式224(23)ab a bc =+;(2)解:原式223(44)x xy y =-+23(2)x y =-;(3)解:原式229()4()a x y b x y =---22()(94)x y a b =--()(32)(32)x y a b a b =-+-;(4)解:原式()()2222x y y x =+-()()()22x y x y y x =++-;(5)解:原式292)(2)(a x y x y =+-+22)(91)(x y a =+-(2)(31)(31)x y a a =++-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解决本题的关键.42.(1)()2431ab b a --+(2)212x ⎛⎫- ⎪⎝⎭ (3)()()2211x x +-【分析】(1)提取公因式2ab -进行分解因式即可;(2)利用完全平方公式分解因式即可;(3)利用平方差公式和完全平方公式分解因式即可.【详解】(1)解:22862ab a b ab -+-()2431ab b a =--+ (2)解:214x x -+212x ⎛⎫=- ⎪⎝⎭; (3)解:()22214x x +- ()()221212x x x x =+++-()()2211x x =+-. 【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.43.(1)()()2222a a +-(2)()()422m n m n ++(3)()2234a x --【分析】(1)首先利用平方差公式分解因式,然后利用完全平方公式分解因式;(2)首先利用平方差公式分解因式,然后利用提公因式法分解因式;(3)首先利用提公因式法分解因式,然后利用完全平方公式分解因式.【详解】(1)()222416a a +- ()()224444a a a a =+++-()()2222a a =+-;(2)()()229m n m n +-- ()()3333m n m n m n m n =++-+-+()()4224m n m n =++()()422m n m n =++;(3)222232448a x a x a -+-()223816a x x =--+()2234a x =--. 【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.44.(1)())11(a b a b -+--(2)()()11ab a a +-【分析】(1)根据平方差公式和完全平方公式,分解因式即可;(2)先提公因式,然后用平方差公式分解因式即可.【详解】(1)解:2221a b a --+2221a a b =-+-()221a b =-- ()()11a b a b -+--=;(2)解:3-a b ab()21ab a =-()()11ab a a =+-.【点睛】本题主要考查了因式分解,解题的关键是熟练掌握平方差公式和完全平方公式. 45.(1)()()11a x x +-(2)()231y x -【分析】(1)首先提取公因式,再利用平方差公式,即可分解因式;(2)首先提取公因式,再利用完全平方公式,即可分解因式.【详解】(1)解:2ax a -()21a x =- ()()11a x x =+-(2)解:2363x y xy y -+()2321y x x =-+()231y x =-【点睛】本题考查了因式分解的方法,熟练掌握和运用因式分解的方法是解决本题的关键. 46.(1)()()22-+x x x ;(2)()()33a b a b +++-.【分析】(1)先提取公因式,再利用平方差公式即可得到结果;(2)原式利用完全平方公式与平方差公式分解即可得到结果.【详解】(1)解:34x x - ()24x x =-()()22x x x =-+;(2)解:2292a b ab +-+()2229a b ab =++-()29a b =+- ()()33a b a b =+++-.【点睛】此题考查了因式分解,提公因式法和运用公式法,熟练掌握完全平方公式是解本题的关键.47.(1)()()m m n m n -+(2)22(2)x y -【分析】(1)提取公因式m ,运用平方差公式即可得;(2)提取公因数2,运用完全平方公式即可得.【详解】(1)解:原式=22()m m n -=()()m m n m n -+;(2)解:原式=222(44)x xy y -+=22(2)x y -.【点晴】本题考查了因式分解,解题的关键是掌握因式分解,平方差公式,完全平方公式. 48.(1)()()33x x +-(2)21a a -()(3)()()2233x x +-【分析】(1)直接运用平方差公式因式分解即可;(2)先提取有公因式,然后运用完全平方公式进行因式分解即可;(3)先提取有公因式,然后运用完全平方公式,再运用完全平方公式进行因式分解即可.【详解】(1)解:29x - ()()33x x =+-,(2)解:232a a a -+=212a a a -+()=21a a -()(3)解:()()22258516x x +--+ =()()22258516x x ---+=()2254x -- ()()2233x x =+- 【点睛】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.49.()22y x y +【分析】先提出公因式,再利用完全平方公式进行因式分解,即可求解.【详解】解:223242x y xy y ++()2222y x xy y =++()22y x y =+ 【点睛】本题考查了提取公因式与公式法分解因式,熟练掌握因式分解的方法是解题的关键.50.(1)()2532x x +(2)()23y x -(3)()()()22x y a b a b -+-【分析】(1)直接提取公因式即可求解;(2)先提取公因式y ,然后利用完全平方公式分解因式即可;(3)先提取公因式x y -,然后利用平方差公式分解因式即可.【详解】(1)321510x x + ()2532x x =+(2)269x y xy y -+()269y x x =-+()23y x =-(3)22()4()a x y b y x -+-22()4()a x y b x y =--- ()22()4x y a b =--()()()22x y a b a b =-+-【点睛】本题主要考查了因式分解,解题的关键是熟知因式分解的方法.。
八年级公式法因式分解易错点测试(含答案)
八年级公式法因式分解易错点测试一、单选题(共7道,每道14分)
1.分解因式正确的是()
A. B.
C. D.
答案:C
试题难度:三颗星知识点:找整体a、b
2.分解因式正确的是()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:整体思想
3.因式分解正确的是()
A. B.
C. D.
答案:B
试题难度:三颗星知识点:先提取后公式
4.分解结果正确的()
A. B.
C. D.
答案:D
试题难度:三颗星知识点:完全平方公式
5.分解因式正确的是() A.
B.
C.
D.
答案:B
试题难度:三颗星知识点:整体思想完全平方公式
6.分解因式正确的是()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:先提取后公式
7.因式分解正确的是()
A. B.
C. D.
答案:B
试题难度:三颗星知识点:公式综合应用。
初二因式分解经典题35题
初二因式分解经典题35题一、提取公因式法相关(10题)1. 分解因式:6ab + 3ac- 你看这里面每一项都有个3a呢。
就像大家都有个共同的小秘密一样。
那我们就把3a提出来呀,提出来之后就变成3a(2b + c)啦。
2. 分解因式:15x^2y−5xy^2- 哟,这里面5xy是公共的部分哦。
把5xy提出来,就剩下5xy(3x - y)啦,是不是很简单呢?3. 分解因式:4m^3n - 16m^2n^2+8mn^3- 仔细瞧瞧,8mn是都能提出来的。
提出来后就变成8mn(m^2 - 2mn + n^2)啦。
4. 分解因式:−3x^2y+6xy^2−9xy- 这里面−3xy是公因式哦。
把它提出来,就得到−3xy(x - 2y+3)啦。
5. 分解因式:2a(x - y)-3b(x - y)- 看呀,(x - y)是公共的部分呢。
提出来就变成(x - y)(2a - 3b)啦。
6. 分解因式:a(x - y)^2 - b(y - x)^2- 注意哦,(y - x)^2=(x - y)^2。
那这里面(x - y)^2是公因式,提出来就得到(x - y)^2(a - b)啦。
7. 分解因式:x(x - y)+y(y - x)- 先把y(y - x)变成-y(x - y),这样公因式就是(x - y)啦,提出来就是(x - y)(x - y)=(x - y)^2。
8. 分解因式:3a(a - b)+b(b - a)- 把b(b - a)变成-b(a - b),公因式(a - b)提出来,就得到(a - b)(3a - b)啦。
9. 分解因式:2x(x + y)-3(x + y)^2- 公因式是(x + y),提出来就变成(x + y)[2x-3(x + y)]=(x + y)(2x - 3x - 3y)=(x + y)(-x - 3y)=-(x + y)(x + 3y)。
10. 分解因式:5(x - y)^3+10(y - x)^2- 把(y - x)^2变成(x - y)^2,公因式5(x - y)^2提出来,得到5(x - y)^2[(x -y)+2]=5(x - y)^2(x - y + 2)。
用公式法分解因式练习题
用公式法分解因式练习题一、一元二次方程式因式分解1. 分解因式:x^2 92. 分解因式:x^2 163. 分解因式:x^2 6x + 94. 分解因式:x^2 + 8x + 165. 分解因式:x^2 10x + 256. 分解因式:x^2 + 14x + 497. 分解因式:x^2 4x + 48. 分解因式:x^2 12x + 369. 分解因式:x^2 + 20x + 10010. 分解因式:x^2 18x + 81二、一元二次多项式因式分解1. 分解因式:x^2 5x 362. 分解因式:x^2 + 7x 303. 分解因式:x^2 3x 404. 分解因式:x^2 + 9x 225. 分解因式:x^2 8x 336. 分解因式:x^2 + 11x 287. 分解因式:x^2 13x 428. 分解因式:x^2 + 15x 349. 分解因式:x^2 6x 2710. 分解因式:x^2 + 17x 32三、含有公因式的多项式因式分解1. 分解因式:2x^2 8x2. 分解因式:3x^2 + 12x3. 分解因式:4x^2 16x4. 分解因式:5x^2 + 20x5. 分解因式:6x^2 24x6. 分解因式:7x^2 + 28x7. 分解因式:8x^2 32x8. 分解因式:9x^2 + 36x9. 分解因式:10x^2 40x10. 分解因式:11x^2 + 44x四、交叉项因式分解1. 分解因式:x^2 + 5y^22. 分解因式:2x^2 + 8y^23. 分解因式:3x^2 + 12y^24. 分解因式:4x^2 + 16y^25. 分解因式:5x^2 + 20y^26. 分解因式:6x^2 + 24y^27. 分解因式:7x^2 + 28y^28. 分解因式:8x^2 + 32y^29. 分解因式:9x^2 + 36y^210. 分解因式:10x^2 + 40y^2五、综合练习1. 分解因式:x^3 272. 分解因式:x^3 + 643. 分解因式:x^4 164. 分解因式:x^4 815. 分解因式:x^6 646. 分解因式:x^6 7297. 分解因式:2x^2 188. 分解因式:3x^2 249. 分解因式:4x^2 3610. 分解因式:5x^2 50六、差平方与和平方因式分解1. 分解因式:x^2 4y^22. 分解因式:9x^2 25y^23. 分解因式:16x^2 9y^24. 分解因式:25x^2 36y^25. 分解因式:x^2 + 4y^26. 分解因式:9x^2 + 16y^27. 分解因式:4x^2 + 25y^28. 分解因式:16x^2 + 9y^29. 分解因式:25x^2 + 36y^210. 分解因式:x^2 + 49y^2七、三项式因式分解1. 分解因式:x^3 3x^2 + 2x2. 分解因式:x^3 + 4x^2 5x3. 分解因式:x^3 6x^2 + 9x5. 分解因式:x^3 8x^2 + 12x6. 分解因式:x^3 + 9x^2 13x7. 分解因式:x^3 10x^2 + 15x8. 分解因式:x^3 + 11x^2 16x9. 分解因式:x^3 12x^2 + 18x10. 分解因式:x^3 + 13x^2 19x八、多项式因式分解1. 分解因式:x^4 162. 分解因式:x^4 813. 分解因式:x^4 2564. 分解因式:x^4 6255. 分解因式:x^4 + 166. 分解因式:x^4 + 817. 分解因式:x^4 + 2568. 分解因式:x^4 + 6259. 分解因式:x^5 3210. 分解因式:x^5 243九、特殊多项式因式分解1. 分解因式:x^3 + x^2 6x2. 分解因式:x^3 x^2 + 4x3. 分解因式:x^3 + 2x^2 3x4. 分解因式:x^3 2x^2 + 5x5. 分解因式:x^3 + 3x^2 8x7. 分解因式:x^3 + 4x^2 12x8. 分解因式:x^3 4x^2 + 9x9. 分解因式:x^3 + 5x^2 16x10. 分解因式:x^3 5x^2 + 11x十、拓展练习1. 分解因式:x^2y^2 162. 分解因式:x^2 + 8xy + 16y^23. 分解因式:x^3y xy^34. 分解因式:x^4 y^45. 分解因式:x^5 + 32x6. 分解因式:2x^3 8x^2 + 8x7. 分解因式:3x^4 24x^28. 分解因式:4x^3y^2 16xy^29. 分解因式:5x^2y^2 + 20xy^210. 分解因式:6x^3 + 18x^2 24x 答案一、一元二次方程式因式分解1. (x 3)(x + 3)2. (x 4)(x + 4)3. (x 3)^24. (x + 4)^25. (x 5)^26. (x + 7)^28. (x 6)^29. (x + 10)^210. (x 9)^2二、一元二次多项式因式分解1. (x 9)(x + 4)2. (x + 10)(x 3)3. (x 5)(x + 8)4. (x + 11)(x 2)5. (x 11)(x + 3)6. (x + 14)(x 2)7. (x 14)(x + 3)8. (x + 16)(x 2)9. (x 9)(x + 3)10. (x + 17)(x 2)三、含有公因式的多项式因式分解1. 2x(x 4)2. 3x(x + 4)3. 4x(x 4)4. 5x(x + 4)5. 6x(x 4)6. 7x(x + 4)7. 8x(x 4)8. 9x(x + 4)10. 11x(x + 4)四、交叉项因式分解1. (x + 3y)(x 3y)2. 2(x + 2\sqrt{2}y)(x 2\sqrt{2}y)3. 3(x + 2\sqrt{3}y)(x 2\sqrt{3}y)4. 4(x + 3\sqrt{2}y)(x 3\sqrt{2}y)5. 5(x + 2\sqrt{5}y)(x 2\sqrt{5}y)6. 6(x + 2\sqrt{6}y)(x 2\sqrt{6}y)7. 7(x + 2\sqrt{7}y)(x 2\sqrt{7}y)8. 8(x + 2\sqrt{2}y)(x 2\sqrt{2}y)9. 9(x + 2\sqrt{3}y)(x 2\sqrt{3}y)10. 10(x + 2\sqrt{10}y)(x 2\sqrt{10}y)五、综合练习1. (x 3)(x^2 + 3x + 9)2. (x + 4)(x^2 4x + 16)3. (x 2)(x + 2)(x^2 + 4)4. (x 3)(x + 3)(x^2 + 9)5. (x 2)(x^2 + 2x + 4)(x^2 2x + 4)6. (x 3)(x^2 + 3x + 9)(x^2 3x + 9)7. 2(x^2 9)8. 3(x^2 8)9. 4(x^2 9)10. 5(x^2 10)六、差平方与和平方因式分解1. (x 2y)(x + 2y)2. (3x 5y)(3x + 5y)3. (2x 3y)(2x + 3y)4. (5x 6y)(5x + 6y)5. (x + 2y)(x 2y)6. (3x + 4y)(3x 4y)7. (2x + 5y)(2x 5y)8. (4x + 3y)(4x 3y)9. (5x + 6y)(5x 6y)10. (x + 7y)(x 7y)七、三项式因式分解1. x(x 1)(x 2)2. x(x + 1)(x。
因式分解练习题(公式法)
因式分解习题——公式法分解因式专题训练一:利用平方差公式分解因式题型(一):把下列各式分解因式1、24x -2、29y -3、2422a x b y - 解: 解: 解:4、224x y -5、2125b -6、222x y z - 解: 解: 解:7、2240.019m b -8、2219a x -9、2236m n - 解: 解: 解: 10、2249x y - 11、220.8116a b - 12、222549p q - 解: 解: 解: 13、41x - 15、4416a b - 16、44411681a b m - 解: 解: 解: 题型(二):把下列各式分解因式1、22()()x p x q +-+2、 22(32)()m n m n +-- 解: 解:3、2216()9()a b a b --+4、229()4()x y x y --+ 解: 解:5、22()()a b c a b c ++-+-6、224()a b c -+ 解: 解:题型(三):把下列各式分解因式1、53x x -2、224ax ay -3、322ab ab - 解: 解: 解:4、316x x -5、2433ax ay -6、2(25)4(52)x x x -+- 解: 解: 解:7、324x xy - 8、343322x y x - 9、4416ma mb - 解: 解: 解:10、238(1)2a a a -++ 11、416ax a -+ 12、2216()9()mx a b mx a b --+ 解: 解: 解:题训练二:利用完全平方公式分解因式题型(一):把下列各式分解因式1、221x x ++2、2441a a ++3、 2169y y -+ 解: 解: 解:4、214m m ++ 5、 221x x -+ 6、2816a a -+ 解: 解: 解: 7、2144t t -+ 8、21449m m -+ 9、222121b b -+ 解: 解: 解:10、214y y ++ 11、2258064m m -+ 12、243681a a ++ 解: 解: 解:13、2242025p pq q -+ 14、224x xy y ++ 15、2244x y xy +- 解: 解: 解:题型(二):把下列各式分解因式1、2()6()9x y x y ++++2、222()()a a b c b c -+++ 解: 解:3、2412()9()x y x y --+-4、22()4()4m n m m n m ++++ 解: 解:5、()4(1)x y x y +-+-6、22(1)4(1)4a a a a ++++ 解: 解:题型(三):把下列各式分解因式1、222xy x y --2、22344xy x y y --3、232a a a -+- 解: 解: 解:4、221222x xy y ++ 5、42232510x x y x y ++ 解: 解:6、2232ax a x a ++7、2222()4x y x y +- 解: 解:8、2222()(34)a ab ab b +-+ 9、42()18()81x y x y +-++ 解: 解:10、2222(1)4(1)4a a a a +-++ 11、42242()()a a b c b c -+++ 解: 解:12、4224816x x y y -+ 13、2222()8()16()a b a b a b +--+- 解: 解:题型(五):利用因式分解解答下列各题1、已知: 2211128,22x y x xy y ==++,求代数式的值。
公式法因式分解练习题及答案
公式法因式分解练习题及答案题型:把下列各式分解因式1、x2?42、9?y2、1?a24、4x2?y、1?25b26、x2y2?z27、m2?0.01b、a2?x、36?m2n210、4x2?9y211、0.81a2?16b 12、25p2?49q2 13、a2x4?b2y14、x4?115、16a4?b 16、题型:把下列各式分解因式1、2?2、 2?23、162?9、92?425、2?26、4a2?214a?16b4m814919题型:把下列各式分解因式1、x5?x2、4ax2?ay23、2ab3?2ab4、x3?16x5、3ax2?3ay、x2?47、x3?4xy、32x3y4?2x、ma4?16mb416mx2?9mx10、?8a2?2a311、?ax4?16a 12、题型:利用因式分解解答下列各题1、证明:两个连续奇数的平方差是8的倍数。
2、计算⑴7582?258 ⑵4292?1712⑶3.52?9?2.52?4⑷2222234910题训练二:利用完全平方公式分解因式题型:把下列各式分解因式1、x2?2x?12、4a2?4a?1、 1?6y?9y2m24、1?m?5、 x2?2x?1 、a2?8a?167、1?4t?4t28、m2?14m?499、b2?22b?12110、y2?y? 11、25m2?80m?612、4a2?36a?81x213、4p?20pq?25q14、?xy?y 15、4x2?y2?4xy2214 题型:把下列各式分解因式1、2?6?、a2?2a?23、4?12?92、2?4m?4m25、?46、2?4a?4a2题型:把下列各式分解因式1、2xy?x2?y2、4xy2?4x2y?y33、?a?2a2?a3题型:把下列各式分解因式1、x2?2xy?2y22、x4?25x2y2?10x3y3、ax2?2a2x?a4、?4x2y25、2?6、4?182?81题型:利用因式分解解答下列各题1、已知: x?12,y?8,求代数式x2?xy?y2的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.3.2公式法因式分解练习题
思维导航:运用公式法是分解因式的常用方法,运用公式法分解因式的思路主要有以下几种情况:
一、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。
例1、分解因式:
(1)x2-9 (2)9x2-6x+1
二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。
例2、分解因式:
(1)x5y3-x3y5(2)4x3y+4x2y2+xy3
三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公
式的形式,然后再利用公式法分解.
例3、分解因式:
(1)4x2-25y2 (2)4x2-12xy2+9y4
四、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因
式,应注意分解到每个因式都不能再分解为止.
例4、分解因式:
(1)x4-81y4 (2)16x4-72x2y2+81y4
五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位
置,重新排列,然后再利用公式。
例5、分解因式:
(1)-x2+(2x-3)2 (2)(x+y)2+4-4(x+y)
六、整理后用公式:当所给的多项式不能直接利用公式法分解时,可以先将其中的项去括号整理,然后再
利用公式法分解。
例6 、分解因式: (x-y)2-4(x-y-1)
七、连续用公式:当一次利用公式分解后,还能利用公式再继续分解时,则需要用公式法再进行分解,到
每个因式都不能再分解为止。
例7、分解因式:(x2+4)2-16x2
专题训练一:利用平方差公式分解因式 题型(一):把下列各式分解因式
1、2
2
49x y - 2、22
0.8116a b - 3、2
2
2549p q -
4、41x -
5、44
16a b - 6、4
4411681
a b m -
题型(二):把下列各式分解因式
1、 2
2
(32)()m n m n +-- 2、2
2
16()9()a b a b --+
题型(三):把下列各式分解因式
1、3
16x x - 2、2
4
33ax ay - 3、2
(25)4(52)x x x -+-
4、3
2
4x xy - 5、3
4
3
322x y x - 6、44
16ma mb -
题型(四):利用因式分解解答下列各题
1、证明:两个连续奇数的平方差是8的倍数。
2、计算
⑴2
2
758258- ⑵ 2
2
3.59 2.54⨯-⨯
专题训练二:利用完全平方公式分解因式 题型(一):把下列各式分解因
1、2
2
42025p pq q -+ 2、2
24
x xy y ++ 3、2244x y xy +-
题型(二):把下列各式分解因式
1、2
()6()9x y x y ++++ 2、2
2
2()()a a b c b c -+++ 3、2
412()9()x y x y --+-
题型(三):把下列各式分解因式
1、2
2
2xy x y -- 2、2
2
3
44xy x y y -- 3、23
2a a a -+-
题型(四):把下列各式分解因式 1、2
21222
x xy y ++ 2、42232510x x y x y ++ 3、2232ax a x a ++
4、
222224y x y x -+)( 5、2222()(34)a ab ab b +-+ 6、42
()18()81x y x y +-++
题型(五):利用因式分解解答下列各题 1、已知: 2211
128,22
x y x xy y ==++,求代数式的值。
2、33223
22
a b ab +==已知,,求代数式a b+ab -2a b 的值。
3、已知:2
2
2
0a b c ABC a b c ab bc ac ++---=、、为△的三边,且,判断三角形的形状,并说明理由。
因式分解(十字相乘)
1、分解因式:
2 212
7y
xy
x+
+
2、分解因式:
2 218
7y
xy
x-
-
3、分解因式:
2 218
7y
xy
x-
+
4、分解因式:
2
2
328
16ab
b
a
a+
-
5、分解因式:
4
3
2
226
11y
xy
y
x-
-
6、分解因式:
z
xy
yz
x
z
x2
2
36
5+
-
7、分解因式:
2 240
3y
xy
x-
-
8、分解因式:
2 233
8b
ab
a-
+
9、分解因式:
2
3
428
3t
t
t-
-
10、分解因式:
1
3
22+
-x
x
11、分解因式:
1
3
22+
+x
x
12、分解因式:
6
2
42-
-y
y
13、分解因式:
6
2
42-
+y
y
14、分解因式:
22
15
22+
+m
m
19、分解因式:
22
15
22+
-m
m。