最新整理的高考数学复习精华资料
高考数学知识点总结(全而精-一轮复习必备)
高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=,则C s A= {0})A A ⊆A ⊆φB A ⊆A B ⊆C A C B B A ⊆⊆⊆,那么,+N③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.,则a+b = 5,成立,所以此命题为真.②.1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.∅∅∅}⎩⎨⎧=-=+1323yxyxφ∅⇔⇔325≠≠≠+baba或,则且1≠x3≠y1≠∴yx且3≠+yx21≠≠yx且255xxx或,⇒{|,}{|}{,}A B x x A x BA B x x A x BA x U x A⇔∈∈⇔∈∈⇔∈∉U交:且并:或补:且C,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇CUA B A B A A B B A B U⊆⇔=⇔=⇔=C.;ABBAABBA==)()();()(CBACBACBACBA==)()()();()()(CABACBACABACBA==0-1律:等幂律:求补律:A∩C U A=φA∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.>∆0=∆0<∆二次函数cbxaxy++=2(0>a)的图象,,,A A A U A A U A UΦ=ΦΦ===.,AAAAAA==(1)()()()()(2)()()()()()()()()card A B card A card B card A Bcard A B C card A card B card Ccard A B card B C card C Acard A B C=+-=++---+x)0)((002211><>++++--aaxaxaxa nnnn原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x << ∅∅2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
新课标高考数学公式(精华版)
1高考数学公式(精华版)1.子集个数:n 元集合有2n 个子集,有21n -个真子集,21n-个非空子集,22n-个非空真子集; 2.常见数集:自然数集:N 正整数集:*N N 、+ 整数集:Z 有理数集:Q 实数集:R3.集合间的基本运算:(1)交集:公共元素;B A I (2)并集:全部元素(不能重复);B A Y (3)补集:除去公共元素而剩余的元素;A C U4.二次函数:2()(0)f x ax bx c a =++≠:判别式ac b 42-=∆;(1)0>∆时,图像与x 轴有两个交点; (2)0=∆时,图像与x 轴有一个交点; (3)0<∆时,图像与x 轴没有交点; 5.韦达定理:若21x x 、是一元二次方程)0(02≠=++a c bx ax 的两个根,则:a b x x -=+21,acx x =21.6.单调性:设1x ,2[,]x a b ∈,且12x x ≠,那么:(1)[]1212()()()0x x f x f x -->⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是增函数; (2)[]1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是减函数;(3)如果0)(>'x f ,则)(x f 为增函数;0)(<'x f ,则)(x f 为减函数;(4)增函数+增函数=增函数;减函数+减函数=减函数; 增函数-减函数=增函数;减函数-增函数=减函数; 7.奇偶性:(1)()()f x f x -=-⇔()f x 是奇函数⇔()f x 的图像关于原点对称⇒(0)0f =(若在0x =有定义)(2)()()f x f x -=⇔()f x 是偶函数⇔()f x 的图像关于y 轴对称;(3)奇函数±奇函数=奇函数;偶函数±偶函数=偶函数奇函数⨯奇函数=偶函数⨯偶函数=偶函数;奇函数⨯偶函数=奇函数8.对称性:(1)函数()y f x =的图象关于直线x a =对称2()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-9.周期性:(1)()()f x f x a =-+或1()()f x f x a =+⇔()f x 是2T a =的周期函数;(2)()()f x f x a b ++=或()()f x f x a b ⋅+=(0b ≠)⇔()f x 是2T a =的周期函数;10.分数指数幂:n mnmaa=(0,,a m n N*>∈,且1n >).1m nm naa-=(0,,a m n N *>∈,且1n >). 11.对数运算规律:(1)指数与对数互换标准:log b a N b a N =⇔= (2)常用两个对数等式:②01log =a ③1log =a a(3)对数运算法则:log ()log log a a a MN M N =+;log log log aa a MM N N=-;log log n a a M n M = (4)对数的换底公式:log log log m a m N N a=(log log m na a nb b m =)12.常见函数的导函数:(1)0='C (C 为常数);(2)'1()()n n x nx n Q -=∈; (3)x x cos )(sin =';(4)x x sin )(cos -=';(5)x x 1)(ln =';ea x xa log 1)(log ='; (6)x x e e =')(; a a a x x ln )(=';(7)[]'''()()()()f x g x f x g x ±=±; (8)[]'''()()()()()()f x g x f x g x f x g x ⋅=+(9)[]'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦; (10)())()()]([x g x f x g f '⋅'='(11) []''()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数);13.曲线的切线方程:函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率为)(0x f ',相应的切线方程是3))((000x x x f y y -'=-.14.角度制与弧度制互化标准:3602rad π︒=,180rad π︒=,10.01745rad ︒≈,'157.35718rad ︒︒≈=15.扇形面积公式:1=2S rl 扇(其中r 为半径,l 为扇形的弧长) 16.同角三角函数基本关系式:(1)平方关系:1cos sin 22=+αα;(2)商数关系:αααtan cos sin =; 17.诱导公式:(奇变偶不变,符号看象限)212(1)sin ,(sin()2(1)s ,nn n n co n απαα-⎧-⎪+=⎨⎪-⎩为偶数)(为奇数),212(1)s ,cos()2(1)sin ,nn co n n n απαα+⎧-⎪+=⎨⎪-⎩(为偶数)(为奇数) eg :ααπcos )2sin(=- ααπsin )2cos(=- ααπsin )sin(=-ααπcos )cos(-=- ααπcos )2sin(=+ 18.两角和与差的正余弦,正切公式:cos()cos cos sin sin cos()cos cos sin sin αβαβαβαβαβαβ+=-⎧⎨-=+⎩ ;sin()sin cos cos sin sin()sin cos cos sin αβαβαβαβαβαβ+=+⎧⎨-=-⎩ βαβαβαtan tan 1tan tan )tan(-+=+;βαβαβαtan tan 1tan tan )tan(+-=-19.二倍角公式:αααcos sin 22sin = ααα2tan 1tan 22tan -=ααααα2222sin 211cos 2sin cos 2cos -=-=-=20.降次(幂)公式: 21cos 2sin 2αα-=21cos 2cos 2αα+=1sincos sin 22ααα= 21.辅助角公式:sin cos )a x b x x ϕ±=±,其中tan baϕ=4特别的,有:sin cosx x x +=sin cos )4x x x π-=-cos 2sin()6x x x π+=+cos 2sin(x x x -=sin 2sin()3x x x π=+,sin 2sin(3x x x =23.三角函数图像的变换:(1)左右平移:左加右减;(2)周期变换:伸长缩短;在ABC ∆中,R CcB b A a 2sin sin sin ===. 22cos bc A -,222b c cos 2a A bc+-=; 22cos ac B -,222cos 2a c b B ac+-=;22cos ab C -,222cos 2a b c C ab +-=;)sin B C +=,cos()cos A B C +=-,(π=++C B A ,︒180)(2)若ABC ∆是锐角三角形,则sin cos A B >27.面积公式:111sin ()222ABC S ah ab C a b c r ∆===++(r 为ABC ∆内切圆半径)528.平面向量的基本运算:设11(,)a x y =r ,22(,)b x y =r;(1)1212(,)a b x x y y +=++r r ,1212(,)a b x x y y -=--r r;1212a b x x y y ⋅=+r r(2)若ar ∥br ⇔1221=-y x y x ,若a b ⊥r r ⇔12120a b x x y y ⋅=+=r r(3)cos ,cos ,a b a b a b a b a b a b⋅⋅=<>⇔<>=r rr r r r r r r r r r2121y x +=29.平面向量的基本定理:已知OP xOA yOB =+u u u r u u u r u u u r,若A 、P 、B 三点共线1x y ⇔+=30.若G 为ABC ∆的重心,则0GA GB GC ++=u u u r u u u r u u u r r,且(,)33A B C A B Cx x x y y y G ++++31.数列中n a 与n S 的关系:2111≥=-⎩⎨⎧=-n n S S S a n n n32.等差数列及其性质:(1)通项公式:1(1)()n m a a n d a n m d =+-=+-;(2)前n 项和:1()2n n n a a S +=1(1)2n n na d -=+; (3)若c b a 、、依次成等差数列,则有:b c a 2=+;(4)若m n p q +=+,则m n p q a a a a +=+;特别地,若2m n t +=,则2m n t a a a +=;(5)n S ,2n n S S -,32n n S S -成等差数列,且公差为2n d ; 33.等比数列及其性质:(1)通项公式:11n n m n m a a q a q --==;(2)前n 项和:11(1),11,1n n a q q S q na q ⎧-≠⎪=-⎨⎪=⎩(3)若c b a 、、依次成等比数列,则有:2b c a =⋅;(4)若m n p q +=+,则m n p q a a a a ⋅=⋅;特别地,若2m n t +=,则2m n t a a a ⋅=;(5)n S ,2n n S S -,32n n S S -成等比数列,且公比为n q ; 34.均值不等式:222a b ab +≥(当且仅当a b =时等号成立) ab b a 2≥+(当且仅当a b =时等号成立) “一6正、二定、三相等”35.常见几何体表面积公式:(1)圆柱:222S rl r ππ=+ (2)圆锥:2S rl r ππ=+(3)圆台:'22'()S r r r l rl π=+++ (4)球:24S R π=36.常见几何体体积公式:(1)柱体的体积公式V Sh =(其中S 为底面面积,h 为高)(2)锥体的体积公式13V Sh =(其中S 为底面面积,h 为高) (3)台体的体积公式'1()3V S S h =(其中'S ,S 分别为上、下底面面积,h 为高) (4)球的体积公式343V R π=(其中R 为球半径) 37:空间线面关系证明思路: (1)线线平行:①三角形中位线平行于第三边(且等于第三边的一半);②平行四边形对边平行;③两平行平面的垂线平行;(2)线面平行:①(平面外)直线与平面内一直线平行,则这条直线与平面平行;②两平面平行,其中一平面内一直线平行于另一平面; (3)面面平行:其中一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行,这两个平面平行;(4)线线垂直:①等腰三角形底边的中线垂直于底边(即是高线);②矩形的邻边垂直、菱形的对角线垂直;③直线垂直于平面则垂直于平面内的任意直线;④三垂线定理:平面内一直线与该平面的一条斜线在平面内的射影垂直,则这条直线与这条斜线垂直;三垂线逆定理也成立;(5)线面垂直:①一条直线垂直于平面内的两条相交直线,则垂直于这个平面;②两个平面垂直,其中一个平面内一直线垂直于两个平面的相交直线,则这条直线垂直于另一个平面;(6)面面垂直:其中一个平面内一直线垂直于另一个平面,则两平面垂直。
2024年高考数学高频考点(新高考通用)函数的概念及其表示(精练:基础+重难点)解析版
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第06讲函数的概念及其表示(精讲)【A组在基础中考查功底】则函数根据函数图像可知:(f x 故选:ACD.8.已知函数4 ()f x xx=+A.-3B 【答案】ABC四、解答题12.定义在R 上的函数()f x 对任意实数x 都有()2243f x x x -=-+.(1)求函数()f x 的解析式;(2)若函数()()23g x f x x =-+在[],1m m +上是单调函数,则求实数m 的取值范围.【答案】(1)()21f x x =-(2)(][),01,-∞+∞ 【分析】(1)配方后,利用整体法求解函数解析式;(2)求出()g x 的单调区间,与[],1m m +比较,得到不等式,求出实数m 的取值范围.【详解】(1)()()2224321f x x x x -=-+=--,故函数()f x 的解析式为()21f x x =-;(2)()()2223122121x x g x x x x =-+=---++=在(),1-∞上单调递减,在()1,+∞上单调递增,因为()g x 在[],1m m +上是单调函数,所以m 1≥或11m +≤,解得0m ≤或m 1≥,所以实数m 的取值范围是(][),01,-∞+∞ .【B 组在综合中考查能力】由图可得当且仅当0t<<时)的,故()()()()36494922f f f f m n =⨯=+=+.【C 组在创新中考查思维】,该函数在当32m>时,当x>m时()2,3f x⎛∈-∞-⎝①,当1,22aa >>时,()f x 在[]0,1上单调递增,②,由2222a a a x ⎛⎫-+⨯=- ⎪⎝⎭解得12x a +=或1x -=。
2024年高三数学高考知识点总结
2024年高三数学高考知识点总结一、函数与方程1. 函数的概念与性质- 函数的定义及函数关系的表示方法- 函数的定义域、值域和区间- 函数的奇偶性、周期性及单调性2. 一次函数与二次函数- 一次函数的性质及图像- 二次函数的性质及图像- 一次函数与二次函数的应用3. 指数函数与对数函数- 指数函数的性质及图像- 对数函数的性质及图像- 指数函数与对数函数的应用4. 三角函数- 正弦函数、余弦函数、正切函数的性质及图像- 三角函数之间的关系及图像的性质- 三角函数的应用5. 幂函数与反比例函数- 幂函数的性质及图像- 反比例函数的性质及图像- 幂函数与反比例函数的应用6. 方程和不等式- 一元一次方程与一元一次不等式的解法- 一元二次方程与一元二次不等式的解法- 方程与不等式的应用7. 绝对值方程与绝对值不等式- 绝对值方程与绝对值不等式的解法及应用- 带有绝对值的一元二次方程的解法二、数列与数学归纳法1. 数列的概念与性质- 数列的定义及常见数列的形式- 等差数列与等比数列的性质及通项公式2. 数列的通项公式与求和公式- 等差数列的通项公式及前n项和公式- 等比数列的通项公式及前n项和公式- 递推数列的通项公式及前n项和公式3. 数学归纳法- 数学归纳法的基本思想及应用- 利用数学归纳法证明不等式4. 递归数列与逼近法- 递归数列的定义及应用- 逼近法解决数学问题三、三角恒等变换1. 三角函数的和差化积与积化和差- 正弦、余弦、正切的和差化积公式- 正弦、余弦、正切的积化和差公式2. 三角函数的倍角化半角与半角化倍角- 正弦、余弦、正切的倍角化半角公式- 正弦、余弦、正切的半角化倍角公式3. 三角方程的基本解法- 使用三角函数的恒等变换解三角方程- 利用等效代换解三角方程4. 三角函数的图像与性质- 三角函数图像的性质及平移、伸缩、翻转操作- 三角函数图像的综合性质及应用四、平面几何与立体几何1. 二维几何相关知识- 平面几何基本概念及性质- 二维几何形状的性质与判定2. 三角形相关知识- 三角形的内角和与外角和的性质- 三角形的中线、高线、角平分线的性质及应用3. 圆相关知识- 圆的基本概念及性质- 弧长与扇形面积的计算- 切线与切线定理的应用4. 直线与圆的位置关系- 直线与圆的位置关系的判定及性质- 直线与圆的切线与切点的性质与计算5. 空间几何相关知识- 空间几何基本概念及性质- 空间几何形状的性质与判定6. 空间几何立体的计算- 空间几何立体的体积与表面积的计算- 立体的展开图与折叠图的应用五、概率与统计1. 概率的基本概念与性质- 随机事件与样本空间的概念- 概率的定义及性质- 概率的计算方法2. 排列、组合与概率计算- 排列与组合的基本概念与计算方法- 包含条件的排列与组合的计算方法- 概率计算中的排列与组合问题的应用3. 随机变量与概率分布- 随机变量的定义及性质- 离散型和连续型随机变量的概率分布- 随机变量的数学期望与方差的计算4. 概率统计与抽样调查- 总体与样本的概念及表示方法- 抽样调查的基本方法与误差分析- 统计量的计算与应用六、向量与矩阵1. 向量的基本概念与性质- 向量的定义及表示方法- 向量的数量乘法、加法、减法与向量的线性相关性2. 向量的线性组合与线性方程组- 向量的线性组合与线性方程组概念- 线性方程组的解的判定与求解3. 矩阵的基本概念与运算- 矩阵的定义及表示方法- 矩阵的乘法、加法、减法与矩阵的性质4. 矩阵的转置、行列式与逆矩阵- 矩阵的转置运算与性质- 矩阵的行列式及其性质与应用- 矩阵的逆矩阵的定义与求解5. 矩阵的秩与线性方程组- 矩阵的秩的定义及性质- 秩与线性方程组解的存在性与唯一性的关系这只是对____年高三数学高考知识点进行的一个预测总结,具体内容还需要参考教材或高考大纲进行复习和学习。
高考数学108个知识点
高考数学108个知识点数学作为高考科目之一,对于广大考生来说是一道相当重要的门槛。
高考数学试卷中涵盖了大量的知识点,考生需要深入了解和掌握这些知识点,才能在考试中取得好成绩。
在这篇文章中,我们将细致地梳理高考数学的108个知识点,并给出相应的解析和例题。
一. 代数与函数1. 复数与复数基本运算:复数的概念与表示方法,复数的四则运算。
2. 幂的运算:定义、性质及应用,实指数幂与零指数幂。
3. 根式与分式的性质:根式的概念与性质,分式的概念与性质。
4. 分式的四则运算:分式的加减乘除,简化分式。
5. 线性方程组与解的性质:线性方程组的定义、解的存在唯一性以及解的性质。
6. 二次函数与一元二次方程:二次函数的概念、性质以及图像,一元二次方程的定义解的判别式。
二. 三角函数7. 角的概念与运算:弧度制与角度制的转换,三角函数的概念、性质以及应用。
8. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像、性质以及周期性。
9. 三角函数的基本关系式:正弦函数、余弦函数、正切函数之间的基本关系。
10. 三角函数的合并与拆分:任意两个三角函数的合并与拆分。
11. 三角函数的方程与恒等式:三角方程的定义、基础解法以及特解法。
三. 解析几何12. 平面直角坐标系与平面向量:平面直角坐标系的概念、性质以及应用,平面向量的概念、基本运算以及性质。
13. 直线与圆的方程:直线的方程、性质以及相关定理,圆的方程、性质以及相关定理。
14. 二次曲线的方程:椭圆、双曲线、抛物线的方程、性质以及相关定理。
15. 空间几何与立体几何:空间直角坐标系的概念、性质以及应用,空间向量的概念、基本运算以及性质。
四. 数量关系16. 空间图形的投影与旋转:平行投影、垂直投影、投影的比例与相似性,图形绕一定轴线的旋转。
17. 总和与平均数:总和与平均数的概念、计算方法以及应用。
18. 线性规划:线性规划的定义、基本模型以及解法。
19. 组合与排列:组合与排列的定义、性质以及计算方法。
高考数学常见题型汇总(精华资料)
一、函数1、求定义域(使函数有意义) 分母 ≠0偶次根号≥0对数log a x x>0,a>0且a ≠1三角形中 0<A ∠<180, 最大角>60,最小角<60 2、求值域判别式法 V ≥0 不等式法 22232111133y x x x x x x x x =+=++≥⨯⨯=导数法 特殊函数法 换元法 题型: 题型一:1y x x =+法一:111(,222同号)或y x x x x x xy y =+=+≥∴≥≤-法二:图像法(对(0)by ax ab x =+>有效2-2-11题型二:()1(1,9)y x x x =-∈()/2(1)(9)110180,,0,9导数法:函数单调递增即y x y x xy f f y =+>∴=-⎛⎫∴∈∈ ⎪⎝⎭ 题型三:2sin 11sin 1sin ,1,2112化简变形又sin 解不等式,求出,就是要求的答案y yy yy y θθθθ-=++=≤-+∴≤-题型四:2222sin 11cos 2sin 1(1cos ),2sin cos 114sin()1,sin()41sin()114化简变形得即又由知解不等式,求出,就是要求的答案y y y yy y x y x y y x yy θθθθθθθθθ-=+-=+-=++++=++=+++≤≤+题型五2222333(3),(3)30(3)430化简变形得由判别式解出x x y x x x y x x y x y y y y+=-+=-+-+==--⨯≥V反函数1、反函数的定义域是原函数的值域2、反函数的至于是原函数的定义域3、原函数的图像与原函数关于直线y=x 对称 题型1()(2)32,2322,2已知求解:直接令,解出就是答案x xf f x xx x --=+-=+周期性()()()(2)()()(2)00(2,函数 -)式相减)是一个周期是2t 的周期函数x x t x t x t x x x t f f f f f f f +++++=+==对称()()()(2)()()()),(2,), 函数关于直线x=a 对称对称的判断方法:写出2个对应点的坐标A(x,求出其中点的坐标C(a,)。
高考数学大全知识点总复习
高考数学大全知识点总复习一、函数与方程1.函数的性质与运算-函数的定义、自变量、因变量-函数的性质:奇偶性、周期性、单调性-函数的运算:和、积、反函数、复合函数2.一元二次方程-一元二次方程的定义及性质-一元二次方程的解法-一元二次方程的应用:整数、分数、根的关系3.函数的图像与性质-一次函数、二次函数、三角函数的图像与性质-反比例函数、指数函数的图像与性质-一元二次函数的图像与性质4.不等式与绝对值-一次不等式、二次不等式的解法-绝对值的性质与运算-不等式的应用:求解范围、表示范围二、几何与三角1.平面几何的基本概念-点、线、面的定义-直线和平面的交点-平面几何的基本性质:平行、垂直、相似、全等2.三角形的性质与运算-三角形的定义与分类-三角形的性质:内角和、外角和、中线、重心、垂心、外心-三角形的解法:正弦定理、余弦定理、面积公式3.圆的性质与运算-圆的定义与性质-弧长、扇形面积、圆锥体积的计算-圆与直线的位置关系:切线、割线、弦4.空间几何的基本概念-点、线、面、体的定义-空间几何的基本性质:平行、垂直、相交三、数据与概率1.统计与概率-样本、样本空间、事件的定义与性质-概率的定义与性质-随机变量、概率分布、期望值、方差的计算2.数据的处理-数据的收集与整理-数据的统计分析:平均数、中位数、众数-数据的表示与描述:频率分布表、柱状图、折线图3.概率与统计的应用-组合问题:排列组合、分配问题-概率问题:事件的独立、互斥、和、积运算-统计问题:抽样调查、误差分析、假设检验四、导数与积分1.导数与函数的变化率-导数的定义与计算-导数的运算:和、积、商-函数的极值、单调性与凹凸性2.应用题与函数图像-极值问题:最值、最优化问题-变化率问题:速度、密度、增长率-函数图像的绘制与分析:渐近线、拐点、切线3.定积分与不定积分-定积分的定义与性质-不定积分的计算:基本公式、换元法、分部积分法-积分的应用:长度、面积、体积、物理问题。
高考数学第一轮复习资料汇总
高考数学第一轮复习资料汇总高考数学第一轮复习资料 1数列的基本概念等差数列(1)数列的通项公式an=f(n)(2)数列的递推公式(3)数列的通项公式与前n项和的关系an+1—an=dan=a1+(n—1)da,A,b成等差2A=a+bm+n=k+l am+an=ak+al等比数列常用求和公式an=a1qn_1a,G,b成等比G2=abm+n=k+l aman=akal不等式不等式的基本性质重要不等式a>b ba>b,b>c a>ca>b a+c>b+ca+b>c a>c—ba>b,c>d a+c>b+da>b,c>0 ac>bca>b,c<0 aca>b>0,c>d>0 aca>b>0 dn>bn(n∈Z,n>1)a>b>0 > (n∈Z,n>1)(a—b)2≥0a,b∈R a2+b2≥2ab|a|—|b|≤|a±b|≤|a|+|b|证明不等式的基本方法比较法(1)要证明不等式a>b(或aa—b>0(或a—b<0=即可(2)若b>0,要证a>b,只需证明。
要证a综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。
分析法分析法是从寻求结论成立的充分条件入手,逐步寻求所需条件成立的充分条件,直至所需的条件已知正确时为止,明显地表现出“持果索因”高考数学第一轮复习资料 21、直线两点距离、定比分点直线方程|AB|=| ||P1P2|=y—y1=k(x—x1)y=kx+b两直线的位置关系夹角和距离或k1=k2,且b1≠b2l1与l2重合或k1=k2且b1=b2l1与l2相交或k1≠k2l2⊥l2或k1k2=—1 l1到l2的角l1与l2的夹角点到直线的距离2、圆锥曲线圆椭圆标准方程(x—a)2+(y—b)2=r2圆心为(a,b),半径为R一般方程x2+y2+Dx+Ey+F=0其中圆心为(),半径r(1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系(2)两圆的位置关系用圆心距d与半径和与差判断椭圆焦点F1(—c,0),F2(c,0)(b2=a2—c2)离心率准线方程焦半径|MF1|=a+ex0,|MF2|=a—ex0双曲线抛物线双曲线焦点F1(—c,0),F2(c,0)(a,b>0,b2=c2—a2)离心率准线方程焦半径|MF1|=ex0+a,|MF2|=ex0—a抛物线y2=2px(p>0)焦点F准线方程坐标轴的平移这里(h,k)是新坐标系的原点在原坐标系中的坐标。
高中数学知识点总结(新高考地区)精选全文完整版
一:集合与简易逻辑1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集集合A中任意一个元素均为集合B中的元素A⊆B 真子集集合A中任意一个元素均为集合B中的元素,且集合B中至少有一个元素不是集合A中的元素BA⊂≠空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B若全集为U,则集合A的补集为∁U A 图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A} 4.集合的运算性质(1)A∩A=A,A∩∅=∅,A∩B=B∩A.(2)A∪A=A,A∪∅=A,A∪B=B∪A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.[方法技巧](1).若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).15q pqq6、全称量词与存在量词(1)全称量词:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.(2)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示.7、全称命题和存在性命题(命题p的否定记为⌝p,读作“非p”)[方法技巧]1.区别A是B的充分不必要条件(A⇒B且B⇏A),与A的充分不必要条件是B(B⇒A且A⇏B)两者的不同.2.A是B的充分不必要条件⇔⌝B是⌝A的充分不必要条件.3.含有一个量词的命题的否定规律是“改量词,否结论”.2二:函数基本知识(1)1、函数三要素32、函数性质43、指数和对数运算4、函数图象变换55、一元二次方程根的分布⎧Δ=067三:函数基本知识(2)1、一次函数2、反比例函数o yxyxo4、指数函数和对数函数(0∞)8点,且在第一象限是减函数.,1)点).“指大图低”).910四:三角函数1、任意角的三角函数(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式角α的弧度数公式 |α|=lr (弧长用l 表示)角度与弧度的换算1°=π180rad ;1 rad =⎝⎛⎭⎫180π° 弧长公式 弧长l =|α|r 扇形面积公式S =12lr =12|α|r 2 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.[提醒](1)若α∈⎝⎛⎭⎫0,π2,则tan α>α>sin α. (2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.114.象限角的集合5.轴线角的集合6.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2k πα+ α− πα− πα+ 2πα− 2πα−2πα+2πα−sinsin αsin α−sin αsin α−sin α−cos αcos αcos α−coscos αcos αcos α−cos α−cos αsin α sin α− sin αtan tan α tan α− tan α− tan α tan α− cot α cot α− cot α−8.两角和与差的三角函数:S αβ+:sin()sin cos cos sin αβαβαβ+=⋅+⋅ S αβ−:sin()sin cos cos sin αβαβαβ−=⋅−⋅ C αβ+:cos()cos cos sin sin αβαβαβ+=⋅−⋅ C αβ−:cos()cos cos sin sin αβαβαβ−=⋅+⋅ T αβ+: βαβαβαtan tan 1tan tan )tan(−+=+T αβ−: βαβαβαtan tan 1tan tan )tan(+−=−129.二倍角公式:2S α:sin 22sin cos ααα= 2T α:22tan tan 21tan ααα=− 2C α2222cos 2cos sin 2cos 112sin ααααα=−=−=−10.降幂公式:1sin cos sin 22ααα= 21cos 2sin 2αα−= 21cos 2cos 2αα+=11.半角公式:12.合一变形 22sin cos )a x b x a b x ϕ+=++, 其中 tan b aϕ=1313.三角函数的图像与性质 sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域 []1,1−[]1,1−R最值 当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=− ()k ∈Z 时,min 1y =−.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =−.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤−+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ−∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫−+⎪⎝⎭()k ∈Z 上是增函数.对称中心 ()(),0k k π∈Z(),02k k ππ⎛⎫+∈Z⎪⎝⎭ (),02k k π⎛⎫∈Z ⎪⎝⎭对称轴()2x k k ππ=+∈Z()x k k π=∈Z无对称轴函 数性 质四:平面向量“三角形法则”λ(μa)=(λμ)aλ+μ)a=λa+μa14五:解三角形1、正弦定理和余弦定理2、解三角形的四种模型153、解三角形的多解分析已知两边和其中一边的对角解三角形时,应分析解的情况:如已知a,b,A,则当A为锐角时当A为钝角或直角时图示关系式a<b sin A a=b sin A b sin A<a<b a≥b a>b a≤b解的情况无解一解两解一解一解无解16六:数列1、数列基本性质172、求数列通项公式(1).前n项和型(2)递推公式型183、数列求和19七:圆锥曲线1、椭圆a b-a≤x≤a,-b≤y≤b≤x≤b,-a≤y≤对称轴:对称中心:原点F1(-c,0),F2(c,0)(0,-c),F2(0,2、双曲线≤-a或x≥a;y∈∈R;y≤-a或y对称中心:原点203、抛物线x≥0;y∈R x≤0;y∈R x∈R;y≥0x∈R;y≤0对称轴:轴轴214、圆锥曲线的常用性质2223八:直线方程与圆的方程【公式】1.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.几种距离公式(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离:|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离:d =|C 1-C 2|A 2+B 2.4.圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径.5.圆的一般方程:x 2+y 2+Dx +Ey +F =0该方程表示圆的充要条件是D 2+E 2-4F >0其中圆心为⎝⎛⎭⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.6.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:利用判别式Δ=b 2-4ac 进行判断:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.247.圆与圆的位置关系:设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).则:d >r 1+r 2⇔外离; d =r 1+r 2⇔外切; |r 1-r 2|<d <r 1+r 2⇔相交;d =|r 1-r 2|⇔内切; 0≤d <|r 1-r 2|⇔内含【必备结论】1.斜率与倾斜角的关系:由正切图象可以看出:①当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞)且随着α增大而增大; ②当α=π2时,斜率不存在,但直线存在;③当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0)且随着α增大而增大.2.两条直线的位置关系(1)斜截式判断法:①两条直线平行:对于两条不重合的直线l 1、l 2:(ⅰ)若其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1、l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)一般式判断法:设两直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0,则有:①l 1∥l 2⇔A 1 B 2=A 2B 1且A 1 C 2≠A 2 C 1; ②l 1⊥l 2⇔A 1A 2+B 1B 2=0.3.直线系方程:(1)平行线系:与直线Ax +By +C =0平行的直线方程可设为:Ax +By +m =0(m ≠C );(2)垂直线系:与直线Ax +By +C =0垂直的直线方程可设为:Bx -Ay +n =0;(3)交点线系:过A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0的交点的直线可设:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0.4.点与圆的位置关系圆方程(x-a)2+(y-b)2=r2,一般方程x2+y2+Dx+Ey+F=0,点M(x0,y0),则有:(1)点在圆上:(x0-a)2+(y0-b)2=r2,x02+y02+Dx0+E y0+F=0;(2)点在圆外:(x0-a)2+(y0-b)2>r2,x02+y02+Dx0+E y0+F>0;(3)点在圆内:(x0-a)2+(y0-b)2<r2,x02+y02+Dx0+E y0+F<0.5.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为:x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆C:x2+y2+Dx+Ey+F=0外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程的求法:①以M为圆心,切线长为半径求圆M的方程;②用圆M的方程减去圆C的方程即得;6.圆与圆的位置关系的常用结论(1)两圆的位置与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)公共弦直线:当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程.7.常用口诀:①直线带参,必过定点;②弦长问题,用勾股.【方法】1.直线的对称问题:(1)点关于线对称:方程组法,设对称后点的坐标为(x,y),根据中点坐标及垂直斜率列方程组;(2)线关于线对称:①求交点;②已知直线上取一个特殊点,并求其关于直线的对称点;③两点定线即可.(3)圆关于线对称:圆心对称,半径不变.25262.直线与圆的相关问题:(1)切线问题:一般设直线点斜式(讨论斜率存在),然后依据d =r 列方程求解;(2)弦长问题:用勾股,即圆的半径为r ,弦心距为d ,弦长为l ,则根据勾股得⎝⎛⎭⎫l 22=r 2-d 2;3.轨迹求法:①直译法:直接根据题目提供的动点条件,直接列出方程,化简可得;②几何法:根据动点满足的几何特征,判断其轨迹类型,然后根据轨迹定义直接写出方程.③代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.27九:立体几何与空间向量【公式】1.空间几何体的表面积与体积公式:(1)基本公式:①圆:面积S 圆=πr 2, 周长C 圆=2πr ;②扇形:弧长l 扇形=αR , 面积S 扇形=12lR =12αR 2,周长C 扇形=l +2R .S 圆柱侧=2πrl S 圆锥侧=πrl 圆台侧=π(r 1+(3)柱、锥、台和球的体积公式①柱体(棱柱和圆柱):S 表面积=S 侧+2S 底,V 柱=Sh ;②锥体(棱锥和圆锥) :S 表面积=S 侧+S 底,V 锥=13Sh ;③台体(棱台和圆台) : S 表面积=S 侧+S 上+S 下,V 台=13(S 上+S 下+S 上S 下)h ;④球:S 球=4πR 2 ,V 球=43πR 3;2.平行关系的判定及性质定理:283.垂直关系的判定及性质定理:图形语言4.空间向量与立体几何的求解公式:(1)异面直线成角:设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θ满足:cos θ=|a ·b ||a ||b |;(2)线面成角:设直线l 的方向向量为a ,平面α的法向量为n ,a 与n 的夹角为β,则直线l 与平面α所成的角为θ满足:sin θ=|cos β|=|a ·n ||a ||n |.(3)二面角:设n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则两面的成角θ满足:cos θ=cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|;(4)点到平面的距离:如右图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为:|BO →|=|AB →·n ||n |,即向量在法向量n 的方向上的投影长.29【结论】1.直观图与原图的关系:(1)作图关系:①位置:平行性、相交性不变;②长度:平行x (z )轴的长度不变,平行y 轴的长度减半.(2)面积关系:S 直观图′=24×S 原图;2.几个与球有关的内切、外接常用结论:(1)正方体的棱长为a ,球的半径为R ,则: ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③球与正方体的各棱相切,则2R =2a .(2)长方体的长、宽、高分别为a ,b ,c ,则外接球直径=长方体对角线,即:2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为:3∶1.3.几种常见角的取值范围:①异面直线成角∈(0,π2]②二面角∈[0,π]③线面角∈[0,π2]④向量夹角∈[0,π] ⑤直线的倾斜角∈[0,π)【方法】1.三视图还原方法:提点连线法,具体步骤:①根据三视图轮廓画长方体或正方体; ②在底面画俯视图;③综合正视图和左视图进行提点连线; ④验证与完善.2.平行构造的常用方法:①三角形中位线法; ②平行四边形线法; ③比例线段法.3.垂直构造的常用方法:①等腰三角形三线合一法; ②勾股定理法; ③投影法.4.用向量证明空间中的平行关系(1)线线平行:设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.(2)线面平行:设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔v⊥u.(3)面面平行:设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.5.用向量证明空间中的垂直关系(1)线线垂直:设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.(2)线面垂直:设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.(3)面面垂直:设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0.6.点面距常用方法:①作点到面的垂线,点到垂足的距离即为点到平面的距离;②等体积法;③向量法7.外接球常用方法:①将几何体补成长方体或正方体,则球直径=体对角线;②过两个三角形的外接圆圆心作圆面垂线,则垂线交点即为外接球球心,找到球心即可求半径.3031十:排列组合与二项式定理1、分类加法计数原理:做一件事,完成它有类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法……在第类办法中,有种不同的方法.那么完成这件事共有种不同的方法.2、分步乘法计数原理:做一件事,完成它需要分成个步骤,做第一个步骤有种不同的方法,做第一个步骤有种不同的方法……做第个步骤有种不同的方法.那么完成这件事共有种不同的方法.3、排列:(1)、排列:从个不同元素中任取个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列(2)、排列数从个不同元素中取出个元素的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号表示:当时,为全排列.的阶乘:排列数公式可写成(规定)n 1m 2m n n m 12n N m m m =+++n 1m 2m n 12n N m m m =⨯⨯⨯n ()m m n ≤n m n ()m m n ≤n m mn A ()()()121mn A n n n n m =−−−+m n =()()12321nn A n n n =−−⨯⨯n ()()12321!nn A n n n n =−−⨯⨯=()!!mn n A n m =−0!1=324、组合 (1)组合:从n 个元素中取出m 个元素合成一组,叫做从n 个元素中取出m 个元素的一个组合。
高中数学知识点总结全2024
高中数学知识点总结全2024一、集合与函数概念1. 集合的基本概念集合的定义:集合是某些确定的、互不相同的对象的全体。
集合的表示方法:列举法、描述法、图示法。
集合间的关系:子集、真子集、相等。
集合的运算:并集、交集、补集。
2. 函数的概念函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
函数的三要素:定义域、对应关系、值域。
函数的性质:单调性、奇偶性、周期性、最值。
3. 函数的表示方法解析法:用数学式子表示函数关系。
表格法:用表格形式表示函数关系。
图象法:用图象表示函数关系。
二、基本初等函数1. 一次函数定义:形如y=kx+b(k≠0)的函数。
性质:图象是一条直线,k为斜率,b为截距。
2. 二次函数定义:形如y=ax²+bx+c(a≠0)的函数。
性质:图象是一条抛物线,a决定开口方向和大小,顶点坐标为(b/2a, cb²/4a)。
3. 指数函数定义:形如y=a^x(a>0且a≠1)的函数。
性质:图象过点(0,1),a>1时单调递增,0<a<1时单调递减。
4. 对数函数定义:形如y=log_a(x)(a>0且a≠1)的函数。
性质:图象过点(1,0),a>1时单调递增,0<a<1时单调递减。
5. 三角函数正弦函数:y=sin(x),周期为2π,图象为波形曲线。
余弦函数:y=cos(x),周期为2π,图象为波形曲线。
正切函数:y=tan(x),周期为π,图象为渐近线间的曲线。
三、立体几何1. 空间几何体的结构多面体:由若干个多边形围成的几何体,如棱柱、棱锥。
旋转体:由平面图形绕某条直线旋转形成的几何体,如圆柱、圆锥、球。
2. 空间几何体的三视图主视图:从正面看到的图形。
俯视图:从上面看到的图形。
左视图:从左面看到的图形。
高中数学高考数学知识点归纳总结精华版
高中数学高考数学知识点归纳总结精华版高中数学是一门重要的学科,对于高考来说更是关键。
以下为大家精心归纳总结高考数学的重要知识点。
一、函数函数是高中数学的核心内容之一。
1、函数的概念:设 A、B 是非空数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
2、函数的性质:单调性:如果对于定义域 I 内某个区间 D 上的任意两个自变量的值x1,x2,当 x1<x2 时,都有 f(x1)<f(x2)(或 f(x1)>f(x2)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
奇偶性:对于函数 f(x)的定义域内任意一个 x,都有 f(x)=f(x)(或f(x)=f(x)),那么函数 f(x)就叫做偶函数(或奇函数)。
3、常见函数:一次函数:y = kx + b(k、b 为常数,k≠0)。
二次函数:y = ax²+ bx + c(a≠0),其图像是一条抛物线。
对称轴为 x = b/2a,顶点坐标为(b/2a,(4ac b²)/4a)。
反比例函数:y = k/x(k 为常数,k≠0)。
二、三角函数1、任意角和弧度制:了解任意角的概念,包括正角、负角和零角。
掌握弧度制与角度制的换算。
2、三角函数的定义:在平面直角坐标系中,设角α的终边上任意一点 P 的坐标为(x,y),它与原点的距离为 r(r =√(x²+ y²)),则sinα = y/r,cosα = x/r,tanα = y/x。
3、同角三角函数的基本关系:sin²α +cos²α = 1,tanα =sinα/cosα。
4、诱导公式:用于将不同象限的角的三角函数值进行转化。
5、三角函数的图像和性质:正弦函数 y = sin x:定义域为 R,值域为-1,1,周期为2π,是奇函数。
高三数学复习资料整理归纳
高三数学复习资料整理归纳要学会乐观学习。
子曰:“知之者不如好之者,好之者不如乐之者”,此乃乐观学习之谓也。
既然学习是生活的一部分,就应当乐观地对待它,不管你在轻松地学习,还是困难地学习。
其实,只要擅长在未知中查找爱好,你就能永久乐观地对待学习。
下面给大家带来一些关于(高三数学)复习资料整理归纳,盼望对大家有所关心。
高三数学复习资料整理11、基本概念:(1)必定大事:在条件S下,肯定会发生的大事,叫相对于条件S 的必定大事;(2)不行能大事:在条件S下,肯定不会发生的大事,叫相对于条件S的不行能大事;(3)确定大事:必定大事和不行能大事统称为相对于条件S的确定大事;(4)随机大事:在条件S下可能发生也可能不发生的大事,叫相对于条件S的随机大事;(5)频数与频率:在相同的条件S下重复n次试验,观看某一大事A是否消失,称n次试验中大事A消失的次数nA为大事A消失的频数;称大事A消失的比例fn(A)=为大事A消失的概率:对于给定的随机大事A,假如随着试验次数的增加,大事A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为大事A的概率。
(6)频率与概率的区分与联系:随机大事的频率,指此大事发生的次数nA与试验总次数n的比值,它具有肯定的稳定性,总在某个常数四周摇摆,且随着试验次数的不断增多,这种摇摆幅度越来越小。
我们把这个常数叫做随机大事的概率,概率从数量上反映了随机大事发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个大事的概率3.1.3概率的基本性质1、基本概念:(1)大事的包含、并大事、交大事、相等大事(2)若A∩B为不行能大事,即A∩B=ф,那么称大事A与大事B 互斥;(3)若A∩B为不行能大事,A∪B为必定大事,那么称大事A与大事B互为对立大事;(4)当大事A与B互斥时,满意加法公式:P(A∪B)=P(A)+P(B);若大事A与B为对立大事,则A∪B为必定大事,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必定大事概率为1,不行能大事概率为0,因此0≤P(A)≤1;2)当大事A与B互斥时,满意加法公式:P(A∪B)=P(A)+P(B);3)若大事A与B为对立大事,则A∪B为必定大事,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);4)互斥大事与对立大事的区分与联系,互斥大事是指大事A与大事B在一次试验中不会同时发生,其详细包括三种不同的情形:(1)大事A发生且大事B不发生;(2)大事A不发生且大事B发生;(3)大事A与大事B同时不发生,而对立大事是指大事A与大事B有且仅有一个发生,其包括两种情形;(1)大事A发生B不发生;(2)大事B发生大事A不发生,对立大事互斥大事的特别情形。
高考数学复习资料
高考数学复习资料高考数学复习资料无标题内容如下:
1. 高中数学基础知识回顾:
- 整式与分式
- 一次函数与二次函数
- 幂函数与指数函数
- 对数函数与三角函数
- 数列与数学归纳法
- 平面向量与立体几何
2. 解析几何:
- 直线与平面的方程
- 直线与平面的位置关系
- 空间平面与线面平行垂直关系
- 空间线与线的位置关系
- 点到直线的距离与线面夹角
- 二次曲线
3. 三角函数与三角恒等变换:
- 三角函数的定义与性质
- 三角函数的图像与性质
- 三角函数的基本关系式
- 三角函数的和差化积公式
- 三角函数的倍角与半角公式
- 三角函数的辅助角公式
4. 数列与函数的极限:
- 数列的极限
- 函数的极限概念与性质 - 函数的极限运算法则
- 极限存在准则
- 无穷大与无穷小的比较
5. 导数与微分:
- 导数与导函数
- 基本求导法则
- 高阶导数
- 隐函数与参数方程的求导 - 函数的微分及其应用
6. 不等式与绝对值:
- 一元一次不等式
- 一元二次不等式
- 绝对值不等式
- 不等式的解集表示
7. 概率与统计:
- 随机事件与概率
- 事件的计数与概率计算 - 随机变量与概率分布
- 正态分布与中心极限定理 - 统计与抽样调查
这些是高考数学复习资料的一部分,希望对你的复习有所帮助。
根据自己掌握的知识水平,有针对性地进行学习和复习。
加油!。
2024高考数学知识点归纳总结
2024高考数学知识点归纳总结一、集合与常用逻辑用语。
1. 集合。
- 集合的概念:元素与集合的关系(属于、不属于),集合的表示方法(列举法、描述法、韦恩图)。
- 集合间的关系:子集(包含、真包含)、相等集合的判定与性质。
- 集合的运算:交集、并集、补集的定义、性质和运算规则。
例如:A∩ B = {xx∈ A且x∈ B},A∪ B={xx∈ A或x∈ B},∁_U A={xx∈ U且x∉ A}(U为全集)。
2. 常用逻辑用语。
- 命题:命题的概念(能判断真假的陈述句),命题的真假性判断。
- 四种命题:原命题、逆命题、否命题、逆否命题的相互关系(互为逆否命题同真同假)。
- 充分条件与必要条件:若pRightarrow q,则p是q的充分条件,q是p的必要条件;若pLeftrightarrow q,则p是q的充要条件。
- 逻辑联结词:“且”(∧)、“或”(∨)、“非”(¬)的含义和真假判断规则。
例如:p∧ q为真当且仅当p真且q真;p∨ q为真当且仅当p真或q真;¬ p 的真假与p相反。
二、函数。
1. 函数的概念。
- 函数的定义:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y = f(x)和它对应,那么就称f:A→ B为从集合A到集合B的一个函数。
- 函数的三要素:定义域、值域、对应关系。
定义域是自变量x的取值范围;值域是函数值y = f(x)的取值集合;同一函数的判定(定义域和对应关系相同)。
2. 函数的性质。
- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D上的任意两个自变量的值x_1,x_2,当x_1 < x_2时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。
判断函数单调性的方法有定义法、导数法等。
- 奇偶性:对于函数y = f(x)的定义域内任意一个x,都有f(-x)= - f(x)(或f(-x)=f(x)),那么函数y = f(x)是奇函数(或偶函数)。
高考数学知识点总结(最新11篇)
高考数学知识点总结(最新11篇)高考数学知识点总结篇一1.“集合”与“常用逻辑用语”:强调了集合在表述数学问题时的工具性作用,突出了“韦恩图”在表示集合之间的关系和运算中的作用。
需要特别注意能够对含有一个量词的全称命题进行否定。
2.函数:对分段函数提出了明确的要求,要求能够简单应用;反函数问题只涉及指数函数和对数函数;注意函数零点的概念及其应用。
3.立体几何:第一部分强调对各种图形的识别、理解和运用,尤其是新课标高考新增加的三视图一定会重点考查。
第二部分的位置关系侧重于利用空间向量来进行证明和计算。
4.解析几何:初步了解用代数方法处理几何问题的思想,加强对椭圆和抛物线的理解和综合应用,重点掌握椭圆和抛物线与其他知识相结合的解答题。
5.三角函数:本部分的重点是“基本三角函数关系”、“三角函数的图象和性质”和“正、余弦定理的应用”。
6.平面向量:掌握向量的四种运算及其几何意义,理解平面向量数量积的物理意义以及会用向量方法解决某些简单的平面几何问题。
我们应注意平面向量与平面几何、解析几何、三角函数等知识的综合。
7.数列:了解数列是自变量为正整数的一类函数和等差数列与一次函数、等比数列与指数函数的关系。
能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。
8.不等式:要求会解一元二次不等式,用二元一次不等式组表示平面区域,会解决简单的线性规划问题。
会用基本不等式解决简单的最大(小)值问题。
9.导数:理解导数的几何意义,要求关注曲线的切线问题;能利用导数求函数的'单调性、单调区间;函数的极值;闭区间上函数的最大值、最小值。
10.算法:侧重“算法”的三种基本逻辑结构与“程序框图”的复习。
11.计数原理:强调对计数原理的“理解”,避免抽象地讨论计数原理,而且强调计数原理在实际中的应用,尤其是要注意与概率的综合。
要想成功就必须付出汗水。
12.概率与统计:高考对概率与统计的考查越来越趋向综合型、交汇型。
高考数学复习资料超详细版本
高考数学复习资料目录1代数31.1集合 (3)1.2函数与方程 (3)1.3方程与不等式 (4)2数列与级数52.1数列 (5)2.2等差数列 (5)2.3等比数列 (5)3平面解析几何53.1直线方程 (5)3.2圆的方程 (6)3.3椭圆的方程 (6)4立体几何64.1空间几何体 (6)4.2空间向量 (6)5概率与统计75.1概率 (7)5.2统计 (7)6解析几何76.1直线与圆 (7)6.2椭圆 (7)6.3双曲线 (8)7不等式8 8复数88.1复数的定义 (8)8.2复数的运算 (8)8.3复数的模 (8)9线性代数89.1行列式 (8)9.2矩阵 (9)10微积分910.1微分 (9)10.2积分 (9)1代数1.1集合定义:集合是一些确定的、互异的对象的全体。
常见集合的表示方法:•列举法:A={1,2,3}•描述法:B={x|x是大于0的偶数}集合的基本运算:•并集:A∪B={x|x∈A或x∈B}•交集:A∩B={x|x∈A且x∈B}•补集:A c={x|x∉A}UA B1.2函数与方程定义:设A和B是两个非空集合,如果按照某种对应关系f,使对集合A中的任何一个元素x,在集合B中有唯一确定的元素y和它对应,那么称f为从集合A到集合B的一个函数,记作y=f(x),其中x称为自变量,y称为因变量。
常见函数:•一次函数:f(x)=ax+b,a≠0•二次函数:f(x)=ax2+bx+c,a≠0•指数函数:f(x)=a x,a>0,a≠1•对数函数:f(x)=log a x,a>0,a≠1•幂函数:f(x)=x a•三角函数:sin x,cos x,tan x 等函数的性质:•单调性:函数在某区间上是单调递增或单调递减的。
•奇偶性:奇函数f (−x )=−f (x ),偶函数f (−x )=f (x )。
•周期性:存在一个非零常数T ,使得对任意x 有f (x +T )=f (x )。
完整版)高考数学高考必备知识点总结精华版
完整版)高考数学高考必备知识点总结精华版高考前重点知识回顾第一章-集合集合是由确定性、互异性和无序性的元素组成的。
集合的性质包括:任何一个集合都是它本身的子集,空集是任何集合的子集,空集是任何非空集合的真子集。
n个元素的子集有2n个,n个元素的真子集有2n-1个,n个元素的非空真子集有2n-2个。
集合运算包括交、并和补。
简易逻辑中,构成复合命题的形式包括p或q(记作“p∨q”)、p且q(记作“p∧q”)和非p(记作“┑q”)。
四种命题的形式及相互关系包括原命题、逆命题、否命题和逆否命题。
原命题为真,它的逆命题不一定为真;原命题为真,它的否命题不一定为真;原命题为真,它的逆否命题一定为真。
如果已知p q,那么我们说p是q的充分条件,q是p的必要条件。
若p q且q p,则称p是q的充要条件,记为p⇔q。
第二章-函数函数的性质包括定义域、值域、奇偶性和单调性。
偶函数满足f(x)f(x),奇函数满足f(x)f(x)。
函数的单调性分为增函数和减函数。
指数函数和对数函数是常用的函数类型。
指数函数的图像是对称的,而对数函数的图像则是关于x=1对称的。
指数函数的定义域为R,值域为(,+∞),对数函数的定义域为x>0,值域为R。
在R上,对数函数y=logax(a>0且a1)是一个增函数当x>0时,01.该函数的图像和性质如下:1)定义域为(0,+∞);2)值域为R;3)过点(1,0),即当x=1时,y=0;4)当x在(0,1)范围内时,y随x的增加而减小;当x在(1,+∞)范围内时,y随x的增加而增大;5)在(0,+∞)范围内是一个增函数,在(0,+∞)范围外是一个减函数。
⑴对于对数和指数运算,有以下公式:logaM N) = logaM + logaNaras = ar+sar)s = arslogaM/N) = logaM - logaNlogaMn = nlogaMab) = abxy = a⑵对于y=logax(a,a1)和其反函数,有以下性质:它们互为反函数。
高考数学高考必备知识点总结精华版
高考前重点知识回顾第一章-集合(一)、集合:集合元素的特征:确定性、互异性、无序性。
1、集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;①n个元素的子集有2n个。
n个元素的真子集有2n-1个。
n个元素的非空真子集有2n-2个。
[注]①一个命题的否命题为真,它的逆命题一定为真.否命题逆命题。
②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题。
2、集合运算:交、并、补.(三)简易逻辑构成复合命题的形式:p或q(记作“p∨q”);p且q(记作“p ∧q”);非p(记作“┑q”) .1、“或”、“且”、“非”的真假判断4、四种命题的形式及相互关系:原命题:若P则q;逆命题:若q则p;否命题:若┑P则┑q;逆否命题:若┑q则┑p。
①、原命题为真,它的逆命题不一定为真。
②、原命题为真,它的否命题不一定为真。
③、原命题为真,它的逆否命题一定为真。
6、如果已知pq那么我们说,p是q的充分条件,q是p的必要条件。
若pq且qp,则称p是q的充要条件,记为p⇔q。
第二章-函数一、函数的性质(1)定义域:(2)值域:(3)奇偶性:(在整个定义域内考虑)①定义:①偶函数:,②奇函数:②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求;d。
比较或的关系。
(4)函数的单调性定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值x1,x2,⑴若当x1<x2时,都有f(x1)<f(x2),则说f(x)在这个区间上是增函数;⑵若当x1<x2时,都有f(x1)〉f(x2),则说f(x) 在这个区间上是减函数.二、指数函数与对数函数指数函数的图象和性质对数函数y=log a x(a>0且a1)的图象和性质:⑴对数、指数运算:⑵()与()互为反函数。
第三章数列1。
⑴等差、等比数列:(2)数列{}的前项和与通项的关系:第四章-三角函数一.三角函数1、角度与弧度的互换关系:360°=2 ;180°= ;1rad=°≈57。
2024年高考数学高频考点(新高考通用)对数与对数函数(精练:基础+重难点)解析版
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第11练对数与对数函数(精练)【A组在基础中考查功底】....【答案】A【分析】根据函数的奇偶性和函数值等知识确定正确答案.【详解】依题意ππ),,22y x x⎛⎫=∈- ⎪⎝⎭,cos x为偶函数,则ln(cos)x为偶函数,令1()44g b a b b b=+=+,根据对勾函数的图像与性质易得所以()(1)5g b g >=.故4a b +>故选:C.7.(2023·全国·高三专题练习)已知函数要求积的最大值,....【答案】A【分析】先求出定义域,由)x 为偶函数,结合函数在数值的正负,排除BC ,结合函数图象的走势,排除D ,得到正确答案【详解】()22ln x x f x =变形为,定义域为()(,00,∞-U当01a <<时,函数()lg f x x =在函数()πsin2x g x =在[]0,a 上单调递增,所以所以π1sin22a a a M m -==,解得15.(2023·上海·高三专题练习)若实数x 、y 满足lg x m =、110m y -=,则xy =______________.【答案】10【分析】根据指数式与对数式的关系,将lg x m =转化为指数式,再根据指数运算公式求值.【详解】由lg x m =,得10m x =,所以1110101010m m m m xy -+-=⋅==,【B组在综合中考查能力】A .14B .15C .16D .【答案】D【分析】根据题意可得()10145n-%≤,两边取对数能求出冷轧机至少需要安装轧辊的对数【详解】厚度为10α=mm 的带钢从一端输入经过减薄率为4%的n 对轧辊后厚度为【C组在创新中考查思维】则函数()y f x =的图象关于直线令()t f x =因为函数()()()2g x f x af x =+由题意可知,4cos 25θ=,所以22tan 3tan 2,1tan 4θθθ==-解得tan 因为θ为锐角,所以tan 3,1θ=由对称性,不妨取直线AD 进行研究,则直线。