高中数学圆的标准方程(微课)公开课ppt课件
合集下载
圆的标准方程 公开课PPT课件

直线,一点和倾斜角也确定一条直线,通过 基本量的研究:直线可以用一个一次方程 表示。
那么,需要探究下面的问题: (1)圆可以用一个什么样的方程来表示? (2)怎样建立圆的方程?
复习引入 探究新知 应用举例 课堂小结 课后作业
复习引入
问题1:平面直角坐标系中,如何确定一个 圆?
圆心:确定圆的位置 半径:确定圆的大小
a 2, b 3, r 5.
方程思想
有没有其 他方法?
所求圆的方程为 (x 2)2 ( y 3)2 25
练习:已知圆心为C的圆经过点A(1,1)和B(2,-2),
且圆心C在直线l :x-y+1=0上,
求圆C的标准方程.
yl
A
Co
x
B
课堂小结
1. 圆的方程的推导步骤: 建系设点→写条件→列方程→化简→说明
置 圆过原点:
(x a)2 + (y-b)2 = a2+b2 (a2+b2≠0)
的 圆心在x轴上且过原点: (x a)2 + y2 = a2 (a≠0)
圆
的 圆心在y轴上且过原点: x 2 + (y-b)2 = b2 (b≠0)
方 圆与x轴相切:
(x a)2 + (y-b)2 = b2 (b≠0)
2. 圆的方程的特点:点(a, b)、r分别表示圆 心坐标和圆的半径;
3. 求圆的方程的两种方法: (1)根据条件直接确定a,b,r ; (2)待定系数法确定a,b,r. 核心思想:数形结合、方程思想、基本量思想 结构思想、转化思想 等
重要结论
圆心在原点:
特 殊
圆心在x轴上:
位 圆心在y轴上:
x2 + y2 = r2 (r≠0) (x a)2 + y2 = r2 (r≠0) x2+ (y b)2 = r2 (r≠0)
那么,需要探究下面的问题: (1)圆可以用一个什么样的方程来表示? (2)怎样建立圆的方程?
复习引入 探究新知 应用举例 课堂小结 课后作业
复习引入
问题1:平面直角坐标系中,如何确定一个 圆?
圆心:确定圆的位置 半径:确定圆的大小
a 2, b 3, r 5.
方程思想
有没有其 他方法?
所求圆的方程为 (x 2)2 ( y 3)2 25
练习:已知圆心为C的圆经过点A(1,1)和B(2,-2),
且圆心C在直线l :x-y+1=0上,
求圆C的标准方程.
yl
A
Co
x
B
课堂小结
1. 圆的方程的推导步骤: 建系设点→写条件→列方程→化简→说明
置 圆过原点:
(x a)2 + (y-b)2 = a2+b2 (a2+b2≠0)
的 圆心在x轴上且过原点: (x a)2 + y2 = a2 (a≠0)
圆
的 圆心在y轴上且过原点: x 2 + (y-b)2 = b2 (b≠0)
方 圆与x轴相切:
(x a)2 + (y-b)2 = b2 (b≠0)
2. 圆的方程的特点:点(a, b)、r分别表示圆 心坐标和圆的半径;
3. 求圆的方程的两种方法: (1)根据条件直接确定a,b,r ; (2)待定系数法确定a,b,r. 核心思想:数形结合、方程思想、基本量思想 结构思想、转化思想 等
重要结论
圆心在原点:
特 殊
圆心在x轴上:
位 圆心在y轴上:
x2 + y2 = r2 (r≠0) (x a)2 + y2 = r2 (r≠0) x2+ (y b)2 = r2 (r≠0)
必修2《圆的标准方程》1(人教版)PPT课件

极坐标方程与标准方程的关系
通过极坐标与直角坐标的转换公式 $x = rcostheta, y = rsintheta$, 可以将极坐标方程转换为标准方程。
标准方程 $x^2 + y^2 + Dx + Ey + F = 0$ 可以通过配方转换为极坐标方 程。
极坐标方程的应用
描述圆的形状和大小。 解决与圆相关的几何问题,如求圆的面积、周长等。
圆的几何意义
01
02
03
04
圆是中心对称图形,对称中心 是圆心。
圆也是轴对称图形,任何经过 圆心的直线都是它的对称轴。
圆的周长与直径的比值是一个 常数,这个常数叫做圆周率π
。
圆的面积与半径的平方成正比 ,比例系数是π。
2023
PART 02
圆的标准方程
REPORTING
标准方程的形式
圆的标准方程为: $(x - a)^{2} + (y b)^{2} = r^{2}$
切线的定义
与圆有且仅有一个公共点 的直线。
切线的性质
切线与半径垂直,且切点 到圆心的距离等于半径长 。
切线的判定方法
若直线与圆有公共点,且 过该点的半径与直线垂直 ,则该直线为圆的切线。
2023
PART 06
圆的综合应用
REPORTING
圆与直线的位置关系
相离
直线与圆没有交点,即圆心到直 线的距离大于圆的半径。
$(x - a)^{2} + (y - b)^{2} = r^{2}$
标准方程的应用
用于判断点与圆的位置关系 用于求解与圆有关的轨迹问题
用于求解圆的切线方程 用于解决与圆相关的最值问题
2023
圆方程ppt课件ppt课件

03
圆的方程的应用
解析几何中的应用
确定点与圆的位置关系
通过圆的方程,可以判断一个点是否在圆上、 圆内或圆外。
求解圆的切线方程
利用圆的方程,可以求出过某一点的圆的切线 方程。
求解圆心和半径
根据圆的方程,可以求出圆心的坐标和半径的长度。
几何图形中的应用
判断两圆的位置关系
通过比较两个圆的方程,可以判断两圆是相交、相切还是相 离。
03
frac{E}{2})$ 和半径 $frac{sqrt{D^2 + E^2 - 4F}}{2}$。
圆的参数方程
圆的参数方程为 $x = a + rcostheta$,$y = b + rsintheta$,其中 $(a, b)$ 是圆 心坐标,$r$ 是半径,$theta$ 是 参数。
该方程通过参数 $theta$ 描述了 圆上任意一点的坐标。
$(x - h)^{2} + (y - k)^{2} = r^{2}$ ,其中$(h, k)$是圆心坐标,$r$是半 径。
不在同一直线上的三个点可以确定一 个圆,且该圆只经过这三个点。
圆的基本性质
1 2
圆的对称性
圆关于其直径对称,也关于经过其圆心的任何直 线对称。
圆的直径与半径的关系
直径是半径的两倍,半径是直径的一半。
该方程描述了一个以 $(h, k)$ 为圆心,$r$ 为
半径的圆。
当 $r = 0$ 时,方程描 述的是一个点 $(h, k)$。
圆的一般方程
01
圆的一般方程为 $x^2 + y^2 + Dx + Ey + F = 0$。
02
该方程可以表示任意一个圆,其中 $D, E, F$ 是常数。
选择必修 第二章 2.4.1 圆的标准方程 课件(共26张PPT)

究位置关系、距离
等问题
新知引入
类比直线方程的研究过程,如何研究圆的方程呢?
圆
平面直角坐标系
圆的方程
代数运算
利用圆的方程,研究
圆有关的位置关系、
几何度量等问题
新知探究
在平面直角坐标系中,如何确定一个圆?
如图,在平面直角坐标系中,⨀A的圆心A的坐标为(a,b),半径为r,M(x,y)为
圆上任意一点,⨀A就是以下点的集合
多边形和圆是平面几何中的两类基本图形.建立直线的方程后,我们可以运
用它研究多边形这些“直线形”,解决边所在直线的平行或垂直、边与边的交
点以及点到线段所在直线的距离等问题.类似地,为了研究圆的有关性质,解决
与圆有关的问题,我们首先需要建立圆的方程.
我国的墨子云:圆,一中同长也.
意思:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等.
程①.于是
(5 − )2 +(1 − )2 = 2 ,
൞(7 − )2 +(−3 − )2 = 2 ,.
(2 − )2 +(−8 − )2 = 2
知新探究
【例2】△ABC的三个顶点分别是A(5,1),B(7,-3),C(2,-8),
求△ABC的外接圆的标准方程.
解: 即
2 + 2 − 10 − 2 + 26 = 2 ,
心A间的距离为r,点M就在⨀A上.
这时,我们把上述方程称为圆心为A,半径为r的圆
的标准方程(standard equation of thecircle).
半径r
圆的几何要素: 圆心(a,b)
圆心在坐标原点,
半径为r的圆的标准
三个独立条件求a,b,r确定一个圆的方程.
等问题
新知引入
类比直线方程的研究过程,如何研究圆的方程呢?
圆
平面直角坐标系
圆的方程
代数运算
利用圆的方程,研究
圆有关的位置关系、
几何度量等问题
新知探究
在平面直角坐标系中,如何确定一个圆?
如图,在平面直角坐标系中,⨀A的圆心A的坐标为(a,b),半径为r,M(x,y)为
圆上任意一点,⨀A就是以下点的集合
多边形和圆是平面几何中的两类基本图形.建立直线的方程后,我们可以运
用它研究多边形这些“直线形”,解决边所在直线的平行或垂直、边与边的交
点以及点到线段所在直线的距离等问题.类似地,为了研究圆的有关性质,解决
与圆有关的问题,我们首先需要建立圆的方程.
我国的墨子云:圆,一中同长也.
意思:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等.
程①.于是
(5 − )2 +(1 − )2 = 2 ,
൞(7 − )2 +(−3 − )2 = 2 ,.
(2 − )2 +(−8 − )2 = 2
知新探究
【例2】△ABC的三个顶点分别是A(5,1),B(7,-3),C(2,-8),
求△ABC的外接圆的标准方程.
解: 即
2 + 2 − 10 − 2 + 26 = 2 ,
心A间的距离为r,点M就在⨀A上.
这时,我们把上述方程称为圆心为A,半径为r的圆
的标准方程(standard equation of thecircle).
半径r
圆的几何要素: 圆心(a,b)
圆心在坐标原点,
半径为r的圆的标准
三个独立条件求a,b,r确定一个圆的方程.
《圆的标准方程》课件

《圆的标准方程》PPT课 件
欢迎来到《圆的标准方程》PPT课件!在这个课件中,我们将介绍圆的基本概 念、标准方程的一般形式以及圆心和半径的含义。让我们开始探索圆的奥秘 吧!
什么是圆的标准方程
圆的标准方程是描述圆形的方程式。它使用平面直角坐标系中的变量来表示 圆的位置和半径。了解圆的标准方程可以帮助我们解决各种与圆相关的数学 问题。
多边形
圆可以与多边形的外接圆或内切 圆相交或相切。
圆的重要性及应用领域
1 数学基础
圆是几何学的基本概念之一,对于数学的发展起到了重要的推动作用。
2 物理学
圆的运动和旋转是物理学中许多现象的基础,如行星的轨道和自转。
3 计算机科学
圆的标准方程在计算机图形学中用于绘制圆形的图像和动画。
圆的标准方程与其他方程型的比较
圆的标准方程在物理学中的应用
物理学中的许多现象可以用圆的标准方程进行建模和描述。例如,行星的轨道可以用圆形或椭圆 形来表示,而物体的旋转运动也可以用圆的方程来描述。
圆的标准方程在工程 中用于设计圆形物体 的尺寸和位置。
通过圆的标准方程解决方程组
圆的标准方程可以与其他方程组合使用,解决多元方程组中与圆有关的问题。例如,我们可以通 过圆的标准方程和直线方程的系统来求解直线和圆的交点。
圆和其他图形的关系
1
三角形
2
圆可以与三角形的外接圆或内切
圆有关。
3
矩形
圆可以与矩形相切或包围,形成 有趣的图案。
步骤2
将圆心的坐标(h, k)代入圆的标准方程的x 和y的变量位置。
步骤4
整理方程,得到圆的标准方程。
圆的一般方程和标准方程之间 的关系
圆的一般方程和标准方程都可以用来表示圆形,但它们的形式不同。一般方 程是多项式形式,而标准方程是平方项的和。通过变换,可以将一般方程转 化为标准方程,反之亦然。
欢迎来到《圆的标准方程》PPT课件!在这个课件中,我们将介绍圆的基本概 念、标准方程的一般形式以及圆心和半径的含义。让我们开始探索圆的奥秘 吧!
什么是圆的标准方程
圆的标准方程是描述圆形的方程式。它使用平面直角坐标系中的变量来表示 圆的位置和半径。了解圆的标准方程可以帮助我们解决各种与圆相关的数学 问题。
多边形
圆可以与多边形的外接圆或内切 圆相交或相切。
圆的重要性及应用领域
1 数学基础
圆是几何学的基本概念之一,对于数学的发展起到了重要的推动作用。
2 物理学
圆的运动和旋转是物理学中许多现象的基础,如行星的轨道和自转。
3 计算机科学
圆的标准方程在计算机图形学中用于绘制圆形的图像和动画。
圆的标准方程与其他方程型的比较
圆的标准方程在物理学中的应用
物理学中的许多现象可以用圆的标准方程进行建模和描述。例如,行星的轨道可以用圆形或椭圆 形来表示,而物体的旋转运动也可以用圆的方程来描述。
圆的标准方程在工程 中用于设计圆形物体 的尺寸和位置。
通过圆的标准方程解决方程组
圆的标准方程可以与其他方程组合使用,解决多元方程组中与圆有关的问题。例如,我们可以通 过圆的标准方程和直线方程的系统来求解直线和圆的交点。
圆和其他图形的关系
1
三角形
2
圆可以与三角形的外接圆或内切
圆有关。
3
矩形
圆可以与矩形相切或包围,形成 有趣的图案。
步骤2
将圆心的坐标(h, k)代入圆的标准方程的x 和y的变量位置。
步骤4
整理方程,得到圆的标准方程。
圆的一般方程和标准方程之间 的关系
圆的一般方程和标准方程都可以用来表示圆形,但它们的形式不同。一般方 程是多项式形式,而标准方程是平方项的和。通过变换,可以将一般方程转 化为标准方程,反之亦然。
圆的标准方程-PPT课件

能力提高
1.已知A(-2,0),B(2,0),求过A,B两点的半径最小 的圆的方程.
2.求过A(2,0),半径为2的圆的圆心的轨迹方 程.
3.求过点A(-1,3),面积为49π的圆的圆心的轨 迹方程.
4.如果实数x、y满足方程(x 3)2 ( y 3)2 6,求:
(1) y 的最大值与最小值; x
(2)几何法. 通过研究已知条件,结合圆的几何性质,求得圆的基本量 (圆心坐标,半径长),进而求得方程. 圆的常用的几何性质:①圆心到圆上的点的距离等于半径; ②圆心到圆的切线的距离等于半径;③圆的弦的垂直平分线过 圆心;④两条弦的垂直平分线的交点为圆心;⑤r2=d2+(2l )2, 其中 r 为圆的半径,d 为弦心距,l 为弦长.
(2)x y的最大值与最小值.
5.设点 P(x,y)是圆 x2+(y+4)2=4 上任意一点,则 x-12+y-12的最大值为________.
因为点 P(x,y)是圆 x2+(y+4)2=4 上的任意一点,因此 x-12+y-12表示点(1,1)与该圆上点的距离.
易知点(1,1)在圆 x2+(y+4)2=4 外,结合右图易得 x-12+y-12的最大值为 1-02+1+42+2= 26+2.
a 46 5 b 93 6
2
2
圆心坐标为(5,6)
P1(4, 9) C
P2 (6, 3)
r CP1 (4 5)2 (9 6)2 10
圆的方程为
CM 10 CN 13 10
(x 5)2 (y 6)2 10
CQ 3 10
因此点M在圆上,点N在圆外,点Q在圆内.
圆心:直径的中点
(5 a)2 (1 b)2 r 2
(7 a)2 (3 b)2 r 2
圆的标准方程(公开课)PPT课件

(3) 经过点P(5,1),圆心在点C(8,-3).
(x 8)2 ( y 3)2 25
2.说出下列圆的圆心和半径:
(1)(x+1)2+(y-1)2=1;
圆心A(-1,1),r=1
(2) x2+(y+4)2=7;
圆心A(0,-4),r= 7
(3)(x+1)2+ (y+2)2=m2 (m≠0圆)心;A(-1,-2), m r= 8
(x 2)2 ( y 3)2 25 24
16
小结
1.圆的标准方程
(x a)2 (y b)2 r2 (圆心C(a,b),半径r)
2.点与圆的位置关系 3.求圆的标准方程的方法:
17
2019/10/25
18
y M(x,y)
(x a)2 (y b)2 r
r
O
A(a,b) x
(x-a)2+(y-
b)2=r2
问题2、圆的标准方程中那些是不变的常数?
怎样求圆的标准方程?
7
小试牛刀
1.求下列圆的方程:
(1)圆心在原点, 半径为3.
x2 y2 9
(2) 以O(0,0),A(6,8)为直径的圆. (x 3)2 (y 4)2 25
4.1.1 圆的标准方程
y
OA
x
r
1
创设情境 引入新课
一石激起千层浪
2
师生互动探究
1、在初中我们是如何定义圆的?
平面内 到定点距离等于定长的点的轨迹是圆.
3
4
师生互动探究
1、在初中我们是如何定义圆?
平面内与定点距离等于定长的点的集合(轨迹)是圆. 定点----圆心------确定圆的位置 定长----半径------确定圆的大小
圆的标准方程ppt课件

_____5______.
解析:圆 C : x2 y2 25 的圆心为C(0,0) ,半径r = 5 , 因为 AC (8 0)2 (6 0)2 10 5 ,所以点 A 在圆外, 所以 AP 的最小值为 AC r 10 5 5 ,故答案为:5.
总结一下
圆的标准方程
6.已知 A2,2、 B2,6 ,则以 AB 为直径的圆的标准方程为_x_2____.y4 2 8
解析:线段 AB 的中点坐标为0, 4 , AB 2 22 2 62 4 2 ,
所以,所求圆的半径为 2 2 ,故所求圆的标准方程为 x2 y 42 8 .
7.已知点 A(8, 6) 与圆C : x2 y2 25 ,P 是圆 C 上任意一点,则 AP 的最小值是
求圆的标准方程的两种方法
1.待定系数法.先设圆的标准方法 x a 2 y b 2 r2 ,再根据条件列出关于 a, b,r 的三个独立方程,通过解方程组求出 a,b,r 的值,从而得到圆的标准方程, 如例题 2 的解法.这是一种代数解法. 2.直接求解法.先根据题目条件求出圆心和半径,直接写出圆的标准方程,如例 3 的解法,这种解法往往需要圆的几何性质.
例 3 已知圆心为 C 的圆经过 A(1,1) ,B(2 ,2) 两点,且圆心 C 在直线l : x y 1 0 上, 求此圆的标准方程.
分析:设圆心 C 的坐标为 a,b .由已知条件可知, CA CB ,且a b 1 0 , 由此可以求出圆心坐标和坐标.
解:解法1:
设圆心 C 的坐标为 (a ,b) . 因为圆心 C 在直线 l : x y 1 0 上,所以 a b 1 0 .① 因为 A,B 是圆上两点,所以| CA| | CB | . 根据两点间距离公式,有 (a 1)2 (b 1)2 (a 2)2 (b 2)2 , 即 a 3b 3 0 .② 由①②可得 a 3,b 2 . 所以圆心 C 的坐标是 (3, 2) . 圆的半径 r | AC | (1 3)2 (1 2)2 5 .
解析:圆 C : x2 y2 25 的圆心为C(0,0) ,半径r = 5 , 因为 AC (8 0)2 (6 0)2 10 5 ,所以点 A 在圆外, 所以 AP 的最小值为 AC r 10 5 5 ,故答案为:5.
总结一下
圆的标准方程
6.已知 A2,2、 B2,6 ,则以 AB 为直径的圆的标准方程为_x_2____.y4 2 8
解析:线段 AB 的中点坐标为0, 4 , AB 2 22 2 62 4 2 ,
所以,所求圆的半径为 2 2 ,故所求圆的标准方程为 x2 y 42 8 .
7.已知点 A(8, 6) 与圆C : x2 y2 25 ,P 是圆 C 上任意一点,则 AP 的最小值是
求圆的标准方程的两种方法
1.待定系数法.先设圆的标准方法 x a 2 y b 2 r2 ,再根据条件列出关于 a, b,r 的三个独立方程,通过解方程组求出 a,b,r 的值,从而得到圆的标准方程, 如例题 2 的解法.这是一种代数解法. 2.直接求解法.先根据题目条件求出圆心和半径,直接写出圆的标准方程,如例 3 的解法,这种解法往往需要圆的几何性质.
例 3 已知圆心为 C 的圆经过 A(1,1) ,B(2 ,2) 两点,且圆心 C 在直线l : x y 1 0 上, 求此圆的标准方程.
分析:设圆心 C 的坐标为 a,b .由已知条件可知, CA CB ,且a b 1 0 , 由此可以求出圆心坐标和坐标.
解:解法1:
设圆心 C 的坐标为 (a ,b) . 因为圆心 C 在直线 l : x y 1 0 上,所以 a b 1 0 .① 因为 A,B 是圆上两点,所以| CA| | CB | . 根据两点间距离公式,有 (a 1)2 (b 1)2 (a 2)2 (b 2)2 , 即 a 3b 3 0 .② 由①②可得 a 3,b 2 . 所以圆心 C 的坐标是 (3, 2) . 圆的半径 r | AC | (1 3)2 (1 2)2 5 .
圆的标准方程ppt课件

的圆的方程,把它叫做圆的标准方程. 注意:
1.特点:明确给出了圆心和半径;
2.三个独立条件a、b、r确定一个圆的方程; 特别地,若圆心为O(0,0),则圆的方程为:
x2 y2 r2
在平面几何中,如何确定点与圆的位置关系?
M O
M O
M O
|OM|<r
|OM|=r
|OM|>rFra bibliotek点M0(x0,y0)在圆(x-a)2+(y-b)2=r2上、内、外的条件是什么?
(8-4) 2+(1-6) 2=41>5,
∴M、Q两点均在圆外.
例2: ABC的三个顶点的坐标分别A(5,1), B(7,-3),C(2, -8),
求它的外接圆的方程.
分析:不在同一条直线上的三个
y
A(5,1)
点可以确定一个圆,三角形有唯
一的外接圆.
O
x
因为A(5,1), B(7,-3),C(2, -8) 都
C(2,-8)
例3: 已知圆心为C的圆经过点A(1,1),B(2,-2),且圆 心C在直线l:x-y+1=0上,求圆心为C的圆的标准方程.
解:∵A(1,1),B(2,-2),所以AB的中点 D( 3 , 1)
22
2 1 kAB 2 1 3 ∴AB的垂直平分线的方程为
y 1 1 (x 3) 23 2
2.点M0(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系的判定.
点M0在圆上 点M0在圆内 点M0在圆外
(x0-a)2+(y0-b)2=r2 (x0-a)2+(y0-b)2<r2 (x0-a)2+(y0-b)2>r2
3.求圆的标准方程的方法:
1.特点:明确给出了圆心和半径;
2.三个独立条件a、b、r确定一个圆的方程; 特别地,若圆心为O(0,0),则圆的方程为:
x2 y2 r2
在平面几何中,如何确定点与圆的位置关系?
M O
M O
M O
|OM|<r
|OM|=r
|OM|>rFra bibliotek点M0(x0,y0)在圆(x-a)2+(y-b)2=r2上、内、外的条件是什么?
(8-4) 2+(1-6) 2=41>5,
∴M、Q两点均在圆外.
例2: ABC的三个顶点的坐标分别A(5,1), B(7,-3),C(2, -8),
求它的外接圆的方程.
分析:不在同一条直线上的三个
y
A(5,1)
点可以确定一个圆,三角形有唯
一的外接圆.
O
x
因为A(5,1), B(7,-3),C(2, -8) 都
C(2,-8)
例3: 已知圆心为C的圆经过点A(1,1),B(2,-2),且圆 心C在直线l:x-y+1=0上,求圆心为C的圆的标准方程.
解:∵A(1,1),B(2,-2),所以AB的中点 D( 3 , 1)
22
2 1 kAB 2 1 3 ∴AB的垂直平分线的方程为
y 1 1 (x 3) 23 2
2.点M0(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系的判定.
点M0在圆上 点M0在圆内 点M0在圆外
(x0-a)2+(y0-b)2=r2 (x0-a)2+(y0-b)2<r2 (x0-a)2+(y0-b)2>r2
3.求圆的标准方程的方法:
高一数学圆的标准方程课件ppt.ppt

为X轴,O点为坐标原 B 点,建立如图所示平
X 面直角坐标系
例4.在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么
∵ 圆心在y轴上, ∴ 设圆心的坐标是(0,b),圆的半径是r, 那么圆的方程是 x2+(y-b)2=r2 因为点(0 , 7.2)和(18.51 , 0)在圆上。于是得方程组
弦AB的垂 直平分线
O
x
D
C
B(2,-2)
l:xy10
圆心:两条直线的交点
半径:圆心到圆上一点
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
典型例题
解法1:因为A(1, 1)和B(2, -2),所以线段AB的中点D的坐标
赵州桥的跨度为40米,拱高约8米
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
学以致用
例4.如图是赵州桥的圆拱示意图,该拱跨度 AB=40米,拱高OD=8米,求这座圆拱桥的拱圆所 在圆的标准方程。
Y
D A
O
r
解:以A.B所在的直线
相切的圆.
y
解: 设所求圆的半径为r
则:
r
| 31- 43-7|
32 42 =
1
6 5
C
M
O
x
∴所求圆的方程为:(x1)2(y3)2196 25
圆心:已知
半径:圆心到切线的距离
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
X 面直角坐标系
例4.在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么
∵ 圆心在y轴上, ∴ 设圆心的坐标是(0,b),圆的半径是r, 那么圆的方程是 x2+(y-b)2=r2 因为点(0 , 7.2)和(18.51 , 0)在圆上。于是得方程组
弦AB的垂 直平分线
O
x
D
C
B(2,-2)
l:xy10
圆心:两条直线的交点
半径:圆心到圆上一点
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
典型例题
解法1:因为A(1, 1)和B(2, -2),所以线段AB的中点D的坐标
赵州桥的跨度为40米,拱高约8米
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
学以致用
例4.如图是赵州桥的圆拱示意图,该拱跨度 AB=40米,拱高OD=8米,求这座圆拱桥的拱圆所 在圆的标准方程。
Y
D A
O
r
解:以A.B所在的直线
相切的圆.
y
解: 设所求圆的半径为r
则:
r
| 31- 43-7|
32 42 =
1
6 5
C
M
O
x
∴所求圆的方程为:(x1)2(y3)2196 25
圆心:已知
半径:圆心到切线的距离
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
02教学课件_2.4.1 圆的标准方程 课件共38张PPT)

d=|PC|= (x0 -a)2 + (y0 -b)2 .
位置关系 d 与 r 的大小
图
示
点 P 的坐标的特点
点在圆外 d>r
(x0-a)2+(y0-b)2>r2
点在圆上 d=r
(x0-a)2+(y0-b)2=r2
点在圆内 d<r
(x0-a)2+(y0-b)2<r2
2.点P(-2,-2)和圆x2+y2=4的位置关系是(
故圆心是直线 y=-2x-4 与直线 x-2y-3=0 的交点,
= -2-4,
= -1,
由
得
= -2.
-2-3 = 0,
即圆心为(-1,-2),圆的半径为 r= (-1-2)2 + (-2 + 3)2 = 10,
所以所求圆的标准方程为(x+1)2+(y+2)2=10.
归纳总结
圆的标准方程的两种求法
.
思路分析:(1)首先根据圆的方程确定圆心和半径,然后利用P到圆心的距离和圆的半径
大小关系确定点与圆的位置关系;(2)首先确定圆心和半径,利用圆心到点M的距离小
于半径列出不等式求解.
解析:(1)因为(m2)2+52=m4+25>24,所以点 P 在圆外.
≥ 0,
(2)由题意知
(5 + 1-1)2 + ( )2 < 26,
y
M
r
A
O
x
新知探究
一、 圆的标准方程
点睛:(1)当圆心在原点即A(0,0)时,方程为x2+y2=r2.
(2)当圆心在原点即A(0,0),半径长r=1时,方程为x2+y2=1,称为单位圆.
圆的标准方程ppt课件

通过配方,可以将其 转化为标准形式,进 而确定圆心和半径。
一般形式下圆的方程 为 $x^2+y^2+Dx+Ey +F=0$,其中 $D^2+E^2-4F>0$。
拓展延伸
与直线方程联立,可以求解交点。
极坐标形式下圆的方程及其求解 方法
极坐标形式下圆的方程为 $rho=a(1+costheta)$或 $rho=a(1+sintheta)$,其中
圆的面积
S = πr²。
弧长与扇形面积计算
ห้องสมุดไป่ตู้弧长公式
l = θ/360° × 2πr,其中θ 为圆心角的度数。
扇形面积公式
S = θ/360° × πr²,其中θ 为圆心角的度数。
弓形面积计算
弓形面积 = 扇形面积 - 三 角形面积,其中三角形面 积可通过底和高计算得出。
02 圆的标准方程及其推导
数学建模竞赛
在数学建模竞赛中,圆的方程常常作为数学模型的基础,用于解决 各种实际问题,如城市规划、交通流量分析等。
06 总结回顾与拓展延伸
总结回顾本次课程重点内容
01
圆的标准方程的定义和形式
02
圆心和半径的确定方法
03
圆的方程与直线方程联立求解交点
04
圆的方程在实际问题中的应用
拓展延伸
一般形式下圆的方程 及其求解方法
圆的要素
圆心、半径。
03
圆的表示方法
一般用圆心和半径表示,如圆O(r)。
圆心、半径与直径
01
02
03
圆心
圆的中心,用字母O表示。
半径
连接圆心和圆上任意一点 的线段,用字母r表示。
圆的标准方程完整ppt课件(2024)

r^{2}$。
2024/1/30
9
方程中参数的意义
2024/1/30
$a, b$
01
圆心坐标,表示圆心的位置。
$r$
02
半径,表示圆的大小。
$x, y$
03
圆上任意一点的坐标,满足方程 $(x - a)^{2} + (y - b)^{2} =
r^{2}$。
10
03
圆的图形特征与性质
2024/1/30
圆关于经过圆心的任意直 线都是对称的。
2024/1/30
周期性
圆上任意一点绕圆心旋转 360度后回到原位,具有 周期性。
应用
利用对称性和周期性可以 简化一些复杂的几何问题 。
13
切线与法线的性质
切线
与圆有且仅有一个公共 点的直线。
2024/1/30
法线
过切点且与切线垂直的 直线。
切线与半径垂直
切线长定理
已知圆与直线相切求参数
利用圆心到直线的距离等于半径,可以列出方程求解参数 。
24
判断点与圆的位置关系
计算点到圆心的距离与半径比较
若距离小于半径,则点在圆内;若距离等于半径,则点在圆上;若距离大于半 径,则点在圆外。
利用点与圆方程的关系判断
将点的坐标代入圆方程,若得到的值小于0,则点在圆内;若得到的值等于0, 则点在圆上;若得到的值大于0,则点在圆外。
圆与双曲线的关系
双曲线的一种特殊情况是等轴双曲线,其渐近线方程就是圆的方程。此外,双曲线的焦点 到任意一点的距离之差为定值,这个定值也可以和圆的半径建立联系。
圆与抛物线的关系
抛物线的一种特殊情况是顶点在原点,对称轴为y轴的抛物线,其准线方程就是圆的方程 。同时,抛物线的焦点到任意一点的距离等于该点到准线的距离,这个性质也可以和圆的 性质进行类比。
2024/1/30
9
方程中参数的意义
2024/1/30
$a, b$
01
圆心坐标,表示圆心的位置。
$r$
02
半径,表示圆的大小。
$x, y$
03
圆上任意一点的坐标,满足方程 $(x - a)^{2} + (y - b)^{2} =
r^{2}$。
10
03
圆的图形特征与性质
2024/1/30
圆关于经过圆心的任意直 线都是对称的。
2024/1/30
周期性
圆上任意一点绕圆心旋转 360度后回到原位,具有 周期性。
应用
利用对称性和周期性可以 简化一些复杂的几何问题 。
13
切线与法线的性质
切线
与圆有且仅有一个公共 点的直线。
2024/1/30
法线
过切点且与切线垂直的 直线。
切线与半径垂直
切线长定理
已知圆与直线相切求参数
利用圆心到直线的距离等于半径,可以列出方程求解参数 。
24
判断点与圆的位置关系
计算点到圆心的距离与半径比较
若距离小于半径,则点在圆内;若距离等于半径,则点在圆上;若距离大于半 径,则点在圆外。
利用点与圆方程的关系判断
将点的坐标代入圆方程,若得到的值小于0,则点在圆内;若得到的值等于0, 则点在圆上;若得到的值大于0,则点在圆外。
圆与双曲线的关系
双曲线的一种特殊情况是等轴双曲线,其渐近线方程就是圆的方程。此外,双曲线的焦点 到任意一点的距离之差为定值,这个定值也可以和圆的半径建立联系。
圆与抛物线的关系
抛物线的一种特殊情况是顶点在原点,对称轴为y轴的抛物线,其准线方程就是圆的方程 。同时,抛物线的焦点到任意一点的距离等于该点到准线的距离,这个性质也可以和圆的 性质进行类比。
2.4.1圆的标准方程课件共23张PPT

上、圆内,还是圆外.
解:由已知得,圆心A的位置为线段P1P2的中 6) ,
P1 P2
利用两点间距离公式得 r =
=
2
4 - 6 + 9 - 3
圆的标准方程为: (x-5)2+(y-6) 2=10.
2
2
2
= 10.
2.已知P 1(4, 9) , P 2(6, 3)两点,求以线段P 1P 2为直径
-8) , 求△ABC的外接圆的标准方程.
解:线段AB的垂直平分线l1的方程是 x - 2 y - 8 = 0
同理, 线段AC的垂直平分线l2的方程是 x + 3 y + 7 = 0
x -2y-8 = 0
圆心的坐标就是方程组
的解 .
x +3y +7 = 0
x = 2,
所以, 圆心C的坐标(2 , -3) , 圆的半径
分析:设圆心C的坐标为(a, b) . 由已知条件可知 |CA|=
|CB|, 且a-b+1=0 . 由此可求出圆心坐标和半径 .
又因为线段AB是圆的一条弦 , 根据平面几何知识, AB
的中点与圆心C的连线垂直于AB , 由此可得到另一种解法.
解法1:设圆心C的坐标为(a, b) . 因为圆心C在直线 l :
分析: 不在同一条直线上的三个点可以确定一个圆 ,
三角形有唯一的外接圆 . 显然已知的三个点不在同一条直
线上 . 只要确定了a, b, r , 圆的标准方程就确定了.
例2 △ABC的三个顶点分别是A(5, 1) , B(7, -3) , C(2,
-8) , 求△ABC的外接圆的标准方程.
2
2
2
解: 设所求的方程是 x - a + y - b = r
解:由已知得,圆心A的位置为线段P1P2的中 6) ,
P1 P2
利用两点间距离公式得 r =
=
2
4 - 6 + 9 - 3
圆的标准方程为: (x-5)2+(y-6) 2=10.
2
2
2
= 10.
2.已知P 1(4, 9) , P 2(6, 3)两点,求以线段P 1P 2为直径
-8) , 求△ABC的外接圆的标准方程.
解:线段AB的垂直平分线l1的方程是 x - 2 y - 8 = 0
同理, 线段AC的垂直平分线l2的方程是 x + 3 y + 7 = 0
x -2y-8 = 0
圆心的坐标就是方程组
的解 .
x +3y +7 = 0
x = 2,
所以, 圆心C的坐标(2 , -3) , 圆的半径
分析:设圆心C的坐标为(a, b) . 由已知条件可知 |CA|=
|CB|, 且a-b+1=0 . 由此可求出圆心坐标和半径 .
又因为线段AB是圆的一条弦 , 根据平面几何知识, AB
的中点与圆心C的连线垂直于AB , 由此可得到另一种解法.
解法1:设圆心C的坐标为(a, b) . 因为圆心C在直线 l :
分析: 不在同一条直线上的三个点可以确定一个圆 ,
三角形有唯一的外接圆 . 显然已知的三个点不在同一条直
线上 . 只要确定了a, b, r , 圆的标准方程就确定了.
例2 △ABC的三个顶点分别是A(5, 1) , B(7, -3) , C(2,
-8) , 求△ABC的外接圆的标准方程.
2
2
2
解: 设所求的方程是 x - a + y - b = r
人教版高中数学第二章 圆的标准方程教学 (共23张PPT)教育课件

: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。
学习重要还是人脉重要?现在是一 个双赢 的社会 ,你的 价值可 能更多 的决定 了你的 人脉, 我们所 要做的 可能更 多的是 专心打 造自己 ,把自 己打造 成一个 优秀的 人、有 用的人 、有价 值的人 ,当你 真正成 为一个 优秀有 价值的 人的时 候,你 会惊喜 地发现 搞笑人 脉会破 门而入 。从如 下方 面改进 :1、专 心做可 以提升 自己的 事情; 2、学 习并拥 有更多 的技能 ;3、成 为一个 值得交 往的人 ;4学 会独善 其身, 尽量少 给周围 的人制 造麻烦 ,用你 的独立 赢得尊 重。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形
平面直角坐标系中
数
2,如何得到圆的方程?
建系 设点 限制条件
代入 化简
圆的标准方程
( x a) ( y b) r
2 2 2
是否在圆上的点都适合这个方程?是否适合这 个方程的坐标的点都在圆上? 点M(x, y)在圆上,由前面讨论可知,点M的坐 标适合方程;反之,若点M(x, y)的坐标适合方程, 这就说明点 M与圆心的距离是 r ,即点M在圆心为A (a, b),半径为r的圆上. ( x a ) 2 ( y b) 2 r 把这个方程称为圆心为A(a, b),半径长为r 的圆 的方程,把它叫做圆的标准方程(standard equation of circle).
建立平面直角坐标系 x 平面直角坐标系中
O
形
数
问题
平面内,到定点的距离等方程?
r A
形
O
x
数
当圆心位置与半径大小确定后,圆就唯一确定了. 因此一个圆最基本要素是圆心和半径.
如图,在直角坐标系中,圆心(点)A的位置用 坐标 (a,b) 表示,半径r的大小等于圆上任意点M(x, y) 与圆心A (a,b) 的距离.
圆的标准方程
复习回顾
y
。 。
p1 ( x1 , y1 ) p2 ( x2 , y2 )
建立平面直角坐标系
y y1 x x1 y2 y1 x2 x1
y
p( x , y )
O
斜率为 k
。
p0 ( x0 , y0 )
x
p( x , y )
Ax By C 0
y y0 k( x x0 )
y M (x, y)
建系
设点
r O
A(a,b)
x
符合上述条件的圆的集合是什么?你能用描述法 来表示这个集合吗?
p M || MA | r
限制条件
圆上任意点M(x, y)与圆心A (a,b)之间的距离能 用什么公式表示?
根据两点间距离公式: P 1P 2
MA 则点M、A间的距离为:
x2 x1 y2 y1
2
2
.
x a y b
2
2
.
即:
p M | MA | r
代入
( x a ) 2 ( y b) 2 r
( x a) 2 ( y b) 2 r 2
化简
回顾
1,求圆的方程的数学思想方法?
解析思想