竞赛讲座 02整数的整除性
初中数学竞赛讲座——数论部分2(整数的整除性)
第二讲 整数的整除性一、基础知识:1.整除的基本概念与性质所谓整除,就是一个整数被另一个整数除尽,其数学定义如下.定义: 设a ,b 是整数,b ≠0.如果有一个整数q ,使得a=bq ,那么称a 能被b 整除,或称b 整除a ,并记作b |a .也称b 是a 的约数,a 是b 的倍数。
如果不存在这样的整数q ,使得a=bq ,则称a 不能被b 整除,或称b 不整除a ,记作b |a .关于整数的整除,有如下一些基本性质:性质1若c b b a |,|,则c a |证明:∵c b b a |,|,∴bq c ap b ==,(q p ,是整数),∴a pq q ap c )()(==,∴c a |性质2 若a |b ,b |a ,则 |a |=|b |.性质3 若c |a ,c |b ,则c |(a ±b ),且对任意整数m ,n ,有c |(m a ±n b ).证明:∵c a b a |,|,∴aq c ap b ==,q b ,(是整数),∴)(q p a aq ap c b ±=±=±,∴|()a b c ±性质4 若b |a ,d |c ,则bd |ac .特别地,对于任意的非零整数m ,有b m |a m性质5 若a =b +c ,且m |a ,m |b ,则m |c .性质6 若b |a ,c |a ,则[b ,c ]|a .特别地,当(b ,c )=1时,bc |a【此处[b ,c ]为b ,c 的最小公倍数;(b ,c )为b ,c 的最大公约数】.性质7 若c |ab ,且(c ,a )=1,则c |b .特别地,若p 是质数,且p |ab ,则p |a 或p |b .性质8 n 个连续整数中,必有一个能被n 整除.【特别地:两个连续整数必有一偶数;三个连续整数必有一个被3整除,如11,12,13中有3 | 12;41,42,43,44中有4 |44;77,78,79,80,81中5 | 80.】二.证明整除的基本方法证明整除常用下列几种方法:(1)利用基本性质法;(2)分解因式法;(3)按模分类法;(4)反证法等.下面举例说明.例1若a |n ,b |n ,且存在整数x ,y ,使得ax +b y=1,证明:ab |n .证明:由条件,可设n=au,n=b v,u,v为整数,于是n=n(ax+b y)= nax+nb y=abvx+abu y= ab(vx+u y)所以n|ab例2证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除.分析要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.证明:设三个连续的奇数分别为2n-1,2n+1,2n+3(其中n是整数),于是(2n-1)2+(2n+1)2+(2n+3)2+1=12(n2+n+1).所以12|[(2n-1)2+(2n+1)2+(2n+3)2].又n2+n+1=n(n+1)+1,而n,n+1是相邻的两个整数,必定一奇一偶,所以n(n+1)是偶数,从而n2+n+1是奇数,故24 |[(2n-1)2+(2n+1)2+(2n+3)2].例3若整数a不被2和3整除,求证:24|(a2-1).分析因为a既不能被2整除,也不能被3整除,所以,按模2分类与按模3分类都是不合适的.较好的想法是按模6分类,把整数分成6k,6k+1,6k+2,6k+3,6k+4,6k+5这六类.由于6k,6k+2,6k +4是2的倍数,6k+3是3的倍数,所以a只能具有6k+1或6k+5的形式,有时候为了方便起见,也常把6k+5写成6k-1(它们除以6余数均为5).证明因为a不被2和3整除,故a具有6k±1的形式,其中k是自然数,所以a2-1=(6k±1)2-1=36k2±12k=12k(3k±1).由于k与3k±1为一奇一偶(若k为奇数,则3k±1为偶数,若k为偶数,则3k±1为奇数),所以2|k(3k±1),于是便有24|(a2-1).例4若x,y为整数,且2x+3y,9x+5y之一能被17整除,那么另一个也能被17整除.证明:设u=2x+3y,v=9x+5y.若17|u,从上面两式中消去y,得3v-5u=17x.①所以17|3v.因为(17,3)=1,所以17|v,即17|9x+5y.若17|v,同样从①式可知17|5u.因为(17,5)=1,所以17|u,即17|2x+3y.例5已知a,b是自然数,13a+8b能被7整除,求证:9a+5b都能被7整除.分析:考虑13a+8b的若干倍与9a+5b的若干倍的和能被7整除,证明13a+8b+4(9a+5b)=7(7a+4b)是7的倍数,又已知13a+8b是7的倍数,所以4(9a+5b)是7的倍数,因为4与7互质,由性质7|(9a+5b)例6已知a,b是整数,a2+b2能被3整除,求证:a和b都能被3整除.证明 用反证法.如果a ,b 不都能被3整除,那么有如下两种情况:(1) a ,b 两数中恰有一个能被3整除,不妨设3|a ,3b .令a =3m ,b =3n±1(m ,n 都是整数),于是a 2+b 2=9m 2+9n 2±6n+1=3(3m 2+3n 2±2n)+1,不是3的倍数,矛盾.(2) a ,b 两数都不能被3整除.令a =3m±1,b =3n±1,则a 2+b 2=(3m±1)2+(3n±1)2=9m 2±6m+1+9n 2±6n +1=3(3m2+3n2±2m±2n)+2,不能被3整除,矛盾.由此可知,a ,b 都是3的倍数.例7 已知a ,b 是正整数,并且a 2+b 2能被ab 整除,求证:a =b .先考虑a ,b 互质的情况,再考虑一般情况。
专题02 数的整除性(含答案)
解题思想:举例验证,或按剩余类深入讨论证明.
【例3】已知整数 能被198整除,求 , 的值.
(江苏省竞赛试题)
解题思想:198=2×9×11,整数 能被9,11整除,运用整除的相关特性建立 , 的等式,求出 , 的值.
【例4】已知 , , 都是整数,当代数式7 +2 +3 的值能被13整除时,那么代数式5 +7 -22 的值是否一定能被13整除,为什么?
⑵若 =13, =2 012,从 经过1 999步到 .不妨设向右跳了 步,向左跳了 步,则 ,解得 可见,它一直向右跳,没有向左跳.
⑶设 同时满足两个条件:① =0;② + + +…+ =0.由于 =0,故从原点出发,经过( -1)步到达 ,假定这( -1)步中,向右跳了 步,向左跳了 步,于是 = - , + = -1,则 + + +…+ =0+( )+( )+…( )=2( + +…+ )-[( )+( )+…+( )]=2( + +…+ )- .由于 + + +…+ =0,所以 ( -1)=4( + +…+ ).即4| ( -1).
且a+b+c>14.设+86=222n考虑到是三位数,依次取n=1,2,3,4.分别得出的可能值为136,358,580,802,又因为a+b+c>14.故=358.
8.设N为所求的三位“拷贝数”,它的各位数字分别为a,b,c(a,b,c不全相等).将其数码重新排列后,设其中最大数为,则最小数为.故N=-=(1a-c).
①若 | , | ,则 | ;
②若 | , | ,则 |( ± );
③若 | , | ,则[ , ]| ;
④若 | , | ,且 与 互质,则 | ;
⑤若 | ,且 与 互质,则 | .特别地,若质数 | ,则必有 | 或 | .
高三数学奥赛辅导系列:数学的整除性.docx
数学的整除性整数的整除性定义:设a ,b 为二整数,且b ≠0,如果有一整数c ,使a =bc ,则称b 是a 的约数,a 是b 的倍数,又称b 整除a ,记作b |a .显然,1能整除任意整数,任意整数都能整除0.性质:设a ,b ,c 均为非零整数,则①.若c |b ,b |a ,则c |a .②.若b |a ,则bc |ac③.若c |a ,c |b ,则对任意整数m 、n ,有c |ma +nb④.若b |ac ,且(a ,b )=1,则b |c证明:因为(a ,b )=1则存在两个整数s ,t ,使得as +bt =1∴ asc +btc =c∵ b |ac ⇒ b |asc∴ b |(asc +btc ) ⇒ b |c⑤.若(a ,b )=1,且a |c ,b |c ,则ab |c证明:a |c ,则c =as (s ∈Z )又b |c ,则c =bt (t ∈Z )又(a ,b )=1∴ s =bt '(t '∈Z )于是c =abt '即ab |c⑥.若b |ac ,而b 为质数,则b |a ,或b |c⑦.(a -b )|(a n -b n )(n∈N),(a +b )|(a n +b n )(n 为奇数)整除的判别法:设整数N =1121n a a a a - ①.2|a 1⇔2|N ,5|a 1⇔ 5|N②.3|a 1+a 2+…+a n ⇔3|N9|a 1+a 2+…+a n ⇔9|N③.4|21a a ⇔ 4|N25|21a a ⇔ 25|N④.8|321a a a ⇔8|N125|321a a a ⇔125|N⑤.7||14n n a a a --321a a a |⇔7|N ⑥.11||14n n a a a --321a a a |⇔11|N⑦.11|[(a 2n +1+a 2n -1+…+a 1)-(a 2n +a 2n -2+…+a 2)]⇔11|N⑧.13||14n n a a a --321a a a |⇔13|N推论:三个连续的整数的积能被6整除.例题: 1.设一个五位数abcad ,其中d -b =3,试问a ,c 为何值时,这个五位数被11整除. 解:11|abcad∴ 11|a +c +d -b -a即11|c +3∴ c =81≤a ≤9,且a ∈Z2.设72|673a b ,试求a ,b 的值.解:72=8×9,且(8,9)=1∴ 8|673a b ,且9|673a b∴ 8|73b ⇒ b =6且 9|a +6+7+3+6即9|22+a∴ a =53.设n 为自然数,A =3237n -632n -855n +235n ,求证:1985|A .证明:∵1985=397×5A =(3237n -632n )-(855n -235n )=(3237-632)×u -(855-235)×v (u ,v ∈Z)=5×521×u -5×124×v∴5|A又A =(3237n -855n )-(623n -235n )=(3237-855)×s -(623-235)×t (s ,t ∈Z)=397×6×s -397×t∴ 397|A又∵(397,5)=1∴397×5|A即1985|A4.证明:没有x ,y 存在,使等式x 2+y 2=1995(x ,y ∈Z)成立.证:假设有整数x ,y 存在,使x 2+y 2=1995成立.∵x 2,y 2被4除余数为0或1.∴x 2+y 2被4除余数为0,1或2.又∵1995被4除余数为3.∴得出矛盾,假设不成立.故没有整数x ,y 存在,使x 2+y 2=1995成立.费马小定理:若p 是素数,(m ,p )=1则 p |m p -1-15.试证:999…9能被13整除.12个证明:∵10-1=9,100-1=99,…,1012-1=999…9.12个又(10,13)=1∴13|(1013-1-1),即13|(1012-1)∴13 |999…9.12个6.请确定最小的正整数A ,其末位数是6,若将未位的6移至首位,其余数字不变,其值变为原数的4倍.解:设该数为A =121n n n a a a a --,其中a 1=6 令x =122n n n a a a a -- 则A =6x =x ·10+6于是4A =6x =6×10n-1+x即有4×10x +24=6×10n -1+x x =12(104)13n -- ∵ (2,13)=1,x 是整数∴ 13|(10n -1-4)n =1,2时,10 n -1-4<10显然不满足条件n =3时,10 n -1-4=96 不满足条件n =4时,10 n -1-4=996 不满足条件n =5时,10 n -1-4=9996不满足条件n =6时,10 n -1-4=99996 满足条件 ∴ x =13999962⨯=15384 即A =153846 7.一个正整数,如果用7进制表示为abc ,如果用5进制表示为cba ,请用10进制表示这个数. 解:由题意知:0<a ,c ≤4,0≤b ≤4,设这个正整数为n ,则n =abc =a ×72+b ×7+c , n =cba =c ×52+b ×5+a∴49a +7b +c =25c +5b +a48a +2b -24c =0b =12(c -2a )∴12|b ,又∵0≤b≤4∴b=0,∴c=2a∴当a=1,c=2时,n=51当a=2,c=4时,n=102练习:1.证明:设N=19881988-19861986,则1987∣N2.设n是自然数,求证n5-n可被30整除.3.请确定最小的正整数A,其末位数为2,若将末位数2移至首位,其余数字不变,则是原数的2倍.4.一个正整数,若用9进制表示为abc,若用7进制表示为cba,请用10进制表示此数.a a能被4整除,最末两位组成的数7a能被6整除,求此五位数.5.五位数467。
2020北京 初二数学竞赛 数论专题:整数的整除性质(含答案)
2020北京 初二数学竞赛 数论专题:整数的整除性质(含答案)1. 下面这个41位数20555L 123个2099L 23个能被7整除,问中间方格代表的数字是几? 解析 因为5555555111111=⨯,9999999111111=⨯,11111137111337=⨯⨯⨯⨯,所以555555和999999都能被7整除,那么由18个5和18个9分别组成的18位数,也能被7整除.而原数=185230555000L L 123123个个1851890999+L L 123123个个,因此右边的三个加数中,前后两个数都能被1整除,那么只要中间的能被7整除,原数就能被7整除.把拆成两个数的和:5599BA B +.因为7|55300,7|399336+=.评注 记住111111能被7整除很有用.2. 一位魔术师让观众写下一个六位数a ,并将a 的各位数字相加得b ,他让观众说出a b -中的5个数字,观众报出1、3、5、7、9,魔术师便说出余下的那个数,问那个数是多少?解析 由于一个数除以9所得的余数与这个数的数字和除以9所得的余数相同,所以a b -是9的倍数.设余下的那个数为x ,则()9|13579x +++++,即 ()9|7x +,由于09x ≤≤,所以,2x =.3. 若p 、q 、21p q -、21q p-都是整数,并且1p >,1q >.求pq 的值. 解析 若p q =,则212112p p q p p--==- 不是整数,所以p q ≠.不妨设p q <,于是2121212p q q q q q--<<=≤, 而21p q -是整数,故211p q-=,即21q p =-.又 214334q p p p p--==- 是整数,所以p 只能为3,从而5q =.所以3515pq =⨯=.4. 试求出两两互质的不同的三个正整数x 、y 、z 使得其中任意两个的和能被第三个数整除.解析 题中有三个未知数,我们设法得到一些方程,然后从中解出这些未知数.不妨设x y z <<,于是y z x +、z x y +、x y z+都是正整数.先考虑最小的一个:12x y z z z z++<=≤, 所以1x y z+=,即z x y =+.再考虑z x y +,因为()|y z x +,即()|2y y x +,所以|2y x ,于是2212x y y y <=≤, 所以21x y=,即2y x =,从而这三个数为x 、2x 、3x .又因为这三个数两两互质,所以1x =.所求的三个数为1、2、3.5. 证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除.解析 要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.设三个连续的奇数分别为21n -、21n +、23n +(其中n 是整数),于是 ()()()()22222121231121n n n n n -+++++=++. 所以 ()()()22212|212123n n n ⎡⎤-++++⎣⎦. 又()2111n n n n ++=++,而n 、1n +是相邻的两个整数,必定一奇一偶,所以()1n n +是偶数,从而21n n ++是奇数,故()()()22224212123n n n ⎡⎤-++++⎣⎦Œ. 6. 若x 、y 为整数,且23x y +,95x y +之一能被17整除,那么另一个也能被17整除. 解析 设23u x y =+,95x y =+.若17|u ,从上面两式中消去y ,得3517v u x -=.① 所以 17|3v .因为(17,3)=1,所以17|v 即17|95x y +.若17|v ,同样从①式可知17|5u .因为(17,5)=1,所以17|u ,即17|23x y +.7. 设n 是奇数,求证:60|6321n n n ---.解析 因为260235=⨯⨯,22、3、5是两两互质的,所以只需证明22、3、5能整除6321n n n ---即可.由于n 是奇数,有22|62n n -,22|31n +,所以22|6231n n n ---;又有3|63n n -,3|21n +,所以3|6321n n n ---;又有5|61n -,5|32n n +,所以5|6321n n n ---.所以60|6321n n n ---.评注 我们通常把整数分成奇数和偶数两类,即被2除余数为0的是偶数,余数为1的是奇数.偶数常用2k 表示,奇数常用21k +表示,其实这就是按模2分类.又如,一个整数a 被3除时,余数只能是0、1、2这三种可能,因此,全体整数可以分为3k 、31k +、32k +这三类形式,这是按模3分类.有时为了解题方便,还常把整数按模4、模5、模6、模8等分类,但这要具体问题具体处理.8. 设n 为任意奇正整数,证明:15961000270320n n n n +--能被2006整除.解析 因为200621759=⨯⨯,所以为证结论成立,只需证n 为奇正整数时,15961000270320n n n n +--能被2、17、59整除.显然,表达式能被2整除.应用公式,n 为奇数时,()()121n n n n n a b a b a a b b ---+=+-++L ,()()121n n n n n a b a b a a b b ----=-+++L .由于159610005944+=⨯,2703205910+=⨯,所以15961000270320n n n n +--能被59整除.又159627013261778-==⨯,10003206801740-==⨯,所以15961000270320n n n n +--能被17整除.9. 若整数a 不被2和3整除,求证:()224|1a -.解析 因为a 既不能被2整除,也不能被3整除,所以,按模2分类与按模3分类都是不合适的.较好的想法是按模6分类,把整数分成6k 、61k +、62k +、63k +、64k +、65k +这六类.由于6k 、62k +、64k +是2的倍数,63k +是3的倍数,所以a 只能具有61k +或65k +的形式,有时候为了方便起见,也常把65k +写成61k -(它们除以6余数均为5).故a 具有61k ±的形式,其中k 是整数,所以()()222161136121231a k k k k k -=±-=±=±. 由于k 与31k ±为一奇一偶(若k 为奇数,则31k ±为偶数,若k 为偶数,则31k ±为奇数),所以()2|31k k ±,于是便有()224|1a -.10. 求证:31n +(n 为正整数)能被2或22整除,但不能被2的更高次幂整除. 解析 按模2分类.若2n k =为偶数,k 为正整数,则()22313131n k n +=+=+. 由3k 是奇数,()23k 是奇数的平方,奇数的平方除以8余1,故可设()2381k l =+,于是 ()3182241n l l +=+=+,41l +是奇数,不含有2的因数,所以31n +能被2整除,但不能被2的更高次幂整除. 若21n k =+为奇数,k 为非负整数,则()()()22131313313811461n k k l l ++=+=⋅+=++=+. 由于61l +是奇数,所以此时31n +能被22整除,但不能被2的更高次幂整除.11. 设p 是质数,证明:满足22a pb =的正整数a 、b 不存在.解析 用反证法.假定存在正整数a 、b ,使得22a pb =.令() , a b d =,1a a d =,1b b d =,则()11 , 1a b =.所以222211a d pb d =,2211a pb =,所以21|p a .由于p 是质数,可知,1|p a .令12a pa =,则22221a p pb =,所以2221pa b =.同理可得,1|p b .即1a 、1b 都含有p 这个因子,这与()11 , 1a b =矛盾.12. 如果p 与2p +都是大于3的质数,那么6是1p +的约数.解析 每一整数可以写成6n 、61n -、61n +、62n -、62n +、63n +中的一种(n 为整数),其中6n 、62n -、62n +、63n +在1n ≥时都是合数,分别被6、2、2、3整除.因此,质数p 是61n -或61n +的形式.如果()611p n n =+≥,那么()263321p n n +=+=+是3的倍数,而且大于3,所以2p +不是质数.与已知条件矛盾.因此()611p n n =-≥.这时16p n +=是6的倍数.评注 本题是将整数按照除以6,所得的余数分为6类.质数一定是61n +或61n -的形式.当然,反过来,形如61n -或61n +的数并不都是质数.但可以证明形如61n -的质数有无穷多个,形如61n +的质数也有无穷多个.猜测有无穷多个正整数n ,使61n -与61n +同为质数.这是孪生质数猜测,至今尚未解决.13. 已知a 、b 是整数,22a b +能被3整除,求证:a 和b 都能被3整除.证 用反证法.如果a 、b 不都能被3整除,那么有如下两种情况:(1)a 、b 两数中恰有一个能被3整除,不妨设3|a ,3b Œ.令3a m =,31b n =±(m 、n 都是整数),于是()222222996133321a b m n n m n n +=+±+=+±+,不是3的倍数,矛盾.(2)a ,b 两数都不能被3整除.令31a m =±,31b n =±,则()()2222223131961961a b m n m m n n +=++±=±++±+()22333222m n m n =+±±+,不能被3整除,矛盾.由此可知,a 、b 都是3的倍数.14. 若正整数x 、y 使得2x x y+是素数,求证:x y ≤. 解析 设2x p x y =+是素数,则()py x x p =-,所以()|p x x p -,故|p x ,或者|p x p -,故可得|p x ,且p x <.令x kp =,k 是大于1的整数,则()1y x k x =-≥.15. 证明:形如abcabc 的六位数一定被7、11、13整除.解析 100171113abcabc abc abc =⨯=⨯⨯⨯. 由此可见,abcabc 被7、11、13整除.16. 任给一个正整数N ,把N 的各位数字按相反的顺序写出来,得到一个新的正整数N ',试证明:N N '-被9整除.解析 N 除以9,与N 的数字和除以9,所得余数相同.N '除以9,与N '的数字和除以9,所得余数相同.N 与N '的数字完全相同,只是顺序相反,所以N 与N '的数字和相等.N 除以9与N '除以9,所得的余数相同,所以N N '-被9整除.17. 19991999199919991999N =L 144424443连写个.求N 被11除所得的余数.解 显然,N 的奇数位数字和与偶数位数字和的差为()1999999119998⨯+--=⨯.19998⨯除以11的余数与88⨯除以11的余数相同,即余数为9.从而N 除以11,所得的余数为9.18. 在568后面补上三个数字,组成一个六位数,使它能被3、4、5分别整除.符合这些条件的六位数中,最小的一个是多少?解析 要命名这个六位数尽可能小,而且能被5整除,百位数字和个位数字都应选0.这样,已知的五个数位上数字之和是5+6+8+0+0=19.要使这个六位数能被3整除,十位上可填2、5、8.由能被4整除的数的特征(这个数的末两位数应该能被4整除)可知,应在十位上填2.这个六位数是568020.19. 已知四位数abcd 是11的倍数,且有b c a +=,bc 为完全平方数,求此四位数. 解析 在三个已知条件中,b c a +=说明给出b 和c ,a 就随之给定,再由11|abcd ,可定d .而bc 为完全平方数,将b 和c 的取值定在两位平方数的十位和个位数字范围中,只要从这个范围中挑选符合要求的即可.由bc 完全平方数,只可能为16、25、36、49、64、81这六种情况.由b c a +=,此时相应的a 为7、7、9、13、10、9.其中13和10显然不可能是四位数的千位数字. 在716d 、725d 、936d 、981d ,这四种可能性中,由11|abcd ,应有()()11|d b a c +-+.()()11|176d +-+时,d 可为1;()()11|275d +-+时,这种d 不存在;()11|396d +-+时,d 可为1;()11|891d +-+时,d 可为2.故满足条件的四位数有:7161、9361、9812.评注 bc 为完全平方数,表示bc 是两位整数,0b ≠,因此,不考虑00、01、04、09这四种情况,否则还应加上1012、4048、9097这三个四位数.20. 用0,1,2,…,9这十个数字组成能被11整除的最大的十位数是多少?解析 因为0+1+2+…+9=45.这个最大十位数若能被11整除,其奇数位上数字之和与偶数位上的数字之和的差(大减小)为0或11的倍数.由于这十个数字之和是45(奇数),所以这个差不可能是0、22、44(偶数).若这个差为33,则只能是396-,但0+1+2+3+4=10,即最小的五个数字之和都超过6,不可能.若这个差为11,()4511228+÷=,452817-=.如果偶数位为9、7、5、3、1,其和为25;奇数位为8、6、4、2、0,其和为20.交换偶数位上的1与奇数位上的4,可得偶数位上的数为9、7、5、4、3,奇数位上的数为8、6、2、1、0.于是所求的最大十位数为9876524130.21. 一个六位数88的倍数,这个数除以88所得的商是多少?解析 设这个六位数为1234A B ,因为它是88的倍数,而88811=⨯,8与11互质,所以,这个六位数既是8的倍数,又是11的倍数.由1234A B 能被8整除,可知34B 能被8整除(一个数末三位组成的数能被8整除,这个数就能被8整除),所以B 是4.由能被11整除的数的特征(一个数奇数位数字之和与偶数位数字之和的差能被11整除,这个数就能被11整除),可知奇数位数字之和与偶数位数字之和的差()()234144A A ++-++=-能被11整除,则40A -=,即4A =.124344881413÷=. 所以,这个六位数是124344,它除以88的商是1413.22. 如果六位数105整除,那么,它的最后两位数是多少?解析 因为这个六位数能被105整除,而105357=⨯⨯,3、5、7这三个数两两互质,所以,这个六位数能同时被3、5、7整除.根据能被5整除的数的特征,它的个位数可以是0或5.根据能被3整除的数的特征,可知这个六位数有如下七种可能:199320,199350,199380,199305,199335,199365,199395.而能被7整除的数的特征是:这个数的末三位数字所表示的数与末三位以前的数字所表示的数的差(以大减小)能被7整除.经试算:395199196-=,196能被7整除.所以,199395能被105整除,它的最后两位数是95.23. 形如1993199319931993520n L 1442443个,且能被11整除的最小数是几? 解析 本题实质上确定n 的最小值.利用被11整除的数的特征:偶数位数字之和与奇位数字之和的差能被11整除.该数的偶数位数字之和为122n +,奇数位数字之和为105n +,两者之差为()12210523n n n +-+=-.要使()11|23n -,不难看出最小的7n =,故所求最小数为71993199319931993520L 1442443个. 24. 是否存在100个不同的正整数,使得它们的和与它们的最小公倍数相等?解析 存在满足条件的100个数.事实上,对任意正整数()3n ≥,下述n 个数3,23⨯,223⨯,…,223n -⨯,13n -,它们的最小公倍数为123n -⨯,和为221222132323233323233n n n n ----+⨯+⨯++⨯+=+⨯++⨯+L L 33211113232333323n n n n n -----=+⨯++⨯+==+=⨯L L .所以,这几个数的和等于它们的最小公倍数.取100n =,可知存在符合要求的100个数.。
五年级奥数竞赛之数的整除性
五年级奥数竞赛之数的整除性数的整除性整除的基本性质:性质1 如果a、b都能被m整除,那么它们的和a,b与差a,b都能被m整除。
它可记为:若m/a,m/b,则m/(a?b)。
m能同时整除a、b,即m既是a的约数,又是b的约数,则称m是a、b的公约数。
如果两个数只有唯一的公约数1,则称这两个数互质。
例如1与12,4与5,5与9,3与25等。
性质2 如果a/m,b/m,且a和b互质,那么a和b的乘积也能整除m,即(a×b)/m。
例如:3/72,4/72,且3和4互质,那么3与4的乘积12/72。
性质2中,“两数互质”这一条件是必不可少的。
6/72,8/72,但6与8的乘积48不能整除72,这就是因为6与8不互质。
根据性质2,我们常常可有如下解题思路:要使m被a×b整除,而a与b互质,就可以分别考虑m被a整除与m被b整除。
性质3 (传递性)如果c/b,且b/a,那么c/a。
特别是若b/a,m为整数,则有b/(a×m)。
1、形如1993 1993…1993 520,且能被11整除的最小数是。
n个19932、所有数字都是2且能被66…6整除的最小自然数是多少,3、500名士兵排成一列横队,第一次从左到右1,2,3,4,5(1至5)名报数;第二次反过来从右到左1,2,3,4,5,6(1至6)报数,既报1又报6的士兵有多少名,4、一个六位数的各位数字都不相同。
最左边一个数字是3,且此六位数能被11整除。
这样的六位数中的最小的数是。
5、已知一个两位数恰好是它的两个数字之和的六倍,求这个两位数是 ,6、已知a、b、c、d是各不相同的数字,a,b,c,18,b,c,d,23,四位数badc被5除余3,求四位数abcd是。
7、用1,6六个数字组成一个六位数abcdef其中不同字母代表1,6中的数字,要求ab是2的倍数,abc是3的倍数,abcd能被5整除,zbcdef是6的倍数,求这样的六位数有个,各是。
奥数教案 整数的整除问题教案
奥数教案整数的整除问题教案一、教学目标:1. 让学生理解整除的概念,掌握整除的性质和判定方法。
2. 培养学生解决整数整除问题的能力,提高逻辑思维和运算能力。
3. 通过对整除问题的学习,激发学生学习数学的兴趣和积极性。
二、教学内容:1. 整除的定义与性质2. 整除的判定方法3. 整除在实际问题中的应用三、教学重点与难点:1. 整除的定义与性质2. 整除的判定方法3. 整除在实际问题中的应用四、教学方法:1. 采用讲解法,引导学生理解整除的概念和性质。
2. 采用案例分析法,让学生通过实际问题学会判断整除。
3. 采用练习法,巩固学生对整除的理解和应用能力。
五、教学准备:1. 教学课件或黑板2. 练习题3. 教学参考资料教学过程:一、导入:1. 引导学生回顾有理数除法的概念,引入整除的概念。
2. 提问:什么是有理数除法?整除与有理数除法有什么关系?二、新课讲解:1. 讲解整除的定义与性质,让学生理解整除的概念。
2. 讲解整除的判定方法,让学生学会判断整除。
3. 通过实际问题,讲解整除在实际问题中的应用,让学生学会运用整除解决问题。
三、案例分析:1. 出示案例,让学生判断哪些是整除问题。
2. 引导学生分析案例,找出解题关键。
3. 讲解案例的解题步骤,让学生学会解决整除问题。
四、练习巩固:1. 出示练习题,让学生独立解答。
2. 引导学生分析题目,找出解题关键。
3. 讲解练习题的解题步骤,让学生巩固整除的知识。
五、课堂小结:1. 回顾本节课所学内容,让学生总结整除的概念、性质和应用。
2. 强调整除在实际问题中的重要性,激发学生学习兴趣。
六、课后作业:1. 布置课后练习题,巩固整除知识。
2. 鼓励学生参加奥数竞赛,提高解题能力。
教学反思:本节课通过讲解整除的概念、性质和应用,让学生掌握了整除的基本知识。
在案例分析和练习巩固环节,学生通过实际问题学会了判断整除和解决问题。
整体教学效果良好,但部分学生对整除的判定方法仍有一定困难,需要在今后的教学中加强针对性训练。
竞赛讲座02-整数的整除性
竞赛讲座02-整数的整除性1.整数的整除性的有关概念、性质(1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。
若d不能整除a,则记作d a,如2|6,4 6。
(2)性质1)若b|a,则b|(-a),且对任意的非零整数m有bm|am2)若a|b,b|a,则|a|=|b|;3)若b|a,c|b,则c|a4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c;5)若b|ac,而b为质数,则b|a,或b|c;6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)例1 (1987年北京初二数学竞赛题)x,y,z均为整数,若11|(7x+2y-5z),求证:11|(3x-7y+12z)。
证明∵4(3x-7y+12z)+3(7x+2y-5z)=11(3x-2y+3z)而 11|11(3x-2y+3z),且 11|(7x+2y-5z),∴ 11|4(3x-7y+12z)又 (11,4)=1∴ 11|(3x-7y+12z).2.整除性问题的证明方法(1) 利用数的整除性特征(见第二讲)例2(1980年加拿大竞赛题)设72|的值。
解72=8×9,且(8,9)=1,所以只需讨论8、9都整除的值。
若8|,则8|,由除法可得b=2。
若9|,则9|(a+6+7+9+2),得a=3。
(2)利用连续整数之积的性质①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。
②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。
这个性质可以推广到任意个整数连续之积。
例3(1956年北京竞赛题)证明:对任何整数n都为整数,且用3除时余2。
证明∵为连续二整数的积,必可被2整除.∴对任何整数n均为整数,∵为整数,即原式为整数.又∵,2n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质,∴是能被3整除的整数.故被3除时余2.例4 一整数a若不能被2和3整除,则a2+23必能被24整除.证明∵a2+23=(a2-1)+24,只需证a2-1可以被24整除即可.∵2 .∴a为奇数.设a=2k+1(k为整数),则a2-1=(2k+1)2-1=4k2+4k=4k(k+1).∵k、k+1为二个连续整数,故k(k+1)必能被2整除,∴8|4k(k+1),即8|(a2-1).又∵(a-1),a,(a+1)为三个连续整数,其积必被3整除,即3|a(a-1)(a+1)=a(a2-1),∵3 a,∴3|(a2-1).3与8互质, ∴24|(a2-1),即a2+23能被24整除.(3)利用整数的奇偶性下面我们应用第三讲介绍的整数奇偶性的有关知识来解几个整数问题.例5 求证:不存在这样的整数a、b、c、d使:a·b·c·d-a=①a·b·c·d-b=②a·b·c·d-c=③a·b·c·d-d=④证明由①,a(bcd-1)=.∵右端是奇数,∴左端a为奇数,bcd-1为奇数.同理,由②、③、④知b、c、d必为奇数,那么bcd为奇数,bcd-1必为偶数,则a (bcd-1)必为偶数,与①式右端为奇数矛盾.所以命题得证.例6 (1985年合肥初中数学竞赛题)设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,且试证n是4的倍数.证明设(i=1,2,…,n-1),则y i不是+1就是-1,但y1+y2+…+y n=0,故其中+1与-1的个数相同,设为k,于是n=2k.又y1y2y3…y n=1,即(-1)k=1,故k为偶数,∴n是4的倍数.其他方法:整数a整除整数b,即b含有因子a.这样,要证明a整除b,采用各种公式和变形手段从b中分解出因子a就成了一条极自然的思路.例7 (美国第4届数学邀请赛题)使n3+100能被n+10整除的正整数n的最大值是多少?解n3+100=(n+10)(n2-10n+100)-900.若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为最大时,相应地n的值为最大.因为900的最大因子是900.所以,n+10=900,n=890.例8 (上海1989年高二数学竞赛)设a、b、c为满足不等式1<a<b<c的整数,且(ab-1)(bc-1)(ca-1)能被abc整除,求所有可能数组(a,b,c).解∵(ab-1)(bc-1)(ca-1)=a2b2c2-abc(a+b+c)+ab+ac+bc-1,①∵abc|(ab-1)(bc-1)(ca-1).∴存在正整数k,使ab+ac+bc-1=kabc, ②k=<<<<∴k=1.若a≥3,此时1=-<矛盾.已知a>1. ∴只有a=2.当a=2时,代入②中得2b+2c-1=bc,即 1=<∴0<b<4,知b=3,从而易得c=5.说明:在此例中通过对因数k的范围讨论,从而逐步确定a、b、c是一项重要解题技巧.例9 (1987年全国初中联赛题)已知存在整数n,能使数被1987整除.求证数,都能被1987整除.证明∵×××(103n+),且能被1987整除,∴p能被1987整除.同样,q=()且∴故、102(n+1)、被除,余数分别为1000,100,10,于是q表示式中括号内的数被除,余数为1987,它可被1987整除,所以括号内的数能被1987整除,即q能被1987整除.练习二1.选择题(1)(1987年上海初中数学竞赛题)若数n=20·30·40·50·60·70·80·90·100·110·120·130,则不是n的因数的最小质数是().(A)19 (B)17 (C)13 (D)非上述答案(2)在整数0、1、2…、8、9中质数有x个,偶数有y个,完全平方数有z个,则x+y+z等于().(A)14 (B)13 (C)12 (D)11 (E)10(3)可除尽311+518的最小整数是().(A)2 (B)3 (C)5 (D)311+518(E)以上都不是2.填空题(1)(1973年加拿大数学竞赛题)把100000表示为两个整数的乘积,使其中没有一个是10的整倍数的表达式为__________.(2) 一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是_________.(3) (1989年全国初中联赛题)在十进制中,各位数码是0或1,并且能被225整除的最小自然数是________.3.求使为整数的最小自然数a的值.4.(1971年加拿大数学竞赛题)证明:对一切整数n,n2+2n+12不是121的倍数.5.(1984年韶关初二数学竞赛题)设是一个四位正整数,已知三位正整数与246的和是一位正整数d的111倍,又是18的倍数.求出这个四位数,并写出推理运算过程.6.(1954年苏联数学竞赛题)能否有正整数m、n满足方程m2+1954=n2.7.证明:(1)133|(11n+2+12n+1),其中n为非负整数.(2)若将(1)中的11改为任意一个正整数a,则(1)中的12,133将作何改动?证明改动后的结论.8.(1986年全国初中数学竞赛题)设a、b、c是三个互不相等的正整数.求证:在a3b-ab3,b3c-bc3,c3a-ca3三个数中,至少有一个能被10整除.9.(1986年上海初中数学竞赛题)100个正整数之和为101101,则它们的最大公约数的最大可能值是多少?证明你的结论.练习参考答案1.B.B.A2.(1)25·55.(2)27.3.由2000a为一整数平方可推出a=5.4.反证法.若是121的倍数,设n2+2n+12=121k(n+1)2=11(11k-1).∵11是素数且除尽(+1)2,∴11除尽n+1112除尽(n+1)2或11|11k-1,不可能.5.由是d的111倍,可能是198,309,420,531,642,753;又是18的倍数,∴只能是198.而198+246=444,∴d=4,是1984.7.(1)11n+2+122n+1=121×11n+12×144n=121×11n+12×11n-12×11n+12×144n=…=133×11n+12×(144n-11n).第一项可被133整除.又144-11|144n-11n,∴133|11n+2+122n+1.(2)11改为a.12改为a+1,133改为a(a+1)+1.改动后命题为a(a+1)+1|an+2+(a+1)2n+1,可仿上证明.8.∵a3b-ab3=ab(a2-b2);同理有b(b2-c2);ca(c2-a2).若a、b、c中有偶数或均为奇数,以上三数总能被2整除.又∵在a、b、c中若有一个是5的倍数,则题中结论必成立.若均不能被5整除,则a2,b2,c2个位数只能是1,4,6,9,从而a2-b2,b2-c2,c2-a2的个位数是从1,4,6,9中,任取三个两两之差,其中必有0或±5,故题中三式表示的数至少有一个被5整除,又2、5互质.9.设100个正整数为a1,a2,…,a100,最大公约数为d,并令则a1+a2+…+a100=d(a1′+a2′+…+a′100)=101101=101×1001,故知a1′,a2′,a′100不可能都是1,从而a′1+a′2+…+a′100≥1×99+2=101,d≤1001;若取a1=a2=a99=1001,a100=2002,则满足a1+a2+…+a100=1001×101=101101,且d=1001,故d的最大可能值为1001。
整数的整除性
整数的整除性中学时期(40多年前)构造了生成整除性判别法的方法,感到是雕虫小技,一直没有正式发表过。
看到大家有兴趣,就发表吧!一个数是否含有2、3、4、5、9、10、11这些因子的判别方法大家都比较熟悉,比如根据数的末位数字是否能被2、5和10整除,就可判别该数是否含有2、5和10的因子;根据各位数字之和能否被3和9整除,就可判别该数是否含有3和9的因子;根据末两位数能否被4整除,就可判别该数是否含有4的因子;根据奇数位数字之和是否等于偶数位数字之和,就可判别该数是否含有11的因子。
那么7、13,17,19等等因子该如何判别,有没有一个统一的方法呢?下面我们给出构造素因子判断方法的方法,这是一个与记数法有关的方法,而我们给出的是十进制记数法下的判断方法,因为记数法基底所包含的因子判断十分简单,只要看末位数字就可以了,所以只讨论与基底互素因子的判断方法。
这里我们对于末位数字是1、3、7、9的数N,我们找一个数a,使得aN的末位数字是9,于是m=aN+1,不过我们取m=(aN+1)/10。
对于数S=10k+b是否包含因子N=10x+c(其中k和x是正整数,b是0到9的数字,c是1、3、7、9之一),我们的判别方法是:判别k+bm即可。
我们称之为割加判别法,因为其过程是割下末位数字b,乘上m加到前面去,这个过程反复进行直到变成易于判断的小整数为止。
例1.我们判断3021是否能被19整除。
按照我们的方法,有a=1(因为1乘19末位数字是9),于是m=(aN+1)/10=(1x19+1)/10=2,于是割下末位1,乘以2,加到前面302上,得到304;再割下末位4,乘以2,加到前面30上,得到38,可以看到38能被19整除,于是判断3021也能被19整除。
例2.判断1554能否被7整除。
按照我们的方法,有a=7(因为7乘7末位数字是9),于是m=(aN+1)/10=(7x7+1)/10,得到割加因子m=5。
【精品】五年级下册数学试题-竞赛专题:第2讲-整除性(含答案)人教版
知识概述1.整除的概念:两个整数相除,余数为零(没有余数)我们就说被除数能被除数整除,即整数a 除以整数b(0b≠),除得的商正好是整数,我们就说a能被b整除(也可以说b能整除a),记为|b a,如15能被3整除,即为3|15。
2.整除的性质:(1)如果数a数b都能被数c整除,那么他们的和或差也能被c整除,即如果|c a,|c b,那么|()c a b±;(2)如果数a能被数b与数c的积整除,那么a也能被b或者c整除,即如果|bc a,那么|b a,|c a;(3)如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除,即如果|b a,|c a,且(,)1b c=,那么|bc a。
(4)如果c能整除b,b能整除a,那么c能整除a。
即:如果|c b,|b a,那么|c a。
3.整除的特征:特征1:能被2整除的数为个位数字是0、2、4、6、8的整数。
“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除,另一方面,能被2整除的数,其个位数字只能是偶数(包括0)。
(下同)特征2:能被5整除的数的个位是0或5。
特征3:能被3(或9)整除的数,各个数位数字之和能被3(或9)整除。
特征4:能被4(或25)整除的数其末两位数能被4(或25)整除。
特征5:能被8(或125)整除的数其末三位数能被8(或125)整除。
特征6:一个数奇数位上的数字和与偶数位上的数字和的差(大减小)能被11整除,这个数也能被11整除。
整除性请用数字9、7、2、5、1写出一个能被2整除的最大三位数。
【解析】这些数字组成的最大三位数是975,但是它不能被2整除,能被2整除的数末位数一定是“0、2、4、6、8”。
所以能被2整除的最大三位数为972。
在下面的数中,哪些能被2整除?哪些能被3整除?哪些能被5整除?234、79、775、885、378、864、63、75、26、40【解析】能被2整除的数有234、378、864、26、40;能被3整除的数有234、885、378、864、63、75;能被5整除的数有775、885、40。
数学奥赛辅导 第二讲 整 除
数学奥赛辅导第二讲整除数学奥赛辅导第二讲整除数学奥赛辅导第二讲相乘知识、方法、技能相乘就是整数的一个关键内容,这里仅了解其中的几个方面:整数的相乘性、最大公约数、最轻公倍数、方幂问题.ⅰ.整数的整除性初等数论的基本研究对象就是自然数子集及整数子集.我们晓得,整数子集中可以作加、减至、乘法运算,并且这些运算满足用户一些规律(即为乘法和乘法的结合律和交换律,乘法与乘法的分配律),但通常无法搞乘法,即为,如a,b就是相乘,b?0,则初等数论中第一个基本概念:整数的相乘性.定义一:(带余除法)对于任一整数a和任一整数b,必有惟一的一对整数q,r使得a不一定就是整数.由此带出ba?bq?r,0?r?b,并且整数q和r由上述条件惟一确认,则q称作b除a的不能全然商,r称为b除a的余数.若r?0,则表示b相乘a,或a被b相乘,或表示a就是b的倍数,或表示b就是a的约数(又叫做因子),记作b|a.否则,b|a.任何a的非?a,?1的约数,叫做a的真约数.0是任何整数的倍数,1是任何整数的约数.任一非零的整数就是其本身的约数,也就是其本身的倍数.由相乘的定义,不难得出结论相乘的如下性质:(1)若a|b,b|c,则a|c.(2)若a|bi,则a|?cb,其中ciii?1ni?z,i?1,2,?,n.(3)若a|c,则ab|cb.反之,亦设立.(4)若a|b,则|a|?|b|.因此,若a|b,又b|a,则a??b.(5)a、b互质,若a|c,b|c,则ab|c.1(6)p为质数,若p|a1?a2an,则p必能整除a1,a2,?,an中的某一个.特别地,若p为质数,p|an,则p|a.(7)例如在等式abii1k1nmk中除开某一项外,其余各项都是c的倍数,则这一项也是c的倍数.(8)n个已连续整数中有且只有一个就是n的倍数.(9)任何n个已连续整数之内积一定就是n的倍数.本讲开始在整除的定义同时给出了约数的概念,又由上一讲的算术基本定理,我们就可以讨论整数的约数的个数了.定理一:设立大于1的整数a的标准水解式为a?p11?p2?pnn(p1?p2pn为质数,?i 均为非负整数),则a的约数的个数为d(a)??(?i?1).i?1n所有的约数和为:(a)i1npii11.pi?1事实上,由算术基本定理的推断言d(a)??(?i?1ni?1),而各约数的和就是(1pi1nipaii)展开后的各项之和,所以nn?ip1?1?(a)??(1?pipi)??i?1i?1pi?1?i比如,25200=2432527,所以d(25200)?(4?1)(2?1)(2?1)(1?1)?90,25?133?153?172?1?(25200)99944.2?13?15?17?1ⅱ.最大公约数和最小公倍数2定义二:设a、b是两个不全为0的整数.若整数c满足:c|a,c|b,则称c为a,b的公约数,a与b的所有公约数中的最大者称为a与b的最大公约数,记为(a,b).如果(a,b)=1,则称a与b互质或互素.定义三:如果d就是a、b的倍数,则表示d就是a、b的公倍数.a与b的公倍数中最轻的正数称作a与b的最轻公倍数,记为[a,b].最大公约数和最小公倍数的概念可以推广到有限多个整数的情形,并用(a1,a2,?,an)表示a1,a2,?,an的最大公约数,[a1,a2,?,an]表示a1,a2,?,an的最小公倍数.若(a1,a2,?,an)?1,则表示a1,a2,a3,?,an互质,若a1,a2,?,an中任何两个都互质,则表示它们就是两两互质的.特别注意,n个整数互质与n个整数两两互质就是相同的概念,前者设立时后者不一定设立(比如,3,15,8互质,但不两两互质);似乎后者设立时,前者必设立.因为任何正数都不是0的倍数,所以在讨论最小公倍数时,一般都假定这些整数不为0.同时,由于a,b与|a|,|b|有相同的公约数,且(a,b)?(|a|,|b|)(有限多个亦成立),因此,我们总限于在自然数集合内来讨论数的最大公约数和最小公倍数.似乎,若a,b的标准水解式为a?则pi1nii,,b??pi?i(pi为质数,ai,?i为非负整数)i?1n(a,b)??pimin(?i,?i)①i?1nn[a,b]??piman(?i,?i)②i?1比如3960=2332511,756=22337,则(3960,756)=2232=36,[3960,756]=23335711=83160.谋最大公约数也可以用只身二者乘法,其理论依据就是:定理二:设a、b、c是三个不全为0的整数,且有整数t使得a?bt?c,则a、b与b、c有相同的公约数,因而(a,b)?(b,c),即(a,b)?(b,a?bt).3因为,若d是a、b的任一公约数,则由d|a,d|b和a?bt?c知d|c,即d是b、c的公约数;反之,若d是b、c的任一公约数,d也是a、b的公约数.只身二者乘法:设a、b?n?,且a?b,由利皮扬卡乘法存有??b?r1q2?r2,0?r2?r1,③rn?2?rn?1qn?rn,0?rn?rn?1,??rn?1?rnqn?1?rn?1,rn? 1?0.??因为每进行一次带余除法,余数至少减1,即b?r1rn?rn?1,而b为有限数,因此,必有一个最多不超过b的正整数n存在,使得rn?0,而rn?1?0,故由定理二得:a?bq1?r1,0?r1?b,rn?(rn?1,rn)?(rn,rn?1)(r2,r1)?(r1,b)?(a,b).例如,(3960,756)=(756,180)=(180,36)=36.具体算式如下:5(q1)3960(a)756(b)4(q2)3780720180(r1)36(r2)5(q3)1800(r3)由定义和上述求法不难得出最大公约数和最小公倍数的如下性质:(1)m?n,则(am,bm)?m(a,b).(2)设c为a,b的公约数,则(,)?abcc(a,b)ab.特别地,若c?(a,b),则(,)?c(3)设a1,a2,?,an是任意n个正整数,如果(a1,a2)?c2,(c2,a3)?c3,?,(cn?1,an)?cn,则(a1,a2,?,an)?cn.因cn|an,cn|cn?1,而cn?1|an?1,cn?1|cn?2,故cn?1|an?1,cn|cn?2,如此以此类推得出结论cn能够整4除an,an?1,?,a1,于是cn就是它们的一个公约数.又设立c为a1,a2,?,an的任一公约数,则c|a1,c|a2,因而c|c2,同理可推出c|c3,如此类推最后可得c|cn.于是c?|c|?cn,故cn就是最大公约数.(4)若(a,b)?c,则一定有整数x和y,使得ax?by?c.特别地,(a,b)?1?存在x,y使得ax?by?1.这可由辗转相除法的③式逆推而得c?rn?ax?by.(5)若(a,b)?1,则(ac,b)?(c,b).(6)a,b?n?①[ak,bk]?k[a,b](k?n?);②m为a,b的任一公倍数,则[a,b]|m;③(a,b)[a,b]?ab,特别地,若(a,b)?1,则[a,b]?ab.①可以由③轻易获得,②可以由最轻公倍数定义得,③根据①、②式言,(a,b)[a,b]?pi1nimin(i,i)piiiab.i?1n(7)设a1,a2,?,an是任意n个正整数.若[a1,a2]?m2,[m2,a3]?m3,?,[mn?1,an]?mn,则[a1,a2,?,an]?mn.这就是一个谋多个整数的最轻公倍数的方法.它需用证明③相似的方法去证明.ⅲ.方幂问题一个正整数n能否表成m个整数的k次方和的问题称为方幂和问题.特别地,当m?1时称为k次方问题,当k?2时,称为平方和问题.能表为某整数的平方的数称为完全平方数.简称平方数,关于平方数,明显有如下一些简单的性质和结论:(1)平方数的个位数字只可能是0,1,4,5,6,9.(2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数5。
整数的整除性
整数的整除性1.整数的整除性的有关概念、性质(1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。
若d不能整除a,则记作d a,如2|6,4 6。
(2)性质1)若b|a,则b|(-a),且对任意的非零整数m有bm|am2)若a|b,b|a,则|a|=|b|;3)若b|a,c|b,则c|a4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c;5)若b|ac,而b为质数,则b|a,或b|c;6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)例1 (1987年北京初二数学竞赛题)x,y,z均为整数,若11|(7x+2y-5z),求证:11|(3x-7y+12z)。
证明∵4(3x-7y+12z)+3(7x+2y-5z)=11(3x-2y+3z)而 11|11(3x-2y+3z),且 11|(7x+2y-5z),∴ 11|4(3x-7y+12z)又 (11,4)=1∴ 11|(3x-7y+12z).2.整除性问题的证明方法(1) 利用数的整除性特征(见第二讲)例2(1980年加拿大竞赛题)设72|的值。
解72=8×9,且(8,9)=1,所以只需讨论8、9都整除的值。
若8|,则8|,由除法可得b=2。
若9|,则9|(a+6+7+9+2),得a=3。
(2)利用连续整数之积的性质①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。
②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。
这个性质可以推广到任意个整数连续之积。
例3(1956年北京竞赛题)证明:对任何整数n都为整数,且用3除时余2。
证明∵为连续二整数的积,必可被2整除.∴对任何整数n均为整数,∵为整数,即原式为整数.又∵,2n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质,∴是能被3整除的整数.故被3除时余2.例4 一整数a若不能被2和3整除,则a2+23必能被24整除.证明∵a2+23=(a2-1)+24,只需证a2-1可以被24整除即可.∵2 .∴a为奇数.设a=2k+1(k为整数),则a2-1=(2k+1)2-1=4k2+4k=4k(k+1).∵k、k+1为二个连续整数,故k(k+1)必能被2整除,∴8|4k(k+1),即8|(a2-1).又∵(a-1),a,(a+1)为三个连续整数,其积必被3整除,即3|a(a-1)(a+1)=a(a2-1),∵3 a,∴3|(a2-1).3与8互质, ∴24|(a2-1),即a2+23能被24整除.(3)利用整数的奇偶性下面我们应用第三讲介绍的整数奇偶性的有关知识来解几个整数问题.例5 求证:不存在这样的整数a、b、c、d使:a·b·c·d-a=①a·b·c·d-b=②a·b·c·d-c=③a·b·c·d-d=④证明由①,a(bcd-1)=.∵右端是奇数,∴左端a为奇数,bcd-1为奇数.同理,由②、③、④知b、c、d必为奇数,那么bcd为奇数,bcd-1必为偶数,则a (bcd-1)必为偶数,与①式右端为奇数矛盾.所以命题得证.例6 (1985年合肥初中数学竞赛题)设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,且试证n是4的倍数.证明设(i=1,2,…,n-1),则y i不是+1就是-1,但y1+y2+…+y n=0,故其中+1与-1的个数相同,设为k,于是n=2k.又y1y2y3…y n=1,即(-1)k=1,故k为偶数,∴n是4的倍数.其他方法:整数a整除整数b,即b含有因子a.这样,要证明a整除b,采用各种公式和变形手段从b中分解出因子a就成了一条极自然的思路.例7 (美国第4届数学邀请赛题)使n3+100能被n+10整除的正整数n的最大值是多少?解n3+100=(n+10)(n2-10n+100)-900.若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为最大时,相应地n的值为最大.因为900的最大因子是900.所以,n+10=900,n=890.例8 (上海1989年高二数学竞赛)设a、b、c为满足不等式1<a <b<c的整数,且(ab-1)(bc-1)(ca-1)能被abc整除,求所有可能数组(a,b,c).解∵(ab-1)(bc-1)(ca-1)=a2b2c2-abc(a+b+c)+ab+ac+bc-1,①∵abc|(ab-1)(bc-1)(ca-1).∴存在正整数k,使ab+ac+bc-1=kabc, ②k=<<<<∴k=1.若a≥3,此时1=-<矛盾.已知a>1. ∴只有a=2.当a=2时,代入②中得2b+2c-1=bc,即 1=<∴0<b<4,知b=3,从而易得c=5.说明:在此例中通过对因数k的范围讨论,从而逐步确定a、b、c是一项重要解题技巧.例9 (1987年全国初中联赛题)已知存在整数n,能使数被1987整除.求证数,都能被1987整除.证明∵×××(103n+),且能被1987整除,∴p能被1987整除.同样,q=()且∴故、102(n+1)、被除,余数分别为1000,100,10,于是q表示式中括号内的数被除,余数为1987,它可被1987整除,所以括号内的数能被1987整除,即q能被1987整除.练习十六1.选择题(1)(1987年上海初中数学竞赛题)若数n=20·30·40·50·60·70·80·90·100·110·120·130,则不是n的因数的最小质数是().(A)19 (B)17 (C)13 (D)非上述答案(2)在整数0、1、2…、8、9中质数有x个,偶数有y个,完全平方数有z个,则x+y+z等于().(A)14 (B)13 (C)12 (D)11 (E)10(3)可除尽311+518的最小整数是().(A)2 (B)3 (C)5 (D)311+518(E)以上都不是2.填空题(1)(1973年加拿大数学竞赛题)把100000表示为两个整数的乘积,使其中没有一个是10的整倍数的表达式为__________.(2) 一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是_________.(3) (1989年全国初中联赛题)在十进制中,各位数码是0或1,并且能被225整除的最小自然数是________.3.求使为整数的最小自然数a的值.4.(1971年加拿大数学竞赛题)证明:对一切整数n,n2+2n+12不是121的倍数.5.(1984年韶关初二数学竞赛题)设是一个四位正整数,已知三位正整数与246的和是一位正整数d的111倍,又是18的倍数.求出这个四位数,并写出推理运算过程.6.(1954年苏联数学竞赛题)能否有正整数m、n满足方程m2+1954=n2.7.证明:(1)133|(11n+2+12n+1),其中n为非负整数.(2)若将(1)中的11改为任意一个正整数a,则(1)中的12,133将作何改动?证明改动后的结论.8.(1986年全国初中数学竞赛题)设a、b、c是三个互不相等的正整数.求证:在a3b-ab3,b3c-bc3,c3a-ca3三个数中,至少有一个能被10整除.9.(1986年上海初中数学竞赛题)100个正整数之和为101101,则它们的最大公约数的最大可能值是多少?证明你的结论.练习十六1.B.B.A2.(1)25·55.(2)27.3.由2000a为一整数平方可推出a=5.4.反证法.若是121的倍数,设n2+2n+12=121k(n+1)2=11(11k-1).∵11是素数且除尽(+1)2,∴11除尽n+1112除尽(n+1)2或11|11k-1,不可能.5.由是d的111倍,可能是198,309,420,531,642,753;又是18的倍数,∴只能是198.而198+246=444,∴d=4,是1984.7.(1)11n+2+122n+1=121×11n+12×144n=121×11n+12×11n-12×11n+12×144n=…=133×11n+12×(144n-11n).第一项可被133整除.又144-11|144n-11n,∴133|11n+2+122n+1.(2)11改为a.12改为a+1,133改为a(a+1)+1.改动后命题为a(a+1)+1|an+2+(a+1)2n+1,可仿上证明.8.∵a3b-ab3=ab(a2-b2);同理有b(b2-c2);ca(c2-a2).若a、b、c中有偶数或均为奇数,以上三数总能被2整除.又∵在a、b、c中若有一个是5的倍数,则题中结论必成立.若均不能被5整除,则a2,b2,c2个位数只能是1,4,6,9,从而a2-b2,b2-c2,c2-a2的个位数是从1,4,6,9中,任取三个两两之差,其中必有0或±5,故题中三式表示的数至少有一个被5整除,又2、5互质.9.设100个正整数为a1,a2,…,a100,最大公约数为d,并令则a1+a2+…+a100=d(a1′+a2′+…+a′100)=101101=101×1001,故知a1′,a2′,a′100不可能都是1,从而a′1+a′2+…+a′100≥1×99+2=101,d≤1001;若取a1=a2=a99=1001,a100=2002,则满足a1+a2+…+a100=1001×101=101101,且d=1001,故d的最大可能值为1001。
初中数学竞赛教程22、整数的整除性和奇偶性
2013年暑期初一数学竞赛第二十二讲:整数的整除性和奇偶性【例题精选】例1、如果,,a b c 是正整数,a 和b 是奇数,那么23()a b c c +-⋅( )A 、对于c 的所有选择都是奇数;B 、对于c 的所有选择都是偶数;C 、当c 是偶数时为奇数,c 为奇数时为偶数;D 、当c 是奇数时为奇数,c 为偶数时为偶数;1、设a 、b 、c 都是整数,且a b c ++是偶数,试说明a b c +-、b c a +-、c a b +-都 是偶数。
2、若,,a b c 中有两个是奇数,一个是偶数,判断222(2001)(2002)(2003)a b c +⨯+⨯+是 奇数还是偶数?3、设1a ,2a ,…,2011a 是1到2011的整数打乱顺序后,任意一种顺序的排列,请判断 122011(1)(2)...(2011)a a a +⋅+⋅⋅+是奇数还是偶数,并说明理由。
4、甲、乙两人玩纸牌游戏,甲持有全部的红桃牌(A 作1,J 、Q 、K 分别作11、12、13),乙持有全部的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否确定?例2、黑板上写上1,2,3,…,1998,按下列规定进行操作:每次擦去其中的任意两个数a和b ,然后写上它们的差(大减小),直到黑板上剩下一个数为止。
问:黑板上剩下的数是奇数还是偶数?为什么?1、黑板上写有1,2,3,…,1997,1998这1998个数,对它们进行如下操作:擦去其中 三个数,再将这三个数和的个位数字补写在黑板上,例如擦去5,13,1998后添6,再如擦去6,6,38后添0,等等。
如果经过998次操作后,黑板上只剩下两个数,一个是25,则另一个数是什么?2、在1,2,3,…,1989之间填上“+”或“—”,求和时可以得到最小的非负数是多少?例3、设有m 只茶杯,开始时杯口都朝上,把茶杯随意翻转,规定每翻转n 只,称为一次翻动,翻动过的茶杯允许再翻。
整除篇
整除篇整数的整除性问题,是数论 Number Theory 中的最基本问题,也是国内外数学竞赛中最常出现的内容之一.由于整数性质的论证是具体、严格、富有技巧,它既容易使学生接受,又是培养学生逻辑思维和推理能力的一个有效课题。
因此,了解一些整数的性质和整除性问题的解法是很有必要的。
一、整除的基本概念1.1 整除的定义所谓整除,就是一个整数被另一个整数“除尽”,其数学定义如下:若整数 除以非零整数 ,商为整数,且余数为零,即存在整数 ,使得 ,我们就说 能被 整除,或称 能整除 。
为被除数,为除数,即(“|”是整除符号),读作“整除”或“能被整除”。
若不存在这样的整数 ,使得 ,我们就说 不能被 整除,或称 不能整除 ,记作 1.2 约数与倍数如果 , 叫做 的约数(或因数Factor ), 叫做 的倍数。
整除属于除尽的一种特殊情况。
二、整除的判断法2.1 尾数判断法--被2、5、 4、25、8、125整除的数能被2或5整除的数:个位数字能被2或5整除,那么这个数能被2或5整除(偶数都能被2整除)能被4或25整除的数:末两位能被4或25整除,那么这个数能被4或25整除能被8或125整除的数:末三位能被8或125整除,则该数一定能被8或125整除2.2 数字求和法--被3、9整除的数能被3整除的数:各个数位上的数字和能被3整除,那么这个数能被3整除能被9整除的数:各个数位上的数字和能被9整除,那么这个数能被9整除弃3法和弃9法: 当位数较多时,我们可以逐步去掉3或9的倍数,只用剩下的不足3或9的数字和来判断2.3 “截尾、倍数、加减、验和差”四步法--能被7、13、17整除的数能被7整除的数:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否为7的倍数,就需要继续上述「截尾、2倍、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:,所以6139是7的倍数,余类推。
高中奥林匹克数学竞赛 整除性理论及其应用
第一讲 整除性理论及其应用一. 基本概念和性质.1. 整除:设a,b 是两个整数,且b ≠0,如果存在一个整数q,使等式a=bq 成立,那么我们 称a 能被b 整除或b 整除a,记作b ︱a,其性质有(设b ≠0,c=0)1).若b ︱a , a ≠0,则b a ≤2) 若b ︱a, a ︱b ,a ≠0,则a=b 或b=a3) 若c ︱b, b ︱a, 则c ︱a4) 若b ︱a, 则cb ︱ca5) 若c ︱a, c ︱b,则c ︱ma+nb,m,n ∈Z2. 整除的基本定理:对于任意整数a,b(b ≠0,),存在唯一的一对整数q,r,使得a=qb+r,0≤r <b其中,q 和r 分别称为b 除a 的商和余数.3. 最大公约数和最小公倍数: a,b 的最小公倍数记为[a,b],a,b 的最大公约数记为(a,b) ,其性质有:1).设m 为正整数,则(am,bm)=m(a,b) [am,bm]=m[a,b]2)设a,b 是两个正整数,则(a,b)[a,b]=ab3)设a,b,c 是三个正整数,则(ab,bd,ac)[a,b,c]=abc4)设正整数k 是整数a,b 的公倍数,则(k/a,k/b)=k/[a,b]5)设正整数c 是a,b 的公约数,则(a/c,b/c)=(a,b)/c6)若(a,b)=1, (ab,c)=(a,c)(b,c)7)若a 1, a 2, …a n,是n 个不全为零的整数,则(a 1, a 2, …a n )=( (a 1, a 2, …a k ), (a k+1, a k+2, …a n ))4. 两个定理:1) 欧拉函数: 设整数n ≥2,n=11p α,22p α,…m m p α,是n 的质因数分解式,以φ(n )表示小于n 且与n 互质的自然数的个数,则φ(n )=12111(1)(1)(1)m n p p p ---L 2)勒让得定理:在乘积n !中,质因数p 的指数为p(n!)=231[][][][]m m n n n n p p p p ∞=+++=∑L 二. 例题选讲.1. 设22,()(1)(526)n N f n n n n n ∈=--+,求证:120︱f(n)2. 设p 为奇质数,证明:1111231a p b++++=-L 的分子a 是p 的倍数 3. p,q 均为正整数,使得11111123413181319p q =-+-+-+L 试证:1979︱p4. 求同时满足下列条件的一组整数a ,b1)ab (a+b )不能被7整除2)777()a b a b +--能被7整除。
数学奥赛辅导 第二讲 整除
数学奥赛辅导 第二讲整除知识、方法、技能整除是整数的一个重要内容,这里仅介绍其中的几个方面:整数的整除性、最大公约数、最小公倍数、方幂问题.Ⅰ. 整数的整除性初等数论的基本研究对象是自然数集合及整数集合. 我们知道,整数集合中可以作加、减、乘法运算,并且这些运算满足一些规律(即加法和乘法的结合律和交换律,加法与乘法的分配律),但一般不能做除法,即,如b a ,是整除,0≠b ,则ba不一定是整数. 由此引出初等数论中第一个基本概念:整数的整除性.定义一:(带余除法)对于任一整数a 和任一整数b ,必有惟一的一对整数q ,r 使得r bq a +=,b r <≤0,并且整数q 和r 由上述条件惟一确定,则q 称为b 除a 的不完全商,r 称为b 除a 的余数.若0=r ,则称b 整除a ,或a 被b 整除,或称b a 是的倍数,或称a b 是的约数(又叫因子),记为a b |.否则,b | a .任何a 的非1,±±a 的约数,叫做a 的真约数. 0是任何整数的倍数,1是任何整数的约数.任一非零的整数是其本身的约数,也是其本身的倍数.由整除的定义,不难得出整除的如下性质: (1)若.|,|,|c a c b b a 则(2)若.,,2,1,,|,|1n i Z c b c a b a i ni i i i =∈∑=其中则(3)若c a |,则.|cb ab 反之,亦成立.(4)若||||,|b a b a ≤则.因此,若b a a b b a ±=则又,|,|. (5)a 、b 互质,若.|,|,|c ab c b c a 则(6)p 为质数,若,|21n a a a p ⋅⋅⋅ 则p 必能整除n a a a ,,,21 中的某一个.特别地,若p 为质数,.|,|a p a p n 则(7)如在等式∑∑===mk k ni i b a 11中除开某一项外,其余各项都是c 的倍数,则这一项也是c 的倍数.(8)n 个连续整数中有且只有一个是n 的倍数. (9)任何n 个连续整数之积一定是n 的倍数.本讲开始在整除的定义同时给出了约数的概念,又由上一讲的算术基本定理,我们就可以讨论整数的约数的个数了.定理一:设大于1的整数a 的标准分解式为n n p p p p p p a n <<<⋅= 211(21ααα为质数,i α均为非负整数),则a 的约数的个数为∏=+=ni i a d 1)1)(α(.所有的约数和为:∏=+--=ni ii p p a i 1111)(ασ. 事实上,由算术基本定理的推论知∏=+=ni i a d 1)1()(α,而各约数的和就是∏=+++ni i i ipa p 1)1( 展开后的各项之和,所以∏∏==--=+++=ni ni i i i p p p p a ii11111)1()(αασ 例如,25200=24·32·52·7,所以90)11)(12)(12)(14()25200(=++++=d , 999441717151513131212)25200(2335=--⨯--⨯--⨯--=σ.Ⅱ. 最大公约数和最小公倍数定义二:设a 、b 是两个不全为0的整数.若整数c 满足:b c a c |,|,则称b a c ,为的公约数,b a 与的所有公约数中的最大者称为b a 与的最大公约数,记为),(b a .如果),(b a =1,则称b a 与互质或互素.定义三:如果a d 是、b 的倍数,则称a d 是、b 的公倍数. b a 与的公倍数中最小的正数称为b a 与的最小公倍数,记为],[b a .最大公约数和最小公倍数的概念可以推广到有限多个整数的情形,并用),,,(21n a a a 表示n a a a ,,,21 的最大公约数,],,,[21n a a a 表示n a a a ,,,21 的最小公倍数.若1),,,(21=n a a a ,则称n a a a a ,,,,321 互质,若n a a a ,,,21 中任何两个都互质,则称它们是两两互质的.注意,n 个整数互质与n 个整数两两互质是不同的概念,前者成立时后者不一定成立(例如,3,15,8互质,但不两两互质);显然后者成立时,前者必成立.因为任何正数都不是0的倍数,所以在讨论最小公倍数时,一般都假定这些整数不为0.同时,由于|||,|,b a b a 与有相同的公约数,且|)||,(|),(b a b a =(有限多个亦成立),因此,我们总限于在自然数集合内来讨论数的最大公约数和最小公倍数.显然,若b a ,的标准分解式为i ni i n i i p p b p a ii(,11∏∏====βα为质数,i i a β,为非负整数),则∏==ni i i i p b a 1),min(),(βα ①∏==n i man i i i p b a 1),(],[βα ②例如 3960=23·32·5·11, 756=22·33·7,则 (3960,756)=22·32=36,[3960,756]=23·33·5·7·11=83160. 求最大公约数也可以用辗转相除法,其理论依据是:定理二:设a 、b 、c 是三个不全为0的整数,且有整数t 使得c bt a +=,则a 、b 与b 、c 有相同的公约数,因而),(),(c b b a =,即).,(),(bt a b b a -=因为,若a d 是、b 的任一公约数,则由b d c d c bt a b d a d 是即知和,||,|+=、c 的公约数;反之,若b d 是、c 的任一公约数,a d 也是、b 的公约数.辗转相除法:设a 、b a N b >∈*且,, 由带余除法有⎪⎪⎪⎭⎪⎪⎪⎬⎫=+=<<+=<<+=<<+=+++----.0,,0,,0,,0,111111212221111n n n n n n n n n n n r r q r r r r r q r r r r r q r b b r r bq a ③ 因为每进行一次带余除法,余数至少减1,即11+>>>>n n r r r b ,而b 为有限数,因此,必有一个最多不超过b 的正整数n 存在,使得0≠n r ,而01=+n r ,故由定理二得:).,(),,(),(),(11211b a b r r r r r r r r n n n n n ======-+()例如,(3960,756)=(756,180)=(180,36)=36. 具体算式如下:5(q 1) 3960(a ) 756(b ) 4(q 2) 3780 720 180(r 1) 36(r 2) 5(q 3) 1800(r 3)由定义和上述求法不难得出最大公约数和最小公倍数的如下性质:(1)),(),(,b a m bm am N m =∈则.(2)设b a c ,为的公约数,则.),(),(cb a cb c a =特别地,若1),(),,(==cbc a b a c 则.(3)设n a a a ,,,21 是任意n 个正整数,如果n n n c a c c a c c a a ===-),(,,),(,),(1332221 ,则n n c a a a =),,,(21 .因21121111|,|,|,|,|,|--------n n n n n n n n n n n n c c a c c c a c c c a c 故而,如此类推得出n c 能整除n n n c a a a 于是,,,,11 -是它们的一个公约数.又设n a a a c ,,,21 为的任一公约数,则21|,|a c a c ,因而2|c c ,同理可推出3|c c ,如此类推最后可得n c c |. 于是n c c c ≤≤||,故n c 是最大公约数.(4)若c b a =),(,则一定有整数y x 和,使得c by ax =+. 特别地,⇔=1),(b a 存在1,=+by ax y x 使得. 这可由辗转相除法的③式逆推而得by ax r c n +==. (5)若),(),(,1),(b c b ac b a ==则. (6)*∈N b a , ①)(],[],[*∈=N k b a k bk ak ;②b a m ,为的任一公倍数,则m b a |],[;③ab b a b a =],)[,(,特别地,若ab b a b a ==],[,1),(则.①可由③直接得到,②可由最小公倍数定义得,③根据①、②式知,=],)[,(b a b a∏∏==+==ni ni i i i iab p pi i 11),min(βαβα.(7)设na a a ,,,21 是任意n 个正整数.若===-],[,,],[,],[1332221n n a m m a m m a a m n ,则n n m a a a =],,,[21 .这是一个求多个整数的最小公倍数的方法.它可用证明③类似的方法来证明. Ⅲ.方幂问题一个正整数n 能否表成m 个整数的k 次方和的问题称为方幂和问题.特别地,当1=m 时称为k 次方问题,当2=k 时,称为平方和问题.能表为某整数的平方的数称为完全平方数.简称平方数,关于平方数,明显有如下一些简单的性质和结论: (1)平方数的个位数字只可能是0,1,4,5,6,9.(2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数只能是0或1.(3)奇数平方的十位数字是偶数.(4)十位数字是奇数的平方数的个位数一定是6.(5)不能被3整除的数的平方被3除余1,能被3整除的数的平方能被3整除.因而,平方数被9除的余数为0,1,4,7,且此平方数的各位数字的和被9除的余数也只能为0,1,4,7. (6)平方数的约数的个数为奇数.(7)任何四个连续整数的乘积加1,必定是一个平方数. 进一步研究可得到有关平方和的几个结论:定理三:奇素数p 能表示成两个正整数的平方和的充要条件是.14+=m p定理四:设正整数p m n 2=,其中p 不再含平方因数,n 能表示成两个整数的平方的充要条件是p 没有形如34+q 的质因数. 定理五:每个正整数都能表示成四个整数的平方和.这几个定理的证明略.这里重点是介绍有关k 方幂的解法技巧.k 方幂中许多问题实质上是不定方程的整数解问题,比如著名的勾股数问题.赛题精讲例1:证明:对于任何自然数n 和k ,数1042),(3++=k k n n k n f 都不能分解成若干个连续的正整数之积.(1981年全国高中联赛试题)【证明】由性质9知,只需证明数),(k n f 不能被一个很小的自然数n 整除.因,1)1)(1()3(31033),(333++--++=++-+=k k k k k k k k k n n n n n n n n n k n f),1)(1(|3),3(3|33+-++k k k k k n n n n n 3 1,故3 ),(k n f ,因而),(k n f 不能分解成三个或三个以上的连续自然数的积. 再证),(k n f 不能分解成两个连续正整数的积.由上知,)(13),(N q q k n f ∈+=,因而只需证方程:)1(13+=+x x q 无正整数解.而这一点可分别具体验算234,134,3++=r x 时,)1(+x x 均不是13+q 形的数来说明.故),(k n f 对任何正整数n 、k 都不能分解成若干个连续正整数之积. 例2: 设p 和q 均为自然数,使得.131911318131211+--+-= q p证明:p 可被1979整除. (第21届IMO 试题)【证明】)131814121(2)1319131211(+++-+++= q p =)6591211()1319131211(+++-++++=)99019891()131816611()131916601(++++++ =1979×)99098911318661113196601(⨯++⨯+⨯两端同乘以1319!得1319!*).(1979N m m qp∈⨯=⨯此式说明1979|1319!×.p 由于1979为质数,且1979 1319!,故1979|.p【评述】把1979换成形如23+k 的质数,1319换成*)(12N k k ∈+,命题仍成立.牛顿二项式定理和n b a b a b a b a n n n n (|)(,|)(-+--为偶数),n b a b a n n (|)(-+为奇数)在整除问题中经常用到.例3 :对于整数n 与k ,定义,),(112∑=-=nr k r k n F 求证:)1,(n F 可整除).,(k n F(1996加拿大数学竞赛试题)【证明】当m n 2=时,,)12()1,2(21∑=+==mr m m r m F∑∑+=-=-+=mm r k mr k rrk m F 2112112),2(],)12([)12(12112112112-=-=-=--++=-++=∑∑∑k mr k mr k mr k r m r r m r由于[…]能被12)12(+=-++m r m r 整除,所以),2(k m F 能被12+m 整除,另一方面, =),2(k m F ,)2(])2([1212121112----=-++-+∑k k k m r k m m r m r上式中[…]能被m r m r 2)2(=-+整除,所以),2(k m F 也能被m 整除.因m 与2m +1互质,所以),2(k m F 能被m (2m +1)(即)1,(m F )整除.类似可证当12+=m n 时,F (2m +1,k )能被F (2m +1,1)整除. 故),(k n F 能被)1,(n F 整除.例4 :求一对整数b a ,,满足:(1))(b a ab +不能被7整除;(2)777)(b a b a --+能被77整除.(第25届IMO 试题)【解】777)(b a b a --+=)](5)(3)[(7223355b a b a b a ab b a ab +++++=.))((7222ab b a b a ab +++ 根据题设要求(1)(2)知,|,)(|72226ab b a ++即.|7223ab b a ++令,7322=++ab b a 即,343)(2=-+ab b a 即19=+b a ,则.343192-=ab 故可令1,18==b a 即合要求.(第15届美国普特南数学竞赛试题)【评述】数学归纳法在整除问题中也有广泛应用.例5:是否存在1000000个连续整数,使得每一个都含有重复的素因子,即都能被某个素数的平方所整除?【解】存在.用数学归纳法证明它的加强命题:对任何正整数,m 存在m 个连续的整数,使得每一个都含有重复的素因子. 当m =1时,显然成立.这只需取一个素数的平方.假设当m =k 时命题成立,即有k 个连续整数k n n n +++,,2,1 ,它们分别含有重复的素因子k p p p ,,,21 ,任取一个与k p p p ,,,21 都不同的素数1+k p (显然存在),当21,2,1+=k p t 时,)1(22221+++k n p p tp k 这21+k p 个数中任两个数的差是形如)11(2122221-≤≤+k k p a p p ap 的数,不能被21+k p 整除,故这21+k p 个数除以21+k p 后,余数两两不同.但除以21+k p 后的余数只有0,1,…,21+k p -1这21+k p 个,从而恰有一个数)1(2100+≤≤k p t t ,使)1(222210+++k n p p p t k 能被21+k p 整除.这时,()1+k 个连续整数:,1222210++n p p p t k ++n p p p t k 222210 2,…,++n p p p t k 222210 k ,++n p p p t k 222210 (k +1)分别能被2122221,,+k k p p p p 整除,即1+=k m 时命题成立.故题对一切正整数m 均成立.例6:求证:.),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a = (第1届美国数学奥林匹克竞赛试题)【证明】设,,,111∏∏∏======ni ini ini ii p c i p b i p a γβα其中i p 为质数,i i i γβα,,为非负整数,则 ∏==ni i iiip c b a 1),,max(,],,[γβα∏==ni i i i p b a 1),max(,],[ βα∏=∏=ni i iiip c b a 1),,min(,),,(γβα∏==ni i iip b a 1),min(,),( βα因此只需证明2max(),m ax (),m ax (),m ax (),,i i i i i i i i i αγγββαγβα---=2min(),m in(),m in(),m in(),,i i i i i i i i i αγγββαγβα---上式关于i i i γβα,,对称,则不妨设i i i γβα≥≥,于是上式变为:.22i i i i i i i i γγβγαβαα---=---此式显然成立,故得证.例7:设a 和b 是两个正整数,p b a ,1),(=为大于或等于3的质数,ba b a b a c pp +++=,(),试证:(1)1),(=a c ;(2)1=c 或.p c =(1985新加坡数学竞赛试题)【证明】由已知得),(,N s t cs ba b a ct b a pp ∈=++=+,两式相乘得,)(1112ct pa t pac t c a ct a b a st c p p p p p p p p p ---++-=-+=+= 于是,12211-----++-=p p p p p pa t pac t c cs 故.|1-p pa c(1)现用反证法来证明1),(=a c .若,1),(>=k a c 令q 是k 的一个质因子,则有.|,|a q c q 因b a c +|,则b a q +|,从而.|b q 于是q 是a 、b 的一个公约数,这与),(b a =1矛盾,故1),(=a c .(2)因为,1),(,|1=-a c pa c p 所以.|p c 而p 为质数且3≥p ,故1=c 或.p c =例8:设∑=+=nk n k k S 175)(,求最大公约数).,(3n n S S d =(第26届IMO预选题)【解】能过具体计算可猜想.)2)1((2)21(244+=+++=n n n S n 此式不难用数学归纳法获证. 为求),(3n n S S d =,对n 分奇偶来讨论.(1)当k n 2=时,).)16(812,)12(2()]2)16(6[2,]2)12(2[2(444444+⨯+=++=k k k k k k k k d 由于12+k 和16+k 互质,所以).81,)12((244+=k k d 而当13+=t k 时13,)12(81)12(44+≠+=+t k t k 时,4)12(+k 与81互质.故此时有⎪⎪⎩⎪⎪⎨⎧≥++==+==⨯⨯=⨯=.)0(4666,812;26,8812812812444444t t t n n k t n n n k d 时或当时当 (2)当当12+=k n 时).)23)(12(3[2,)]1)(12[(2(44++++=k k k k d1,1223+++k k k 与因与质,所以).3,)1(()12(2444++=k k k 而当23+=t k 时,23),1(31+≠+=+k k t k 时,1+k 与34互质.故此时有⎪⎩⎪⎨⎧++==++==⨯=⨯+=.)36162)12(2;56,162323)12(2444444时或当时当t t n n k t n n n k d 例9:m 盒子中各若干个球,每一次在其中)(m n n <个盒中加一球.求证:不论开始的分布情况如何,总可按上述方法进行有限次加球后使各盒中球数相等的充要条件是.1),(=n m (第26届IMO 预选题)【证明】设1),(=n m ,则有Z v u ∈,使得)1()1(1++-=+=v m v vm un ,此式说明:对盒子连续加球u 次,可使1-m 个盒子各增加了v 个,一个增加)1(+v 个.这样可将多增加了一个球的盒子选择为原来球数最少的那个,于是经过u 次加球之后,原来球数最多的盒子中的球与球数最少的盒子中的球数之差减少1,因此,经过有限次加球后,各盒球数差为0,达到各盒中的球数相等.用反证法证明必要性.若1),(>=d n m ,则只要在m 个盒中放1+m 个球,则不管加球多少次,例如,加球k 次,则这时m 个盒中共有球kn m ++1(个),因为,1,|,|>d n d m d 所以kn m ++1不可能是d 的倍数,更不是m 的倍数,各盒中的球决不能一样多,因此,必须1),(=n m .例10:求所有这样的自然数n ,使得n 222118++是一个自然数的平方.(1980年第6届全俄数学竞赛试题)【证明】(1)当8≤n 时,)122(222118118++⋅++=--n n n N ,因(…)为奇数,所以要使N 为平方数,n 必为偶数.逐一验证8,6,4,2=n 知,N 都不是平方数. (2)当9=n 时,11222289118⨯=++=N 不是平方数.(3)当10≥n 时,)29(288-+=n N ,要N 为平方数,829-+n 应为奇数的平方,不妨假设829-+n =2)12(+k ,则).2()1(210+⨯-=-k k n 由于1-k 和2+k 是一奇一偶,左边为2的幂,因而只能1-k =1,于是得2=k ,由21022=-n 知12=n 为所求.。
2整数的整除性
第2讲 整数的整除性知识要点:1. 1整除任何整数,0被任何整数整除;2. 被一些特殊数(3、4、5、9、11……)整除的规律;3. 带余除法;4. 若c b a c a b a ±则,,;5. ;mm b a b a ⇔ 6. c a b a bc a 则且,1),(,=;7. 若一些数整除某数A ,则这些数的最小公倍数(特别当互质时)也整除A ; 8. 对于整数x 、y ,有:)()(为正奇数时;为正整数时n y x y x n y x y x nn n n ++--; 9. 记S (n)为n 的各位数字和,则)(9n S n -;10. 设P (x )是整系数多项式,则对于整数x 、y ,有)()(y P x P y x --;特别地,)0()(P x P x -。
例题选讲:1. 接连写出19至80的数1920…7980,求证:7879801920211980 。
2. 将所有七位数(允许首位为0,以及全为0)按任意顺序排成一排,求证:所得的70000000位数被239整除。
3. 在每张卡片上各写着从11111到99999的五位数,然后将这些数任意排成一排,证明:所得的444445位数不可能是2的幂。
4.任意18个连续的不超过2005的正整数中,至少有一个被其各位数字之和整除。
5.证明:由1,2,3,4,5,6,7组成的任何两个七位数中,没有一个整除另一个。
6.在100 100的方格表的每个方格中均填写着1个非0数码,已知沿着各行的100个100位数均可被11整除,试问在沿着各列填写的100个100位数中是否可能恰好有99个被11整除?7.圆上有3k个数码,已知从某一位起把这些数按顺时针方向记下,得到的一个3k位数能被27整除,证明:如果从任何一位起把这些数码按顺时针方向记下的话,那么所得的一个3k位数也能被27整除。
8. 两人一起写一个由1,2,3,4,5这5个数码组成的2k 位数,第一个人写第一位数码,第二个人写第二位数码,第三位数码仍由第一人写,以此类推。
整数的有关性质
推论2:任意n个连续的自然数的积都能被n整除。
上一页 下一页
n 例2:n是大于零的自然数,求证: 3 2n 能被3整除。
解:
n3 2n n3 n 3n (n 1)n(n 1) 3n
上一页
下一页
设整数N an an1 a2a1a0
判定方法1 如果一个整数的末尾数字能被2整除,则该 数能被2整除,即如2|a ,则2|N。
0
判定方法2 如果一个整数的末尾数字能被5整除,则该 数能被5整除,即如果5|a ,则5|N。
0
判定方法3 如果一个整数的各位数字之和能被3整除, 则该数能被3整除,即如果3| an an1 a1 a0 , 则3|N。 判定方法4 如果一个整数的各位数字之和能被9整除,则 该数能被9整除,即如果9| an an1 a1 a0 , 则9|N。
解:要使所求数能被1,2,3,4,5,6,7,8,9整除,只要它 能被5,7,8,9整除,根据这个数能被5,8整除,这个整 数的末位数学应为0 又 0+1+2+3+4+5+6+7+8+9=45
所以1234567890是末位为0,数字1~9各用一 次并且能被9整除的最小的数。
下面将此数调整为8的倍数,并使其尽可能小。
上一页 下一页
判定方法5 如果一个整数的后两位数字组成的整数能被 4整除,则该数能被4整除,即如果 4 | a1a0 , 则4|N。 判定方法6 如果一个整数的后两位数字组成的整数能被 25整除,则该数能被25整除,即如果25 | a1a0 , 则25|N。 判定方法7 如果一个整数的后三位数字组成的整数能被 8整除,则该数能被8整除,即如果 8 | a2 a1a0 , 则8|N。 判定方法8 如果一个整数的后三位数字组成的整数能被 125整除,则该数能被125整除,即若125| a2a1a0 , 则125|N。 判定方法9 如果一个整数的偶位数字之和与奇位数字之 和的差能被11整除,则该数能被11整除,即如果 11| (a0 a2 ) (a1 a3 ) ,则11|N。
竟赛数学整数整除性讲解
01
利用数的整除性特征
预备知识
☺ 任意两个连续整数之积必定是一个奇数与一个偶数之积,因此一定可被2整除。 ☺ 任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整
除,也可被3整除,所以也可以被2×3=6整除。 ☺ 这个性质可以推广到任意个连续整数之积。
例题讲解
n -n ☺ 例4:设n是正整数,求证 可被30整除 5
32n - 32n2 24n -1
证明:设f(n) 32n - 32n 2 24n -1,用归纳法证明
f(1) 0
512 | f(1)成立
假设512 | f(n)成立,下证512 | f(n 1)
f(n 1)- f(n) 32n 2 - 32n - 3( 2 2n 1) 24 8·32n - 64n - 8
☺
证明:由于2 ×5 = 10,( 2,5) = 1, 所以只需证以只需证明个数同时被2和5整除即可
a3b - ab3 = ab(a 2 - b2) ab(a + b)(a - b) b3c - bc3 = bc(b2 - c2) bc(b + c)(b - c) c3a - ca3 = ac(c2 - a 2) ac(c + a)(c - a) 由上式知a3b - ab3, b3c - bc3, c3a - ca3都是偶数,都能被 2整除 若a、 b、 c中有一个能被5整除, 则除,则结 若a、 b、 c都不能被5整除, 则a 2、 b2、 c2的尾数为1,4,6,9, 从中任取两个其两两之差为0或者 ±5,必能被 5整除 故a3b - ab3, b3c - bc3, c3a - ca3中至少有一个能被5整除 从而a3b - ab3, b3c - bc3, c3a - ca3三个数中至少有一个能被10整除
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竞赛讲座02-整数的整除性1.整数的整除性的有关概念、性质(1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。
若d不能整除a,则记作d a,如2|6,4 6。
(2)性质1)若b|a,则b|(-a),且对任意的非零整数m有bm|am2)若a|b,b|a,则|a|=|b|;3)若b|a,c|b,则c|a4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c;5)若b|ac,而b为质数,则b|a,或b|c;6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)例1 (1987年北京初二数学竞赛题)x,y,z均为整数,若11|(7x+2y-5z),求证:11|(3x-7y+12z)。
证明∵4(3x-7y+12z)+3(7x+2y-5z)=11(3x-2y+3z)而 11|11(3x-2y+3z),且 11|(7x+2y-5z),∴ 11|4(3x-7y+12z)又 (11,4)=1∴ 11|(3x-7y+12z).2.整除性问题的证明方法(1) 利用数的整除性特征(见第二讲)例2(1980年加拿大竞赛题)设72|的值。
解72=8×9,且(8,9)=1,所以只需讨论8、9都整除的值。
若8|,则8|,由除法可得b=2。
若9|,则9|(a+6+7+9+2),得a=3。
(2)利用连续整数之积的性质①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。
②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。
这个性质可以推广到任意个整数连续之积。
例3(1956年北京竞赛题)证明:对任何整数n都为整数,且用3除时余2。
证明∵为连续二整数的积,必可被2整除.∴对任何整数n均为整数,∵为整数,即原式为整数.又∵,2n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质,∴是能被3整除的整数.故被3除时余2.例4 一整数a若不能被2和3整除,则a2+23必能被24整除.证明∵a2+23=(a2-1)+24,只需证a2-1可以被24整除即可.∵2 .∴a为奇数.设a=2k+1(k为整数),则a2-1=(2k+1)2-1=4k2+4k=4k(k+1).∵k、k+1为二个连续整数,故k(k+1)必能被2整除,∴8|4k(k+1),即8|(a2-1).又∵(a-1),a,(a+1)为三个连续整数,其积必被3整除,即3|a(a-1)(a+1)=a(a2-1),∵3 a,∴3|(a2-1).3与8互质, ∴24|(a2-1),即a2+23能被24整除.(3)利用整数的奇偶性下面我们应用第三讲介绍的整数奇偶性的有关知识来解几个整数问题.例5 求证:不存在这样的整数a、b、c、d使:a·b·c·d-a=①a·b·c·d-b=②a·b·c·d-c=③a·b·c·d-d=④证明由①,a(bcd-1)=.∵右端是奇数,∴左端a为奇数,bcd-1为奇数.同理,由②、③、④知b、c、d必为奇数,那么bcd为奇数,bcd-1必为偶数,则a (bcd-1)必为偶数,与①式右端为奇数矛盾.所以命题得证.例6 (1985年合肥初中数学竞赛题)设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,且试证n是4的倍数.证明设(i=1,2,…,n-1),则y i不是+1就是-1,但y1+y2+…+y n=0,故其中+1与-1的个数相同,设为k,于是n=2k.又y1y2y3…y n=1,即(-1)k=1,故k为偶数,∴n是4的倍数.其他方法:整数a整除整数b,即b含有因子a.这样,要证明a整除b,采用各种公式和变形手段从b中分解出因子a就成了一条极自然的思路.例7 (美国第4届数学邀请赛题)使n3+100能被n+10整除的正整数n的最大值是多少?解n3+100=(n+10)(n2-10n+100)-900.若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为最大时,相应地n的值为最大.因为900的最大因子是900.所以,n+10=900,n=890.例8 (上海1989年高二数学竞赛)设a、b、c为满足不等式1<a<b<c的整数,且(ab-1)(bc-1)(ca-1)能被abc整除,求所有可能数组(a,b,c).解∵(ab-1)(bc-1)(ca-1)=a2b2c2-abc(a+b+c)+ab+ac+bc-1,①∵abc|(ab-1)(bc-1)(ca-1).∴存在正整数k,使ab+ac+bc-1=kabc, ②k=<<<<∴k=1.若a≥3,此时1=-<矛盾.已知a>1. ∴只有a=2.当a=2时,代入②中得2b+2c-1=bc,即 1=<∴0<b<4,知b=3,从而易得c=5.说明:在此例中通过对因数k的范围讨论,从而逐步确定a、b、c是一项重要解题技巧.例9 (1987年全国初中联赛题)已知存在整数n,能使数被1987整除.求证数,都能被1987整除.证明∵×××(103n+),且能被1987整除,∴p能被1987整除.同样,q=()且∴故、102(n+1)、被除,余数分别为1000,100,10,于是q表示式中括号内的数被除,余数为1987,它可被1987整除,所以括号内的数能被1987整除,即q能被1987整除.练习二1.选择题(1)(1987年上海初中数学竞赛题)若数n=20·30·40·50·60·70·80·90·100·110·120·130,则不是n的因数的最小质数是().(A)19 (B)17 (C)13 (D)非上述答案(2)在整数0、1、2…、8、9中质数有x个,偶数有y个,完全平方数有z个,则x+y+z等于().(A)14 (B)13 (C)12 (D)11 (E)10(3)可除尽311+518的最小整数是().(A)2 (B)3 (C)5 (D)311+518(E)以上都不是2.填空题(1)(1973年加拿大数学竞赛题)把100000表示为两个整数的乘积,使其中没有一个是10的整倍数的表达式为__________.(2) 一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是_________.(3) (1989年全国初中联赛题)在十进制中,各位数码是0或1,并且能被225整除的最小自然数是________.3.求使为整数的最小自然数a的值.4.(1971年加拿大数学竞赛题)证明:对一切整数n,n2+2n+12不是121的倍数.5.(1984年韶关初二数学竞赛题)设是一个四位正整数,已知三位正整数与246的和是一位正整数d的111倍,又是18的倍数.求出这个四位数,并写出推理运算过程.6.(1954年苏联数学竞赛题)能否有正整数m、n满足方程m2+1954=n2.7.证明:(1)133|(11n+2+12n+1),其中n为非负整数.(2)若将(1)中的11改为任意一个正整数a,则(1)中的12,133将作何改动?证明改动后的结论.8.(1986年全国初中数学竞赛题)设a、b、c是三个互不相等的正整数.求证:在a3b-ab3,b3c-bc3,c3a-ca3三个数中,至少有一个能被10整除.9.(1986年上海初中数学竞赛题)100个正整数之和为101101,则它们的最大公约数的最大可能值是多少?证明你的结论.练习参考答案1.B.B.A2.(1)25·55.(2)27.3.由2000a为一整数平方可推出a=5.4.反证法.若是121的倍数,设n2+2n+12=121k(n+1)2=11(11k-1).∵11是素数且除尽(+1)2,∴11除尽n+1112除尽(n+1)2或11|11k-1,不可能.5.由是d的111倍,可能是198,309,420,531,642,753;又是18的倍数,∴只能是198.而198+246=444,∴d=4,是1984.7.(1)11n+2+122n+1=121×11n+12×144n=121×11n+12×11n-12×11n+12×144n=…=133×11n+12×(144n-11n).第一项可被133整除.又144-11|144n-11n,∴133|11n+2+122n+1.(2)11改为a.12改为a+1,133改为a(a+1)+1.改动后命题为a(a+1)+1|an+2+(a+1)2n+1,可仿上证明.8.∵a3b-ab3=ab(a2-b2);同理有b(b2-c2);ca(c2-a2).若a、b、c中有偶数或均为奇数,以上三数总能被2整除.又∵在a、b、c中若有一个是5的倍数,则题中结论必成立.若均不能被5整除,则a2,b2,c2个位数只能是1,4,6,9,从而a2-b2,b2-c2,c2-a2的个位数是从1,4,6,9中,任取三个两两之差,其中必有0或±5,故题中三式表示的数至少有一个被5整除,又2、5互质.9.设100个正整数为a1,a2,…,a100,最大公约数为d,并令则a1+a2+…+a100=d(a1′+a2′+…+a′100)=101101=101×1001,故知a1′,a2′,a′100不可能都是1,从而a′1+a′2+…+a′100≥1×99+2=101,d≤1001;若取a1=a2=a99=1001,a100=2002,则满足a1+a2+…+a100=1001×101=101101,且d=1001,故d的最大可能值为1001。