《实数(1)》参考教案

合集下载

实数(一)教案

实数(一)教案

第二章实数6.实数(一)一、学生起点分析实数是在有理数和勾股定理等知识基础上进行的第二次数系扩张,在教学中注意运用类比方法,使学生明确新旧知识之间的联系,如实数的相反数、倒数、绝对值等概念可完全类比有理数建立,并通过例题和习题来巩固,适当加深对它们的认识。

二、教学任务分析●教材地位及作用在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。

中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。

三、教学目标分析教学目标●知识与技能目标1.了解实数的意义,能对实数按要求进行分类;2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。

3.了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小。

●过程与方法目标1.通过对实数分类的探究,增强学生的分类意识;2.在利用数轴上的点来表示实数的过程中,将数和图形结合在一起,让学生进一步体会数形结合的思想。

●情感与态度目标1.通过对实数进行分类的练习、进一步领会分类的思想方法;2.在探究利用数轴上的点表示实数的过程中,训练学生多角度思维,培养和发展学生的合作意识。

教学重点2.在实数范围求相反数、倒数和绝对值;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。

教学难点建立实数概念及分类四、教法学法1.教学方法:自主探究—交流—发现2.课前准备:多媒体课件、投影仪、电脑五、教学过程:本节课设计了八个教学环节:第一环节:复习引入新课;第二环节:实数概念;第三环节:实数分类;第四环节:实数相关概念;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:课堂小节;第八环节:作业布置。

内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。

实数(单元复习)标准教案

实数(单元复习)标准教案

实数(单元复习)标准教案一、教学目标:1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的特点。

(2)掌握实数的性质,如相反数、绝对值、平方等。

(3)学会实数的运算方法,包括加、减、乘、除、乘方等。

2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。

(2)运用实数运算方法,培养学生解决实际问题的能力。

3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。

二、教学重点与难点:1. 教学重点:(1)实数的定义及分类。

(2)实数的性质和运算方法。

2. 教学难点:(1)实数分类的理解和运用。

(2)实数运算的灵活应用。

三、教学过程:1. 导入新课:回顾实数的定义,引导学生思考实数的分类和性质。

2. 知识讲解:(1)讲解实数的分类,包括有理数和无理数。

(2)阐述实数的性质,如相反数、绝对值、平方等。

(3)介绍实数的运算方法,如加、减、乘、除、乘方等。

3. 例题解析:选取典型例题,讲解实数的运算方法和应用。

4. 课堂练习:设计练习题,让学生巩固实数的分类、性质和运算方法。

5. 总结提升:对本节课的内容进行总结,强调实数在数学中的重要性。

四、课后作业:1. 复习实数的定义、分类和性质。

2. 练习实数的运算方法,解决实际问题。

3. 总结实数在实际生活中的应用。

五、教学评价:1. 学生对实数的定义、分类和性质的掌握程度。

2. 学生实数运算方法的运用能力。

3. 学生解决实际问题的能力。

4. 学生对数学学科的兴趣和积极性。

六、教学策略与方法:1. 采用问题驱动法,引导学生主动探究实数的性质和运算方法。

2. 通过小组讨论,培养学生合作学习的能力。

3. 利用信息技术辅助教学,如数学软件、网络资源等。

4. 设计富有挑战性的数学问题,激发学生的创新思维。

七、教学实践与拓展:1. 结合实际生活中的问题,让学生运用实数知识和方法解决问题。

2. 开展数学竞赛,提高学生的学习积极性。

《实数》精品教案

《实数》精品教案

《实数》精品教案一、教学内容本节课选自人教版数学教材八年级下册第十六章《实数》的第一节,内容包括实数的定义、分类及性质。

详细内容如下:1. 实数的定义:有理数和无理数的统称,表示为R。

2. 实数的分类:整数、分数、无理数。

3. 实数的性质:实数具有有序性、稠密性和完备性。

二、教学目标1. 知识与技能:理解实数的定义和分类,掌握实数的性质。

2. 过程与方法:通过例题讲解和随堂练习,提高学生的实数运算能力和解决问题的能力。

3. 情感态度与价值观:培养学生对实数概念的理解,激发学生学习数学的兴趣。

三、教学难点与重点1. 教学难点:实数的定义和性质,尤其是无理数的理解。

2. 教学重点:实数的分类和实数运算。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 引入:通过生活实例,如测量物体长度、计算面积等,引导学生体会实数的必要性。

2. 新课导入:讲解实数的定义、分类及性质,结合多媒体课件进行演示。

3. 例题讲解:选取具有代表性的例题,如实数运算、比较大小等,详细讲解解题思路和方法。

4. 随堂练习:设计具有梯度的问题,让学生独立完成,巩固所学知识。

六、板书设计1. 实数的定义2. 实数的分类1. 整数2. 分数3. 无理数3. 实数的性质4. 实数运算5. 例题及解题方法七、作业设计1. 作业题目:(3)计算:2/3 + √5,(√3 √2)²。

2. 答案:(1)实数:0,3/4,√2,5.6,π,e,…(2)从大到小:e,π,√5,3/2,√3,2(3)2/3 + √5 = 2/3 + √5;(√3 √2)² = 5 2√6。

八、课后反思及拓展延伸1. 课后反思:本节课学生对实数的定义和性质掌握较好,但在实数运算方面还需加强练习。

2. 拓展延伸:引导学生研究实数与数轴的关系,了解实数在数轴上的表示方法,为后续学习函数打下基础。

同时,鼓励学生探索实数在实际问题中的应用,提高学生的数学素养。

冀教版数学八年级上册14.3《实数》教学设计1

冀教版数学八年级上册14.3《实数》教学设计1

冀教版数学八年级上册14.3《实数》教学设计1一. 教材分析冀教版数学八年级上册14.3《实数》是学生在学习了有理数、无理数相关知识的基础上,进一步对实数进行系统地认识和理解。

本节内容主要包括实数的定义、实数的分类、实数的性质等。

通过本节课的学习,使学生掌握实数的概念,了解实数的分类,理解实数的性质,为学生进一步学习函数、几何等知识打下基础。

二. 学情分析八年级的学生已经学习了有理数、无理数的相关知识,对数的运算、性质有一定的了解。

但是,学生对实数的认识还比较模糊,对实数的分类和性质的理解还有待提高。

此外,学生的数学思维能力、逻辑表达能力等方面也有待提高。

三. 教学目标1.了解实数的概念,掌握实数的分类,理解实数的性质。

2.培养学生运用数学知识解决实际问题的能力。

3.培养学生的数学思维能力、逻辑表达能力。

四. 教学重难点1.实数的定义、分类和性质。

2.实数与实际问题的结合。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极思考,提高学生的数学思维能力和逻辑表达能力。

六. 教学准备1.教材、教案、课件。

2.相关实数的学习资料。

3.投影仪、白板等教学设备。

七. 教学过程导入(5分钟)教师通过引入生活中实际问题,如身高、体重等,引导学生认识到实数在生活中的重要性。

然后,教师提问:“你们已经学习了有理数和无理数,那么,实数与有理数、无理数有什么关系呢?”从而引出本节课的主题——实数。

呈现(15分钟)教师通过课件展示实数的定义、分类和性质,让学生初步了解实数的概念。

接着,教师通过举例说明实数的性质,如实数的大小比较、实数的加减乘除运算等。

在此过程中,教师引导学生积极参与,提问解答,确保学生对实数的理解。

操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。

题目包括实数的分类、实数的性质等。

完成后,教师选取部分学生的作业进行讲评,指出其中的错误和不足,帮助学生巩固实数知识。

《6.3实数(1)》教案

《6.3实数(1)》教案

年级七年级课题 6.3实数(1)课型新授教学目标知识技能(1)理解无理数和实数的概念;(2)知道实数和数轴上的点一一对应;(3)知道实数相反数.倒数和绝对值的意义。

过程方法(1)通过具体数值的运算,发现规律,归纳总结出规律.(2)能用类比的方法解决问题,用已有知识去探索新知识.情感态度激发学习兴趣,培养学生归纳.合作.交流的意识,提高数学素养.教学重点(1)通过自主探索,交流.归纳.小结等理解无理数和实数的概念;(2)知道实数和数轴上的点一一对应,能估算无理数的大小;教学难点体会数轴上的点与实数是一一对应的;教学方法探索——交流法;类比;教学手段多媒体教学过程设计知识探究知1.使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3 ,35-,,911,119,592.归纳:任何一个有理数都可以写成有限小数或无限循环小数的形式。

反过来,任何有限小数或无限循环小数也都是有理数3.观察:通过前面的探讨和学习,我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数, 3.14159265π=也是无理数结论:有理数和无理数统称为实数4.试一试:把实数分类⎧⎧⎫⎨⎬⎪⎨⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数像有理数一样,无理数也有正负之分。

例如2,33,π是正无理数,2-,33-,π-是负无理数。

由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:5.探究实数与数轴上的点一一对应关系。

我们知道,每个有理数都可以用数轴上的点来表示。

无理数是否也可以用数轴上的点来表示呢?如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?总结: 1.事实上,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。

与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。

实数教案

实数教案

实数教案实数教案(一):初中数学教案----实数一、资料特点在知识与方法上类似于数系的第一次扩张。

也是后继资料学习的基础。

资料定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。

二、设计思路整体设计思路:无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于资料的始终。

学习对象----实数概念及其运算;学习过程----透过拼图活动引进无理数,透过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。

具体过程:首先透过拼图活动和计算器探索活动,给出无理数的概念,然后透过具体问题的解决,引入平方根和立方根的概念和开方运算。

最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

第一节:数怎样又不够用了:透过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会决定一个数是有理数还是无理数。

第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。

第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常透过估算来求它的近似值,为此这一节资料介绍估算的方法,包括透过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。

第五节:用计算器开方:会用计算器求平方根和立方根。

经历运用计算器探求数学规律的活动,发展合情推理的潜力。

第六节:实数。

总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

三、一些推荐1.注重概念的构成过程,让学生在概念的构成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的好处理解。

实数第一课时教案

实数第一课时教案

第1课时 实数班级 姓名【学习目标】1.了解实数的有关概念,知道实数与数轴上的点一一对应,有序实数对与坐标平面上的点一一对应,能用有理数估计一个无理数的大致范围;2.了解近似数、有效数字和科学计数法的概念,会运用科学计数法表示一个数;3.掌握实数的有关运算.【学习重、难点】重点:相关概念的理解与运用实数的一些运算法则进行简单的计算;难点:有理数与无理数之间的区别,“数形结合”思想方法在解决绝对值问题中的应用.【课前研习】一、自主尝试1. |-2|的相反数是 .2. 有下列说法:(1)有理数与数轴上的点一一对应;(2)当a 为实数时,|a |=a ;(3)当a 为实数时,a 的倒数是a1;(4)-14=1,其中正确说法的序号是 . 3. 在实数2,22,21π中,分数是 . 4. 计算:|-2|-161+(-2)-2-(0)23- 二、建构知识体系⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≠⎪⎪⎩⎪⎪⎨⎧=>=⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧近似数与有效数字 )的倒数是(倒数:  绝对值: 的相反数是相反数: 数轴:三要素是基本概念小数 负无理数正无理数无理数小数 负分数正分数 整数有理数分类实数概念0)0()0(||a a a a a a【课堂研习】一、交流展示小结:二、典型例题例1 在实数-7,tan45°,sin60°,π,9,25,722,0,0.5858858885…(每两个5之间一次增加1个8)中,分数集合{ …} 有理数集合{ …} 例2 若2)2(a -与4+b 互为相反数,求(1)a 、b 的值;(2)b a 的值.例3 计算:(1)sin45°-3821+ (2)(2)5+102)13(1231-++⨯-⎪⎭⎫ ⎝⎛-例4 (1)数轴上表示-2和-5的两点的距离是 ,数轴上表示1和-3的两点之间的距离是 ;(2)数轴上表示x 和-1的两点A 和B 之间的距离是 ,如果AB =2,那么x = ;拓展:(3)如果代数式|x +1|+|x -2|取最小值时,相应x 的取值范围是 .小结:三、自主测疑(10分钟)《中考指南》P 11-12 1-12【课后研习】一、巩固练习《中考指南》P 12-13 13(必做) 14(选做)二、自我反思。

实数(教案)

实数(教案)
本节课的教学难点与重点旨在帮助学生深入理解实数的概念、性质和运算,培养其数学思维能力,提高解决实际问题的能力。在教学过程中,教师应针对这些难点与重点,运用适当的教学方法,引导学生透彻理解核心知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《实数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过无法用分数表示的数?”(如圆的周长与直径的比例)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索实数的奥秘。
实数(教案)
一、教学内容
本节教学内容选自人教版《数学》八年级下册第十二章“实数”部分。主要内容包括:
1.实数的定义:有理数和无理数的统称,包括整数、分数以及无限不循环小数。
2.无理数的概念:无法表示为两个整数之比的数,如π和e。
3.实数的分类:整数、分数、无理数。
4.实数的性质:包括交换律、结合律、分配律等。
(1)实数的定义及其分类:这是本节课的核心内容,要求学生掌握有理数和无理数的概念,理解实数的分类。
举例:区分整数、分数、无理数等不同类型的实数,如π、√2等。
(2)实数的性质和运算:使学生掌握实数的交换律、结合律、分配律等性质,并熟练进行实数的加减乘除及乘方运算。
举例:3+5=5+3,(3+4)×2=3×2+4×2等。
2.通过实数的分类和运算,提高学生的数学运算和数据分析能力。
3.借助数轴理解实数,发展学生的几何直观和空间想象能力。
4.在解决实际问题的过程中,培养学生运用数学知识解决现实问题的能力,提升数学建模素养。
5.通过小组合作交流,培养学生表达清晰、逻辑严谨的数学交流能力,增强合作意识。

华师版数学八年级上册11 实 数(1课时)教案与反思

华师版数学八年级上册11 实 数(1课时)教案与反思

11.2 实数前事不忘,后事之师。

《战国策·赵策》圣哲学校蔡雨欣一、基本目标1.理解无理数与实数的概念,掌握实数的分类.2.理解实数与数轴上的点的一一对应关系,能估计某些无理数的大小,会进行简单的实数运算.二、重难点目标【教学重点】无理数与实数的概念,实数的有关概念及其分类.【教学难点】实数与数轴上的点的一一对应关系,实数的大小比较与运算.环节1 自学提纲,生成问题【5 min阅读】阅读教材P8~P11的内容,完成下面练习.【3 min反馈】1.无理数与实数的概念:无限不循环小数叫做无理数,有理数和无理数统称实数.2.从有理数扩充到实数以后,实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的点来表示;反过来,数轴上的每一点都表示一个实数.3.在实数范围内,相反数、绝对值、倒数的意义和求法与有理数范围内的相反数、绝对值、倒数的意义和求法完全相同,有理数的大小比较的方法、运算法则以及运算律,对于实数仍然适用.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】将下列各数填入集合中:-53,3,16,23,5π,25,π,12,0,-3,3,- 5. 有理数集合:{ ...};无理数集合:{ ...};正整数集合:{ ...};分数集合:{ ...}.【互动探索】(引发学生思考)实数分为哪几类?分类时应该注意些什么?【解答】有理数集合:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-53,16,12,0,- 3,3,...; 理数集合:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫3,23,5π,25,π,-5,...; 正整数集合:{}16,3 ,...;分数集合:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫ -53,12,.... 【互动总结】(学生总结,老师点评)有理数和无理数统称实数,有理数包括整数和分数.分类时注意错误!是无理数,而不是一个分数,分数的分子与分母必须是整数.【例2】比较下列各组数的大小: (1)2与1.5; (2)30.5与23. 【互动探索】(引发学生思考)一组数内的两个数的形式不同,要比较大小,需先统一形式,再比较大小.【解答】(1)因为1.52=2.25,所以1.5是2.25的算术平方根,即 2.5=1.5.因为2<2.25,所以2<1.5.(2)错误!3=错误!,所以错误!是错误!的立方根,即错误!=错误!.因为0.5>827,所以23. 【互动总结】(学生总结,老师点评)比较正有理数与带根号的正无理数的大小,常将正有理数转化为一个带根号的数,用比较被开方数的大小的方法比较正有理数和正无理数的大小.活动2 巩固练习(学生独学)1.下列各数中,是无理数的是( B )A . 4B .πC .15D .2.已知实数a =11,数轴上表示实数a 的点的位置正确的是( C )3.比较大小:15__<___ 365.4.计算:(1)38+||3-2-23; (2)4+||-2+3-27+()-12018.解:(1)原式=2+2-3-23=4-3 3.(2)原式=2+2-3+1=2.活动3 拓展延伸(学生对学)【例3】已知a 是8的整数部分,b 是10的整数部分,求a +b 的值. 【互动探索】要求a +b 的值,需要先求出a 和b 的值. 【解答】因为4<8<9,9<10<16,所以2<8<3,3<10<4.因为a 是8的整数部分,b 是10的整数部分,所以a =2,b =3,所以a +b =5.【互动总结】(学生总结,老师点评)要确定m 的整数部分,先要找到m 位于哪两个连续整数之间.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!【素材积累】每个人对未来都有所希望和计划,立志是成功的起点,有了壮志和不懈的努力,旧能向成功迈进。

6-3实数(1)教案

6-3实数(1)教案

6.3实数(1)教学目标:1.了解无理数和实数的概念;2.会对无理数按照一定标准分类3.了解分类的标准和分类结果的相关性,进一步了解体会“集合”的含义4.在按不同标准给实数分类的过程中,培养学生的分类能力。

教学重点:正确理解实数的概念。

教学难点:理解实数的概念。

教学过程设计:一、创设情景,导入新课师:我们来玩一个游戏,游戏规则是:利用均匀的转盘,把转到的数字,依次写在小数点后,不断的抽取,会得到一个什么样的数?生:无限不循环小数。

师:那么无限不循环小数是有理数吗?设计目的:游戏导入,引起同学的兴趣。

二、合作交流,解读探究现在我们把下列有理数转换为小数的形式。

3479115-3,,,,,5811909上面有理数依次可化为:-3.0,0.6,5.875,0.81,0.12,0.5教师启发:这些小数是无限不循环小数吗?不是。

它们都是有限或无限循环小数。

再找一些其它的分数试一试,上面的结论还成立吗?教师和学生一起总结:(1)所有的有理数都可以写成有限或无限循环小数的形式。

(2)无限不循环小数不是有理数。

师:那么无限不循环小数是怎么被发现的呢?毕达哥拉斯的弟子希帕索斯发现:边长为1的等腰直角三角形,斜边的长度是一个神秘的、无限的非整数。

而这个数就是我们现在认识的2。

而大家在小学就已经接触过的无理数是π,我国的祖冲之是世界上最早精确计算圆周率到小数点后第七位的人!这个记录被外国人打破,是一千多年以后的事了。

现在的最高记录已经精确到小数点后两千零六十一亿五千八百四十三万位。

计算圆周率已经成为检验计算机计算精度的一个常用的方法。

达芬奇形容无理数是“不可理喻”的,开普勒认为无理数是“不可名状”的!设计目的:融入数学史,激发学生的兴趣。

问题4:常见的无理数有哪些呢?带根号的都是无理数吗?教师引导学生归纳,常见的无理数有:π或含π的数或式子、开不尽方的数,如3,2等、还有人造无理数。

问题5:那么如何对无理数进行分类呢?⎩⎨⎧)()(无限不循环小数无理数数有限小数或无限循环小有理数实数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数正无理数正有理数正实数实数0设计目的:层层解剖,深入归纳,构造思维框图,方便学生记忆。

【人教版】七年级数学下册:6.3 第1课时 实数 1教案

【人教版】七年级数学下册:6.3 第1课时 实数 1教案

6.3 实 数第1课时 实 数1.经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数;(重点)2.进一步理解有理数和无理数的概念,会把实数进行分类;(重点)3.理解实数与数轴的关系,并进行相关运用.(难点)一、情境导入为了美化校园,学校打算建一个面积为225平方米的正方形植物园,这个正方形的边长应取多少?你能计算出来吗?如果把“225”改为其他数字,如“200”,这时怎样确定边长?二、合作探究探究点一:实数的相关概念及分类【类型一】 无理数的识别在下列实数中:157,3.14,0,9,π,5,0.1010010001…,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个解析:根据无理数的定义可以知道,上述实数中是无理数的有:π,5,0.1010010001….故选C.方法总结:常见无理数有三种形式:第一类是开方开不尽的数;第二类是化简后含有π的数;第三类是无限不循环的小数.【类型二】 实数的分类把下列各数分别填到相应的集合内:-3.6,27,4,5,3-7,0,π2,-3125,227,3.14,0.10100…. (1)有理数集合{ …};(2)无理数集合{ …};(3)整数集合{ …};(4)负实数集合{ …}.解析:实数分为有理数和无理数两类,也可以分为正实数、0、负实数三类.而有理数分为整数和分数.解:(1)有理数集合{-3.6,4,5,0,-3125,227,3.14,…};(2)无理数集合{27,3-7,π2,0.10100…,…};(3)整数集合{4,5,0,-3 125,…};(4)负实数集合{-3.6,3-7,-3125,…}.方法总结:正确理解实数和有理数的概念,做到分类不遗漏不重复.探究点二:实数与数轴上的点【类型一】求数轴上的点对应的实数如图所示,数轴上A,B两点表示的数分别是-1和3,点B关于点A的对称点为C,求点C所表示的实数.解析:首先结合数轴和已知条件可以求出线段AB的长度,然后利用对称的性质即可求出点C所表示的实数.解:∵数轴上A,B两点表示的数分别为-1和3,∴点B到点A的距离为1+ 3.则点C到点A的距离也为1+ 3.设点C表示的实数为x,则点A到点C的距离为-1-x,∴-1-x=1+3,∴x=-2- 3.∴点C所表示的实数为-2- 3.方法总结:本题主要考查了实数与数轴之间的对应关系,两点之间的距离为两数差的绝对值.【类型二】利用数轴进行估算如图所示,数轴上A,B两点表示的数分别是3和5.7,则A,B两点之间表示整数的点共有()A.6个B.5个C.4个D.3个解析:∵3≈1.732,∴3和5.7之间的整数有2,3,4,5,∴A,B两点之间表示整数的点共有4个.故选C.方法总结:要确定两点间的整数点的个数,也就是需要比较两个端点与邻近整点的大小,牢记数轴上右边的点表示的实数比左边的点表示的实数大.三、板书设计实数⎩⎪⎨⎪⎧实数的分类⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧整数分数无理数实数与数轴——实数与数轴上的点一一对应本节课学习了实数的有关概念和实数的分类,把我们所学过的数在有理数的基础上扩充到实数.在学习中,要求学生结合有理数理解实数的有关概念.本节课要注意的地方有两个:一是所有的分数都是有理数,如227;二是形如π2,π3等之类的含有π的数不是分数,而是无理数。

实数(单元复习)标准教案

实数(单元复习)标准教案

实数(单元复习)标准教案第一章:实数的概念与分类一、教学目标:1. 理解实数的定义及其分类;2. 掌握有理数和无理数的特点;3. 能够正确区分各种实数类型。

二、教学内容:1. 实数的定义;2. 有理数的概念及其分类;3. 无理数的概念及其分类;4. 实数的性质。

三、教学重点与难点:1. 实数的分类;2. 有理数与无理数的区别;3. 实数的性质。

四、教学方法:1. 讲授法:讲解实数的定义、分类及性质;2. 案例分析法:分析具体案例,引导学生理解实数的分类;3. 讨论法:组织学生讨论实数的性质。

五、教学步骤:1. 引入实数的概念,让学生回顾实数的定义;2. 讲解有理数的概念及其分类,让学生通过实例理解有理数的性质;3. 讲解无理数的概念及其分类,让学生通过实例理解无理数的性质;4. 组织学生讨论实数的性质,总结实数的特点;5. 布置练习题,巩固所学内容。

第二章:实数的运算一、教学目标:1. 掌握实数的运算方法;2. 能够熟练进行实数运算;3. 理解实数运算的性质。

二、教学内容:1. 实数的加减乘除运算;2. 实数的乘方与开方运算;3. 实数运算的性质。

三、教学重点与难点:1. 实数运算的规则;2. 实数运算的性质。

四、教学方法:1. 讲授法:讲解实数的运算方法及性质;2. 练习法:让学生通过练习题巩固实数运算的方法;3. 小组合作法:组织学生分组讨论实数运算的问题。

五、教学步骤:1. 复习实数的运算方法,让学生回顾加减乘除运算的规则;2. 讲解实数的乘方与开方运算,让学生理解乘方与开方的意义;3. 组织学生进行实数运算的练习,让学生熟练掌握运算方法;4. 讲解实数运算的性质,让学生理解运算的规律;5. 布置练习题,巩固所学内容。

第三章:实数与函数一、教学目标:1. 理解实数与函数的关系;2. 掌握函数的定义及性质;3. 能够运用实数解决函数问题。

二、教学内容:1. 实数与函数的关系;2. 函数的定义及其性质;3. 函数的图像与实数的关系。

2.5实数(1)教案

2.5实数(1)教案

怀文中学2012---2013学年度第一学期教学设计初 二 数 学(第三章实数)主备:马玉峰 审核:陈秀珍 日期:2012-10-10学习目标:了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算,会用计算器进行实数的运算。

教学重点:实数的意义和实数的分类;实数的运算法则及运算律教学难点:体会数轴上的点与实数是一一对应的;准确地进行实数范围内的运算 教学过程: 一.自主学习㈠创设情景,导入新课 略二.合作、探究探究 使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 3 , 35-,478 ,911 ,119 ,59我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即3 3.0= ,30.65-=- ,47 5.8758= ,90.8111= ,11 1.29= ,50.59= 归纳 任何一个有理数都可以写成有限小数或无限循环小数的形式。

反过来,任何有限小数或无限循环小数也都是有理数观察 通过前面的探讨和学习,我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数, 3.14159265π= 也是无理数 结论 有理数和无理数统称为实数 试一试 把实数分类⎧⎧⎫⎨⎬⎪⎨⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数,π是正无理数,π-是负无理数。

由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数我们知道,每个有理数都可以用数轴上的点来表示。

无理数是否也可以用数轴上的点来表示呢? 总结 1、事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大 讨论 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗? 总结 数a 的相反数是a -,这里a 表示任意一个实数。

新人教版数学七年级下册第六章《实数》全章教案

新人教版数学七年级下册第六章《实数》全章教案
4. 表示的意义是什么?它的值是多少?用等式怎样表示?
5.144的算术平方根是多少?怎样用符号表示?
学生活动:独立思考1、2答案,提出疑难问题。
给学生充足的时间和空间,理解和感知算术平方根概念,通过讨论、交流,提出问题








问题1:你能叙述算术平方根的概念吗?
一般地:如果一个正数 的平方等于a,即 =a,那么这个正数 叫做a的算术平方根。a的算术平方根记为 ,读作“根号a”,a叫做被开方数。
年级
七年级
课题
6.1平方根(2)
课型
新授




知识
技能
1.用有理数估计无理数的大致范围,并初步体验“无限不循环小数”的含义.
2.用计算器求一个非负数的算术平方根.
过程
方法
通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;
情感
态度
通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习的兴趣。
问题(四)
两种运算有什么不同?
问:前四个是什么运算?后面的又是什么运算?
教师板书:求一个数a的平方根的运算,叫开平方,其中a叫被开方数.。
学生思考,小组讨论,个别回答
问题是知识能力生长点,通过富有实际意义的问题,激发学生原有认知,促使学生主动地进行探索和思考,让他们体会数学的韵味.。




问题(五)
(2)0的平方根和算术平方根都是0。
区别
(1)定义不同:
“如果一个数 的平方等于a,那么这个数 叫做a的平方根”,
“如果一个正数x的平方等于a,即 ,那么这个正数x叫做a的算术平方根”。

《实数》教案教育教学方案

《实数》教案教育教学方案

《实数》教案教育教学方案一、教学内容本节课选自人教版《数学》七年级下册第十章《实数》,具体内容包括教材第1节“实数的概念”、第2节“实数的性质”以及第3节“实数的运算”。

通过本节课的学习,使学生掌握实数的定义、性质以及运算方法。

二、教学目标1. 知识与技能:理解实数的概念,掌握实数的性质,熟练进行实数的运算。

2. 过程与方法:通过自主探究、合作交流的方式,培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,提高学生运用数学知识解决实际问题的意识。

三、教学难点与重点重点:实数的概念、性质及运算方法。

难点:理解无理数的概念,掌握实数的运算规则。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:直尺、圆规、三角板。

五、教学过程1. 导入:通过生活中的实例,引入实数的概念,激发学生的学习兴趣。

实践情景:测量一根木料的长度,得到一个无法用分数表示的数值。

2. 自主探究:让学生阅读教材,了解实数的概念、性质及运算方法。

例题讲解:讲解教材例题,引导学生掌握实数的性质和运算规则。

如何表示一个无理数?实数与有理数的区别是什么?随堂练习:布置一些实数运算的练习题,让学生当堂完成。

六、板书设计1. 实数的概念2. 实数的性质3. 实数的运算方法4. 实数与有理数的区别七、作业设计1. 作业题目:证明:如果a、b是实数,那么a²+b²≥0。

2. 答案:(1)3+√2;(2)52√3;(3)8√5;(4)3√2。

证明:根据平方的性质,a²≥0,b²≥0,所以a²+b²≥0。

八、课后反思及拓展延伸1. 反思:本节课学生对实数的概念、性质及运算方法掌握程度如何?哪些地方需要加强?2. 拓展延伸:了解实数在生活中的应用,如测量、建筑等领域,提高学生运用数学知识解决实际问题的能力。

重点和难点解析1. 实数的概念及与有理数的区别。

实数教案(1)(八上)

实数教案(1)(八上)

数学苏科版八年级上册p57教案中兴初中数学教研组内容:2.5实数(1)学习目标:1、知道无理数是客观存在的,了解无理数和实数的概念,能对实数按要求进行分类,同时会判断一个数是有理数还是无理数。

2、知道实数和数轴上的点一一对应的关系。

3、经历用有理数估算2的探索过程,从中感受“逼近”的数学思想,发展数感和估算能力,激发学生的探索创新精神。

学习重点:会判断一个数是有理数还是无理数。

学习难点:2是无理数,2有多大?学习过程:一.情境创设1、边长为1的正方形的对角线的长是多少?2、2是一个怎样的数?说说你对2的认识。

3、一个直角三角形,直角边均为1,斜边为多少?你认识这个数吗?4、2是一个有理数,它的算术平方根为多少?是一个有理数吗?5、能在数轴上画出表示2的点吗?能画出来说明什么?二.探索活动1、2是一个整数吗?2、2是1与2之间的一个分数吗?(也就是1与2之间的分数的平方会等于2吗?)3、2是有理数吗?(两者都不是,就说明2不是有理数)4、2有多大?(在做第4题时,启发学生根据第2题确定范围的方法来进一步确定2的百分位是多少?再确定千分位的值,直到保留四位小数、五位小数等。

这里要感受“逼近”的数学思想)2是一个无限不循环小数。

无限不循环小数统称为无理数.举例说明:无限不循环小数、圆周率、开方开不尽的数(42有区别) 实数的分类实数与数轴上的点是什么关系?三、 例题213、38-、0、27、3∏、5.0、3.14159、-0.020020002 、— 31 、0.12121121112… (1)有理数集合{ }(2)无理数集合{ }(3)正实数集合{ }(4)负实数集合{ } 分析:要正确地将以上各数分类,就必须用概念来判定。

注意3∏不是分数。

四、 练习练习一:p58:1。

练习二:判断正误,若不对,请说明理由,并加以改正。

1、带根号的数是无理数,无理数是带根号的数。

2、无限小数是无理数,无理数是无限小数。

湘教版-数学-八年级上册-八上1.3 实数(1)教案

湘教版-数学-八年级上册-八上1.3  实数(1)教案

1.3 实数(1)教学目标1 了解实数的概念,知道实数与数轴上的点一一对应; 2了解有理数运算律在实数范围内仍然适用; 3 会估计一个无理数的范围。

教学重点难点重点:实数的概念、有理数运算律在实数范围内也适用 难点:理解实数与数轴上的点一一对应。

教学过程一 创设情境,引入新课1 什么叫有理数?什么叫无理数?2 下列各数中,哪些是有理数?哪些是无理数?332-01.414292-273π、、、、、、、 二 合作交流,探究新知 1实数的概念有理数和无理数统称为实数,所以的实数组成的集合叫作实数集。

2 实数与数轴上的点的关系我们知道所有的有理数可以用数轴上的点来表示,无理数可不可以用数轴上的点来表示呢?(1)怎样用数轴上的点来表示π? 方法:把半径等于12的圆放到数轴上,圆上一点A 与原点重合,圆沿着数轴滚动一周,点A 的终点表示 π(做一个教具演示)A321(28、?方法:从第5页的探究问题可以知道边长为2的8、,因此,以0为圆心,以边长为2的正方形的对角线长为半径作弧与数轴的交点就是8、(教师示范)总结:其实每一个实数数都可以用数轴上的点来表示,因此数轴上的每一个点都表示唯一的一个实数。

这两层意思合起来就是:实数和数轴上的点一一对应。

观察数轴:正实数在数轴上什么位置?负实数呢?正、负实数与零点大小有什么关系? 正实数在原点的右边,负实数在原点的左边,正实数大于零,负实数小于零。

2 实数怎样分类? (1)有理数怎样分类?按正、负性分:0⎧⎪⎨⎪⎩正有理数有理数负有理数按整、分性分:⎧⎨⎩整数有理数分数(2)实数怎样分类呢?模仿有理数的分类请你给实数分类。

}---⎧⎧⎨⎪⎨⎩⎪⎩整数有理数有限或无限循环小数实数分数无理数无限不循环的小数 0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数 3有理数范围内的一些数学概念,运算法则,运算定律是否适合无理数呢?请你回顾: (1)几个常用概念 ① 什么叫相反数?只有符合不同的两个数叫互为相反数,零的相反数是零。

实数1的教案

实数1的教案

实数1的教案教案标题:实数1的教案一、教学目标:1. 理解实数的概念及其在数轴上的表示。

2. 掌握实数的分类和性质。

3. 运用实数进行简单的计算和比较。

二、教学重点:1. 实数的概念和表示。

2. 实数的分类和性质。

三、教学难点:1. 掌握实数的分类和性质。

2. 运用实数进行简单的计算和比较。

四、教学准备:1. 教材:教科书《数学实用教程》等。

2. 工具:数轴模型、实数分类表格等。

3. 多媒体设备:投影仪、电脑等。

五、教学过程:步骤一:导入(5分钟)1. 利用数轴模型向学生介绍实数的概念,并与有理数进行对比。

2. 引导学生思考实数的分类和性质。

步骤二:概念讲解(15分钟)1. 通过多媒体展示实数的分类表格,解释各类实数的定义和特点。

2. 引导学生讨论实数的性质,如传递性、稠密性等。

步骤三:实数表示(15分钟)1. 利用数轴模型演示如何表示实数,并解释实数在数轴上的位置。

2. 给学生一些实数,让他们在数轴上标出对应的位置。

步骤四:实数计算(20分钟)1. 通过多个例子,教授实数的加法、减法、乘法和除法运算规则。

2. 给学生练习计算实数的运算题目,检查他们的理解和掌握程度。

步骤五:实数比较(15分钟)1. 引导学生掌握实数的大小比较方法,包括绝对值法和数轴法。

2. 给学生一些实数比较的例题,让他们运用所学方法进行比较。

步骤六:归纳总结(10分钟)1. 让学生总结实数的分类和性质,并归纳实数的表示、计算和比较方法。

2. 检查学生对实数的理解和掌握程度。

六、教学延伸:1. 给学生更多实数计算和比较的练习题,巩固所学知识。

2. 引导学生探究无理数的概念和性质,拓展实数的概念。

七、教学评价:1. 课堂练习:教师布置实数计算和比较的练习题,检查学生的掌握情况。

2. 课堂表现:观察学生在课堂上的参与度和表现,评价其对实数概念的理解程度。

八、教学反思:1. 教学方法:通过多媒体和实物模型的运用,增加学生对实数概念的感性认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.8 实数(1)
教学目标:
1、了解实数的概念及分类,会说出一个实数的相反数和绝对值.
2、知道实数与数轴上点之间的一一对应关系.
教学重点、难点:
重点:实数的概念及分类.
难点:理解实数与数轴上的点一一对应.
教学过程:
一、创设情境,引入新课
1、在本章以前,我们曾先后学习了哪些数?数的范围是怎样逐步扩充的?回忆一下,与同学交流.
学生回答:自然数、小数、负数、分数、有理数…
本章在引入无理数以后,数的范围又进一步得到了补充.
2、你会把实数加以分类吗?你所确定的分类标准时什么?按你确定的分类标准进行一次分类后,还能再确定另一个指标作为标准,把其中的每一类再进一步分类码?
二、合作交流,探究新知
1、实数的概念
有理数和无理数统称为实数.
2、实数的分类
①正数可视为有限小数,如3可视为3.0.如果先按照是否有限小数和循环小数,可将实数分为有理数和无理数,然后再按照正、负还可继续进行分类:
②如果先按照数的正、负、零,可将实数分为三类,然后再按照是否有理数将正实数和负实数继续进行分类:
3、检查一下,在上面的两种分类中,有没有重复和遗漏?
学生讨论交流,然后作出回答.
例题讲解:
例1 下列各数哪些是有理数?哪些是无理数?哪些是正数?哪些是负数?
1、把有理数扩充到实数以后,相反数、绝对值的意义也同样适用.即如果a是一个实数,那么-a表示a的相反数,实数a的绝对值记作︱a︱,正实数的绝对值等于它本身,负实数的绝对值等于它的相反数,0的绝对值是0.
①什么叫相反数?
只有相加为零的不同的两个数叫互为相反数,零的相反数是零。

这个概念适合实与a的相反数是_____,实数(a+b)的
2-2
相反数是_____,实数(a-b)的相反数是_______.
②什么叫绝对值?
数轴上一个数表示的点离开原点的距离叫这个数的绝对值。

这个概念也适合实数。

如:
2=2-22

考考你:
你能分别说出√5,π,-√3,的相反数和
绝对值吗?
学生交流回答:
√5:相反数-√5;绝对值√5.
π:相反数-π;绝对值π.
-√3:相反数√3;绝对值√3.
:相反数
-;绝对值
.
例题求下列各数的相反数和绝对值:
(1)π-4;(2)√23-3.
解:(1)因为π-2<0,所以π-4的相反数是4-π,绝对值是︱π-2︱=4-π.
(2)因为23>9,所以√23>3,所以√23-3>0.
所以√23-3的相反数是3-√23,绝对值是︱√23-3︱=√23-3.
2、实数与数轴上的点的关系我们知道所有的有理数可以用数轴上的点来表示,无理数可不可以用数轴上的点来表示呢?
(1)怎样用数轴上的点来表示 ?
方法:把半径等于1
2
的圆放到数轴上,圆上一点A与原点重合,圆沿着数轴滚
动一周,点A 的终点表示 (做一个教具演示)
A
3
21
(28、?
方法:我们知道边长为2的正方形的对角线8、,因此,以0为圆心,以边长为2的正方形的对角线长为半径作弧与数轴的
8、(教师示范)
总结:其实每一个实数数都可以用数轴上的点来表示,因此数轴上的每一个点都表示唯一的一个实数。

这两层意思合起来就是:实数和数轴上的点一一对应。

观察数轴:正实数在数轴上什么位置?负实数呢?正、负实数与零点大小有什么关系?
正实数在原点的右边,负实数在原点的左边,正实数大于零,负实数小于零。

(3)在有理数范围内怎样比较大小? ①如果a-b >0,则a >b,如果a-b <0,则a <b,
②正数大于负数,两个负数,绝对值小的反而大,数轴上右边的点表示的数总比左边的点表示的数大。

在实数范围内也可以这样比较大小。

例2 比较下列各组数中两个数的大小:
83
2
1
例3 求下列各数的相反数和绝对值:
(1)2-√3; (2) √5-√6. 解:(1)2-√3的相反数是-( 2-√3 ) =-2+√3 ∵ √3<2, ∴ 2-√3>0, ∴ |2-√3|=2-√3.
(2) √5-√6的相反数是-( √5-√6 ) =- √5+√6= √6-√5 ∵ √5<√6, ∴ √5-√6<0, ∴ |√5-√6|= √6-√5. 三、应用迁移,巩固提高
1、把下列各数填入相应的集合内:-5,3.7.33
32,8,25,3,0.3,,43
π-- 0.2121121112...(21每两个之间多一个)填入相应的集合里。

有理数集合_______________,无理数集合_____________________, 正实数集合_______________,负实数集合_____________________. 2、填表
3
8
27
1π-
25-
相反数 倒数 绝对值
3、实数a 、b 在数轴上的位置如图所示,则化简2a b a - ) A 、2a+b B 、b C 、2a-b D 、b
a
452与的大小.
5、比较
1
22
的大小.
四、课堂练习,巩固提高
P 73 练习
五、反思小结,拓展提高
这节课内容比较杂,你认为重点要掌握什么?
1、实数的概念以及实数的相反数与绝对值.
2、实数与数轴上的点的一一对应关系.。

相关文档
最新文档