第五章应力状态分析与强度理论

合集下载

5 应力状态分析 强度理论 组合变形

5 应力状态分析 强度理论 组合变形

q=5KN/m
Z
P=2KN
X
2m
y
拉伸(压缩)与弯曲的组合作用
一、概念: 在实际工程中,杆件受横向力和轴向力的作用,则杆
件将产生拉(压)弯组合变形。
二、计算:
x截面任意点应力:
sk
N (x) A
M (x) y ; Iz
挡土墙底部截面轴力和弯矩最大,
为危险截面,其最大和最小应力为:
(d)
q(x)(d)
一、概念:
组合变形的强度计算
1. 组合变形:受力构件产生的变形是由两种或两种以
上的基本变形组合而成的。
2. 组合变形实例 :
y
p
m
T
传动轴
x
m
檩条檩条
檩条

y

a
p
q烟
G

雨篷
牛 腿 柱
四种基本变形计算:
变形 轴向拉压 外力 轴向力
剪切 扭转 横向力 外力偶
平面弯曲A 横向力或外力偶
内力 轴力(N)
构件,[s]=40MPa,试用第一强度理论校核杆的强度。
T
解:危险点A的应力状态如图:
A P
T
P
s PA405.1021036.37MPa
AA s tt
t
T Wn
16700.1030
35
.7MPa
s1
2
s
2
(s )2 t 2 6.37
2
2
(6.37 )2 35.72 32.7MPa 2
s139MPa,s 20,s 332MPa s1 s 故安全。
t max
s1
s3
2
60 (51) 2

材料力学应力状态分析强度理论

材料力学应力状态分析强度理论
断裂力学
断裂力学用于研究材料发生断裂时的力学行为,包括断裂韧性和断裂韧性指标。
断裂模式分析
通过对材料断裂模式的分析,了解材料在受到外力作用时如何发生破裂。
材料的强度
应力。 材料在受力过程中开始产生塑性变形的应力值。
材料在受到大幅度应力作用时发生破裂的强度。
由强度理论推导的材料设计
根据材料的强度特性,可以进行材料设计,以确保材料在使用过程中不超过其强度极限。
考虑材料疲劳的应力分析
1
疲劳寿命评估
扭转应力分析
扭转应力是材料在受扭转力作 用下的应力分布,对材料的扭 转能力和疲劳寿命影响较大。
应力分布分析
1 梁的应力分布
梁的应力分布分析可以 帮助了解梁在受力过程 中的强度和变形情况。
2 压力容器的应力分析 3 板的应力分布
压力容器的应力分析是 为了确保容器在承受压 力时不会发生破裂或变 形。
板的应力分布分析可用 于评估板在受力状态下 的强度和变形性能。
材料力学应力状态分析强 度理论
材料力学应力状态分析强度理论是研究材料受力情况及其强度特性的理论体 系,包括弹性理论、横向状态分析、应力分布分析等内容。
弹性理论
基本原理
材料在受力过程中 会发生变形,弹性 理论用于描述材料 的弹性性质和应变 的产生与传递。
弹性模量
弹性模量是衡量材 料对应力的响应能 力,不同材料具有 不同的弹性模量。
应力-应变关 系
弹性理论可以通过 应力-应变关系来描 述材料受力后的变 形情况。
限制条件
弹性理论是在一定 条件下适用的,需 要考虑材料的线性 弹性和小变形假设。
横向状态分析
横向力
横向状态分析用于研究材料在 受横向力作用下的变形和应力 分布。

强度理论

强度理论

第五节 强度理论一、强度理论概述各种材料因强度不足而引起的失效现象是不同的。

根据第五章的讨论,我们知道象普通碳钢这样的塑性材料,是以发生屈服现象、出现塑性变形为失效的标志;而象铸铁这样的脆性材料,失效现象是突然断裂。

第五~八章的强度条件可以概括为最大工作应力不超过许用应力,即[]σ≤σmax 或[]τ≤τmax 。

这里的许用应力是从试验测得的极限应力除以安全系数得到的,这种直接根据试验结果来建立强度条件的方法,对于危险点处于复杂应力状态的情况不再适用。

这是因为复杂应力状态下三个主应力的组合是各种各样的,1σ、2σ和3σ之间的比值有无限多种情形,不可能对所以的组合都一一试验确定其相应的极限应力。

事实上,尽管失效现象比较复杂,但可以归纳为如下二点:1.材料在外力作用下的破坏形式不外乎有几种类型;2.同一类型材料的破坏是由某一个共同因素引起的。

人们在长期的实践中,综合多种材料的失效现象和资料,对强度失效提出各种假说。

这些假说认为,材料按断裂或屈服失效,是应力、应变或变形能等其中某一因素引起的。

按照这些假说,无论是简单还是复杂应力状态,引起失效的因素是相同的,造成失效的原因与应力状态无关。

这些假说称为强度理论。

利用强度理论,就可以利用简单应力状态下的试验(例如拉伸试验)结果,来推断材料在复杂应力状态下的强度,建立复杂应力状态的强度条件。

强度理论是推测材料强度失效原因的一些假说,它的正确与否以及适用范围,必须在工程实践中加以检验。

经常是适用于某类材料的强度理论,并不适用于另一类材料。

下面介绍的四种强度理论,都是在常温静载荷下,适用于均匀、连续、各向同性材料的强度理论。

二、四种强度理论1) 最大拉应力理论(第一强度理论)这一理论认为引起材料脆性断裂破坏的因素是最大拉压力,它是人们根据早期使用的脆性材料(象天然石、砖和铸铁等)易于拉断而提出的。

该理论认为无论什么应力状态下,只要构件内一点处的最大拉压力1σ达到单向应力状态下的极限应力b σ,材料就要发生脆性断裂。

应力状态分析 、强度理论、组合变形

应力状态分析 、强度理论、组合变形
试按第三强度理论设计圆轴的直径。
Page57
BUCT
解:1 T=3×0.25 = 0.75KN.M
2 MxY =7×0.22 = 1.54KN.M
3 MxY中=7×0.22×0.5 =0.77KN.M
4 MxZ=3.5×0.4= 1.4KN.M
5
M总
M
2 z
M
2 y
=1.6
6
r3
1 W
M 2 T 2 [ ]
Page28
BUCT
化工设备机械 基础
然后叠加
= + = Pcos / A + Pl sin y / Iz
1 = N / A + M / Wz
2 = N / A - M / Wz
Page29
BUCT
例题5-5
化工设备机械 基础
Page30
BUCT
化工设备机械 基础
Page31
BUCT
uf 达到某一数值时,材料失效。
强度条件:
1 2
[(1
2
)2
(
2
3
)2
(
3
1)2
]
[]
Page21
BUCT
化工设备机械 基础
r1 1
r2 1-μ(σ2 - σ3 )
r3 1 3 2 4 2
r4
1 2
2 3 2
r3
( M )2 4( T )2 1
W
Wp
W
M 2 T 2 [ ]
Page2
BUCT
§1 应力状态的概念
化工设备机械 基础
一、问题的提出
杆件在基本变形时横截面上应力的分布规律
1. 轴向拉压:

第五章 应力状态分析 强度理论 组合变形.ppt

第五章 应力状态分析 强度理论 组合变形.ppt
2. 求应力:
min
N A
M WZ
130103 0.18h

6 106 0.18h2
6
0
h 276.9mm,取h 280mm
min
N M A WZ
130103 6106 180 280 180 28026Βιβλιοθήκη 0.029MPa28

2 xy
min
x
y
2

x y
2
2


2 xy
主应力按代数值排序:σ1 σ2 σ3
17
§5.2 平面应力状态分析——解析法
例题1:一点处的平面应力状态如图所示。
已知 x 60MPa xy 30MPa, y 40MPa, 30。
2
2
xy
cos 2
15
§5.2 平面应力状态分析——解析法
2. 主平面和主应力
确定正应力极值


( x
y )
2

( x
y ) cos 2
2
xy
sin
2
d d

2
(
x

y ) sin
2
2

xy cos 2

0
(σx
σy
) s


x 2 xy
y
1
1


2
max min




x

2
y
2

2 xy
23
平面应力状态重要公式

max min

应力状态分析和强度理论

应力状态分析和强度理论

03
弹性极限
材料在弹性范围内所能承受的最大应力状态,当超过这一极限时,材料会发生弹性变形。
01
屈服点
当物体受到一定的外力作用时,其内部应力状态会发生变化,当达到某一特定应力状态时,材料会发生屈服现象。
02
强度极限
材料所能承受的最大应力状态,当超过这一极限时,材料会发生断裂。
应力状态对材料强度的影响
形状改变比能准则
04
弹塑性材料的强度分析
屈服条件
屈服条件是描述材料在受力过程中开始进入屈服(即非弹性变形)的应力状态,是材料强度分析的重要依据。
根据不同的材料特性,存在多种屈服条件,如Mohr-Coulomb、Drucker-Prager等。
屈服条件通常以等式或不等式的形式表示,用于确定材料在复杂应力状态下的响应。
最大剪切应力准则
总结词
该准则以形状改变比能作为失效判据,当形状改变比能超过某一极限值时发生失效。
详细描述
形状改变比能准则基于材料在受力过程中吸收能量的能力。当材料在受力过程中吸收的能量超过某一极限值时,材料会发生屈服和塑性变形,导致失效。该准则适用于韧性材料的失效分析,尤其适用于复杂应力状态的失效判断。
高分子材料的强度分析
01
高分子材料的强度分析是工程应用中不可或缺的一环,主要涉及到对高分子材料在不同应力状态下的力学性能进行评估。
02
高分子材料的强度分析通常采用实验方法来获取材料的应力-应变曲线,并根据曲线确定材料的屈服极限、抗拉强度等力学性能指标。
03
高分子材料的强度分析还需要考虑温度、湿度等环境因素的影响,因为高分子材料对环境因素比较敏感。
02
强度理论
总结词
该理论认为最大拉应力是导致材料破坏的主要因素。

应力分析和强度理论

应力分析和强度理论

要点二
详细描述
在机械工程领域,应力分析用于研究 机械零件和结构在各种工况下的受力 情况,以及由此产生的内部应力分布 。强度理论则用于评估这些应力是否 在材料的承受范围内,以确定结构是 否安全可靠。
要点三
应用举例
在机械设计中,通过对发动机、传动 系统、轴承等关键部件进行应力分析 ,可以优化设计,提高其承载能力和 可靠性。
该理论认为最大拉应力是导致材料破坏的 主要因素,当最大拉应力达到材料的极限 抗拉强度时,材料发生断裂。
第二强度理论
总结词
最大剪应力理论
详细描述
该理论认为最大剪应力是导致材料破坏的主 要因素,当最大剪应力达到材料的极限抗剪 强度时,材料发生断裂。
第三强度理论
总结词
最大应变能密度理论
详细描述
该理论认为最大应变能密度是导致材料破坏 的主要因素,当最大应变能密度达到材料的
应力分析
目录
• 应力分析概述 • 应力分析方法 • 材料力学中的应力分析 • 强度理论 • 实际应用中的应力分析与强度理

01
应力分析概述
定义与目的
定义
应力分析是研究物体在受力状态下应 力分布、大小和方向的一种方法。
目的
评估物体的强度、刚度、稳定性以及 预测可能的破坏模式,为结构设计提 供依据。
平衡方程
根据力的平衡原理,物体内部的应力分布满足平衡方程。
应变与应力的关系
通过材料的力学性能试验,可以得到应变与应力的关系,即应力-应变曲线。
弹性力学基本方程
根据弹性力学的基本原理,建立物体内部的应力、应变和位移之间的关系。
02
应力分析方法
有限元法
总结词
有限元法是一种广泛应用于解决复杂工程问题的数值分析方法。

应力和应变分析和强度

应力和应变分析和强度

泊松比
总结词
泊松比是描述材料横向变形与纵向变形之间关系的物理量。
详细描述
当材料受到外力作用时,会发生形变。泊松比是表示材料在受到外力作用时,横向变形与纵向变形之间的比例关 系。其值通常在-0.5到0.5之间,但不同材料的泊松比可能会有所不同。
屈服强度
总结词
屈服强度是描述材料在受到外力作用时开始发生屈服现象的应力极限。
应力和应变分析和强度
目录
• 应力分析 • 应变分析 • 强度分析 • 材料性能 • 应力和应变的关系 • 工程应用
01
应力分析
定义与概念
01
02
03
应力
物体受到外力作用时,单 位面积上的内力。
应变
物体在外力作用下发生的 形状和尺寸的改变。
应力分析
通过数学模型和实验手段, 研究物体在受力状态下的 应力分布、大小和方向的 过程。
应力分类
正弯曲应力
由于弯曲产生的应力。
扭曲应力
由于扭曲产生的应力。
应力计算方法
解析法
通过数学公式和物理定律,计算应力 的方法。
有限元法
将物体离散化为有限个小的单元,通 过求解每个单元的应力,再组合得到 整体的应力分布。
实验法
通过实验手段测量物体的应力分布。
应变计算方法
有限元分析法
有限元分析是一种数值计算方法,通过将物体离散化为有限个小的单元,对每个 单元进行受力分析和形变计算,再通过单元的集合来模拟整个物体的形变。这种 方法可以处理复杂的几何形状和边界条件,广泛应用于工程领域。
实验测量法
通过在物体上粘贴应变片或使用激光干涉仪等设备来测量物体的形变,这种方法 可以直接获得物体的应变值,但需要专业的设备和操作技能。

材料力学之应力分析与强度理论

材料力学之应力分析与强度理论
W
eq4
M 2 0.75T 2 [ ]
W
统一形式:
eq
M eq W
[ ]
M eq3
M
2 z
M2 yT2 NhomakorabeaM eq4
M
2 z
M
2 y
0.75T
2
例1 求图示单元体的主应力及主平面的位置。(
单位:MPa)
解:主应力坐标系如图
25 3 4 5 B 9 5
A
在坐标系内画出点
2
1
0
° 5
25 3
45o
拉伸对应
2E
1
45o
剪切对应值
E
1
现在已测得圆杆表面上一点a沿45方向的线应变 45o=-2×10-4, 是上述两45方向的线应变之和
45o 测试值 45o 剪切对应值 45o 拉伸对应值
E45o 剪切对应值 E 45o 测试值 45o 拉伸对应值 =
1
1
E
2 3
1 3
体积改变比能
vV
1 2
6E
1 2
3 2
形状改变比能
1
vd 6E
1 2 2 2 3 2 1 3 2
5、四个常用强度理论
强度理论的统一形式: eqk [ ]
• 第一强度理论: • 第二强度理论: • 第三强度理论: • 第四强度理论:
eq1 1
eq2 1 2 3
组合变形习题课
一、应力分析和强度理论
1、平面应力状态分析
(1)斜截面上的应力
x x
y 2 y
2
x y
2
sin 2 x
cos cos
2 2

应力状态分析与强度理论

应力状态分析与强度理论

第五章 应力状态分析与强度理论一、 内容提要 1.应力状态的概念 1.1一点的应力状态通过受力构件的一点的各个截面上的应力情况的集合,称为该点的应力状态。

1.2一点的应力状态的表示方法——单元体研究受力构件内一点处的应力状态,可以围绕该点取一个无限小的正六面体,即单元体。

若单元体各个面上的应力已知或已计算出,则通过该点的其他任意方位截面上的应力就可用解析法或图解法确定。

1.3主平面、主应力单元体上切应力为零的平面称为主平面,主平面上的正应力称为主应力。

过受力构件内任一点总有三对相互垂直的主平面。

相应的主应力用1σ、2σ、3σ来表示,它们按代数值的大小顺序排列,即321σσσ≥≥。

1σ是最大主应力,3σ是最小主应力,它们分别是过一点的所有截面上正应力中的最大值和最小值。

1.4应力状态的分类(1)单向应力状态,只有一个主应力不为零,另两个主应力均为零; (2)二向或平面应力状态,两个主应力不为零,另一个为零; (3)三向或空间应力状态,三个主应力都不为零。

单向应力状态又称简单应力状态,二向、三向应力状态称为复杂应力状态。

2.平面应力状态分析的解析法在平面应力状态的单元体中,有一对平面上的应力等于零,即为主平面,其上主应力为零。

可将单元体用平面图形表示,如图5-1所示。

图5-12.1任意α斜截面上的应力当已知x σ、y σ、yx xy ττ=时,应用截面法,可得ατασστατασσσσσαα2cos 2sin 22sin 2cos 22xy yx xy yx yx +-=--++= (5-1)式中,正应力以拉应力为正,压应力为负;切应力以对单元体内任意点的矩为顺时针转向为正,反之为负;α为斜截面外法线与x 平面外法线即x 轴间的夹角,α角从x 轴量起,反时针转向为正,反之为负。

2.2主应力22min max 22xy yx y x τσσσσσσ+⎪⎪⎭⎫ ⎝⎛-±+=⎭⎬⎫ (5-2) 式中,max σ和min σ分别表示单元体上垂直于零应力面的所有截面上正应力的最大值和最小值。

5-应力状态分析-强度理论-组合变形(共37张)

5-应力状态分析-强度理论-组合变形(共37张)

dt
d
sx
s y
cos2 2t xy sin 2
0
设极值切应力所在平面外法线与x轴正向夹角为α1,则由
上式得
tan
21
s
x s 2t xy
y
第17页,共37页。
(5-7)
17
5 应力状态(zhuàngtài)分析 强度理论(续)
式(5-7)亦有两个解 和1
1
, 说明两个极值
2
切应力所在平面互相垂直。由上式解出sin2α1和cos2α1,
强度条件:
s1 (s 2 s 3 ) s
(5-15)
适用条件:这一理论可较好地解释石料、混凝土等脆性材料压
缩时的破坏现象。
31
第31页,共37页。
5 应力状态分析 强度(qiángdù)理论(续)
2、塑性屈服理论
(1)最大切应力理论(第三强度理论)
观点:最大切应力是引起材料破坏的主要因素。即无论
2
比较式(5-5)和式(5-7),可见
(5-9)
tan 21
1
tan 2 0
cot 2 0
tan
2
0
2
——说明极值切应力所在平面与主平面成45º角。
21
2 0
2
1
0
4
19
第19页,共37页。
5 应力状态分析 强度理论(续)
[例5-2]分析拉伸试验时低碳钢试件出现(chūxiàn)滑移线的原因。
第10页,共37页。
5 应力状态分析(fēnxī) 强度理论(续)
利用三角函数公式
cos2 1 cos2
2
sin2 1 cos2
2

应力状态理论

应力状态理论

'y
y
'x
x
z
z
y yx 'z xy x
x
'y
单元体应力状态如图
这时,独立的应力分量为 x , y , z 和 xy
与XY平面垂直的平面上的应力没有Z方向的分量,并且由
y
y
n
x ,y 及 xy 决定。 ——平面应力状态
'x z
yx xy x
x
已知 x ,y 及 xy , 求任意斜截面n上的 应力——平面应力 状态分析。
解出 x,y,xy 有
0 x
45
x
y 2
xy 2
90 y
x 0 xy 0 90 245
y 90
于是
主应变:
x 2y
(xy)2x2y
2
4
1 2 [0 (9)0 (04)2 5 (09 0 2 4)2 5 ]
主方向: ta2n0x xyy245 0 09 090
Ax(3.6 4,2)2
特殊应力状态单元体
2
2
2
( , ) 22
Ay (0,0)
2
2
2
( , )
22
“单向拉伸”应力状态单元体与应力圆
1;2 0 ;3 0
0 0
Ax(,0)
0
Ay(0,)
20
Ax(0,-)
“纯剪切”应力状态单元体与应力圆
1;2 0 ;3
0 45
3
1
Ay (0,)
3 0
0 1
3 0
0 1
已知一点A的应力状态如图,求:A点的主应力和主平面。 (应力单位为 MPa)
25
26

应力状态及强度理论

应力状态及强度理论

应力张量是一个二阶对称张量, 包含六个独立的分量,可以用 来描述物体的应力状态。
主应力和应力张量可以通过计 算得到,它们是描述物体应力 状态的重要参数。
02
强度理论
第一强度理论
总结词
最大拉应力准则
详细描述
该理论认为材料达到破坏是由于最大拉应力达到极限值,不考虑剪切应力和压 力的影响。
第二强度理论
05
实际应用
航空航天领域
飞机结构强度分析
利用应力状态及强度理论,对飞 机各部件的受力状态进行详细分 析,确保飞机在各种工况下的结 构安全。
航天器材料选择
根据材料的应力-应变关系,选择 适合航天器发射和运行阶段的材 料,确保航天器的可靠性和寿命。
航空材料疲劳寿命
评估
通过应力状态及强度理论,评估 航空材料的疲劳寿命,预防因疲 劳引起的结构失效。
03
材料失效分析
弹性失效
总结词
材料在弹性阶段发生的失效。
详细描述
当材料受到的应力超过其弹性极限时 ,会发生弹性失效。这种失效通常表 现为突然断裂或大幅度变形,且材料 不具有恢复原状的能力。
塑性失效
总结词
材料在塑性阶段发生的失效。
详细描述
当材料受到的应力超过其屈服点后,会发生塑性失效。这种 失效表现为材料发生较大的塑性变形,无法保持其原始形状 和尺寸。
土木工程领域
桥梁承载能力分析
通过对桥梁的应力分布和承载能力的分析,确保桥梁在设计寿命 内的安全性和稳定性。
建筑结构抗震设计
利用强度理论,对建筑结构进行抗震设计,提高建筑物的抗震能 力,减少地震灾害的影响。
岩土工程稳定性分析
通过对岩土工程的应力状态和强度理论的分析,评估岩土工程的 稳定性和安全性。

应力和应变分析和强度理论

应力和应变分析和强度理论

机械设计
01
02
03
零件强度校核
通过应力和应变分析,可 以校核机械零件的强度, 确保零件在正常工作载荷 下不会发生破坏。
优化装配设计
通过应力和应变分析,可 以优化机械装配设计,减 少装配误差和应力集中, 提高装配质量和可靠性。
振动和噪声控制
通过应力和应变分析,可 以预测和控制机械系统的 振动和噪声,提高机械系 统的性能和舒适性。
总结词
最大拉应力理论
详细描述
该理论认为最大拉应力是导致材料破坏的主要因素,当最大 拉应力达到材料的极限抗拉强度时,材料发生断裂。
第二强度理论
总结词
最大伸长应变理论
详细描述
该理论认为最大伸长应变是导致材料 破坏的主要因素,当最大伸长应变达 到材料的极限抗拉应变时,材料发生 断裂。
第三强度理论
总结词
03
应力和应变的应用
结构分析
结构稳定性
01
通过应力和应变分析,可以评估结构的稳定性,预测结构在不
同载荷下的变形和破坏模式。
结构优化设计
02
通过对应力和应变的精确计算,可以优化结构设计,降低结构
重量,提高结构效率。
结构疲劳寿命预测
03
通过应力和应变分析,可以预测结构的疲劳寿命,为结构的维
护和更换提供依据。
能量法
总结词
能量法是一种基于能量守恒和变分原理 的数值分析方法,通过将问题转化为能 量泛函的极值问题,并采用变分法或有 限元法进行求解。
VS
详细描述
在应力和应变分析中,能量法可以用于求 解各种力学问题,如弹性力学、塑性力学 等。通过构造合适的能量泛函和约束条件 ,能量法能够提供精确和高效的数值解。 同时,能量法还可以用于优化设计、稳定 性分析和控制等领域。

材料力学应力状态分析和强度理论

材料力学应力状态分析和强度理论

材料力学应力状态分析和强度理论材料力学是一门研究物质内部各个部分之间的相互作用关系的科学。

在材料力学中,应力状态分析和强度理论是非常重要的概念和方法,用来描述和分析材料的力学行为和变形性能。

材料的应力状态是指在外力作用下,物体内部各个部分所受到的力的分布情况。

应力有三个分量:法向应力、剪应力和旋转应力。

法向应力是垂直于物体表面的作用力,剪应力是平行于物体表面的作用力,旋转应力则是物体受到扭转力产生的应力分量。

应力状态的描述可以用应力矢量来表示。

应力状态分析的目的是确定材料内部各个部分的应力分布情况,进而推导出物体的变形和破坏行为。

常用的应力状态分析方法有平面应力问题、平面应变问题和三维应力问题。

平面应力问题是指在一个平面上的应变为零,而垂直于该平面的应力不为零;平面应变问题是指在一个平面上的变形为零,而垂直于该平面的应力不为零;三维应力问题则是指在空间中3个方向的应力都不为零。

强度理论是指根据材料的内部应力状态来评估其抗拉强度、抗压强度和抗剪强度等,以判断材料是否能够承受外力而不发生破坏。

常见的强度理论有最大正应力理论、最大剪应力理论和最大扭转应力理论。

最大正应力理论是指在材料的任何一个点,其法向应力都不能超过材料的抗拉强度;最大剪应力理论则是指剪应力不能超过材料的抗剪强度;最大扭转应力理论则是指旋转应力不能超过材料的极限扭转强度。

实际应用中,强度理论通常与材料的断裂理论结合起来,以评估材料的破坏行为。

材料断裂的主要原因是应力超过了材料的强度极限,从而导致材料的破坏。

为了提高材料的强度和抗拉性能,可以通过选择合适的材料、改变材料的结构和制造工艺等方法来实现。

综上所述,材料力学应力状态分析和强度理论是描述和分析材料力学行为和变形性能的重要理论和方法。

通过深入研究应力状态、应力分析和强度理论,可以为材料的设计和制造提供指导和支持,从而提高材料的强度和抗拉性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 应力状态分析与强度理论一、 内容提要 1.应力状态的概念 1.1一点的应力状态通过受力构件的一点的各个截面上的应力情况的集合,称为该点的应力状态。

1.2一点的应力状态的表示方法——单元体研究受力构件内一点处的应力状态,可以围绕该点取一个无限小的正六面体,即单元体。

若单元体各个面上的应力已知或已计算出,则通过该点的其他任意方位截面上的应力就可用解析法或图解法确定。

1.3主平面、主应力单元体上切应力为零的平面称为主平面,主平面上的正应力称为主应力。

过受力构件内任一点总有三对相互垂直的主平面。

相应的主应力用1σ、2σ、3σ来表示,它们按代数值的大小顺序排列,即321σσσ≥≥。

1σ是最大主应力,3σ是最小主应力,它们分别是过一点的所有截面上正应力中的最大值和最小值。

1.4应力状态的分类(1)单向应力状态,只有一个主应力不为零,另两个主应力均为零; (2)二向或平面应力状态,两个主应力不为零,另一个为零; (3)三向或空间应力状态,三个主应力都不为零。

单向应力状态又称简单应力状态,二向、三向应力状态称为复杂应力状态。

2.平面应力状态分析的解析法在平面应力状态的单元体中,有一对平面上的应力等于零,即为主平面,其上主应力为零。

可将单元体用平面图形表示,如图5-1所示。

图5-12.1任意α斜截面上的应力当已知x σ、y σ、yx xy ττ=时,应用截面法,可得ατασστατασσσσσαα2cos 2sin 22sin 2cos 22xy yx xy yx yx +-=--++= (5-1)式中,正应力以拉应力为正,压应力为负;切应力以对单元体内任意点的矩为顺时针转向为正,反之为负;α为斜截面外法线与x 平面外法线即x 轴间的夹角,α角从x 轴量起,反时针转向为正,反之为负。

2.2主应力22min max 22xy yx y x τσσσσσσ+⎪⎪⎭⎫ ⎝⎛-±+=⎭⎬⎫ (5-2) 式中,max σ和min σ分别表示单元体上垂直于零应力面的所有截面上正应力的最大值和最小值。

它们是三个主应力中的两个,而另一个主应力为零。

三个主应力max σ、min σ和0要按代数值大小排列,分别用1σ、2σ、3σ表示。

2.3主平面的方位角0α主平面与x 轴间的夹角0α可按下式计算yx xy tg σ-στ-=α220 (5-3)由上式可确定两个主平面的方位角0α和 900+α,其中当y x σ≥σ时,0α主平面上的主应力为max σ, 900+α主平面上的主应力为min σ;当y x σ<σ时,0α主平面上的主应力为min σ, 900+α主平面上的主应力为max σ。

3.平面应力状态分析的图解法图5-23.1应力圆方程 222222xy y x y x τ+⎪⎪⎭⎫ ⎝⎛σ-σ=τ+⎪⎪⎭⎫ ⎝⎛σ+σ-σαα圆心坐标 ⎪⎪⎭⎫⎝⎛σ+σ0,2y x 半径222xy y x τ+⎪⎪⎭⎫ ⎝⎛σ-σ 3.2画法当已知x σ、y σ、yx xy ττ=时,选取τσ-坐标系统,选取适当的比例尺,确定),(1xy x D τσ和),(2yx y D τσ两点,连接两点,交σ轴于C 点,以C 为圆心,以1CD 和2CD 为半径,画出对应于此应力状态的应力圆,如图5-2所示。

3.3单元体与应力圆的对应关系(1) 对于某一平面应力状态而言,单元体的应力状态一定和一个应力圆相对应。

(2) 单元体中的一个面一定和应力圆上的一个点相对应。

(3) 单元体中一个面上的应力对应于应力圆上一个点的坐标。

(4) 应力圆上两点沿圆弧所对应的圆心角是单元体上与这两点对应的两个平面间夹角的两倍,且转向相同。

4.三向应力状态图5-3如已知三向应力状态的主应力单元体及主应力1σ、2σ和3σ,则有 (1) 一点处的最大正应力1max σσ=。

(2) 一点处的最大切应力231max σστ-=,其作用面与2σ平行且与1σ、3σ所在主平面夹角各成 45。

(3) 根据1σ、2σ和3σ作出三个应力圆,则该点任意斜截面上的应力对应于三个应力圆所围的阴影区内的一点的坐标值,如图5-3所示。

5.广义胡克定律 5.1一般形式对于各向同性材料,在小变形情况下,线应变只与正应力有关,切应变只与切应力有关()[]()[]()[]⎪⎪⎪⎭⎪⎪⎪⎬⎫=+-==+-==+-=zx zx x y z z yz yz z x y y xy xy z y x x G E G E GE τγσσνσετγσσνσετγσσνσε111111 (5-5)5.2主应力与主应变间的关系()[]()[]()[]⎪⎪⎪⎭⎪⎪⎪⎬⎫+-=+-=+-=213313223211111σσνσεσσνσεσσνσεE E E(5-6)5.3平面应力状态下的应力应变关系[][][]⎪⎪⎪⎭⎪⎪⎪⎬⎫+-=-==-=yx z x y y xy xy y x x E E GE σσνενσσετγνσσε111 (5-7a )或[][][]⎪⎪⎪⎭⎪⎪⎪⎬⎫+-=-=-=21312221111σσνενσσενσσεEEE (5-7b ) 6.体积应变和变形应变已知三个主应力1σ、2σ和3σ,及材料的弹性常数E 和ν,则 6.1体积应变)(21)(21321321z y x EE σσσνσσσνεεεθ++-=++-=++= (5-8) 6.2体积改变能密度2321)(621σσσνν++-=Eu (5-9)6.3畸变能密度])()()[(61213232221σσσσσσν-+-+-+=Eu d (5-10)6.4应变能密度)](2[21133221232221σσσσσσνσσσνε++-++=+=Eu u u d (5-11)7.强度理论7.1材料失效破坏现象的两种类型(1)屈服失效 材料出现不可恢复的塑性变形而导致材料的失效。

塑性材料的失效就属于屈服失效。

(2)断裂失效 材料无明显的变形而突然断裂。

脆性材料的失效就属于断裂失效。

7.2强度理论的概念强度理论是关于材料失效现象主要原因的假设。

即认为不论是简单应力状态还是复杂应力状态,材料某一类型的破坏是由于某一种因素引起的。

据此,可以利用简单应力状态的实验结果,来建立复杂应力状态的强度条件。

7.3几种常用的强度理论(1) 有关脆性断裂的强度理论①最大拉应力理论(第一强度理论)基本假设 最大拉应力是引起材料断裂的主要因素。

断裂准则 b σσ=1强度条件 ][1σσ≤ (5-12)②最大伸长线应变理论(第二强度理论)基本假设 最大伸长线应变是引起材料断裂的主要因素。

断裂准则 ()[]b E E σσσνσε113211=+-=强度条件 ()][321σσσνσ≤+- (5-13)③对两种强度理论的分析最大拉应力理论比较符合铸铁、大理石、混凝土等脆性材料的脆性断裂规律,应用较广。

但没有考虑到2σ和3σ对破坏的影响,对没有拉应力的应力状态则无法应用此理论检验其强度。

最大伸长线应变理论,在形式上除了考虑第一主应力1σ外,还考虑了第二、第三主应力的影响。

但实践表明,它只与少数脆性材料的实验结果相符合,如铸铁在拉—压二向应力、且压应力较大的情况吻合。

故现今工程中甚少应用这一理论。

(2)有关塑性屈服的强度理论① 最大切应力理论(第三强度理论)基本假设 最大切应力是引起材料塑性流动的主要因素。

断裂准则 s σσστ21)(2131max =-=强度条件 ][31σσσ≤- (5-14)② 畸变能密度理论(第四强度理论)基本假设 畸变能密度是引起材料塑性屈服的主要因素。

断裂准则 )2(61])()()[(612213232221s d E E u σνσσσσσσν+=-+-+-+= 强度条件][])()()[(21213232221σσσσσσσ≤-+-+- (5-15)③ 对两种强度理论的分析最大切应力理论与畸变能理论均能适合于塑性材料的屈服失效。

按第三强度理论计算出的构件尺寸往往偏于安全,按第四强度理论计算的结果与实验接近。

7.4上述四种强度理论可写成统一形式)4,3,2,1(][=≤i ri σσ (5-16)其中ri σ称为计算应力,从第一到第四强度理论的次序分别为⎪⎪⎪⎭⎪⎪⎪⎬⎫-+-+-=-=+-==])()()[(21)(2132322214313321211σσσσσσσσσσσσνσσσσr r r r (5-17) 7.5莫尔强度理论基本假设 以实验资料为基础,考虑了材料拉、压强度的不同,承认最大切应力是引起屈服剪断的主要原因并考虑了剪切面上正应力的影响。

强度条件 [][]][31σσσσσ≤=c t (5-18)分析 莫尔强度理论考虑了材料抗拉和抗压能力不等的情况,这符合脆性材料(如岩石混凝土等)的破坏特点。

但未考虑中间主应力2σ的影响是其不足之处。

对于[]t σ和[]c σ相同的材料,式(5-18)可演化成式(5-14)7.6强度理论的选用一般情况下,脆性材料选用关于脆断的强度理论与莫尔强度理论,塑性材料选用关于屈服的强度理论。

但材料的失效形式还与应力状态有关。

例如,无论是塑性或脆性材料,在三向拉应力情况下将以断裂形式失效,宜采用最大拉应力理论。

在三向压应力情况下都引起塑性变形,宜采用第三或第四强度理论 二、基本要求1.理解应力状态的概念。

2.熟练掌握平面应力状态分析的解析法和图解法。

3.了解三向应力状态的最大应力。

4.理解广义胡克定律并熟练应用。

5.了解复杂应力状态应变能密度的概念及计算。

6.理解强度理论的概念及常用的四种强度理论。

三、典型例题分析例5.1已知图(a )所示单元体的MPa x 60=σ,MPa y 40-=σ,MPa xy 30-=τ,MPa yx 30=τ。

试求(1) 30-=α斜截面上的应力;(2)主应力、主平面和主应力单元体;(3)最大切应力。

图5-4图5-5解:1.α斜截面上的应力()()MPaxy yx yx 02.960sin 3060cos 24060240602sin 2cos 22=-+-++-=--++=ατασσσσσα()()MPa xy yx 3.5860cos 3060sin 240602cos 2sin 2-=---+=+-=ατασστα 2.主应力、主平面和主应力单元体()⎩⎨⎧-=-+⎪⎭⎫ ⎝⎛+±-=+⎪⎪⎭⎫ ⎝⎛-±+=⎭⎬⎫MPa xy yx y x 3.483.68302406024060222222min max τσσσσσσ由此得到:MPa 3.681=σ,02=σ,MPa 3.483-=σ 主方向可由下式求得53406060220=+--=--=yx xytg σστα解得 5.151=α, 5.1052=α或 5.742-=α,由于y x σσ>,可知1α主平面的主应力为1σ,2α主平面的主应力为3σ。

相关文档
最新文档