五种求法求函数解析式
求函数解析式的五种方法及其例子
求函数解析式的五种方法及其例子在数学领域中,求解函数解析式是一项重要的任务。
本文将介绍五种常用的方法来求解函数解析式,并通过例子来展示其应用。
1. 数列法:该方法适用于已知函数的输出序列,并希望找到一个函数解析式来描述它。
通过观察函数输出值之间的规律,可以尝试找到相应的数学模式。
例如,若某函数的输出序列为1,4,9,16,25,...,我们可以观察到这是个平方数序列,因此函数解析式为f(x) = x^2。
2. 经验法:该方法适用于已知函数的输入和输出值,但不清楚具体的数学关系。
通过绘制出函数的散点图,可以尝试通过经验找到适合的函数类型。
例如,若某函数的输入和输出值如下表所示:| x | 1 | 2 | 3 | 4 | 5 ||-------|-------|-------|-------|-------|-------|| y | 3 | 5 | 7 | 9 | 11 |我们可以观察到y值递增2,因此猜测函数解析式为f(x) = 2x + 1。
3. 代数法:该方法适用于通过已知函数的性质和结构来推导函数解析式。
例如,若需要求解一个线性函数,已知它通过点(1, 3)和(2, 5),可以使用直线的斜率公式来得到函数解析式。
根据两点之间的斜率公式,我们可以得到函数解析式f(x) = 2x + 1。
4. 差分法:该方法适用于已知函数的差分序列,即函数输出值之间的差异。
通过观察差分序列之间的规律,可以尝试找到函数的解析式。
例如,若某函数的输出值差分序列为1, 3, 5, 7,我们可以观察到差分序列的差值为2,因此猜测函数解析式为f(x) = 2x。
5. 推理法:该方法适用于已知函数的一些特殊性质或限制条件。
通过寻找函数性质和限制条件的推理,可以得到函数解析式。
例如,若某函数是一个偶函数且通过原点(0, 0),我们知道偶函数具有对称性,并且f(0) = 0。
因此,猜测函数解析式为f(x) = ax^2。
通过以上五种方法中的一种或多种方法,我们可以在求解函数解析式时获得准确的结果。
高中数学-求函数解析式的六种常用方法
求函数解析式的六种常用方法一、换元法已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可.例1 已知f (xx 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 11-t (t ≠1), ∴f (t )= 111)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1).评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f (x +1)= x+2x ,求f (x )的解析式.解: f (x +1)= 2)(x +2x +1-1=2)1(+x -1,∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x ,则有f (x )= x 2-1 (x ≥1).评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、待定系数法例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式.解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ①f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.x ≥0, x <0. 四、消去法例4 设函数f (x )满足f (x )+2 f (x1)= x (x ≠0),求f (x )函数解析式. 分析:欲求f (x ),必须消去已知中的f (x 1),若用x1去代替已知中x ,便可得到另一个方程,联立方程组求解即可. 解:∵ f (x )+2 f (x1)= x (x ≠0) ① 由x 1代入得 2f (x )+f (x 1)=x1(x ≠0) ② 解 ①② 构成的方程组,得 f (x )=x 32-3x (x ≠0). 五、特殊值法例5 设是定义在R 上的函数,且满足f (0)=1,并且对任意的实数x ,y , 有f (x -y )= f (x )- y (2x -y+1),求f (x )函数解析式.分析:要f (0)=1,x ,y 是任意的实数及f (x -y )= f (x )- y (2x -y+1),得到f (x )函数解析式,只有令x = y.解: 令x = y ,由f (x -y )= f (x )- y (2x -y+1) 得f (0)= f (x )- x (2x -x+1),整理得 f (x )= x 2+x+1.六、对称性法即根据所给函数图象的对称性及函数在某一区间上的解析式,求另一区间上的解析式.例6 已知是定义在R 上的奇函数,当x ≥0时,f (x )=2x -x 2,求f (x )函数解析式.解:∵y=f (x )是定义在R 上的奇函数, ∴y=f (x )的图象关于原点对称. 当x ≥0时,f (x )=2x -x 2的顶点(1,1),它关于原点对称点(-1,—1),因此当x<0时,y=2)1(+x -1= x 2 +2x.故 f (x )=⎩⎨⎧+-xx x x 2222 评注: 对于一些函数图象对称性问题,如果能结合图形来解,就会使问题简单化.。
求函数解析式的常见方法
求函数解析式的六种常用方法一、代入法:已知f (x )的解析式,求f(g(x))的解析式常用此方法。
例1:已知1)(2-=x x f ,求)(2x x f +的表达式。
解:1)()(222-+=+x x x x f 变式1:52)(+=x x f ,求)3(+x f二:换元法已知函数f(g(x))的解析式,求f(x)的解析式可以用换元法,即令g(x)=t,反之解出x,然后代入f(g(x)),从而求出f(x)。
例2 已知f (x x 1+)= xx x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 11-t (t ≠1), ∴f (t )= 111)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 注意:用换元法时,注意t 的取值范围。
变式2:已知21)1(x x x f -=,求f (x )的解析式.三、配凑法: 已知f(g(x))的解析式,求f(x)的解析式时,可从f(g(x))的解析式中配凑出g(x),用g(x)来表示,再将解析式两边的g(x)用x 代替即可。
例3:21)1(-+=+x x xx f , 求f (x )的解析式. 解:4)1(22)1()1(22--=--+=+x x x x x x f 4)(2-=∴x x f变式3:如x x x f 2)1(+=+,求f (x )的解析式.四、待定系数法已知函数的类型,可以用待定系数法求解,即由函数类型设出函数解析式,再根据条件列方程(组),通过解方程(组)求出待定系数,进而求出函数解析式例4:已知f (x )是二次函数,3)0(,7)2(,3)2(-=-=--=f f f ,求f (x )的解析式.解:设)0()(2≠++=a c bx ax x f , 因为3)0(,7)2(,3)2(-=-=--=f f f ⎪⎩⎪⎨⎧-=-=+--=++∴3724324c c b a c b a ⎪⎪⎩⎪⎪⎨⎧-==-=∴3121c b a 321)(2-+-=∴x x x f 变式4: 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式.四、方程组法已知f(x)与f(g(x))满足的关系式,要求f(x)时,可用个g(x)代替两边的x ,得到关于f(x)与f(g(x))的方程组,消去f(g(x))解出f(x)即可。
函数的解析式
2-x 1-x
③,
解由 ①, ②, ③ 组成的方程组,
得:
f(x)=
x3-x2-1 2x(x-1)
.
评注:
把
f(x),
f(
x-1 x
),
f(
1 1-x
)
都看作“未x). 又如: 已知 af(x)+b1xf( )=cx, 其
中, |a|≠|b|, 求 f(x).
恨恨地说,怎么着?这评书我是每天都听的,莫非今天拉了你,就得坏了我的规矩,让我不知道肖飞是怎么从鬼子眼皮底下逃出去的?你这个女人脑子有毛病! 我虽从感情上向着艨,但司机的话也不无道理. 别说肖飞还是有趣的故事,赶上毛头司机让你听汗毛都炸起的摇滚,不也 得忍了吗?我忙打圆场说,师傅,我这位朋友爱静,就请您把喇叭声拧小点,大家将就一下吧. 没想到首先反对我的是艨. 她说,这不是可以将就的事. 师傅愿意听《肖飞买药》,可以. 您把车停了,自个儿坐在树荫下,爱怎么听就怎么听,那是你的自由 .既然您是在从事服务性的 工作,就得以顾客为上帝. 司机故意让车颠簸起来,冷笑着说,怎么着?我就是听,你能把我如何?说完把声音扩到震耳欲聋. 艨毫不示弱地说,那你把车停下. 我们下车! 司机说,我就不停,你有什么办法?莫非你还敢跳车?! 艨坚定地说,我为什么要跳车?我坐 车,就是为了寻求便利. 我付了钱,就该得到相应的待遇,你无法提供合乎质量的服务,我就不付你报酬. 天经地义的事情,走遍天下我也有理. 我以为司机一定会大怒,把我们抛在公路上. 没想到在艨的逻辑面前,他真的把收音机关了,虽然脸色黑得好似被微波炉烘烤过度的虾饼. 司机终于把我们平安拉到了目的地. 下车后,我心有余悸. 艨却说,这个司机肯定会记住这件事的,以后也许会懂得尊重乘客. 吃饭时落座艨挑选的小馆,她很熟练地点了招牌菜. 艨说此次回国,除了见老朋友,最重要的是让自己的胃享享福,它被洋餐折磨得太久太痛苦了. 菜上得 很快,好像是自己的厨艺,艨一个劲地劝我品尝. 我一吃,果然不错,轮到艨笑眯眯地动了筷子,入了口,脸上却变了颜色,招来小姐. 你们掌勺的大厨,是不是得了重感冒?不舒服,休息就是,不宜再给客人做饭的. 艨很严肃地说. 小姐一路小跑去了操作间,很快回来报告说, 掌勺的人很健康,没有病的. 她一边说着,一边脸上露出嫌艨多此一举的神色. 我也有些怪艨,你也不是防疫站的官员,管得真宽. 忙说,快吃快吃,要不菜就凉了. 艨又夹了一筷子菜,仔细尝尝,然后说,既然大厨没生病,那就一定是换了厨师. 这菜的味道和往日不一样,盐 搁得尤其多. 我原以为是厨师生了感冒,舌苔黄厚,辨不出咸淡,现在可确定是换了人. 对吗?她征询地望着小姐. 小姐一下子萎靡起来,又有几分佩服地说,你的舌头真是神. 大厨今天有急事没来,菜果真是二厨代炒的. 真对不起. 小姐的态度亲切可人,我觉得大可到此为止. 不想艨根本不吃这一套,缓缓地说,在饭店里,是不应该说“对不起”这几个字的. 艨说,如果我享受了你的服务,出门的时候,不付钱,只说一声“对不起”,行吗? 小姐不语,答案显然是否定的. 艨循循善诱地说,在你这里,我所要的一切都是付费的. 用“对不起” 这种话安慰客人,不做实质的解决,往轻点说是搪塞,重说就是巧取豪夺. 这时一个胖胖的男人走过来,和气地说,我是这里的老板,你们的谈话我都听到了,有什么要求,就同我说吧. 是菜不够热,还是原料不新鲜?您要是觉得口感太咸的话,我这就叫厨房再烧一盘,您以为如何? 我想,艨总该借坡下驴了吧. 没想到艨说,我想要少付你钱. 老板压着怒火说,菜的价钱是在菜谱上明码标了的,你点了这道菜,就是认可了它的价钱,怎么能吃了之后杀价呢?看来您是常客,若还看得起小店,这道菜我可以无偿奉送,少收钱却是不能开例的. 艨不慌不忙地说, 菜谱上是有价钱不假,可你那是根据大厨的手艺定的单,现在换了二厨,他的手艺的确不如大厨,你就不能按照原来的定价收费. 因为你付给大厨的工钱和付给二厨的工钱是不一样的. 既然你按他们的手艺论价,为什么到了我这里,就行不通了呢? 话被艨这样掰开揉碎一说,理就 是很分明的事了. 于是艨达到了目的. 和艨进街上的公共厕所,艨感叹地说,真豪华啊,厕所像宫殿,这好像是中国改变最大的地方. 女厕所里每一扇洗手间的门都禁闭着,女人们站在白瓷砖地上,看守着那些门,等待轮到自己的时刻. 我和艨各选了一列队伍,耐心等待. 我的那扇门还好,不断地开启关闭,不一会就轮到了我. 艨可惨了,像阿里巴巴不曾说出“芝麻开门”的口诀,那门总是庄严地紧闭着. 我受不了气味,对艨说了声,我到外面去等你啊,便撤了出去. 等了许久,许多比艨晚进去的女人,都出来了,艨还在等待……等艨终于解决问题了以 后,我对艨说,可惜你站错了队啊. 艨嘻嘻笑着说,烦你陪我去找一下公共厕所的负责人. 我说,就是门口发手纸的老大妈. 艨说,你别欺我出国多年,这点规矩还是记得的. 她管不了事. 我要找一位负责公共设施的官员. 我表示爱莫能助,不知道这类官司是找环保局还是 园林局(因为那厕所在一处公园内). 艨思索了片刻. 找来报纸,毫不犹豫地拨打了上面刊登的市长电话. 我吓得用手压住电话叉簧,说艨你疯了,太不注意国情! 艨说,我正是相信政府是为人民办事的啊. 我说,一个厕所,哪里值得如此兴师动众? 艨说,不单单是 厕所. 还有邮局、银行、售票处等等,中国凡是有窗口和门口的地方,只要排队,都存在这个问题. 每个工作人员速度不同,需要服务的人耗时也不同,后面等待的人不能预先获知准确信息. 如果听天由命,随便等候,就会造成不合理、不平等、不公正……关于这种机遇的分配问题,作 为个人调查起来很困难,甚至无能为力. 比如我刚才不能一个个地问排在前面的女人,你是解大手还是解小手,以确定我该排在哪一队后…… 我说,艨你把一个简单的问题说得很复杂,简明扼要地告诉我,你打算在厕所里搞一场什么样的革命? 艨说,要求市长在厕所里设条一 米线,等候的人都在线外,这样就避免了排错队的问题,提高效率,大家心情愉快. 北美就是这样的. 我说,艨,你在国内还会上几次厕所?还会给谁寄钱或取邮件?我们浸泡其中都置若惘闻,你又何必这样不依不饶?你已是一个北美人,马上就要回北美去,还是到那里安稳享受你 的厕所一米线吧. 艨说,这些年,我在国外,没有什么本事,就是买买东西上上街. 我不像别的留学生回国,有很多报效国家的能力. 我只是一个家庭妇女,觉得那里有些比咱高明的地方,就想让这边学了来. 这几天我让你们陪我,是想让你们明白我的心. 我不是英雄,没法振臂一 呼,宣传我的主张;也不是作家,不会写了文章,让更多的人知道我的想法. 我只有让你们从我看似乖张的举动里,感觉到这世上有一个更合理的标准存在着,可以学习借鉴. 我为艨的苦心感动,但还是说,就算你说的有理,这些事也太小了. 要知道中国有些地方连温饱都没有解决 啊. 艨说,我对中国充满信心. 温饱解决之后,马上就会遭遇这些问题. 对于普通人来说,我们流泪,有多少是为了远方的难民?基本上都是因为眼睛里进了沙子. 身边的琐事标志着文明的水准. 现代化不是一个空壳,它是一种更公正更美好的社会. 我把压在电话叉簧之上的手 指松开了,让艨去完成找市长的计划. 那个电话打了很长,艨讲了许多她以为中国可以改进的地方,十分动情. 分手的时候,艨说,有些中国人入了外国籍以后,标榜自己是个“香蕉人”,意思是自己除了外皮是黄色的,内心已变得雪白. 而我是一个“芒果人”. 我说“芒果 人”,好新鲜. 怎么讲? 艨说,芒果皮是黄的,瓤也是黄的. 我永远爱我的祖国。 名家散文汇编:毕淑敏 风的青睐 ? 400年前的法国人蒙田,说过这样一句话——风不会对漫无目的者有所青睐…… 青睐是指一个人用黑眼珠子看着你。这是一句反话。意思是假如你有了坚定的 目的,整个大自然将帮助你。 风是什么呢?风是一股看不见摸不着的力量。风吹的时候,影响着我们,逆风或是顺风,对我们的速度和方向都强有力地制约着。就连飞机的钢铁巨翅,也不敢对风等闲置之。 人生的目的很重要。这个目的,是谁给我们预定的呢?没有人。你的父 母你的师长你的朋友,都可能参与你的目的的制定,但他们不是决定的力量。最后的赞成或是否决票,在你手里。如果你对自己说,我才不要什么人生的目的这种奇怪的东西,那么,你也是有一个目的了,那就是“虚无”。 一个没有方向感的人,如何行走呢?看看醉汉就明白了。 踉踉跄跄,东倒西歪,昏乱地嘟囔着,没有人知道他要到哪里去,更不知道他的归宿在何方……这种精神的吉普赛人,终生流浪在灵魂的荒原。 还有一些人,把某种流行的腐朽说法或是沉沦的误区,当成了自己的目的。这种镜花水月的伪目的,只能引诱感官的沉没和本能的麻痹。 目的的特征:通常是阔大的,依稀的,但它确实存在着,一如晨曦。你从未摸到晨曦,但你每天都可以看到它。即使乌云蔽日的时候,你也坚韧不拔地确信,在高远之处,晨曦依然发出红色温暖的光芒。 一个有目的的人,走路的姿势是向前的。他们通常不会在跌到之后,太长地抚 摸伤痛,短暂的昏厥之后迅速地清醒,用身边的树枝或是草叶,捆扎好伤口,蹒跚着上路了。他们走得慢,但很坚定,不会因为风险而避开既定的方向,也不会为路边一些小的花果而长期间地流连忘返。当然也有痴迷和混沌的时候,但他们能够重新恢复思考的冷静,从容向前…… 风的 青睐,是无价的礼物。只要你坚定地确立了自己的目标,努力下去,就会发现天地万物都来帮你了。 每天都冒一点险 一 ? ?"衰老很重要的标志,就是求稳怕变。所以,你想保持年轻吗?你希望自己有活力吗?你期待着清晨能在新生活的憧憬中醒来吗?有一个好办法——每天都冒一点 险。" ? ?以上这段话,见于一本国外的心理学小册子。像给某种青春大力丸做广告。本待一笑了之,但结尾的那句话吸引了我——每天都冒一点险。 ? ? "险"有灾难狠毒之意。如果把它比成一种处境一种状态,你说是现代人碰到它的时候多呢,还是古代甚至原始时代碰到的多呢?粗粗 一想,好像是古代多吧。茹毛饮血刀耕火种时,危机四伏。细一想,不一定。那时的险多属自然灾害,虽然凶残,但比较单纯。现代了,天然险这种东西,也跟热
函数解析式的几种基本方法及例题
求函数解析式的几种基本方法及例题:1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式。
(注意定义域)例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2).(2) 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=(x-2)=(x-2)2-1=x 2-4x+3.(2) 2)1()1(2-+=+x x x x f Θ, 21≥+x x2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
(注意所换元的定义域的变化)例2 (1) 已知x x x f 2)1(+=+,求)1(+x f(2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+=x t ,则1≥t ,2)1(-=t x Q x x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x(2)设.)(,,,111111111-=∴-=-===x x f t tt f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。
应用此法解题时往往需要解恒等式。
例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x,则应有.)(1212102242222--=∴⎪⎩⎪⎨⎧-=-==∴⎪⎩⎪⎨⎧=+-==x x x f c b a c a b a四、构造方程组法:已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
第05讲 函数解析式的求法高中数学常见题型解法归纳反馈训练及详细解析
【知识要点】一、求函数的解析式的主要方法有以下五种:1、待定系数法:假设函数解析式的类型〔函数是二次函数、指数函数和对数函数等〕时,可以用待定系数法.2、代入法:假设原函数)(x f 的解析式,求复合函数)]([x g f 的解析式时,可以用代入法.3、换元法:假设复合函数)]([x g f 的解析式,求原函数)(x f 的解析式时,可以用换元法.换元时,注意新“元〞的范围.4、解方程组法:假设抽象函数满足的关系式中有互为相反的自变量或互为倒数的自变量时,可以用解方程组的方法.5、实际问题法:在实际问题中,根据函数的意义求出函数的解析式. 【方法讲评】【例1】()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x .【点评】〔1〕此题由于函数的类型是一次函数,所以可以利用待定系数法求函数的解析式.〔2〕由于3(1)2(1)217f x f x x +--=+对于定义域内的任意一个值都成立,所以最后的5217ax b a x ++=+实际上是一个恒等式,所以可以比拟等式两边的系数分别相等列方程组.【例2】函数)sin(ϕ+ω=x A y 〔0,||)2πϖφ><的图形的一个最高点为〔2,2〕,由这个最高点到相邻的最低点时曲线经过〔6,0〕,求这个函数的解析式.【解析】由题得)A y wx φ=∴=+【点评】(1)对于三角函数,待定系数法同样适用,关键是通过条件找到关于待定系数的方程 〔组〕.(2)对于三角函数)sin(ϕ+ω=x A y 来说,一般利用最小正周期得到ω的方程,利用最值得到A 的方程,利用最值点得到ϕ的方程.【反响检测1】()f x 为二次函数,且 )2()2(--=-x f x f ,且(0)1f =,图象在x 轴上截得的线段长为22,求()f x 的解析式.【例3】函数2()21f x x x =+-,求函数(1)f x -的表达式. 【解析】由题得22(1)2(1)(1)123f x x x x x -=-+--=-【点评】此题就是原函数的解析式,求复合函数的解析式,所以只需直接用“1x -〞代换原函数中的“x 〞即可.这就是代入法求函数的解析式.【例4】函数)(x f 是定义在R 上的奇函数,且当),0(+∞∈x 时,)1()(3x x x f +=,求当)0,(-∞∈x 时,)(x f 的函数解析式.【点评】此题就是某区间的函数的解析式,求对称区间的解析式. 一般先在所求的函数的图像上 任意取一点,然后求出它的对称点的坐标,再把对称点的坐标代入对称点满足的方程.这是高中数学常见到的一种题型,要好好地理解和掌握. 学科.网【反响检测2】设函数1()f x x x=+的图象为1C ,1C 关于点(2,1)A 对称的图象为2C , 求2C 对应的函数()g x 的表达式.【例5】(1)lg f x x +=,求()f x .【解析】令21t x +=〔1t >〕,那么21x t =-,∴2()lg 1f t t =-,所以2()lg (1)1f x x x =>-.【点评】〔1〕此题就是复合函数的解析式,求原函数的解析式.一般先换元,再求出函数的自变量的表达式,再代入复合函数得到函数的解析式.〔2〕换元时,一定要注意新元的取值范围,它就是所求函数的定义域.【反响检测3】 (1cos )cos 2,f x x -=求()2x f 的解析式.方法四 解方程组法使用情景 抽象函数满足的关系式中有互为相反的自变量或互为倒数的自变量.解题步骤利用构造另一个方程,得到一个方程组,解方程组即可.【例6】()f x 满足12()()3f x f x x+=,求()f x . 【解析】12()()3f x f x x += ①,把①中的x 换成1x ,得132()()f f x x x+= ②, ①2⨯-②得33()6f x x x =-,∴1()2f x x x=-. 【点评】在的方程中有自变量x 和1x ,它们互为倒数,所以可以把方程中x 的地方统一换成1x,从而又得到一个关于1(),()f x f x 的方程,解关于1(),()f x f x的方程组即可.【反响检测5】定义在区间(1,1)-上的函数()f x 满足2()()lg(1)f x f x x --=+,求()f x 的表达式. 方法五 实际问题法 使用情景 实际问题解题步骤一般情况下根据函数的意义求出函数的解析式,要注意函数的定义域.【例7】某人开汽车以60/km h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50/km h 的速度返回A 地,把汽车分开A 地的路程()x km 表示为时间()t h 〔从A 地出发是开场〕的函数,再把车速v /km h 表示为时间()t h 的函数.【点评】实际问题中求函数的解析式难度比拟大,一般要认真读题,再根据函数的意义、自变量的意义及其它们之间的关系建立它们之间的函数关系.在写函数的解析式时,要注意函数的定义域.【反响检测6】 某公司消费一种产品的固定本钱为0.5万元,但每消费100件需要增加投入0.25万元,市场对此产品的需要量为500件,销售收入为函数()252x R x x =- ()05x ≤≤万元,其中x 是产品售出的数量〔单位:百件〕.〔1〕把利润表示为年产量的函数()f x ; 〔2〕年产量为多少时,当年公司所得利润最大.高中数学常见题型解法归纳及反响检测第05讲:函数解析式的求法参考答案【反响检测1答案】21()212f x x x =++ 【反响检测1详细解析】(0)bx c a ++≠2设二次函数的解析式为f(x)=ax 【反响检测2答案】12(4)4y x x x =-+≠- 【反响检测2详细解析】设(,)x y 是函数()g x 图象上任一点 ,那么关于(2,1)A 对称点为(4,2)x y --在()y f x = 上,即:1244y x x -=-+-即:124y x x =-+- 故1()2(4)4y g x x x x ==-+≠-. 【反响检测3答案】242()241(f x x x x =-+≤≤【反响检测5答案】21()lg(1)lg(1)(11)33f x x x x =++-+-<< 【反响检测5详细解析】【反响检测6答案】〔1〕()()()219105;242120.255x x x f x x x ⎧-+-≤≤⎪=⎨⎪->⎩〔2〕当年产量为475件时,公司所得利润最大.〔2〕当05x ≤≤时,()()2121.56254.7522f x x =--+∴当年产量为475件时,公司所得利润最大, ∵该产品最多卖出500件,∴根据问题的实际意义可得,当年产量为475件时,公司所得利润最大.。
求函数解析式的六种常用方法
求函数解析式的六种常用方法函数解析式指的是用代数式或公式来表示函数的方式。
以下是六种常用方法:一、明确函数定义域和值域在确定函数解析式之前,首先需要明确函数的定义域和值域。
函数的定义域是指函数可以取值的自变量的范围,而值域则是函数的函数值可以取的范围。
明确函数的定义域和值域可以帮助我们确定函数解析式的形式和特点。
二、利用已知条件和性质确定函数解析式在求函数解析式时,可以利用已知条件和性质来确定函数解析式的形式。
例如,已知函数的导函数,可以通过求导的逆运算确定原函数的解析式。
又如,已知函数的周期性质,可以利用周期性质来确定函数解析式的形式。
三、从实际问题中建立函数关系函数解析式可以从实际问题中建立起来。
在解决实际问题时,可以首先建立自变量和函数值之间的关系,然后根据问题中给出的条件来确定函数解析式。
例如,求解经济学中的需求函数、生长模型等。
四、利用已知函数的性质和运算建立函数解析式在求函数解析式时,可以利用已知函数的性质和运算来建立函数解析式。
例如,可以利用已知函数的线性性质、对称性质、指数性质等来建立函数解析式。
又如,可以利用已知函数的运算性质,如加减乘除、复合等来建立函数解析式。
五、利用恒等式和方程组建立函数解析式在求解一些复杂的函数问题时,可以利用恒等式和方程组来建立函数解析式。
通过列方程并求解,可以得到函数解析式中的一些未知系数。
例如,可以通过建立差分方程求解离散函数的解析式。
六、利用已知函数的级数展开建立函数解析式在求解一些函数的解析式时,可以利用已知函数的级数展开式来建立函数解析式。
通过逐项求和,可以得到函数解析式的形式。
例如,可以利用幂级数展开来确定一些特殊函数的解析式。
求函数解析式的几种方法
求函数解析式的几种方法函数的表示方法有三种:解析式法、图像法、列表法,其中最常用的是解析式法,下面介绍几种求函数解析式的方法。
一、利用换元法求函数的解析式。
例1、已知函数f(ex)=x2+1,求函数f(x)的解析式。
解:设ex=t,t>0,则x=㏑t, f(t)=㏑2t+1.则f(x)=㏑2x+1 (x>0).注:已知f[g(x)]是关于x的函数即f[g(x)]=F(x) 求函数f(x)的解析式。
通常令g(x)=t,解出x=φ将x=φ代入f[g(x)]=F(x)中,求得f(t) 的解析式,再用x替换t便得f(x) 的解析式。
用换元法求函数解析式时,如果所求函数的定义域不是全体实数,需要根据实际情况标明函数的定义域.二、根据函数的奇偶性求函数的解析式。
例2、设f(x)是定义在R上的奇函数,且当x∈(0,﹢∞)时f(x)=x2+lg(1+x), 求函数f(x)的解析式。
解:设x∈(-∞,0),则-x∈(0,﹢∞)。
f(x)=-f(-x)=-x-lg(1-x)则当x∈(0,﹢∞),f(x)=x2+lg(1+x),x=0时,f(x)=0 x∈(-∞,0),f(x)=-x2-lg(1-x)三、消元法求函数的解析式。
例3、已知函数f(x)满足3f(x)+2f()=4x, 求函数f(x)的解析式.解:用代换x,列方程组解f(x)3f(x)+2f()=4x, 3f()+2f(x)=解得f(x)=x- 。
注:此题是利用消元法和函数奇偶性求函数的解析式.四、根据对称性求函数的解析式。
例4、已知函数f(x)=x2-2x, x∈[2,3],且f(x)关于(2,0)中心对称,求x∈[1,2]上的解析式。
解:设p(x,y)是x∈[1,2]图像上的点,则其关于(2,0)的对称点为Q(4-x,-y),则-f(x)=(4-x)2-2(4-x) f(x)=-(4-x)2+2(4-x)。
五、利用赋值法求函数的解析式。
例5、已知函数y= f(x)对任意实数x. y均满足f(x-y)=f(x)-y(2x-y+1)且f(0)=1,求函数y= f(x)的解析式。
求函数解析式的六种常用方法
求函数解析式的九种常用方法一、换元法已知复合函数f [g (x)]的解析式,求原函数f(x)的解析式, 把g (x)看成一个整体t ,进行换元,从而求出f(x)的方法。
例1 已知f(xx 1+)= x x x 1122++,求f(x)的解析式. 解: 设x x 1+= t ,则 x= 11-t (t ≠1), ∴f (t)= 111)11(1)11(22-+-+-t t t = 1+2)1(-t +(t-1)= t 2-t+1 故 f (x)=x 2-x +1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f(x +1)= x+2x ,求f (x)的解析式.解: f (x +1)= 2)(x +2x +1-1=2)1(+x -1,∴ f(x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x,则有f(x)= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、待定系数法已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。
例3 已知二次函数f(x)满足f(0)=0,f(x+1)= f(x)+2x+8,求f (x )的解析式.解:设二次函数f(x )= ax 2+bx+c,则 f(0)= c= 0 ①f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a +b)x+a+b ② 由f(x+1)= f (x)+2x +8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f(x)= x 2+7x.评注: 已知函数类型,常用待定系数法求函数解析式.四、消去法(方程组法)例4 设函数f (x )满足f(x )+2 f(x 1)= x (x ≠0),求f (x )函数解析式. 分析:欲求f(x),必须消去已知中的f(x 1),若用x 1去代替已知中x,便可得到另一个方程,联立方程组求解即可.解:∵ f(x )+2 f(x1)= x (x ≠0) ① 由x 1代入得 2f(x)+f(x 1)=x1(x ≠0) ② 解 ①② 构成的方程组,得 f(x )=x 32-3x (x ≠0). 评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程 练习:已知定义在R 上的函数满足,求的解析式。
函数解析式的七种求法
函数解析式的七种求法一、通过给定的输入和输出求解析式。
这是最简单直接的方法,当给定了函数的输入和输出时,可以利用这些已知信息求解析式。
例如,如果一个函数在输入为1时输出为3,在输入为2时输出为5,我们可以直接写出函数解析式为f(x)=2x+1二、基于已知函数的变换求解析式。
对于已知的一些基本函数,例如线性函数、多项式函数、指数函数、对数函数等,我们可以通过对它们进行变换得到其他函数的解析式。
例如,如果已知函数f(x)=x^2,我们可以通过对f(x)进行变换得到f(x)=(x-1)^2+1三、利用函数的性质和特点求解析式。
对于一些特殊函数,例如奇函数、偶函数、周期函数等,可以利用它们的性质和特点来求解析式。
例如,如果一个函数是奇函数,那么它的解析式中只包含奇次幂项,可以利用这个特点来求解析式。
四、利用已知函数的级数展开求解析式。
对于一些复杂的函数,可以利用已知函数的级数展开进行逼近,从而得到函数的解析式。
例如,可以利用泰勒级数展开求得函数的解析式,只需要计算到足够高的阶数即可。
五、利用已知函数的导数和积分求解析式。
对于一些函数,可以通过对它们的导数和积分进行运算得到其他函数的解析式。
例如,如果已知一个函数的导数或积分,可以通过对这个导数或积分进行逆运算来求得函数的解析式。
六、基于已知函数的函数逼近求解析式。
对于一些复杂的函数,可以利用一些已知的简单函数进行逼近,从而得到函数的解析式。
例如,可以利用多项式函数对一个非多项式函数进行逼近,从而得到函数的解析式。
七、利用差分方程或微分方程求解析式。
对于一些具有差分方程或微分方程性质的函数,可以通过求解这些方程来得到函数的解析式。
例如,可以利用差分方程或微分方程求解线性递推函数的解析式。
以上是七种常用的求解函数解析式的方法。
不同方法适用于不同情况,根据具体的问题和已知信息选择合适的方法可以更高效地求解函数的解析式。
求函数解析式的6种方法
求函数解析式的6种方法一、待定系数法待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数,指数函数,对数函数、幂函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。
其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。
例1 (1)已知二次函数()f x 满足(1)1f =,(1)5f -=,图象过原点,求()f x ;(2)已知二次函数()f x ,其图象的顶点是(1,2)-,且经过原点,()f x .(3)已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式 (4)已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式.解:(1)由题意设 2()f x ax bx c =++, ∵(1)1f =,(1)5f -=,且图象过原点,∴150a b c a b c c ++=⎧⎪-+=-⎨⎪=⎩ ∴320a b c =⎧⎪=-⎨⎪=⎩∴2()32f x x x =-.(2)由题意设 2()(1)2f x a x =++,又∵图象经过原点,∴(0)0f =,∴20a += 得2a =-, ∴2()24f x x x =--.(3)解析:设2()f x ax bx c =++ (a ≠0) 由(0)0,f =得c=0由(1)()1f x f x x +=++ 得22(1)(1)1a x b x c ax bx c x ++++=++++ 整理得 ax 2+(2a+b)x+a+b+c=ax 2+(b+1)x+c+1得 212211120011()22a ab b a bc c b c c f x x x⎧=⎪+=+⎧⎪⎪⎪++=+⇒=⎨⎨⎪⎪=⎩=⎪⎪⎩∴=+(4)解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ②由f (x+1)= f (x )+2x+8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f (x )= x 2+7x. 例2 (1)已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式。
1.2.2(2)函数的解析式的5种解法
f ( x) x x 1
2
1 1 , 求f ( x ). 练习1 4. 已知f ( x 1 ) x 2
2
x
x
x
练习2 设f(2x–3)=4x+5, 求f(x).
练习3 已知f ( x)是一次函数,且满足 3f(x 1) - 2f(x-1) 2x 17,求 f(x).
2
三、【待定系数法】
若已知 f ( x) 的结构时,可设出含参数的表达式,再根据已知条件, f ( x) 列方程或方程组,从而求出待定的参数,求得 的表达式。
k y kx(k 0) y x (k 0) 正比列函数 反比列函数
y kx b(k 0)
一次函数
y ax2 bx c(a 0)
2
x (t 1) 2
②等式变形(用 t 表示 x ) ④把 t 换成 x
解题步骤
① 令g( x ) t ③求出f(t)
二、【换元法】 已知 f ( g ( x)) 的表达式,欲求 f ( x) ,我们常设 t g ( x)
解题步骤: ① 令g( x ) t ③求出f(t)
2
②等式变形(用 t 表示 x ) ④把 t 换成 x
练习、已知 2 f ( x) f ( x) x, 求f ( x).
解: 2 f ( x) f ( x) x, 令x取 x,
得2 f ( x) f ( x) x
于是得到关于 f ( x)与f ( x)方程组如下:
2 f ( x) f ( x) x
练1.已知f(x)是一次函数,且f[f(x)]=4x-1, 求f(x)的解析式
七种求法函数解析式
七 种 求 法函 数 解 析 式一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f解:设b ax x f +=)( )0(≠a ,则b ab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f , 21≥+xx 2)(2-=∴x x f )2(≥x三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3 已知x x x f 2)1(+=+,求)1(+x f解:令1+=x t ,则1≥t ,2)1(-=t xx x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。
例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点则⎪⎩⎪⎨⎧=+'-=+'3222y y x x ,解得:⎩⎨⎧-='--='y y x x 64 , 点),(y x M '''在)(x g y =上x x y '+'='∴2把⎩⎨⎧-='--='yy x x 64代入得: )4()4(62--+--=-x x y整理得672---=x x y ∴67)(2---=x x x g五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
高中数学:求函数解析式的10种常见方法
高中数学:求函数解析式的10种常见方法一、配凑法:给定$f(x+1)=x-3x+2$,求$f(x)$。
练1:设函数$f(x)=2x+3$,$g(x+2)=f(x)$,求$g(x)$。
练2:设$f(f(x))=x^2+2$,求$f(x)$。
练3:设$f(x+2)+f(x)=x^3+x$,求$f(x)$。
二、待定系数法:例1:如果反比例函数的图像经过点$(1,-2)$,那么这个反比例函数的解析式为$\frac{-2}{x-1}$,求$f(x)$。
练1:在反比例函数$y=\frac{k}{x}$的图像上有一点P,它的横坐标$m$与纵坐标$n$是方程$t^2-4t-2=0$的两个根,求$k$。
练2:已知二次函数$f(x)$满足$f(x+1)=f(x)+2x+8$,求$f(x)$的解析式。
练3:已知$f(x-2)=2x-9x+13$,求$f(x)$。
三、换元(或代换)法:例1:已知函数$f(\frac{1-x}{1+x})=\frac{1+x}{1-x}$,求:(1)$f(2)$的值;(2)$f(x)$的表达式。
练1:已知$f(x+1)=x+2x$,求$f(x)$及$f(x^2)$;练2:已知$f(x)=\frac{1}{2}x+\frac{1}{x}$,求$f(x+1)$.四、消去法:例1:设函数$f(x)$满足$f(x)+2f(\frac{1}{x})=x$,求$f(x)$.练1:已知$f(x)-2f(-x)=3x+2$,求$f(x)$.练2:已知定义在R上的函数$f(x)$满足$f(-x)+2f(x)=x+1$,求$f(x)$.练3:已知$f(x)+3f(-x)=2x+1$,求$f(x)$.练4:设函数$f(x)$满足$af(x)+bf(\frac{1}{x})=cx$(其中$a,b,c$均不为$0$,且$a\neq\pm b$),求$f(x)$.五、反函数法:例1:已知$f(a^2-x^2)=x$,求$f(x)$。
高中数学-求函数解析式的六种常用方法
高中数学-求函数解析式的六种常用方法求函数解析式是高中数学中的重要内容之一,常用的方法有六种。
下面分别介绍这六种方法。
一、换元法如果已知复合函数$f[g(x)]$的解析式,要求原函数$f(x)$的解析式,可以令$g(x)=t$,求$f(t)$的解析式,再把$t$换为$x$即可。
例如,已知$f(x)=\frac{x^2+11x+1}{x(x+1)}$,要求$f(x)$的解析式。
设$g(x)=\frac{1}{x}$,则$x=\frac{1}{g(x)}$,代入$f(x)$得$f(g(x))=\frac{g(x)^2+11g(x)+1}{g(x)+1}$,再令$t=g(x)$,则$f(t)=\frac{t^2+11t+1}{t+1}$,最后把$t$换为$x$,得到$f(x)=\frac{x^2+11x+1}{x(x+1)}$。
二、配凑法如果已知$f(x+1)=x+2x^2$,要求$f(x)$的解析式,可以使用配凑法。
首先,把$x+1$视为自变量$x$,则有$f(x)=x^2-1$,但要注意函数的定义域的变化,即$x+1\geq 1$,即$x\geq 0$。
三、待定系数法如果已知函数类型,可以使用待定系数法求函数的解析式。
例如,已知二次函数$f(x)$满足$f(0)=0$,$f(x+1)=f(x)+2x+8$,要求$f(x)$的解析式。
设$f(x)=ax^2+bx+c$,代入已知条件得到$c=0$,$a+b=8$,$2a+b=0$,解得$a=1$,$b=7$,$c=0$,所以$f(x)=x^2+7x$。
四、消去法如果已知$f(x)+2f(\frac{1}{x})=\frac{x}{x-1}$,要求$f(x)$的解析式,可以使用消去法。
把已知中的$f(\frac{1}{x})$用$f(x)$表示出来,得到$2f(x)+f(\frac{1}{x})=\frac{x}{x-1}$,再把$x$换成$\frac{1}{x}$,得到$2f(\frac{1}{x})+f(x)=\frac{1}{x-1}$,解得$f(x)=-\frac{x}{3(x-1)}$。
函 数 解 析 式 的 五 种 求 法
函 数 解 析 式 的 五 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f解:设b ax x f +=)( )0(≠a ,则b ab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f , 21≥+xx 2)(2-=∴x x f )2(≥x三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3 已知x x x f 2)1(+=+,求)1(+x f解:令1+=x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
例5 设,)1(2)()(x xf x f x f =-满足求)(x f 解 x xf x f =-)1(2)( ① 显然,0≠x 将x 换成x1,得: xx f x f 1)(2)1(=- ② 解① ②联立的方程组,得:xx x f 323)(--= 例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式 解 )(x f 为偶函数,)(x g 为奇函数,)()(),()(x g x g x f x f -=-=-∴又11)()(-=+x x g x f ① , 用x -替换x 得:11)()(+-=-+-x x g x f 即11)()(+-=-x x g x f ② 解① ②联立的方程组,得11)(2-=x x f , xx x g -=21)( 五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。
高中数学:求函数解析式的10种常见方法
求函数解析式的几种常用方法一、配凑法:例1:设23)1(2+-=+x x x f ,求)(x f .练1:设函数()23,(2)()f x x g x f x =++=,求()g x 。
练2:设21)]([++=x x x f f ,求)(x f .练3:设33221)1(,1)1(xx x x g x x x x f +=++=+,求)]([x g f .二、待定系数法:例1:如果反比例函数的图象经过点(1,2)-,那么这个反比例函数的解析式为 。
练1:在反比例函数k y x=的图象上有一点P ,它的横坐标m 与纵坐标n 是方程2420t t --=的两个根,求反比例解析式。
练2:已知二次函数()x f 满足()00=f ,()()821++=+x x f x f ,求()x f 的解析式。
练3:已知1392)2(2+-=-x x x f ,求)(x f .三、换元(或代换)法: 例1:已知函数1()1x f x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式练1:已知1)f x =+()f x 及2()f x ;练2:已知22111(),x x f x x x++=+求()f x .四、消去法:例1:设函数()f x 满足()x x f x f =⎪⎭⎫ ⎝⎛+12,()0≠x ,求()f x .练1:已知1()2()32f x f x x-=+,求()f x .练2:已知定义在R 上的函数()f x 满足()()12+=+-x x f x f ,()0≠x ,求()f x .练3:已知()3()21f x f x x +-=+,求()f x .练4:设函数()f x 满足1()()af x bf cx x+=(其中,,a b c 均不为0,且a b ≠±),求()f x .五、反函数法:例1:已知2)(21+=-x af x ,求)(x f .练1:已知函数1ln +=x y ,()0>x ,求它的反函数六:函数性质法例1:已知()f x 是定义在R 上的奇函数,当0x >时,2()31f x x x =+-,求()f x 的解析式.练1:已知()f x 是定义在R 上的奇函数,当0<x 时,()13-=x x f ,求()f x 的解析式.例1:设)(x f 是定义在N 上的函数,满足1)1(=f ,对于任意正整数y x ,,均xy y x f y f x f -+=+)()()(,求)(x f .练1:设定义在R 上的函数)(x f ,且满足()10=f ,并且对于任意实数y x ,均有()()()12+--=-y x y x f y x f ,求)(x f .练2:设定义在R 上的函数)(x f ,对于任意实数y x ,均有()()()()1232++-+=-y x x y f x f y x f ,求)(x f .练3:已知偶函数()f x 的定义域是R ,当0x ≤时2()31f x x x =--,求()f x 的解析式.例1:已知a f N x x f x f =*∈+=+)1()(),(212)1(且,求)(x f .综合运用 例1:(1)已知3311()f x x x x+=+,求()f x ; (2)已知2(1)lg f x x+=,求()f x ; (3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知()f x 满足12()()3f x f x x+=,求()f x 。
(完整版)求函数解析式的六种常用方法
求函数解析式的九种常用方法一、换元法已知复合函数 f [g (x )]的解析式,求原函数f (x )的解析式,把g (x )看成一个整体t ,进行换元,从而求出f (x )的方法。
例1已知f (x x 1)= xxx 1122,求f (x )的解析式.解:设xx 1= t ,则x=11t (t ≠1),∴f (t )= 111)11(1)11(22t t t = 1+2)1(t +(t -1)= t 2-t+1故f (x )=x 2-x+1 (x ≠1).评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f (x +1)= x+2x ,求f (x )的解析式.解:f (x +1)= 2)(x +2x +1-1=2)1(x-1,∴f (x +1)= 2)1(x-1 (x +1≥1),将x +1视为自变量x ,则有f (x )= x 2-1 (x ≥1).评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、待定系数法已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。
例3已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则f (0)= c= 0①f (x+1)= a 2)1(x+b (x+1)= ax 2+(2a+b )x+a+b②由f (x+1)= f (x )+2x+8 与①、②得822ba b b a 解得.7,1ba 故f (x )= x 2+7x.评注: 已知函数类型,常用待定系数法求函数解析式.四、消去法(方程组法)例4设函数f (x )满足f (x )+2 f (x1)= x (x ≠0),求f (x )函数解析式.分析:欲求f (x ),必须消去已知中的f (x1),若用x1去代替已知中x ,便可得到另一个方程,联立方程组求解即可. 解:∵f (x )+2 f (x1)= x (x ≠0)①由x1代入得2f (x )+f (x1)=x1(x ≠0)②解①②构成的方程组,得f (x )=x32-3x (x ≠0).评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程练习:已知定义在R 上的函数满足,求的解析式。
求解析式的方法
求解析式的方法一、代数法。
代数法是求解析式的常用方法之一。
当我们遇到一些复杂的数学问题时,可以通过引入未知数,建立方程,然后利用代数运算的性质进行求解。
例如,对于一道简单的线性方程题目,我们可以设未知数为x,建立方程式2x+3=7,然后通过化简方程,得出x=2的解析式。
二、几何法。
几何法是求解析式的另一种常用方法。
在一些几何问题中,我们可以通过画图的方式,利用几何关系进行分析,从而得到问题的解析式。
例如,对于一个三角形的面积问题,我们可以通过画图,利用三角形的面积公式S=1/2底高,求解出三角形的面积。
三、逆向思维法。
逆向思维法是求解析式的另一种常用方法。
有时候,我们可以通过逆向思维,反过来思考问题,从而得到问题的解析式。
例如,对于一个复杂的函数问题,我们可以通过反推函数的性质,逆向求解出函数的解析式。
四、数学归纳法。
数学归纳法是求解析式的一种重要方法。
通过观察数列或者图形的规律,我们可以通过数学归纳法来求解出问题的解析式。
例如,对于一个数列问题,我们可以通过观察数列的规律,然后利用数学归纳法来求解出数列的解析式。
五、综合运用法。
综合运用法是求解析式的一种灵活方法。
在实际问题中,我们可以根据具体情况,灵活运用代数法、几何法、逆向思维法、数学归纳法等多种方法来求解出问题的解析式。
通过综合运用不同的方法,我们可以更好地理解问题,并得到准确的解析式。
总结:求解析式是数学学习中的重要内容,掌握求解析式的方法对于提高解题能力至关重要。
通过代数法、几何法、逆向思维法、数学归纳法以及综合运用法,我们可以更好地求解出问题的解析式,从而更好地理解和解决数学问题。
希望本文介绍的方法能够帮助大家更好地掌握求解析式的技巧,提高数学学习的效果。