椭圆轨道上行星运动速度和能量资料

椭圆轨道上行星运动速度和能量资料
椭圆轨道上行星运动速度和能量资料

卫星椭圆轨道问题探析

通过对万有引力知识的学习,我们知道,发射卫星的最小速度是速度),此时卫星以最大速度绕地球表面作圆周运动;当发射速度达gR 2时(又称第二宇宙速度),卫星以地球球心为焦点作抛物线运动,当然再也不可能返回地球,因为抛物线为非闭合曲线;当发射速度介于gR 和gR 2之间时,卫星作椭圆运动,并随发射速度的增大椭圆越扁,地球为椭圆的一个焦点,发射点为近地点;当卫星速度大于gR 2而小于第三宇宙速度时,它将在地球引力范围内作双曲线运动,当卫星脱离地球引力后,将绕太阳运动成为太阳的一个行星,如果控制发射速度和轨道,它也可成为其它行星的卫星;当发射速度大于第三宇宙速度时,卫星将脱离太阳系的束缚,向其他星系运动。

对于圆轨道,由于卫星受到的万有引力刚好提供卫星运动的向心力,因此可方便地可以求解出卫星在圆轨道上运动的速度、加速度、周期等物理量。但对于椭圆轨道,相对来说求解某些问题有一定的困难,下面就卫星椭圆轨道的几个问题逐一分析说明。

一、椭圆上任一点的曲率半径。 根据数学知识,曲率半径由公式3

222

)x y r y x x y ''+=''''''

-(给出,为了便于求导,借助椭圆的参数方程cos x a φ=,sin y b φ=(a 、b 分别为椭圆的半长轴、半短轴),把x 、y 的一、二阶导数代入r 表达式,有322222sin cos )a b r ab φφ+=(.在远地点和近地点,参数Φ分别取0、π

代入,得到在椭圆上(,0)a ±这两个点所在处的曲率半径相同,等于2

b a

,不等于a c +或a c -,式中c 为椭圆焦距。该知识点中的数学能力要求已超出高中要求,但是其结论有必要作适当的介绍。

例题1:某卫星沿椭圆轨道绕地球运行,近地点离地球中心的距离是c ,远地点离地球中心的距离为d ,若卫星在近地点的速率为c v ,则卫星在远地点时的速率d v 是多少?

解析:做椭圆运动的卫星在近地点和远地点的轨道曲率半径相同,设都等于r 。所以,在近地点时有22c v Mm G m c r =,在远地点时有22d v Mm G m d r =,上述两式相比得c d v d v c

=,故d c c v v d =

。学生易错的解是:卫星运行所受的万有引力提供向心力,在近地点时,有

22c v Mm G m c c =,在远地点时有22d v Mm G m d d =

,上述两式相比得c d V V =

d c V =,以上错误在于认为做椭圆运动的卫星,在近地点和远地点的轨道曲率半径不同,且分别为c 和d ,这种错误在知道了椭圆曲率半径的概念后就不会犯了。

二、卫星在椭圆轨道上运动到任何一点的加速度和向心加速度。 根据牛顿第二定律,卫星在椭圆轨道上运动到任何一点的加速度由公式2Mm G ma R

=求解,式中R 为地球球心到卫星的距离,即椭圆的一个焦点到卫星的距离。卫星在圆轨道上做匀速圆周运动时,万有引力全部用来提供向心力,这时卫星的加速度就是向心加速度,而在椭圆轨道上运动的卫星,万有引力没有全部用来提供向心力,向心加速度将不再等于卫星在轨道上运动的加速度。 卫星在轨道上某点运动的向心力为2

n v F m r

=,式中r 是该点所在椭圆轨道的曲率半径,向心加速度n n F a m

=,在远地点,卫星受到地球的万有引力2G Mm F G R =,式中R 是卫星和地球地心之间的距离。卫星此时运动所需要的向心力2

n v F m r

=, r R ≠,且G n F F =,卫星此时的加速度等于向心加速度,即n a a =,卫星之后在万有引力作用下向地球靠近做向心运动,万有引力产生两个作用效果,一方面提供沿轨道切向的切向力,对卫星做正功,使卫星速率越来越大,另一方面提供向心力,不断改变卫星的运动方向,万有引力产生的切向加速度a τ和法向加速度即向心加速度n a 之间的关系,如图1所示。到达近地点时,G n F F =,n a a =,卫星之后远离地球做离心运动,万有引力同样产生两个作用效果,一方面提供沿轨道切向的切向力,对卫星做负功,使卫星速率越来越小,另一方面提供向心力,不断改变卫星的运动方向,直到远地点,周而复始。在整个运动过程中,只有近地点和远地点两个位置,G n F F =,n a a =,其他位置n a a ≠。

例题2:发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图2所示。则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:

A 、卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度

B 、卫星在轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度

C、卫星在轨道3上的速率大于在轨道1上的速率

D、卫星在轨道3上的角速度小于在轨道1上的角速度

解析:根据牛顿第二定律可得

2

r

GM

m

F

a=

=,即卫星的加速度a只与卫星到地心的距离r 有关,所以A选项错误,B选项正确。因为轨道1和轨道3是圆轨道,所以

2

2

2

Mm v

G mr m

r r

ω

==,所以V=

r

GM

3

r

GM

=

ω,即D选项正确,C选项错误。

三、卫星在椭圆轨道上运动的周期。

根据开普勒第三定律,所有地球的卫星,无论轨道是圆,还是椭圆,它们运动周期的平方和半长轴的三次方之比是定值。圆形轨道的半长轴就是圆的半径。

例题3:飞船沿半径为R的圆周绕地球运动,其周期为T,如果飞船要返回地面,可在轨道上某一点A处将速率降低到适当值,从而使飞船沿着以地心为焦点的椭圆轨道运动,椭圆与地球表面在B点相切,地球半径为R0,如图3所示。求飞船由A点到B点所需的时间。

解析:设飞船的椭圆轨道的半长轴为a,由图可知0

2

R R

a

+

=.设飞船沿椭圆轨道运行的周期为T′,由开普勒第三定律得:

33

23

R a

T T

=

'

.飞船从A到B的时间

2

T

t

'

=.由以上三式求解得t==

四、圆规道和椭圆轨道之间的变换。

根据例题2可知,在发射卫星的过程中,受运载火箭发射能力的局限,卫星往往不能直接由火箭送入最终运行的空间轨道,而是要在一个椭圆轨道上先行过渡。在地面跟踪测控网的跟踪测控下,选择合适时机向卫星上的发动机发出点火指令,通过一定的推力改变卫星的运行速度,通常要在椭圆轨道与圆轨道相切点开动发动机进行加速来实现变轨,实现发射目标。从圆

图2

a

图1 图3

轨道1变换到椭圆轨道2,火箭要在轨道1和轨道2的相切点附近进行助推,让此时卫星受到的万有引力不足以提供卫星运动的向心力,卫星开始沿椭圆轨道2做离心运动,速率越来越小,在远地点附近卫星的速度较小,卫星所受的万有引力大于所需的向心力,卫星将做向心运动,在此时对卫星进行加速,使万有引力刚好提供卫星在轨道3上做圆周运动的向心力,使卫星从椭圆轨道2变换到圆规道3上运行。卫星返回时,通过相反的过程回到地面。

例题4:如下图是我国“嫦娥一号”发射及绕月简图,设下图中卫星是逆时针方向运动的,阅读如下材料回答问题:2007年10月25日17时55分,北京航天飞行控制中心对嫦娥一号卫星实施首次变轨并获得成功,首次变轨是在远地点发动机点火使卫星加速的。卫星的近地点高度由约200公里抬高到了约600公里,如图4所示,卫星正式进入绕地16小时轨道。接下来卫星在近地点处还要借助自身发动机的推动,经过三次变轨即进入绕地24小时轨道、绕地48小时轨道,最后进入地月转移轨道,经过漫长的运行后接近月球,在月球近月点的位置仍要借助自身的发动机的作用,使卫星的速度发生变化,被月球引力俘获后进入绕月12小时轨道、绕月3.5小时轨道,最终进入绕月127分钟的圆形轨道,进行约一年的月球探索之旅。

关于卫星在绕地由16小时轨道到48小时轨道、绕月由12小时轨道到127分钟轨道的过程中下列说法正确的是( )

A 、卫星绕地、绕月运行均需要向后喷气加速,才能到相应的轨道。

B 、卫星绕地运行需要向后喷气加速,才能到相应的轨道。

C 、卫星绕地、绕月运行均需要向前喷气减速,才能到相应的轨道。

D 、卫星绕月运行需要向前喷气减速,才能到相应的轨道。

解析:卫星在绕地16

小时轨道上运行时,到达近地点处,应该是向后喷气,据反冲现象图4

得速度增大,所需要的向心力增大,而此时地球与卫星之间的引力不变化,即向心力不足,做离心运动,“嫦娥一号”到绕地24小时的轨道上运行。同理到达预定时间在近地点加速到绕地48小时轨道上运行,第四次变轨指的是最后一次在近地点加速到地月转移轨道上,这才是真正意义上的奔月。通过分析知B 正确。

卫星在绕月12小时轨道上运行时,到达近月点处,应该是向前喷气,据反冲现象使速度减小,所需要的向心力减小,而此时卫星所受的引力不变化,即引力大于运动物体所需要的向心力,达到此条件,物体就要离开原来的轨迹向内部做向心运动,“嫦娥一号”到绕月 3.5小时的轨道上运行。同理到达预定时间在近月点减速到绕月127分钟轨道上圆周动,通过分析知D 正确。

五、卫星在椭圆轨道上运动的机械能。

卫星在轨道上运动的总机械能E 等于其动能和势能之和。根据万有引力定律,地球和卫星之间的引力势能为P GMm E R

=-,式中R 是地球地心和卫星之间的距离。动能212

K E mv =,卫星在运动过程中,不考虑其他星体对它的作用,其机械能守恒。 如图4所示,A 、B 两点为卫星运动的近地点和远地点,A v 、B v 分别表示卫星在这两点的速度。根据例题1的结论,可得.......(1)A B v a c v a c

+=-, 卫星在A 、B 两点的机械能分别为: 21......(2)2A A GMm E mv a c =

--, 21......(3)2B B GMm E mv a c =-+, 根据机械能守恒,......(4)A B E E =,由(1)(2)(3)(4)式可解得2()()A a c GM v a c a +=

-,2()()B a c GM v a c a

-=+,把结果代入(2)和(3)式,得到卫星运动的总机械能2GMm E a =-。从此式可看出,在以地球为焦点的若干个椭圆轨道中,椭圆的半长轴越长,卫星的总机械能越大,发射时需要的能量就越大,因此发射高轨道卫星难度较大。

以上是针对地球和地球的卫星展开讨论的,对于太阳系或其他星系中行星椭圆轨道的一些规律和上述情况类似。

B

图4

卫星在椭圆轨道上的速度和能量的一个推论

图1给出了一个圆轨道和一个椭圆轨道,其中圆轨道的半径与椭圆轨道的半长轴相等。P 、Q 两点为两轨道的交点。我们要说的推论是:

在椭圆轨道上的卫星运动到P 或Q 时,其速率等于在圆轨道上运动的卫星的速率。

这个命题的证明是简单的。我可以设在两个轨道上运动的卫星的质量相等而不影响研究它们的速度关系。这样一来,由于圆轨道的半径与椭圆轨道的半长轴相等,由“椭圆轨道上的卫星的速度和能量”一文得到的结论可知,两物体在各自的轨道上运动过程中机械能守恒且二者的机械能相等。当椭圆轨道上的卫星运动到P 点或Q 点时,二者具有相同的重力势能,因而具有相同的动能,从而得到具有相同的速率。

当椭圆轨道上的卫星运动到P 或Q 时,有a r =。由上面的结果可以知道,此时a

GM v =,这正是半径为a 的圆轨道上的卫星的运行速率。至此,我们证明了前面提到的推论。

我们可以把结论用文字表述为(如图1所示)

<1>当卫星在P 、Q 左边半个椭圆轨道上运动时,由于a r <,所以有a GM v >

,即大于在圆轨道上运动的卫星的速度。

<2>当卫星经过P 、Q 点时,由于有由于a r =,所以有a GM v =

,即等于在圆轨道上运动的卫星的速度。

<3>当卫星在P 、Q 右边半个椭圆轨道上运动时,由于a r >,所以有a GM v <

,即小于在圆轨道上运动的卫星的速度。

我们还可以变形为 r

r a a GM v -?=2 上式中出现的r a -2是卫星到椭圆另一焦点的距离,如图2所示,我们用r ’来表示,有

图1

r

r a GM v '?= (9) 一方面,用(9)式分析上面得到的三个结论将更加容易,另一方面,这个公式还表现出了漂亮的对称性。如图2所示,过长轴和短轴的直线是椭圆的两条对称轴,有

<4>在关于长轴对称的两个点上,必有'r r =,速率相等;

<5>在关于短轴对称的两个点上,必有a

GM v v =21。

图2

解析几何求轨迹基本方法

解析几何中轨迹问题的求解策略 求曲线方程的常用思路和方法 1.直译法 例1 求与y 轴相切,并且和圆2240x y x +-=外切的圆的圆心的轨迹方程. 解 由2240x y x +-=,有()2 2222x y -+=. 设动圆的圆心P 的坐标为(x ,y).根据题意设点A 的坐标为(2,0),则有2PA x =+,即 2x =+.化简整理得2 44y x x =+.当0x ≥时,28;y x =当x ﹤0时, y=0. 综上可知,所求圆心的轨迹方程为28y x =(x ≥0)或y=0(x <0). 小结 直接将动点满足的几何等量关系“翻译”成动点x 、y ,所得方程即为所求动点的轨迹方程.用直译法求解,列式容易,但在对等式等价变形与化简过程中应特别留心是否需要讨论. 2.定义法 例2 已知圆C :()2 2 125x y ++=内一点A(1,0),Q 点为圆C 上任意一点,线段AQ 的垂直平分线与线段CQ 连线交于点M ,求点M 的轨迹方程. 解 连接AM ,点M 在线段AQ 的垂直平分线上,则AM=MQ. 5=+MQ CM ,∴5=+MA CM . 故点M(x ,y)到点C(-1,0)和点A(1,0)的距离之和是常数5,且5>2.所以点P 的轨迹是一个以A 、C 为焦点的椭圆. ∵2a=5,2c=2,∴2 2 2 214 b a c =-= .∴点M 的轨迹方程为 2 2 125214 4 x y + =. 小结 若动点运动的几何条件恰好与圆锥曲线的定义吻合,可直接根据定义建立动点的轨迹方程.用定义法求解可先确定曲线的类型与方程的具体结构式,然后用待定系数法求解. 3.代入法 例3 抛物线x 2 =4y 的焦点为F ,过点M(0,-1)作直线l 交抛物线于不同两点A 、B ,以AF 、BF 为邻边作平行四边形FARB ,求顶点R 的轨迹方程. 解 设点R 的坐标为(x ,y),平行四边形FARB 的对角线的点为P(x 0,y 0),F(0,1),由中点坐标公式可得001,22 x y x y += = .

椭圆中的垂直,轨迹,最值问题

四、椭圆中的垂直问题 例7.2 已知椭圆19 162 2=+y x 的左、右焦点分别为F 1、F 2,点P 在椭圆上,若P 、F 1、F 2是一个直角三解形的三个顶点,则点P 到x 轴的距离为( ) A 59 B 3 C 7 79 D 49 例7.2在椭圆15 252 2=+y x 上求一点,使这点与椭圆两焦点的连线互相垂直。 例7.3在椭圆120 452 2=+y x 上有一点P ,F 1、F 2是椭圆的左右焦点,△PF 1F 2为直角三角形,则这样的点P 共有( ) A 2个 B 4个 C 6个 D 8 个 五、几个重要问题 例8.1已知椭圆的一个顶点为A (0 ,--1),焦点在x 轴上,若右焦点到直线x —y+22=0的距离是3 (1)求椭圆的方程。 例8.4 已知P 为椭圆2275 425y x +=1上一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=60,求ΔF 1PF 2的面积。 六、椭圆中的轨迹问题 1.直接法:根据条件,建立坐标系,设动点(x ,y),直接列出动点所应满足的方程。 2.代入法:一个是动点Q(x 0,y 0)在已知曲线F(x,y)=0,上运动,而动点P(x,y)与Q 点满足某种关系,要求P 点的轨迹。 其关键是列出P 、Q 两点的关系式???==),(),(0y x y y y x f x o 3.定义法:通过对轨迹点的分析,发现与某个圆锥曲线的定义相符,则通过这个定义求出方程。 4.参数法:在x ,y 间的方程F(x,y)=0难以直接求得时,往往用???==) ()(t y y t f x (t 为参数)来反映x ,y 之间的关系。 例:ABC ?的一边的的顶点是B(0,6)和C(0,-6),另两边斜率的乘积是94- ,求顶点A 的轨迹方程: 1、设动点P(x,y)到直线x=5与它到点A(1,0)的距离之比为3,则点P(x,y)的轨迹方程是( ) A 15422=+y x B ()1812122=++y x C 15422=+x y D ()1241212 2 =+-y x 七、椭圆与直线(线段)问题 例10.1 已知M={(x,y)|x 2+2y 2=3} N={(x,y)|y=mx+b} 若对于所有m ∈R ,均有M ∩N ≠Φ,则b 的取值范围是( ) A [--26 ,26] B (--26 ,26) C (--332 ,332) D[--332 ,3 32] 例10.2 椭圆x 2+2 2 y =a 2(a>0)和连接A (1,1),B (2,3)两点的线段有公共点,则a 的取值范围是

高一物理曲线运动知识点总结42415

高一物理曲线运动知识点总结42415 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第五章曲线运动 知识构建: 一、曲线运动 1、所有物体的运动从轨迹的不同可以分为两大类:直线运动和曲线运动。 2、曲线运动的产生条件:合外力方向与速度方向不共线(≠0°,≠180°) 性质:变速运动 3、曲线运动的速度方向:某点的瞬时速度方向就是轨迹上该点的切线方向。 4、曲线运动一定收到合外力,“拐弯必受力,”合外力方向:指向轨迹的凹侧。 若合外力方向与速度方向夹角为θ,特点:当0°<θ<90°,速度增大; 当0°<θ<180°,速度增大; 当θ=90°,速度大小不变。 5、曲线运动加速度:与合外力同向,切向加速度改变速度大小;径向加速度改变速度方向。 6、关于运动的合成与分解 (1)合运动与分运动 定义:如果物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动。那几个运动叫做这个实际运动的分运动. 特征:①等时性;②独立性;③等效性;④同一性。

(2)运动的合成与分解的几种情况: ①两个任意角度的匀速直线运动的合运动为匀速直线运动。 ②一个匀速直线运动和一个匀变速直线运动的合运动为匀变速运动,当二者共线时轨迹为直线,不共线时轨迹为曲线。 ③两个匀变速直线运动合成时,当合速度与合加速度共线时,合运动为匀变速直线运动;当合速度与合加速度不共线时,合运动为曲线运动。 二、小船过河问题 1、位移最小: ①若v v >船水,船头偏向上游,使得合速度垂直于河岸,船头偏上上游的角度为cos v v θ= 水船 , 最小位移为 min l d =。 ②若v v <船水,则无论船的航向如何,总是被水冲向下游,则当船速与合速度垂直时渡河位移最小,船头偏向上游的角度为cos v v θ= 船水 ,过河最小位移为min cos v d l d v θ==水船 。 2、渡河时间最少:无论船速与水速谁大谁小,均是船头与河岸垂直,渡河时间min d t v =船 ,合速度方向沿v 合的方向。 三、抛体运动

备战2020年高考物理计算题专题复习《向心力的计算》(解析版)

《向心力的计算》 一、计算题 1.如图所示,长为L的细绳一端与一质量为m的小球可看成质点 相连,可绕过O点的水平转轴在竖直面内无摩擦地转动.在最 低点a处给一个初速度,使小球恰好能通过最高点完成完整的圆 周运动,求: 小球过b点时的速度大小; 初速度的大小; 最低点处绳中的拉力大小. 2.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直 轨道相切,半径,物块A以的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动。P点左侧轨道光滑,右侧轨道呈粗糙段,光滑段交替排列,每段长度都为。物块与各粗糙段间的动摩擦因数都为,A、B的质量均为重力加速度g 取;A、B视为质点,碰撞时间极短。 求A滑过Q点时的速度大小V和受到的弹力大小F; 若碰后AB最终停止在第k个粗糙段上,求k的数值; 求碰后AB滑至第n个光滑段上的速度与n的关系式。

3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管 道内径的小球,小球在管道内做圆周运动,从B点脱离后做平抛运动,经过秒后又恰好垂直与倾角为的斜面相碰到。已知圆轨道半径为,小球的质量为,g取求 小球在斜面上的相碰点C与B点的水平距离 小球经过圆弧轨道的B点时,受到轨道的作用力的大小和方向? 小球经过圆弧轨道的A点时的速率。 4.如图所示,倾角为的粗糙平直导轨与半径为R的光 滑圆环轨道相切,切点为B,整个轨道处在竖直平面内。一 质量为m的小滑块从轨道上离地面高为的D处无初速 下滑进入圆环轨道,接着小滑块从圆环最高点C水平飞出, 恰好击中导轨上与圆心O等高的P点,不计空气阻力。求: 小滑块在C点飞出的速率; 在圆环最低点时滑块对圆环轨道压力的大小; 滑块与斜轨之间的动摩擦因数。

(完整版)匀速圆周运动公式

匀速圆周运动 质点沿圆周运动,在任意相等的时间里通过的圆弧长度都相等 亦称“匀速率圆周运动”。因为物体作圆周运动时速率不变,但速度方向随时发生变化。所以匀速圆周运动的线速度是无时无刻在发生变化的。 描述匀速圆周运动快慢的物理量: 1、线速度 v :①意义:描述质点沿圆弧运动的快慢,线速度越大,质点沿圆弧运动越快。 ②定义:线速度的大小等于质点通过的弧长s与所用时间t的比值。 ③单位:m/s ④矢量:方向在圆周各点的切线方向上 ⑤就是物体做匀速圆周运动的瞬时速度 ⑥质点做匀速圆周运动时,线速度大小不变,但方向时刻在改变,故其线速度不是恒矢量。 ⑦边缘相连接的物体,线速度相同。 2、角速度ω:①定义:连接质点和圆心的半径(动半径)转过的角度跟所用时间的比值,叫做匀速圆周运动的角速度。 ②单位:rad/s(弧度每秒) ③矢量(中学阶段不讨论,用右手定则<安培定则>可判断方向,例如:当其在水平面上顺时针转动时角速度方向竖直向下)。 ④质点做匀速圆周运动时,角速度ω恒定不变。 ⑤同一物体上任意两点,除旋转中心外,角速度相同。 3、周期 T:①定义:做匀速圆周运动的物体运动一周所用的时间叫做周期。 ②单位:s(秒)。 ③标量:只有大小。 ④意义:定量描述匀速圆周运动的快慢。半径相等时,周期长说明运动得慢,周期短说明运动得快。 ⑤质点做匀速圆周运动时,周期恒定不变 4、频率 f:①定义:周期的倒数(每秒内完成周期性运动的次数)叫频率。 ②单位:Hz(赫)。 ③标量:只有大小。 ④意义:定量描述匀速圆周运动的快慢,频率高说明运动得快,频率低说明运动得慢。 ⑤质点做匀速圆周运动时,频率恒定不变。 5、转速 n:①定义:做匀速圆周运动的质点每秒转过的圈数。 ②单位:在国际单位制中为r/s(转每秒);常用单位为r/min(转每分)。1 r/s=60 r/min。 (注:r=round 英:圈,圈数) ③标量:只有大小。 ④意义:实际中定量描述匀速圆周运动的快慢,转速高说明运动得快,转速低说明运动得慢。 ⑤质点作匀速圆周运动时,转速恒定不变。

轨迹方程的五种求法例题

动点轨迹方程的求法 一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时. 例1已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【解析】:设M (x ,y ),直线MN 切圆C 于N ,则有 ,即 , .整理得,这就是动点 M 的轨迹方程.若,方程化为,它表示过点和x 轴垂直的一条直线;若λ≠1,方程化为,它表示以为圆心,为半径的圆. 二、代入法 若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况. 例2 已知抛物线,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线. 【解析】:设,由题设,P 分线段AB 的比,∴ 解得.又点B 在抛物线上,其坐标适合抛物线方程,∴ 整理得点P 的轨迹方程为其轨迹为抛物线. 三、定义法 若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现. 例3 若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是 12 2 =+y x MQ ()0>λλλ=MQ MN λ=-MQ ON MO 2 2λ=+--+2 222)2(1y x y x 0)41(4)1()1(222222=++--+-λλλλx y x 1=λ45= x )0,4 5 (2 222 222)1(3112-+=+-λλλλy x )-()0,12(22-λλ1 3122-+λλ12 +=x y ),(),,(11y x B y x P 2== PB AP λ.2121,212311++=++= y y x x 2 1 23,232311-=-=y y x x 12+=x y .1)2 3 23()2123( 2+-=-x y ),3 1 (32)31(2-=-x y 4)2(2 2 =++y x

最新圆锥曲线轨迹问题(教师版)

第四讲 有关圆锥曲线轨迹问题(教师版) 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)限(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这 种方法称之为直接法; 例1、已知直角坐标系,点Q (2,0),圆C 方程为 12 2=+y x ,动点M 到圆C 的切线长与 MQ 的比等于常数)0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则 2 22ON MO MN -=。),(y x M ,则 2 222)2(1y x y x +-=-+λ化简得 0)41(4))(1(2 2222=++-+-λλλx y x 当1=λ时,方程为54x =,表示一条直线。 当1≠λ时,方程化为2 2 22 222)1(31)12(-+=+--λλλλy x 表示一个圆。 【练习】如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN , (M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则1(20)O -, ,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以 22 1212(1)PO PO -=-. 设()P x y ,,则2222(2)12[(2)1]x y x y ++-=-+-, 即22(6)33x y -+=.(或221230x y x +-+=) y x Q M N O

第二单元 匀速圆周运动与向心力公式的应用

第二单元匀速圆周运动与向心力公式的应用 高考要求:1、知道匀速圆周运动的概念; 2、理解线速度、角速度和周期的概念; 3、理解向心加速度和向心力以及与各物理量间的关系; 4、会用牛顿第二定律求解圆周运动问题。 知识要点: 一、描述匀速圆周运动快慢的物理量 1、线速度: 1)物理意义:描述质点沿圆周运动的快慢。 2)方向:质点在圆弧某点的线速度方向沿圆弧该点的切线方向。 3)大小:v=s/t,s为质点在t时间内通过的弧长。 2、角速度: 1)物理意义:描述质点绕圆心转动的快慢。 2)大小:ω=φ/t(rad/s),φ是连接质点和圆心的半径在t时间内转过的角度。 3、周期和频率: 1)周期:做圆周运动的物体运动一周所用的时间做周期。用T表示。 2)频率:做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速。用f表示。 4、线速度、角速度、周期和频率的关系: T=1/f,ω=2π/ T=2πf,v=2πr/ T=2πrf=ωr 注意:T、f、ω三个量中任一个确定,其余两个也就确定了。 5、向心加速度: 1)物理意义:描述线速度方向改变的快慢。 2)大小:a=v2/r=ω2r=4π2f2r=4π2r/T2=ωv。 3)方向:总是指向圆心。所以不论a的大小是否变化,它都是个变化的量。 6、解圆周运动的运动学问题关键在于熟练掌握各物理量间的关系。 二、圆周运动中的向心力 1、向心力 1)意义:描述速度方向变化快慢产生原因——向心力。 2)方向:总是指向圆心。 3)大小:F=ma=mv2/r=mω2r=m4π2f2r=m 4π2r/T2=mωv。 4)产生:向心力是效果力,不是性质力。向心力可以由某一个力提供,也可以由几个力的合力提供,要根据物体受力的实际情况判定。 5)求解圆周运动动力学问题关键在于分析清楚向心力的来源,然后灵活列出牛顿第二定律关系式。 2、向心力的特点: 1)匀速圆周运动:向心力为合外力,其大小不变,方向始终与速度方向垂直且指向圆心。 2)变速圆周运动:因速度大小发生变化,其向心力和向心加速度都在变化,其所受的合外力不仅大小随时间改变,方向也不沿半径指向圆心。合外力沿半径方向的分力 提供向心力,使物体产生向心加速度,改变速度的方向,合外力沿轨道方向切线方 向的分力,使物体产生切向加速度,改变速度的大小。 3)当沿半径方向的力F<mv2/r时,物体做离心运动;

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的六种求法整理 求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考. 求轨迹方程的一般方法: 1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法 把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。设点。列式。化简。说明等,圆锥曲线标准方程的推导。 1. 已知点(20)(30)A B -,, ,,动点()P x y ,满足2PA PB x = ·,求点P 的轨迹。26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ?=? (1)求点P 的轨迹C 对应的方程; (2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论. (3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点. 解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-?=?化简得得 代入 二、定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 1、 若动圆与圆4)2(2 2 =++y x 外切且与直线x =2相切,则动圆圆心的轨迹 方程是

向心力公式的应用

向心力向心力公式的应用 (一)高考要求:II类。掌握圆周运动中的向心力问题 (二)教学目标:1.理解向心力的特点2.会用向心力公式解题 (三)教学重点和难点:1.运用向心力公式解题。2.向心力的来源 (四)课堂教学: 一、向心力的特点 1.下列关于向心力的论述中正确的是() A.物体因为受到向心力的作用,才可能做圆周运动; B.向心力仅仅是从它产生的效果来命名的,它可以使有初速度的物体做圆周运动,它的方 向始终指向圆心;匀速圆周运动的向心力是恒力。 C.向心力可以是重力、弹力、摩擦力中的某一种力,也可以是这些力中某几个力的合力; D.向心力只改变速度的方向,不改变速度的大小。 二、向心力的分析与应用 2、如图所示的圆锥摆中,摆球A在水平面上做匀速圆周运动,关于A 球的受力情况,下列税法正 确的是: A、摆球A受到重力、拉力和向心力作用 B、摆球A受到向心力和拉力作用 C、摆球A受到拉力和重力作用 D、摆球A受到重力和向心力作用如图4-3-14所示,质量不计的轻质弹性 杆P插入桌面上的小孔中,杆的另一端套有一个质量为m的小球,今使小 球在水平面内做半径为R的匀速圆周运动,且角速度为ω,则杆的上端受到 小球对其作用力的大小为() A.mω2R B.m g2+ω4R2 C.m g2-ω4R2 D.条件不足,不能确定 3、若圆锥摆的细线与竖直方向夹角为θ,摆线长为L,摆球质量为M,求:(1)摆球所需的向心 力;(2)摆球的向心加速度、线速度、角速度、周期。 4、如图所示,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不 考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是( ) A.A的速度比B的大 B.A与B的向心加速度大小相等 C.悬挂A、B的缆绳与竖直方向的夹角相等 D.悬挂A的缆绳所受的拉力比悬挂B的小 5、如图所示,木板B托着木块A在竖直平面内作匀速圆周运动,从与圆心相平的位置a运动到最 高点b的过程中 A、B对A的支持力越来越大 B、B对A的支持力越来越小 C、B对A的摩擦力越来越大 D、B对A的摩擦力越来越小 6、质量相等的小球A、B分别固定在轻杆的中点及端点,当杆在光滑水平面上绕O点匀速转动时, 如图所示,求杆的OA段及AB段对球的拉力之比。 7.如图1所示,一木块放在圆盘上,圆盘绕通过圆盘中心且垂直于盘面的竖直轴匀速转动,木块 和圆盘保持相对静止,那么( ) A.木块受到圆盘对它的摩擦力,方向沿半径背离圆盘中心 B.木块受到圆盘对它的摩擦力,方向沿半径指向圆盘中心 C.木块受到圆盘对它的摩擦力,方向与木块运动的方向相反 D.因为木块与圆盘一起做匀速转动,所以它们之间没有摩擦力 8、如图所示,质量不计的轻质弹性杆P插入桌面上的小孔中,杆的另一端套有一个质量为m的小 球,今使小球在水平面内做半径为R的匀速圆周运动,且角速度为ω,则杆的上端受到小球对其作 用力的大小为() A.mω2R B.m g2+ω4R2 C.m g2 -ω4R2D.条件不足,不能确定

圆锥曲线之轨迹问题(有答案)

圆 锥 曲 线 之 轨 迹 问 题 一、临阵磨枪 1.直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含,x y 的等式就得到曲线的轨迹方程。这种求轨迹的方法称之为直接法。 2.定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线的定义),则可根据定义直接求出动点的轨迹方程。 3.坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。 4.参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标(,)x y 中的,x y 分别随另一变量的变化而变化,我们可以把这个变量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程,只要消去参变量即可。 5.交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可通过解方程组得出交点含参数的坐标,再消去参数得出所求轨迹方程,此种方法称为交轨法。 二、小试牛刀 1.已知M (-3,0),N (3,0)6=-PN PM ,则动点P 的轨迹方程为 析:MN PM PN =-Q ∴点P 的轨迹一定是线段MN 的延长线。 故所求轨迹方程是 0(3)y x =≥

(完整版)向心力练习题分析

第六节向心力练习题 姓名班级学号 一、选择题 1、对做圆周运动的物体所受的向心力说法正确的是( ) A.因向心力总是沿半径指向圆心,且大小不变,故向心力是一个恒力 B.向心力和向心加速度的方向都是不变的 C.向心力是物体所受的合外力 D.因向心力指向圆心,且与线速度方向垂直,所以它不能改变线速度的大小 2.如图所示,一只老鹰在水平面内盘旋做匀速圆周运动,则关于老鹰受力的说法正确的是( ) A.老鹰受重力、空气对它的作用力和向心力的作用 B.老鹰受重力和空气对它的作用力 C.老鹰受重力和向心力的作用 D.老鹰受空气对它的作用力和向心力的作用 3、如图所示,一辆轿车正在水平路面上转弯,下列说法正确 的是() A.水平路面对轿车弹力的方向斜向上 B.轿车受到的静摩擦力提供转弯的向心力 C.轿车受到的向心力是重力、支持力和牵引力的合力 D.轿车所受的合力方向一定与运动路线的切线方向垂直 4、平冰面上,狗拉着雪橇,雪橇做匀速圆周运动,O点为圆心(如图所示).能正确地表示雪橇 受到的拉力F及摩擦力F f的图是() 5、种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的侧壁高速行 驶,做匀速圆周运动,如图所示.图中虚线表示摩托车的行驶轨迹,轨迹离地面的高度为h.下列说法中正确的是() A. h越大,摩托车对侧壁的压力将越大 B. h越大,摩托车做圆周运动的向心力将越大 C. h越大,摩托车做圆周运动的周期将越大

6、所示,物块质量为m,一直随转筒一起以角速度ω绕竖直轴做匀速圆周运动,以下描述正确 的是( ) A.物块所需向心力由圆筒对物块的摩擦力提供 B.若角速度ω增大,物块所受摩擦力增大 C.若角速度ω增大,物块所受弹力增大 D.若角速度ω减小,物块所受摩擦力减小 7、所示,在粗糙水平板上放一个物体,使水平板和物体一起在竖直平面内沿逆时针方向做匀速 圆周运动,ab为水平直径,cd为竖直直径,在运动过程中木板始终保持水平,物块相对木板始终静止,则:( ) A.物块始终受到三个力作用 B.只有在a、b、c、d四点,物块受到合外力才指向圆心 C.从a到b,物体所受的摩擦力先增大后减小 D.从b到a,物块处于超重状态 8、所示,光滑水平面上有原长为L的轻弹簧,它一端固定在光滑的转轴O上,另一端系一小球.当 小球在该平面上做半径为2L的匀速圆周运动时,速率为v;当小球在该平面上做半径为3L的匀速圆周运动时,速率为v′.弹簧总处于弹性限度内.则v:v′等于( ) A.: B.2:3 C.1:3 D.1: 9、量为m的小物块沿半径为R的圆弧轨道下滑,滑到最低点时的速度是v,若小物块与轨道的动 摩擦因数是μ,则当小物块滑到最低点时受到的摩擦力是( ) A.μ B.μm(- g) C.μm(g + ) D.μm(g - ) 10、和B用细线连接,可以在光滑的水平杆上无摩擦地滑动,已知它们的质量之比m1∶m2=3∶1, 当这一装置绕着竖直轴做匀速转动且A、B两球与水平杆达到相对静止时(如图所示),则A、B 两球做匀速圆周运动的( ) A.线速度大小相等 B.角速度相等 C.向心力的大小之比为F1∶F2=3∶1 D.半径之比为r1∶r2=1∶3 11、如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的

轨迹方程的五种求法例题

动点轨迹方程的求法 一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时. 例1已知直角坐标平面上点Q (2,0)和圆C :12 2 =+y x ,动点M 到圆C 的切线长与MQ 的比等于常数()0>λλ(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【解析】:设M (x ,y ),直线MN 切圆C 于N ,则有 λ=MQ MN ,即 λ=-MQ ON MO 2 2, λ=+--+2 222)2(1y x y x .整理得0)41(4)1()1(222222=++--+-λλλλx y x ,这就是动点 M 的轨迹方程.若1=λ,方程化为45= x ,它表示过点)0,4 5 (和x 轴垂直的一条直线;若λ≠1,方程化为2 222 222)1(3112-+=+-λλλλy x )-(,它表示以)0,12(22-λλ为圆心,1 3122-+λλ为半径的圆. 二、代入法 若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况. 例2 已知抛物线12 +=x y ,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线. 【解析】:设),(),,(11y x B y x P ,由题设,P 分线段AB 的比2== PB AP λ,∴ .2121,212311++=++= y y x x 解得2 1 23,232311-=-=y y x x .又点B 在抛物线12+=x y 上,其坐标适合抛物线方程,∴ .1)2 3 23()2123( 2+-=-x y 整理得点P 的轨迹方程为),3 1 (32)31(2-=-x y 其轨迹为抛物线. | 三、定义法 若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现.

用微积分推导匀速圆周运动向心力公式

用微积分推导匀速圆周运动向心力公式 已知如图所示,建立如 图所示平面直角坐标系,其中物体做圆周运动的轨迹方程为x 2+y 2=R 2,即圆周半径为R 。设t 为所经历的时间,当t=0时,物体位于坐标(R ,0)点,并且逆时针运动。设匀速圆周运动的速率为v ,设物体质量为m ,受到的向心力为F 。当时间为t 时,物体和圆心的连线与x 轴正方向的夹角为θ,设周期为T , 则2t T πθ= 在x 轴方向,物体所受的分力为 2cos x t F F T π=- 所以,x 方向的加速度为 2cos x F t a m T π=- 为两边对t 求积分得

2cos 2cos 22cos 22sin 2x x F t v dt m T F t dt m T F T t d t m T T F T t C m T πππππππ= -=- =- ?=-+??? 得其中,C x 与t 无关,由已知条件得,当t=0时,v x =0 代入上式得C x =0 t x 2sin 2x F T t v m T ππ∴=-当时间为时,轴方向的分速度为 在y 轴方向,物体所受到的分力为 2sin y t F F T π= 所以,物体在y 轴方向的加速度为 2sin y F t a m T π= 两边对t 求积分得 2sin 2sin 22sin 22cos 2y F t v dt m T F t dt m T F T t d t m T T F T t C m T πππππππ= = =?=-+??? 其中C 与t 无关,由已知条件得,当t=0时,v y =v 代入上式得

22cos 22y F T C v m FT t FT v v m T m ππππ=+∴=- ++ 22222222 2222sin (cos )4222cos ()222cos 02x y v v v F T t F T t F T v v m T m T m F T t F T v v m T m t T F T v m ππππππππππ=+∴=+-+++=++= 经化简可得 由于为变量 所以只能 222222 22222222,444F T R T m v R F v m m v F R ππππ== = =移项,两边求平方得 v 由于代入得v 化简可得即向心力表达式

最新圆锥曲线轨迹问题

圆锥曲线轨迹问题

建设现代化(检验) ——有关圆锥曲线轨迹问题 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生创新意识为突破口,注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)现(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系中,点Q (2,0),圆C 的方程为 122=+y x ,动点M 到圆C 的切线长与 MQ 的比等于常数)0(>λλ,求动点M 的轨迹。

【解析】设MN 切圆C 于N ,则2 22ON MO MN -=。设),(y x M ,则 2222)2(1y x y x +-=-+λ 化简得0)41(4))(1(22222=++-+-λλλx y x (1) 当1=λ时,方程为4 5 = x ,表示一条直线。 (2) 当1≠λ时,方程化为2 222 222)1(31)12(-+=+--λλλλy x 表示一个圆。 ◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线 PM PN ,(M N , 分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以 22 1212(1)PO PO -=-. 设()P x y ,,则 2222(2)12[(2)1]x y x y ++-=-+-, 即22(6)33x y -+=.(或221230x y x +-+=) 评析: 1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。 2、求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。

平抛、匀速圆周运动公式

匀速圆周运动公式 1.线速度:v (矢量) 单位:米/秒(m/s ) 公式:v =t s ??=ωr=T r π2=2 f r=2n r (或30 nr π) 2.角速度:ω(矢量) 单位:弧度/秒(rad/s ) 公式:ω=t ??θ=r v =T π2=2 f =2n (或30 n π)(转速n 前者单位为r/s 后者为r/min ) 3.向心加速度:n a (矢量) 单位:米2/秒(m 2/s ) 公式:n a =t v ??=r v 2 =ω2r=224T r π=4π2fr=v ω 4.向心力:n F (矢量) 单位:牛(N ) 公式:n F = m n a =m r v 2 =m ω2r=m 2 24T r π 5.周期:T (标量) 单位:秒(s ) 周期与频率的关系:f T 1= 6.频率:f (标量) 单位:赫兹,简称:赫,符号:Hz 7.转速:n (标量) 单位:转/秒(r/s) 或 转/分(r/min) 与频率的关系:f=n (转速单位为r/s ) 注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心。 (2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。 (3)氢原子核外电子绕核作匀速圆周运动的向心力是原子核对核外电子的库仑力。 平抛运动公式

t ?t g v ?=?v ?1.水平分运动: 匀速直线运动 水平位移: x = 0v t 水平分速度:x v = 0v 2.竖直分运动: 初速度为零的匀加速直线运动(即自由落体运动) 竖直位移: y =21g t 2 竖直分速度:y v = g t gy v y 22= 3.合速度: v = y x v v + tan θ =x y v v =0 v gt 4.合位移: 22y x l += tan α= x y =02v gt 即:tan θ=2 tan α 速度方向延长线过水平位移重点x /2 5.飞行时间: g h t 2= 6.水平射程: x =0v t =g h v 20 其中:h 为下落高度 7.速度改变量:任意相等时间间隔内的速度改变量相同,方向恒为竖直向下 l v

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法 (一)求轨迹方程的一般方法: 1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。 6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 (二)求轨迹方程的注意事项: 1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。 )() ()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ???=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。 3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。 4.求轨迹方程还有整体法等其他方法。在此不一一缀述。 课前热身: 1. P 是椭圆5 92 2y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹中点的轨迹方程为:( )【答案】:B A 、159422=+y x B 、154922=+y x C 、12092 2=+y x D 、5 3622y x + 【解答】:令中点坐标为),(y x ,则点P 的坐标为()2,y x 代入椭圆方程得15 4922=+y x ,选B 2. 圆心在抛物线)0(22 >=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是

高中物理公式推导匀速圆周运动向心加速度向心力

高中物理公式推导二 圆周运动向心加速度的推导 1、作图分析: 如图所示,在0t 、t 时刻的速度位置为: 2、推导过程: 第一,对于匀速圆周运动而言,速度的大小是不发生变化的,变化的只是速度的方向,如图所示,速度方向的变化量为v ,则有:

θθ?=?≈?t v v v 0 第二,根据加速度的定义: t v a ??= 则有: t v t v a n ??=??=θ0 第三,根据圆周运动的相关关系知: R v t =??=θω 是故,圆周运动的向心加速度为: R v a n 2= 第四,圆周运动的向心力的大小为:

R v m ma F n 2== 3、意外收获: 第一,对于圆周运动,我们应该理解速度、角速度、周期之间的关系。具体为: R v = ω T πω2= v R πω2= 第二,我们应该掌握极限的相关知识,合理利用极限来解决相关问题。 第三,如果我们谈论的不是匀速圆周运动,我们同样可以利用此方法进行谈论。对于非匀速圆周运动(或者叫做曲线运动),不仅速度的方向发生了变化,而且速度的大小也发生了变化,所以, 不仅有向心加速度之外,应该也有使物体速度大小变化的加速度。但是,在这种情况下,我们的向心加速度,叫做径向加速度,速度大小变化的加速度,叫做切向加速度。故有:

(1)向心加速度为: R v a n 2= (2)切向加速度为: t v a t ??= (注意:这里的 v ?是指切向速度方向速度的变化量,并不是指 图上的 v ?。) 4、注意事项: 对于匀速圆周运动而言,需要掌握的知识点并不是很多,我们只要能够理解一些物理量之间的基本关系即可。本篇的讨论只为学有余力的高中学生推荐,不过,物理推导讲究的是方法,并不是死记硬背公式,掌握了这一知识点的推导过程对以后了解其他物理知识会有很大的帮助。

相关文档
最新文档