初一数学期中压轴题:代数式化简求值
代数式化简求值经典17题(各版本通用)
代数式化简求值经典17题(各版本通用)1.当x=-2时,求代数式9x+6x^2-3(x-2x)的值当x=-2时,代数式的值为9(-2)+6(-2)^2-3((-2)-2(-2))=-18+24+12=18.2.当x=111时,求代数式(-4x^2+2x-8)-(x-1)的值当x=111时,代数式的值为(-4(111)^2+2(111)-8)-(111-1)=-493,004.3.当a=-1,b=1时,求代数式(5a^2-3b^2)+(a^2+b^2)-(5a^2+3b^2)的值当a=-1,b=1时,代数式的值为(5(-1)^2-3(1)^2)+((-1)^2+(1)^2)-(5(-1)^2+3(1)^2)=-8.4.当x=-1,y=-2时,求代数式3-2xy+3yx^2+6xy-4x^2y的值当x=-1,y=-2时,代数式的值为3-2(-1)(-2)+3(-2)(-1)^2+6(-1)(-2)-4(-1)^2(-2)=3+4-6+12+8=21.5.当x^2-xy=3a,xy-y^2=-2a时,求代数式x^2-y^2的值将x^2-xy=3a和xy-y^2=-2a相加得到x^2-y^2=a,因此代数式x^2-y^2的值为a。
6.当x=2004,y=-1时,求代数式A=x^2-xy+y^2,B=-x^2+2xy+y^2,A+B的值当x=2004,y=-1时,A=x^2-xy+y^2=2004^2-2004(-1)+(-1)^2=4,017,017;B=-x^2+2xy+y^2=-(2004)^2+2(2004)(-1)+(-1)^2=-4,017,015,因此A+B=2.7.当a=5时,求代数式(6a+2a^2+1)-(a^2-3a)的值当a=5时,代数式的值为(6(5)+2(5)^2+1)-((5)^2-3(5))=62.8.当a-b=4,c+d=-6时,求代数式(b+c)-(a-d)的值由a-b=4可得a=b+4,代入b+c-(a-d)得到b+c-(b+4-d)=c+d-4,因此代数式的值为-2.9.当a=1/2,b=1时,求代数式a^2+3ab-b^2的值当a=1/2,b=1时,代数式的值为(1/2)^2+3(1/2)(1)-(1)^2=-1/4.10.当a=114,b=73时,求代数式4(b+1)+4(1-a)-4(a+b)的值当a=114,b=73时,代数式的值为4(73+1)+4(1-114)-4(114+73)=-744.11.当x=-2时,求代数式9x+6x^2-3(x-2x)的值同第1题,代数式的值为18.12.当x=5时,求代数式(2x^2-6x-4)-4(-1+x+x^2)的值当x=5时,代数式的值为(2(5)^2-6(5)-4)-4(-1+5+5^2)=-38.13.当x=111时,求代数式(2x^2-x-1)-(x^2-x-1)+(3x^2-3)的值当x=111时,代数式的值为2(111)^2-(111)-1-(111^2-111-1)+(3(111)^2-3)=22,600.14.当x^2+xy=2,y^2+xy=5时,求代数式x^2+2xy+y^2的值将x^2+xy=2和y^2+xy=5相加得到x^2+2xy+y^2=7,因此代数式的值为7.15.当a=-2,b=3时,求代数式a-2(a-b^2)-(a-b^2)的值当a=-2,b=3时,代数式的值为-2-2(-2-3^2)-(-2-3^2)=2.16.当a=1/3时,求代数式1-(2a-1)-3(a+1)的值当a=1/3时,代数式的值为1-(2(1/3)-1)-3(1/3+1)=-25/3.。
代数式的化简求值问题(含答案)
第1讲:代数式的化简求值问题一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx所以 m =4将m =4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m利用“整体思想”求代数式的值例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。
分析: 因为8635=-++cx bx ax当x =-2时,8622235=----c b a 得到8622235-=+++c b a ,所以146822235-=--=++c b a当x =2时,635-++cx bx ax =206)14(622235-=--=-++c b a2008200712007200720072222323=+=++=+++=++a a a a a a a 20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值. 分析:观察两个代数式的系数由7532=++x x 得232=+x x ,利用方程同解原理,得6932=+x x 整体代人,42932=-+x x代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。
初一七年级化简求值100题
初一七年级化简求值100题1、-9(x-2)-y(x-5)(1)化简整个式子。
(2)当x=5时,求y的解。
2、5(9+a)Xb-5(5+b)Xa(1)化简整个式子。
(2)当a=5/7时,求式子的值3、62g+62(g+b)-b(1)化简整个式子。
(2)当g=5/7时,求b的解。
4、3(x+y)-5(4+x)+2y化简整个式子。
5、(x+y)(x-y)化简整个式子。
6、2ab+aXa-b化简整个式子。
7、5.6x+4(x+y)-y化简整个式子。
8、6.4(x+2.9)-y+2(x-y)化简整个式子。
9、(2.5+x)(5.2+y)化简整个式子。
10.3ab-4ab+8ab-7ab+ab=.11.7x-(5x-5y)-y=.12.23a3bc2-15ab2c+8abc-24a3bc2-8abc=.13.-7x2+6x+13x2-4x-5x2=.14.2y+(—2y+5)—(3y+2)=・15.(2x2-3xy+4y2)+(x2+2xy-3y2)=.16・2x+2y—[3x—2(x—y)]=・17・5—(1—x)—1—(x—1)=・18・()+(4xy+7x2—y2)=10x2—xy・19・(4xy2—2x2y)—()=x3—2x2y+4xy2+y3・20・2a—(3a—2b+2)+(3a—4b—1)=・21•已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=22•已知A=x3—2x2+x—4,B=2x3—5x+3,计算A—B=23.若a=—0.2,b=0.5,代数式—(|a2b|—|ab2|)的值为24.2x—(x+3y)—(—x—y)—(x—y)=・25•—个多项式减去3m4—m3—2m+5得-2m4-3m3-2m2-1,那么这个多项式等于.26.—(2x2—y2)—[2y2—(x2+2xy)]=.27.若-3a3b2与5ax—1by+2是同类项,则x=,y=.28.(—y+6+3y4—y3)—(2y2—3y3+y4—7)=・29•化简代数式4x2-[7x2-5x-3(l-2x+x2)]的结果是30・2a—b2+c—d3=2a+()—d3=2a—d3—()=c—()・3l・3a—(2a—3b)+3(a—2b)—b=・32•化简代数式x-[y-2x-(x+y)]等于・33・[5a2+()a—7]+[()a2—4a+()]=a2+2a+l・34・3x—[y—(2x+y)]=・35•化简|1—x+y|—|x—y|(其中xVO,y>0)等于・36.已知xWy,x+y—|x—y|=.37.已知xV0,yV0,化简|x+y|—|5—x—y|二・38.4a2n—an—(3an—2a2n)=・39.若一个多项式加上-3x2y+2x2-3xy-4得2x2y+3xy2—x2+2xy,则这个多项式为40.—5xm—xm—(—7xm)+(—3xm)=41.当a=—1,b=—2时,[a-(b-c)]-[-b-(-c-a)]=・42・—6x2—7x2+15x2—2x2=・43.当a=—1,b=1,c=—1时,—[b—2(—5a)]—(—3b+5c)=44.—2(3x+z)—(—6x)+(—5y+3z)=45.—5an—an+1—(—7an+1)+(—3an)=46.3a-(2a-4b-6c)+3(-2c+2b)=.48.9a2+[7a2-2a-(-a2+3a)]=.50•当2y-x=5时,5(x-2y)2-3(-x+2y)-100二(二)选择51•下列各式中计算结果为-7x-5x2+6x3的是[] A.3x-(5x2+6x3-10x);B.3x-(5x2+6x3+10x);C.3x-(5x2-6x3+10x);D.3x-(5x2-6x3-10x).52.把(-x-y)+3(x+y)-5(x+y)合并同类项得[] A.(x-y)-2(x+y);B.-3(x+y);C.(-x-y)-2(x+y);D.3(x+y).53.2a-[3b-5a-(2a-7b)]等于[]B.5a+4b;C.-a-4b;D.9a-10b.54•减去-3m等于5m2-3m-5的代数式是[]A.5(m2-1);B.5m2-6m-5;D.-(5m2+6m-5).55•将多项式2ab-9a2-5ab-4a2中的同类项分别结合在一起,应为[]A.(9a2-4a2)+(-2ab-5ab);B.(9a2+4a2)-(2ab-5ab);C.(9a2-4a2)-(2ab+5ab);D.(9a2-4a2)+(2ab-5ab).56•当a=2,b=1时,—a2b+3ba2—(—2a2b)等于[]A.20;B.24;C.0;D.16.57•若A和B均为五次多项式,则A-B一定是[] A.十次多项式;B・零次多项式;C.次数不髙于五次的多项式;D.次数低于五次的多项式.58.-{[-(x+y)]}+{-[(x+y)]}等于[]A.0;B.-2y;C.x+y;D.-2x-2y.59•若A=3x2-5x+2,B=3x2-5x+6,则A与B的大小是A.A>B;B.A=B;C・AVB;D.无法确定.60•当m=-1时,—2m2—[—4m2+(—m2)]等于[] A.-7;B.3;C.1;D. 2.61.当m=2,n=1时,多项式-m-[-(2m-3n)]+[-(-3m)-4n]等于[]A.1;B.9;C.3;D. 5.62.4x2y-5xy2的结果应为[]A.-x2y;B.-1;C.-x2y2;D•以上答案都不对.(三)化简 2(a2-ab-b2)-3(4a-2b)+2(7a2-4ab+b2). 4x-2(x-3)-3[x-3(4-2x)+8]. 5m2n+(-2m2n)+2mn2-(+m2n). 4(x-y+z)-2(x+y-z)-3(-x-y-z). 2(x2-2xy+y2-3)+(-x2+y2)-(x2+2xy+y2).(4x2-8x+5)-(x3+3x2-6x+2). (-x2+4+3x4-x3)-(x2+2x-x4-5). 若A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算A+B. 已知A=3a2-5a-12,B=2a2+3a-4,求2(A-B)・(0.3x3-x2y+xy2-y3)-(-0.5x3-x2y+0.3xy2). 一{2a2b-[3abc-(4ab2-a2b)]}・(5a2b+3a2b2-ab2)-(-2ab2+3a2b2+a2b).(x2-2y2-z2)-(-y2+3x 2-z2)+(5x2-y2+2z2). (3a6-a4+2a5-4a3-1)-(2-a+a3-a5-a4).(4a-2b-c)-5a-[8b-2c-(a+b)]. (2m-3n)-(3m-2n)+(5n+m).(3a2-4ab-5b2)-(2b2-5a2+2ab)-(-6a b). 63. 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81xy-(2xy-3z)+(3xy-4z).(-3x3+2x2-5x+1)-(5-6x-x2+x3).3x-(2x-4y-6x)+3(-2z+2y).2m-{-3n+[-4m-(3m-n)]}.(四)将下列各式先化简,再求值84•已知a+b=2,a-b=-1,求3(a+b)2(a-b)2-5(a+b)2X(a-b)2的值.85•已知A=a2+2b2-3c2,B=-b2-2c2+3a2,C=c2+2a2-3b2,求(A-B)+C.86.求(3x2y-2xy2)-(xy2-2x2y),其中x=-1,y=2.87.已知|x+l|+(y-2)2=0,求代数式5(2x-y)-3(x-4y)的值.88•当P=a2+2ab+b2,Q=a2—2ab—b2时,求P—[Q—2P—(P—Q)]・89•求2x2-{-3x+5+[4x2-(3x2-x-1)]}的值,其中x=-3・90.当x=-2,y=-1,z=3时,求5xyz-{2x2y-[3xyz-(4xy2-x2y)]}的值.91•已知A=x3-5x2,B=x2-6x+3,求A-3(-2B)・(五)综合练习92•去括号:{—[—(a+b)]}-{-[-(a-b)]}・93•去括号:-[-(-x)-y]-[+(-y)-(+x)]・94•已知A=x3+6x-9,B=-x3-2x2+4x-6,计算2A-3B,并把结果放在前面带“-”号的括号内・95・计算下式,并把结果放在前面带“-”号的括号内:(-7y2)+(-4y)-(-y2)-(+5y)+(-8y2)+(+3y)・96•去括号、合并同类项,将结果按x的升幂排列,并把后三项放在带有“-”号的括号内:97.不改变下式的值,将其中各括号前的符号都变成相反的符号:(x3+3x2)-(3x2y-7xy)+(2y3-3y2)・98.用竖式计算(-x+5+2x4-6x3)-(3x4+2x2-3x3-7)・99•已知A=llx3+8x2-6x+2,B=7x3-x2+x+3,求2(3A-2B)・100.已知A=x3-5x2,B=x3-11x+6,C=4x-3,求(1)A-B-C;(2)(A-B-C)-(A-B+C)・.已知A=3x2-4x3,B=x3-5x2+2,计算(1)A+B;(2)B-A・102.已知xV—4,化简|-x|+|x+4|-|x-4|・103•求两代数式-1.56a+3.2a3-0.47,2.27a3-0.02a2+4.03a+0.53的差与6-0.15a+3.24a2+5.07a3的和.104.已知(x-3)2+|y+1|+z2=0,求x2-2xy-5x2+12xz+3xy-z2-8xz-2x2的值.105・在括号内填上适当的项:(1)x2-xy+y-1=x2-();(2)[()+6x-7]-[4x2+()-()]=x2-2x+1・106.计算4x2-3[x+4(1-x)-x2]-2(4x2T)的值.107•化简:2x2-{-3x-[4x2-(3x2-x)+(x-x2)]}・108•化简:-(7x-y-2z)-{[4x-(x-y-z)-3x+z]-x}・109•计算:(+3a)+(-5a)+(-7a)+(-31a)-(+4a)-(-8a).110•化简:a3-(a2-a)+(a2-a+1)-(1-a4+a3)・111.将x2-8x+2x3-13x2-2x-2x3+3先合并同类项,再求值,其中x=-4・112.把多项式4x2y-2xy2+4xy+6-x2y2+x3-y2的三次项放在前面带有“-”号的括号内,二次项放在前面带有“+”号的括号内,四次项和常数项放在前面带有“-”号的括号内.113.合并同类项:7x-1.3z-4.7-3.2x-y+2.1z+5-0.1y・114.合并同类项:5m2n+5mn2-mn+3m2n-6mn2-8mn・115.把下列多项式的括号去掉,合并同类项,并将其各项放在前面带有“-”号的括号内,再求2x-2[3x-(5x2-2x+1)]-4x2的值,其中x=-1・116.去括号,合并同类项:(1)(m+1)-(-n+m);(2)4m-[5m-(2m-1)].117•在括号内填上适当的项:[()-9y+()]+2y2+3y-4=11y2-()+13・118・在括号内填上适当的项:(-x+y+z)(x+y-z)=[y-()][y+()]・119・在括号内填上适当的项:(3x2+xy-7y2)-()=y2-2xy-x2・。
初一七年级化简求值100题
初一七年级化简求值100题1、-9(x-2)-y(x-5)(1)化简整个式子。
(2)当x=5时,求y的解。
2、5(9+a)×b-5(5+b)×a(1)化简整个式子。
(2)当a=5/7时,求式子的值。
3、62g+62(g+b)-b(1)化简整个式子。
(2)当g=5/7时,求b的解。
4、3(x+y)-5(4+x)+2y化简整个式子。
5、(x+y)(x-y)化简整个式子。
6、2ab+a×a-b化简整个式子。
7、5.6x+4(x+y)-y化简整个式子。
8、6.4(x+2.9)-y+2(x-y)化简整个式子。
9、(2.5+x)(5.2+y)化简整个式子。
10.3ab-4ab+8ab-7ab+ab=______.11.7x-(5x-5y)-y=______.12.23a3bc2-15ab2c+8abc-24a3bc2-8abc=______.13.-7x2+6x+13x2-4x-5x2=______.14.2y+(-2y+5)-(3y+2)=______.15.(2x2-3xy+4y2)+(x2+2xy-3y2)=______.16.2x+2y-[3x-2(x-y)]=______.17.5-(1-x)-1-(x-1)=______.18.( )+(4xy+7x2-y2)=10x2-xy.19.(4xy2-2x2y)-( )=x3-2x2y+4xy2+y3.20.2a-(3a-2b+2)+(3a-4b-1)=______.21.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=______.22.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B=______.23.若a=-0.2,b=0.5,代数式-(|a2b|-|ab2|)的值为______.24.2x-(x+3y)-(-x-y)-(x-y)=______.25.一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于______.26.-(2x2-y2)-[2y2-(x2+2xy)]=______.27.若-3a3b2与5ax-1by+2是同类项,则x=______,y=______.28.(-y+6+3y4-y3)-(2y2-3y3+y4-7)=______.29.化简代数式4x2-[7x2-5x-3(1-2x+x2)]的结果是______.30.2a-b2+c-d3=2a+( )-d3=2a-d3-( )=c-( ).32.化简代数式x-[y-2x-(x+y)]等于______.33.[5a2+( )a-7]+[( )a2-4a+( )]=a2+2a+1.34.3x-[y-(2x+y)]=______.35.化简|1-x+y|-|x-y|(其中x<0,y>0)等于______.36.已知x≤y,x+y-|x-y|=______.37.已知x<0,y<0,化简|x+y|-|5-x-y|=______.38.4a2n-an-(3an-2a2n)=______.39.若一个多项式加上-3x2y+2x2-3xy-4得2x2y+3xy2-x2+2xy,则这个多项式为______.40.-5xm-xm-(-7xm)+(-3xm)=______.41.当a=-1,b=-2时,[a-(b-c)]-[-b-(-c-a)]=______.42.-6x2-7x2+15x2-2x2=______.43.当a=-1,b=1,c=-1时,-[b-2(-5a)]-(-3b+5c)=______.44.-2(3x+z)-(-6x)+(-5y+3z)=______.45.-5an-an+1-(-7an+1)+(-3an)=______.46.3a-(2a-4b-6c)+3(-2c+2b)=______.50.当2y-x=5时,5(x-2y)2-3(-x+2y)-100=______.(二)选择51.下列各式中计算结果为-7x-5x2+6x3的是[ ] A.3x-(5x2+6x3-10x);B.3x-(5x2+6x3+10x);C.3x-(5x2-6x3+10x);D.3x-(5x2-6x3-10x).52.把(-x-y)+3(x+y)-5(x+y)合并同类项得[ ]A.(x-y)-2(x+y);B.-3(x+y);C.(-x-y)-2(x+y);D.3(x+y).53.2a-[3b-5a-(2a-7b)]等于[ ]A.-7a+10b;B.5a+4b;C.-a-4b;D.9a-10b.54.减去-3m等于5m2-3m-5的代数式是[ ]A.5(m2-1);B.5m2-6m-5;D.-(5m2+6m-5).55.将多项式2ab-9a2-5ab-4a2中的同类项分别结合在一起,应为[ ] A.(9a2-4a2)+(-2ab-5ab);B.(9a2+4a2)-(2ab-5ab);C.(9a2-4a2)-(2ab+5ab);D.(9a2-4a2)+(2ab-5ab).56.当a=2,b=1时,-a2b+3ba2-(-2a2b)等于[ ]A.20;B.24;C.0;D.16.57.若A和B均为五次多项式,则A-B一定是[ ]A.十次多项式;B.零次多项式;C.次数不高于五次的多项式;D.次数低于五次的多项式.58.-{[-(x+y)]}+{-[(x+y)]}等于[ ]A.0;B.-2y;C.x+y;59.若A=3x2-5x+2,B=3x2-5x+6,则A与B的大小是A.A>B;B.A=B;C.A<B;D.无法确定.60.当m=-1时,-2m2-[-4m2+(-m2)]等于[ ]A.-7;B.3;C.1;D.2.61.当m=2,n=1时,多项式-m-[-(2m-3n)]+[-(-3m)-4n]等于[ ] A.1;B.9;C.3;D.5.62.4x2y-5xy2的结果应为[ ]A.-x2y;B.-1;C.-x2y2;D.以上答案都不对.(三)化简63.2(a2-ab-b2)-3(4a-2b)+2(7a2-4ab+b2).64.4x-2(x-3)-3[x-3(4-2x)+8].65.5m2n+(-2m2n)+2mn2-(+m2n).66.4(x-y+z)-2(x+y-z)-3(-x-y-z).67.2(x2-2xy+y2-3)+(-x2+y2)-(x2+2xy+y2).68.(4x2-8x+5)-(x3+3x2-6x+2).69.(-x2+4+3x4-x3)-(x2+2x-x4-5).70.若A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算A+B.71.已知A=3a2-5a-12,B=2a2+3a-4,求2(A-B).72.(0.3x3-x2y+xy2-y3)-(-0.5x3-x2y+0.3xy2).73.-{2a2b-[3abc-(4ab2-a2b)]}.74.(5a2b+3a2b2-ab2)-(-2ab2+3a2b2+a2b).75.(x2-2y2-z2)-(-y2+3x2-z2)+(5x2-y2+2z2).76.(3a6-a4+2a5-4a3-1)-(2-a+a3-a5-a4).77.(4a-2b-c)-5a-[8b-2c-(a+b)].78.(2m-3n)-(3m-2n)+(5n+m).79.(3a2-4ab-5b2)-(2b2-5a2+2ab)-(-6ab).80.xy-(2xy-3z)+(3xy-4z).81.(-3x3+2x2-5x+1)-(5-6x-x2+x3).82.3x-(2x-4y-6x)+3(-2z+2y).83.2m-{-3n+[-4m-(3m-n)]}.(四)将下列各式先化简,再求值84.已知a+b=2,a-b=-1,求3(a+b)2(a-b)2-5(a+b)2×(a-b)2的值.85.已知A=a2+2b2-3c2,B=-b2-2c2+3a2,C=c2+2a2-3b2,求(A-B)+C.86.求(3x2y-2xy2)-(xy2-2x2y),其中x=-1,y=2.87.已知|x+1|+(y-2)2=0,求代数式5(2x-y)-3(x-4y)的值.88.当P=a2+2ab+b2,Q=a2-2ab-b2时,求P-[Q-2P-(P-Q)].89.求2x2-{-3x+5+[4x2-(3x2-x-1)]}的值,其中x=-3.90.当x=-2,y=-1,z=3时,求5xyz-{2x2y-[3xyz-(4xy2-x2y)]}的值.91.已知A=x3-5x2,B=x2-6x+3,求A-3(-2B).(五)综合练习92.去括号:{-[-(a+b)]}-{-[-(a-b)]}.93.去括号:-[-(-x)-y]-[+(-y)-(+x)].94.已知A=x3+6x-9,B=-x3-2x2+4x-6,计算2A-3B,并把结果放在前面带“-”号的括号内.95.计算下式,并把结果放在前面带“-”号的括号内:(-7y2)+(-4y)-(-y2)-(+5y)+(-8y2)+(+3y).96.去括号、合并同类项,将结果按x的升幂排列,并把后三项放在带有“-”号的括号内:97.不改变下式的值,将其中各括号前的符号都变成相反的符号:(x3+3x2)-(3x2y-7xy)+(2y3-3y2).98.用竖式计算(-x+5+2x4-6x3)-(3x4+2x2-3x3-7).99.已知A=11x3+8x2-6x+2,B=7x3-x2+x+3,求2(3A-2B).100.已知A=x3-5x2,B=x3-11x+6,C=4x-3,求(1)A-B-C;(2)(A-B-C)-(A-B+C).101.已知A=3x2-4x3,B=x3-5x2+2,计算(1)A+B;(2)B-A.102.已知x<-4,化简|-x|+|x+4|-|x-4|.103.求两代数式-1.56a+3.2a3-0.47,2.27a3-0.02a2+4.03a+0.53的差与6-0.15a+3.24a2+5.07a3的和.104.已知(x-3)2+|y+1|+z2=0,求x2-2xy-5x2+12xz+3xy-z2-8xz-2x2的值.105.在括号内填上适当的项:(1)x2-xy+y-1=x2-( );(2)[( )+6x-7]-[4x2+( )-( )]=x2-2x+1.106.计算4x2-3[x+4(1-x)-x2]-2(4x2-1)的值.107.化简:2x2-{-3x-[4x2-(3x2-x)+(x-x2)]}.108.化简:-(7x-y-2z)-{[4x-(x-y-z)-3x+z]-x}.109.计算:(+3a)+(-5a)+(-7a)+(-31a)-(+4a)-(-8a).110.化简:a3-(a2-a)+(a2-a+1)-(1-a4+a3).111.将x2-8x+2x3-13x2-2x-2x3+3先合并同类项,再求值,其中x=-4.112.把多项式4x2y-2xy2+4xy+6-x2y2+x3-y2的三次项放在前面带有“-”号的括号内,二次项放在前面带有“+”号的括号内,四次项和常数项放在前面带有“-”号的括号内.113.合并同类项:7x-1.3z-4.7-3.2x-y+2.1z+5-0.1y.114.合并同类项:5m2n+5mn2-mn+3m2n-6mn2-8mn.115.把下列多项式的括号去掉,合并同类项,并将其各项放在前面带有“-”号的括号内,再求2x-2[3x-(5x2-2x+1)]-4x2的值,其中x=-1.116.去括号,合并同类项:(1)(m+1)-(-n+m);(2)4m-[5m-(2m-1)].117.在括号内填上适当的项:[( )-9y+( )]+2y2+3y-4=11y2-( )+13.118.在括号内填上适当的项:(-x+y+z)(x+y-z)=[y-( )][y+( )].119.在括号内填上适当的项:(3x2+xy-7y2)-( )=y2-2xy-x2.11。
代数式的化简求值问题
代数式的化简求值问题 知识定位
初中数学中,全面实现了用字母代数。
这实现了学生对数认识的又一次飞跃。
这要求学生能体会用字母代替数后思维的扩展,体会一些简单的数学模型。
体会由特殊到一般,再由一般到特殊的重要方法。
知识梳理
1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括
整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化
3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、
函数等知识打下基础。
例题精讲
【题目】若多项式()x y x x x mx 537852222+--++-的值与x 无关,
求()[]
m m m m +---45222的值. 【答案】-4
【解析】分析:多项式的值与x 无关,即含x 的项系数均为零
因为()
()83825378522222++-=+--++-y x m x y x x x mx 所以 m=4
将m=4代人,()[]
44161644452222-=-+-=-+-=+---m m m m m m 利用“整体思想”求代数式的值
【知识点】代数式的化简求值问题
【适用场合】当堂例题
【难度系数】3
【题目】x=-2时,代数式635-++cx bx ax 的值为8,求当x=2时,代数式635-++cx bx ax 的值。
【答案】-20。
初中数学代数式化简求值练习题(含答案)
初中数学代数式化简求值练习题(含答案)1、已知x=1,求代数式x²+x(x-2)+(x+1)(x-1)的值。
2、已知x= -2,求代数式3(x-1)²+4x(x+2)-10的值。
3、先化简,再求值:2(x-3)(x+2)-(3+x)(3-x)-3(x-1)2,其中x=-2。
4、先化简再求值∶(2x³-2y²)-3(x³y²+x³)+2(y²+y²x³),其中x=-1,y=2。
5、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。
6、先化简,再求值:5y(2x²y+3xy²)-3x(4xy²+3x²y),其中x=1,y=-1。
7、先化简,再求值:(3x²y-xy²)-2(xy²-3x²y),其中x=-2,y=3。
8、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。
9、若x²+2y²=5,求多项式(3x²-2xy+y²)-(x²-2xy-3y²)的值。
10、先化简,再求值:5x²+4-3x²-5x-2x²-5+6x,其中x=-3。
11、先化简,再求值:2(x+x²y)-2/3(3x²y+3/2x)-y²,其中x=1,y=-3。
12、先化简,再求值:(4x²y-3xy)+(-5x²y+2xy)-(2yx²-1),其中x=2,y=1/2。
13、先化简,再求值:2x²y-[2xy²-2(-x²y+4xy²)],其中x=1/2,y=-2。
初一数学期中压轴题:代数式化简求值_题型归纳
初一数学期中压轴题:代数式化简求值_题型归纳初一数学期中压轴题:代数式化简求值小编整理了关于初一数学期中压轴题:代数式化简求值,赶紧来练习一下吧,为期中考试打下坚实基础!一、【考点】整体法求值、数形结合思想、加减法计算【师大附中期中】已知a-b=3,b-c=4,c-d=5,则(a-c)(d-b)=【解析】方法①(代数法:整体思想)a-c=(a-b)+(b-c)=3+4=7;b-d=(b-c)+(c-d)=4+5=9;d-b=-9原式=7*(-9)=-63方法②(几何法:借助数轴)如图:易得a-c=7,d-b=-9,原式=-63【答案】-63二、【考点】整体法求值、有理数加减法计算【清华附中期中】已知(2x-1)5=ax5+bx4+cx+dx+ex+f(a,b,c,d,e,f为常数),则b+d=_______【解析】令x=1得,1=a+b+c+d+e+f①令x=-1得,-243=-a+b-c+d-e+f②令x=0得,-1=f①+②得:2b+2d+2f=-242b+d+f=-121b+d=-120【答案】-120三、【考点】整体法求值、二元一次方程组【五中分校期中】如果四个有理数满足下列等式a+bc=-1,2b-a=5,2a+b=2d,3a+bc=5,求:abcd的值.【解析】a+bc=-1①,2b-a=5②,2a+b=2d③,3a+bc=5④由①、④解得:a=3,bc=-4把a=3代入②得:b=4把a=3、b=4代入③得:d=5所以abcd=3(-4)5= - 60【答案】-60四、【考点】整体代入化简求值【清华附中期中】已知x+y=6,xy=4,代数式的值是__________。
【解析】原式=(xy+y+xy+2x)/xy=[(x+y)y+(xy+2)x]/xy=(6y+6x)/4=9【答案】9五、【考点】整体法求值【北京四中期中】已知:a为有理数,a+a+a+1=0,求1+a+a+a++a2012的值。
七年级苏教版数学复习要点考点专题二:整式化简求值及应用(教师用,附答案分析)
七年级苏教版数学复习要点考点专题二:整式化简求值及应用知识点一 整式化简求值1.求代数式的值的一般方法(1)直接代入法:直接将字母的值代入代数式进行计算.(2)间接代入法:先计算出对应的字母的值,再把求得的值代入代数式进行计算.(3)整体代入法:先求出含一个字母或多个字母的整体值,然后将代数式变形为含有此整体的代数式并进行计算.注意:化简求值的扩充方法 ①设k 法遇到连等式、连续比例式的题,解决这类题型的最佳方法是设k 法. ②赋值法在解题过程中,对于难以化简求值问题,我们也可以通过给未知数赋一些特殊值来解决问题. 例1(玄武区期中)已知223A x mx x =+-,21B x mx =-++,其中m 为常数,若2A B +的值与x 的取值无关,则m 的值为( ) A .0B .5C .15D .15-【解答】解:已知223A x mx x =+-,21B x mx =-++,222232(1)A B x mx x x mx +=+-+-++, 2223222x mx x x mx =+--++,52mx x =-+因为2A B +的值与x 的取值无关,所以510m -=解得15m =.故选:C . 例2(溧水区期中)已知代数式2x y +的值是2,则代数式124x y --的值是( ) A .1- B .3- C .5- D .8-【解答】解:根据题意得:22x y +=, 方程两边同时乘以2-得:244x y --=-,方程两边同时加上1得:124143x y --=-=-,故选:B .知识点二 整式运算应用一、常见找规律基本类型 1.等差型规律相邻两项之差(后减前)等于定值的数列.例如:4,10,16,22,28…,增幅是6,第一位数是4,所以,第n 位数为:()41662n n +-⨯=-. 2.等比型规律相邻两项之比(后比前)等于定值的数列.例如:3,6,12,24,48…,比值是2,第一位数是3,所以,第n 位数为:132n -⨯. 3.符号型规律符号型数列的特点是,正数与负数交替出现;解决方法:先不考虑符号,找到数列的规律,并用含n 的式子表示,然后再乘以()1n-或()11n +-.补充:①平方型规律;②求和型规律;③周期型规律二、定义新运算:是用某些特殊的符号,表示特定的意义,从而解答某些特殊算式的运算. 在定义新运算中的※,,∆……与+、-、⨯、÷是有严格区别的.解答定义新运算问题,必须先理解新定义的含义,遵循新定义的关系式把问题转化为一般的 +、-、⨯、÷运算问题.注意:①新的运算不一定符合运算规律,特别注意运算顺序.②每个新定义的运算符号只能在本题中使用.三、程序框图运算:程序框图运算是定义新运算中的一种特殊类型,解题的关键是要准确理解新程序的数学意义,进而转化为数学问题. 注意:程序框图中的运算是由前到后....依次进行的,不存在先乘除后加减的问题.例1(建邺区期中)一组有规律排列的数:1、3、7、______、31⋯⋯,在下列四个数中,填在横线上最合理的是( )A .9B .11C .13D .15 【解答】解:3121=⨯+,7321=⨯+,15721=⨯+,311521=⨯+, ∴后一个数是它前一个数的2倍加上1,故选:D . 例2(鼓楼区期末)小红在计算2320201111()()()4444+++⋯+时,拿出1张等边三角形纸片按如图所示方式进行操作.①如图1,把1个等边三角形等分成4个完全相同的等边三角形,完成第1次操作;②如图2,再把①中最上面的三角形等分成4个完全相同的等边三角形,完成第2次操作;③如图3,再把②中最上面的三角形等分成4个完全相同的等边三角形,⋯依次重复上述操作.可得2320201111()()()4444+++⋯+的值最接近的数是( )A .13B .12C .23D .1【解答】解:设2320201111()()()4444S =+++⋯+,则232019111141()()()4444S =++++⋯+, 2020141()4S S -=-,2020131()4S =-,202011()1433S -=≈,故选:A . 例3(建邺区期中)有一列数1a ,2a ,3a ,4a ,5a ,n a ⋯,从第二个数开始,等于1与它前面的那个数的差的倒数,若13a =,则2019a 为( )A.2019B.23C.12-D.3【解答】解:依题意得:13a=,211132a==--,3121312a==+,413213a==-;∴周期为3;20193673÷=所以2019323a a==.故选:B.例4(溧水区期中)如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为am的正方形,C区是4个边长为bm的小正方形组成的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果40a m=,20b m=,求整个长方形运动场的面积.【解答】解:(1)2[()()]2()4()a b a b a b a b a m++-=++-=(2)2[()()]2()8()a ab a a b a a b a a b a m++++-=++++-=(3)解:(22)(22)4()()S a b a b a b a b=-⨯+=+-m,当40a=,20b=时原式4(4020)(4020)4800=+-=m,答:整个长方形运动场的面积为4800 m.【提优训练】一、单选题(共6小题)1.(苍溪县期末)已知一个多项式与239x x+的和等于2341x x+-,则此多项式是() A.2651x x---B.51x--C.2651x x-++D.51x-+【解答】解:由题意得:22341(39)x x x x+--+,2234139x x x x=+---,51x=--.故选:B.2.(常熟市期中)已知代数式2245x x-+的值为9,则272x x-+的值为()A.5B.6C.7D.8【解答】解:根据题意得:22459x x-+=,方程两边同时减去5得:2244x x-=,方程两边同时乘以12-得:222x x-+=-,方程两边同时加上7得:272725x x-+=-=,故选:A.3.(江阴市期中)已知2a b-=,2d b-=-,则2()a d-的值为()A.2B.4C.9D.16【解答】解:2a b-=,2d b-=-,()()4a b d b∴---=,则4a b d b--+=,4a d-=,2()16a d∴-=.故选:D.4.(姑苏区期末)如果a 和14b -互为相反数,那么多项式2(210)7(23)b a a b -++--的值是( ) A .4- B .2- C .2 D .4【解答】解:由题意可知:140a b +-=,41a b ∴-=-,∴原式242071421b a a b =-++-- 3121a b =--3(4)1a b =--31=--4=-,故选:A .5.(路北区三模)完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6()m n -B .3()m n +C .4nD .4m 【解答】解:设小矩形的长为a ,宽为()b a b >,则3a b n +=,阴影部分的周长为22()2(3)222264224n m a m b n m a m b m n n m +-+-=+-+-=+-=,故选:D . 6.(宿豫区期中)下列图形都是由同样大小〇的按一定的规律组成的,其中第1个图形一共有4个〇,第2个图形一共有9个〇,第3个图形一共有15个〇,⋯则第70个图形中〇的个数为( )A .280B .349C .2485D .2695【解答】解:第①个图形中基本图形的个数1(11)4312⨯+=⨯+, 第②个图形中基本图形的个数2(21)8322⨯+=⨯+, 第③个图形中基本图形的个数3(31)11332⨯+=⨯+, ⋯∴第n 个图形中基本图形的个数为(1)32n n n ++当70n =时,707137026952⨯⨯+=,故选:D .二、填空题(共5小题)7.(海州区期中)如果23x x -的值是1-,则代数式2396x x -+-的值是 . 【解答】解:根据题意得:231x x -=-, 方程两边同时乘以3-得:393x x -+=,方程两边同时减去6得:396363x x -+-=-=-,故答案为:3-. 8.(邗江区一模)若1m n -=-,则2()22m n m n --+= .【解答】解:1m n -=-,2()22m n m n ∴--+2()2()m n m n =---2(1)2(1)=--⨯-12=+3=.9.(无锡期末)若代数式22x x -的值为5,则代数式2363x x --的值为 . 【解答】解:2363x x --23(2)3x x =--225x x -=,∴原式353=⨯-12=.故答案为:1210.(凤山县期末)如图所示的运算程序中,若开始输入的x 值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,⋯,则第2019次输出的结果为 .【解答】解:由设计的程序,知依次输出的结果是50,25,32,16,8,4,2,1,8,4,2,1⋯,发现从8开始循环.则201942015-=,201545033÷=⋯,故第2019次输出的结果是2.故答案为:2 11.(秦淮区期中)如图所示的数表是由从1开始的连续自然数组成的.观察数表特征,第n 行最中间的数可以表示为 .(用含n 的代数式表示)【解答】解:由图中的数字可知,第n 行第一个数字是2(1)1n -+,最后一个数字是2n ,则第n 行最中间的数可以表示为:222(1)112n n n n -++=-+,故答案为:21n n -+.三、解答题(共2小题)12.(海州区期中)化简或求值 (1)化简:3(2)2(3)a b a b --+(2)先化简,再求值:22225(3)4(3)a b ab ab a b --+;其中1a =,12b =-.【解答】解:(1)原式(63)(26)632649a b a b a b a b a b =--+=---=-;(2)原式22222215541239a b ab ab a b a b ab =---=-,当1a =,12b =-时,原式3915244=--=-.13.(玄武区期中)如图是小江家的住房户型结构图.根据结构图提供的信息,解答下列问题: (1)用含a 、b 的代数式表示小江家的住房总面积S ;(2)小江家准备给房间重新铺设地砖.若卧室所用的地砖价格为每平方米50元;卫生间、厨房和客厅所用的地砖价格为每平方米40元.请用含a 、b 的代数式表示铺设地砖的总费用W ; (3)在(2)的条件下,当6a =,4b =时,求W 的值.【解答】解:(1)小江家的住房总面积:83S a b =-;(2)3(8)508(3)40W b a =-⨯+-⨯1200150320960b a =-+-320150240a b =-+; (3)当6a =,4b =时32061504240W =⨯-⨯+1920600240=-+1560=.。
初一数学压轴题:绝对值化简求值
初一数学压轴题:绝对值化简求值一、【考点】绝对值的代数意义、绝对值化简【北大附中期中】设a,b,c为实数,且化简|a|+a=0,|ab|=ab,|c|-c=0,化简|b|-|a+b|-|c-b|+|a-c|【解析】|a|+a=0,即|a|=-a,a≤0;|ab|=ab,ab≥0,b≤0;|c|-c=0,即|c|=c,c≥0原式=-b+a+b-c+b-a+c=b【答案】b二、【考点】有理数运算、绝对值化简【人大附期中】在有理数的范围内,我们定义三个数之间的新运算“#”法则:a#b#c=(|a-b-c|+a+b+c)/2如:(-1)#2#3=[|(-1-2-3)|+(-1)+2+3]/2=5(1)计算:3#(-2)#(-3)___________(2)计算:1#(-2)#(10/3)=_____________(3)在-6/7,-5/7……-1/7,0,1/9,2/9……8/9这15个数中,①任取三个数作为a、b、c的值,进行“a#b#c”运算,求所有计算结果的最大值__________,②若将这十五个数任意分成五组,每组三个数,进行“a#b#c”运算,得到五个不同的结果,由于分组不同,所以五个运算的结果也不同,那么五个结果之和的最大值是___________【分析】将a#b#c=(|a-b-c|+a+b+c)/2进行取绝对值化简。
【解析&答案】(1)原式=3(2)原式=4/3(3)当a<b+c时,原式=b+c,当a≥b+c时,原式=a①令b=7/9,c=8/9时 a#b#c的最大值为b+c=5/3②4(提示,将1/9,2/9……8/9分别赋予b、c同时赋予a 四个负数;最后一组,a=0,b、c赋予两个负数即可)三、【考点】绝对值与平方的非负性、二元一次方程组【北京四中期中】已知:(a+b)²+|b+5|=b+5,|2a-b-1|=0,求ab的值.【分析】考察平方和绝对值的非负性,若干个非负数的和为零,则每个数都为零。
七年级数学上册化简求值
七年级数学上册化简求值1.化简求值:$(-3a^2+8a)+(2a^3-13a^2+2a)-2(a^3-3)$,其中$a=-4$。
2.化简求值:$(-x^2+5-4x^3)-2(-x^3+5x-4)$,其中$x=-2$。
3.求$x-2(x-y^2)+(-x+y^2)$的值,其中$x=-2$,$y=3$。
4.求$7a^2bc-\left[8a^2cb-(bca^2+(ab-2a^2bc))\right]$的值,其中$a=-1$,$b=-3$,$c=1$。
5.化简求值:若$a=-3$,$b=4$,$c=-2$,则$-\dfrac{1}{2}\left(\dfrac{a}{b}+\dfrac{3(abc-a^2c)-4a^2c}{-3abc}\right)$的值为多少?6.一个多项式$A$加上$3x-5x+2$得$2x-4x+3$,求这个多项式$A$。
7.化简代数式$(2a^2-5a)-2(3a-5+a^2)$的值,其中$a=-1$。
8.先化简再求值:$5(a^2b-ab^2)-(ab^2+3a^2b)$,其中$a=2$,$b=-3$。
9.求代数式$2(3xy+4x^2)-3(xy+4x^2)$的值,其中$x=-3$,$y=1$。
10.先化简再求值:$2(3a-1)-3(2-5a)$,其中$a=-2$。
11.先化简再求值:$-2(xy-x^2)-[x^2-3(xy+y^2)+2xy]$,其中$x=2$,$y=-1$。
12.先化简再求值:$2x(3x^2-4x+1)-3x^2(2x-3)-1$,其中$x=-5$。
13.先化简再求值:$3x^2-[7x-(4x-3)-2x^2]$,其中$x=2$。
14.先化简再求值:$(-x^2+5x+4)+(5x-4+2x^2)$,其中$x=-2$。
15.化简求值:$3(x-1)-(x-5)$,其中$x=2$。
16.化简求值:$3(2x+1)+2(3-x)$,其中$x=-1$。
初一数学压轴题:绝对值化简求值
初一数学压轴题:绝对值化简求值一、【考点】绝对值的代数意义、绝对值化简【北大附中期中】设a,b,c为实数,且化简|a|+a=0,|ab|=ab,|c|-c=0,化简|b|-|a+b|-|c-b|+|a-c|【解析】|a|+a=0,即|a|=-a,a≤0;|ab|=ab,ab≥0,b≤0;|c|-c=0,即|c|=c,c≥0原式=-b+a+b-c+b-a+c=b【答案】b二、【考点】有理数运算、绝对值化简【人大附期中】在有理数的范围内,我们定义三个数之间的新运算“#”法则:a#b#c=(|a-b-c|+a+b+c)/2如:(-1)#2#3=[|(-1-2-3)|+(-1)+2+3]/2=5(1)计算:3#(-2)#(-3)___________(2)计算:1#(-2)#(10/3)=_____________(3)在-6/7,-5/7……-1/7,0,1/9,2/9……8/9这15个数中,①任取三个数作为a、b、c的值,进行“a#b#c”运算,求所有计算结果的最大值__________,②若将这十五个数任意分成五组,每组三个数,进行“a#b#c”运算,得到五个不同的结果,由于分组不同,所以五个运算的结果也不同,那么五个结果之和的最大值是___________【分析】将a#b#c=(|a-b-c|+a+b+c)/2进行取绝对值化简。
【解析&答案】(1)原式=3(2)原式=4/3(3)当a<b+c时,原式=b+c,当a≥b+c时,原式=a①令b=7/9,c=8/9时 a#b#c的最大值为b+c=5/3②4(提示,将1/9,2/9……8/9分别赋予b、c同时赋予a 四个负数;最后一组,a=0,b、c赋予两个负数即可)三、【考点】绝对值与平方的非负性、二元一次方程组【北京四中期中】已知:(a+b)²+|b+5|=b+5,|2a-b-1|=0,求ab的值.【分析】考察平方和绝对值的非负性,若干个非负数的和为零,则每个数都为零。
初一七年级化简求值100题
初一七年级化简求值100题1、-9(x-2)-y(x-5)(1)化简整个式子。
(2)当x=5时,求y的解。
2、5(9+a)×b-5(5+b)×a(1)化简整个式子。
(2)当a=5/7时,求式子的值。
3、62g+62(g+b)-b(1)化简整个式子。
(2)当g=5/7时,求b的解。
4、3(x+y)-5(4+x)+2y化简整个式子。
5、(x+y)(x-y)化简整个式子。
6、2ab+a×a-b化简整个式子。
7、5.6x+4(x+y)-y化简整个式子。
8、6.4(x+2.9)-y+2(x-y)化简整个式子。
9、(2.5+x)(5.2+y)化简整个式子。
10.3ab-4ab+8ab-7ab+ab=______.11.7x-(5x-5y)-y=______.12.23a3bc2-15ab2c+8abc-24a3bc2-8abc=______.13.-7x2+6x+13x2-4x-5x2=______.14.2y+(-2y+5)-(3y+2)=______.15.(2x2-3xy+4y2)+(x2+2xy-3y2)=______.16.2x+2y-[3x-2(x-y)]=______.17.5-(1-x)-1-(x-1)=______.18.( )+(4xy+7x2-y2)=10x2-xy.19.(4xy2-2x2y)-( )=x3-2x2y+4xy2+y3.20.2a-(3a-2b+2)+(3a-4b-1)=______.21.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=______.22.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B=______.23.若a=-0.2,b=0.5,代数式-(|a2b|-|ab2|)的值为______.24.2x-(x+3y)-(-x-y)-(x-y)=______.25.一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于______.26.-(2x2-y2)-[2y2-(x2+2xy)]=______.27.若-3a3b2与5ax-1by+2是同类项,则x=______,y=______.28.(-y+6+3y4-y3)-(2y2-3y3+y4-7)=______.29.化简代数式4x2-[7x2-5x-3(1-2x+x2)]的结果是______.30.2a-b2+c-d3=2a+( )-d3=2a-d3-( )=c-( ).32.化简代数式x-[y-2x-(x+y)]等于______.33.[5a2+( )a-7]+[( )a2-4a+( )]=a2+2a+1.34.3x-[y-(2x+y)]=______.35.化简|1-x+y|-|x-y|(其中x<0,y>0)等于______.36.已知x≤y,x+y-|x-y|=______.37.已知x<0,y<0,化简|x+y|-|5-x-y|=______.38.4a2n-an-(3an-2a2n)=______.39.若一个多项式加上-3x2y+2x2-3xy-4得2x2y+3xy2-x2+2xy,则这个多项式为______.40.-5xm-xm-(-7xm)+(-3xm)=______.41.当a=-1,b=-2时,[a-(b-c)]-[-b-(-c-a)]=______.42.-6x2-7x2+15x2-2x2=______.43.当a=-1,b=1,c=-1时,-[b-2(-5a)]-(-3b+5c)=______.44.-2(3x+z)-(-6x)+(-5y+3z)=______.45.-5an-an+1-(-7an+1)+(-3an)=______.46.3a-(2a-4b-6c)+3(-2c+2b)=______.50.当2y-x=5时,5(x-2y)2-3(-x+2y)-100=______.(二)选择51.下列各式中计算结果为-7x-5x2+6x3的是[ ] A.3x-(5x2+6x3-10x);B.3x-(5x2+6x3+10x);C.3x-(5x2-6x3+10x);D.3x-(5x2-6x3-10x).52.把(-x-y)+3(x+y)-5(x+y)合并同类项得[ ]A.(x-y)-2(x+y);B.-3(x+y);C.(-x-y)-2(x+y);D.3(x+y).53.2a-[3b-5a-(2a-7b)]等于[ ]A.-7a+10b;B.5a+4b;C.-a-4b;D.9a-10b.54.减去-3m等于5m2-3m-5的代数式是[ ]A.5(m2-1);B.5m2-6m-5;D.-(5m2+6m-5).55.将多项式2ab-9a2-5ab-4a2中的同类项分别结合在一起,应为[ ] A.(9a2-4a2)+(-2ab-5ab);B.(9a2+4a2)-(2ab-5ab);C.(9a2-4a2)-(2ab+5ab);D.(9a2-4a2)+(2ab-5ab).56.当a=2,b=1时,-a2b+3ba2-(-2a2b)等于[ ]A.20;B.24;C.0;D.16.57.若A和B均为五次多项式,则A-B一定是[ ]A.十次多项式;B.零次多项式;C.次数不高于五次的多项式;D.次数低于五次的多项式.58.-{[-(x+y)]}+{-[(x+y)]}等于[ ]A.0;B.-2y;C.x+y;59.若A=3x2-5x+2,B=3x2-5x+6,则A与B的大小是A.A>B;B.A=B;C.A<B;D.无法确定.60.当m=-1时,-2m2-[-4m2+(-m2)]等于[ ]A.-7;B.3;C.1;D.2.61.当m=2,n=1时,多项式-m-[-(2m-3n)]+[-(-3m)-4n]等于[ ] A.1;B.9;C.3;D.5.62.4x2y-5xy2的结果应为[ ]A.-x2y;B.-1;C.-x2y2;D.以上答案都不对.(三)化简63.2(a2-ab-b2)-3(4a-2b)+2(7a2-4ab+b2).64.4x-2(x-3)-3[x-3(4-2x)+8].65.5m2n+(-2m2n)+2mn2-(+m2n).66.4(x-y+z)-2(x+y-z)-3(-x-y-z).67.2(x2-2xy+y2-3)+(-x2+y2)-(x2+2xy+y2).68.(4x2-8x+5)-(x3+3x2-6x+2).69.(-x2+4+3x4-x3)-(x2+2x-x4-5).70.若A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算A+B.71.已知A=3a2-5a-12,B=2a2+3a-4,求2(A-B).72.(0.3x3-x2y+xy2-y3)-(-0.5x3-x2y+0.3xy2).73.-{2a2b-[3abc-(4ab2-a2b)]}.74.(5a2b+3a2b2-ab2)-(-2ab2+3a2b2+a2b).75.(x2-2y2-z2)-(-y2+3x2-z2)+(5x2-y2+2z2).76.(3a6-a4+2a5-4a3-1)-(2-a+a3-a5-a4).77.(4a-2b-c)-5a-[8b-2c-(a+b)].78.(2m-3n)-(3m-2n)+(5n+m).79.(3a2-4ab-5b2)-(2b2-5a2+2ab)-(-6ab).80.xy-(2xy-3z)+(3xy-4z).81.(-3x3+2x2-5x+1)-(5-6x-x2+x3).82.3x-(2x-4y-6x)+3(-2z+2y).83.2m-{-3n+[-4m-(3m-n)]}.(四)将下列各式先化简,再求值84.已知a+b=2,a-b=-1,求3(a+b)2(a-b)2-5(a+b)2×(a-b)2的值.85.已知A=a2+2b2-3c2,B=-b2-2c2+3a2,C=c2+2a2-3b2,求(A-B)+C.86.求(3x2y-2xy2)-(xy2-2x2y),其中x=-1,y=2.87.已知|x+1|+(y-2)2=0,求代数式5(2x-y)-3(x-4y)的值.88.当P=a2+2ab+b2,Q=a2-2ab-b2时,求P-[Q-2P-(P-Q)].89.求2x2-{-3x+5+[4x2-(3x2-x-1)]}的值,其中x=-3.90.当x=-2,y=-1,z=3时,求5xyz-{2x2y-[3xyz-(4xy2-x2y)]}的值.91.已知A=x3-5x2,B=x2-6x+3,求A-3(-2B).(五)综合练习92.去括号:{-[-(a+b)]}-{-[-(a-b)]}.93.去括号:-[-(-x)-y]-[+(-y)-(+x)].94.已知A=x3+6x-9,B=-x3-2x2+4x-6,计算2A-3B,并把结果放在前面带“-”号的括号内.95.计算下式,并把结果放在前面带“-”号的括号内:(-7y2)+(-4y)-(-y2)-(+5y)+(-8y2)+(+3y).96.去括号、合并同类项,将结果按x的升幂排列,并把后三项放在带有“-”号的括号内:97.不改变下式的值,将其中各括号前的符号都变成相反的符号:(x3+3x2)-(3x2y-7xy)+(2y3-3y2).98.用竖式计算(-x+5+2x4-6x3)-(3x4+2x2-3x3-7).99.已知A=11x3+8x2-6x+2,B=7x3-x2+x+3,求2(3A-2B).100.已知A=x3-5x2,B=x3-11x+6,C=4x-3,求(1)A-B-C;(2)(A-B-C)-(A-B+C).101.已知A=3x2-4x3,B=x3-5x2+2,计算(1)A+B;(2)B-A.102.已知x<-4,化简|-x|+|x+4|-|x-4|.103.求两代数式-1.56a+3.2a3-0.47,2.27a3-0.02a2+4.03a+0.53的差与6-0.15a+3.24a2+5.07a3的和.104.已知(x-3)2+|y+1|+z2=0,求x2-2xy-5x2+12xz+3xy-z2-8xz-2x2的值.105.在括号内填上适当的项:(1)x2-xy+y-1=x2-( );(2)[( )+6x-7]-[4x2+( )-( )]=x2-2x+1.106.计算4x2-3[x+4(1-x)-x2]-2(4x2-1)的值.107.化简:2x2-{-3x-[4x2-(3x2-x)+(x-x2)]}.108.化简:-(7x-y-2z)-{[4x-(x-y-z)-3x+z]-x}.109.计算:(+3a)+(-5a)+(-7a)+(-31a)-(+4a)-(-8a).110.化简:a3-(a2-a)+(a2-a+1)-(1-a4+a3).111.将x2-8x+2x3-13x2-2x-2x3+3先合并同类项,再求值,其中x=-4.112.把多项式4x2y-2xy2+4xy+6-x2y2+x3-y2的三次项放在前面带有“-”号的括号内,二次项放在前面带有“+”号的括号内,四次项和常数项放在前面带有“-”号的括号内.113.合并同类项:7x-1.3z-4.7-3.2x-y+2.1z+5-0.1y.114.合并同类项:5m2n+5mn2-mn+3m2n-6mn2-8mn.115.把下列多项式的括号去掉,合并同类项,并将其各项放在前面带有“-”号的括号内,再求2x-2[3x-(5x2-2x+1)]-4x2的值,其中x=-1.116.去括号,合并同类项:(1)(m+1)-(-n+m);(2)4m-[5m-(2m-1)].117.在括号内填上适当的项:[( )-9y+( )]+2y2+3y-4=11y2-( )+13.118.在括号内填上适当的项:(-x+y+z)(x+y-z)=[y-( )][y+( )].文档供参考,可复制、编制,期待您的好评与关注!119.在括号内填上适当的项:(3x2+xy-7y2)-( )=y2-2xy-x2.11 / 11。
整式的化简求值(五大题型50题)(原卷版)
(苏科版)七年级上册数学《第三章代数式》专题整式的化简求值(50题)1.先化简再求值:2x2y−[xy2+3(x2y−13xy2)],其中x=12,y=2.2.先化简,再求值:4x2﹣2xy+y2﹣(x2﹣xy+y2),其中x=﹣1,y=−1 2.3.(2022秋•秦淮区期末)先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),其中a=﹣1,b=2.4.(2022秋•邹城市校级期末)先化简,再求值:(2x2﹣2y2)﹣4(x2y+xy2)+4(x2y2+y2),其中x=﹣1,y=2.5.(2023•青秀区校级开学)先化简,再求值:4x+2(3y2﹣2x)﹣3(2x﹣y2),其中x=2,y=﹣2.6.(2022秋•龙沙区期中)先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2022.7.(2022秋•南海区校级期末)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.8.(2022秋•梁子湖区期末)先化简,再求值:5x2−[2xy−3(13xy+2)+4x2],其中x=−2,y=12.9.先化简,再求值:2(ab −32a 2+a ﹣b 2)﹣3(a ﹣a 2+23ab ),其中a =5,b =﹣2.10.先化简,再求值:2(mn ﹣4m 2﹣1)﹣(3m 2﹣2mn ),其中m =1,n =﹣2.11.先化简再求值:5xy ﹣(4x 2+2y )﹣2(52xy +x 2),其中x =3,y =﹣2.12.(2022秋•绿园区期末)先化简,再求值:12m −(2m −23n 2)+(−32m +13n 2),其中m =−14,n =−12.13.(2022秋•万秀区月考)先化简,再求值2(a2b+ab)﹣4(a2b﹣ab)﹣4a2b,其中a=3,b=﹣2.14.(2022秋•陕州区期中)先化简,再求值3x2y−2(x2y+14xy2)−2(xy2−xy),其中x=12,y=﹣2.15.(2022秋•沈北新区期中)化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.16.先化简,再求值.若m2+3mn=﹣5,则代数式5m2﹣[5m2﹣(2m2﹣mn)﹣7mn+7]的值.17.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.18.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.19.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.20.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.21.(2022秋•荔湾区期末)已知a2+b2=3,ab=﹣2,求代数式(7a2+3ab+3b2)﹣2(4a2+3ab+2b2)的值.22.(2022秋•平昌县期末)先化简,再求值.已知代数式2(3x2﹣x+2y﹣xy)﹣3(2x2﹣3x﹣y+xy),其中x+y=67,xy=﹣2.23.有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,把式子5a+3b =﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2﹣2a=1,则2a2﹣4a+1=.(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+4ab+4b2的值.24.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.25.阅读理解:已知4a−52b=1,求代数式2(a﹣b)+3(2a﹣b)的值.解:因为4a−52b=1,所以原式=2a−2b+6a−3b=8a−5b=2(4a−52b)=2×1=2.仿照以上解题方法,完成下面的问题:(1)已知a﹣b=﹣3,求3(a﹣b)﹣a+b+1的值;(2)已知a2+2ab=2,ab﹣b2=1,求2a2+5ab﹣b2的值.26.(2022秋•祁阳县期末)图是湘教版七年级上册数学教材65页的部分内容.明明同学在做作业时采用的方法如下:由题意得3(a2+2a)+2=3×1+2=5,所以代数式3(a2+2a)+2的值为5.【方法运用】:(1)若代数x2﹣2x+3的值为5,求代数式3x2﹣6x﹣1的值;(2)当x=1时,代数式ax3+bx+5的值为8.当x=﹣1,求代数式ax3+bx﹣6的值;(3)若x2﹣2xy+y2=20,xy﹣y2=6,求代数式x2﹣3xy+2y2的值.27.(2022秋•惠东县期中)有这样一道题“如果式子5a+3b的值为﹣4,那么式子2(a+b)+4(2a+b)的值是多少?”爱动脑筋的佳佳同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,则原式=2(5a+3b)=2×(﹣4)=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照佳佳的解题方法,完成下面问题:(1)已知a2﹣2a=1,则2a2﹣4a+1=;(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值;(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求3a2+4ab+4b2的值.28.(2022秋•西安期中)化简求值:−12(5xy −2x 2+3y 2)+3(−12xy +23x 2+y 26),其中x 、y 满足 (x +1)2+|y ﹣2|=0.29.(2022秋•公安县期中)先化简,再求值:4a 2b ﹣[﹣2ab 2﹣2(ab ﹣ab 2)+a 2b ]﹣3ab ,其中a =12,b =﹣4.30.(2022秋•海林市期末)先化简再求值:12a +2(a +3ab −13b 2)−3(32a +2ab −13b 2),其中a 、b 满足|a ﹣2|+(b +3)2=0.31.(2022秋•万州区期末)化简求32a 2b ﹣2(ab 2+1)−12(3a 2b ﹣ab 2+4)的值,其中2(a ﹣3)2022+|b +23|=0.32.(2022秋•偃师市期末)已知:(x−2)2+|y+12|=0,求2(xy2+x2y)﹣[2xy2﹣3(1﹣x2y)]+2的值.33.(2022秋•沙坪坝区校级期中)先化简,再求值:2(x2y−2xy2)−[(−x2y2+4x2y)−13(6xy2−3x2y2)],其中x是最大的负整数,y是绝对值最小的正整数.34.(2022秋•越秀区期末)已知代数式M=(2a2+ab﹣4)﹣2(2ab+a2+1).(1)化简M;(2)若a,b满足等式(a﹣2)2+|b+3|=0,求M的值.35.(2022秋•和平区校级期中)先化简再求值:若(a+3)2+|b﹣2|=0,求3ab2﹣{2a2b﹣[5ab2﹣(6ab2﹣2a2b)]}的值.36.(2022秋•江都区期末)已知代数式A =x 2+xy ﹣12,B =2x 2﹣2xy ﹣1.当x =﹣1,y =﹣2时,求2A ﹣B 的值.37.已知:A =x −12y +2,B =x ﹣y ﹣1.(1)化简A ﹣2B ;(2)若3y ﹣2x 的值为2,求A ﹣2B 的值.38.(2022秋•邹平市校级期末)先化简,再求值:A =5xy 2﹣xy ,B =xy 2−2(32xy 2−0.5xy).求A ﹣B ,其中x ,y 满足(x +1)2+|3﹣y |=0.39.(2022秋•大丰区期末)已知A =2a 2b ﹣5ab 2,B =a 2b ﹣2ab 2﹣a .(1)求A ﹣3B .(2)求当a =2,b =﹣1时,A ﹣3B 的值.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B﹣2A的值.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.44.(2021秋•沂源县期末)已知多项式x2+ax﹣y+b与bx2﹣3x+6y﹣3差的值与字母x的取值无关,求代数式3(a2﹣2ab﹣b2)﹣4(a2+ab+b2)的值.45.(2022秋•大竹县校级期末)已知代数式x2+ax﹣(2bx2﹣3x+5y+1)﹣y+6的值与字母x的取值无关,求1 3a3−2b2−14a3+3b2的值.46.(2022秋•利川市校级期末)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式5ab2﹣[a2b+2(a2b﹣3ab2)]的值.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式3a2b−[2ab2−4(ab−34a2b)]+2ab2的值.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.。
初一七年级化简求值100题
初一七年级化简求值100题1、-9(x-2)-y(x-5)(1)化简整个式子。
(2)当x=5时,求y的解。
2、5(9+a)×b-5(5+b)×a|(1)化简整个式子。
(2)当a=5/7时,求式子的值。
3、62g+62(g+b)-b(1)化简整个式子。
(2)当g=5/7时,求b的解。
~4、3(x+y)-5(4+x)+2y化简整个式子。
5、(x+y)(x-y)化简整个式子。
&6、2ab+a×a-b化简整个式子。
7、+4(x+y)-y化简整个式子。
(8、(x+-y+2(x-y)化简整个式子。
9、+x)+y)化简整个式子。
*10.3ab-4ab+8ab-7ab+ab=______.11.7x-(5x-5y)-y=______.12.23a3bc2-15ab2c+8abc-24a3bc2-8abc=______.13.-7x2+6x+13x2-4x-5x2=______.|14.2y+(-2y+5)-(3y+2)=______.15.(2x2-3xy+4y2)+(x2+2xy-3y2)=______.16.2x+2y-[3x-2(x-y)]=______.17.5-(1-x)-1-(x-1)=______.*18.( )+(4xy+7x2-y2)=10x2-xy.19.(4xy2-2x2y)-( )=x3-2x2y+4xy2+y3.20.2a-(3a-2b+2)+(3a-4b-1)=______.21.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=______.-22.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B=______.23.若a=,b=,代数式-(|a2b|-|ab2|)的值为______.24.2x-(x+3y)-(-x-y)-(x-y)=______.25.一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于______.`26.-(2x2-y2)-[2y2-(x2+2xy)]=______.27.若-3a3b2与5ax-1by+2是同类项,则x=______,y=______.28.(-y+6+3y4-y3)-(2y2-3y3+y4-7)=______.29.化简代数式4x2-[7x2-5x-3(1-2x+x2)]的结果是______.:30.2a-b2+c-d3=2a+( )-d3=2a-d3-( )=c-( ).31.3a-(2a-3b)+3(a-2b)-b=______.32.化简代数式x-[y-2x-(x+y)]等于______.33.[5a2+( )a-7]+[( )a2-4a+( )]=a2+2a+1.—34.3x-[y-(2x+y)]=______.35.化简|1-x+y|-|x-y|(其中x<0,y>0)等于______.36.已知x≤y,x+y-|x-y|=______.37.已知x<0,y<0,化简|x+y|-|5-x-y|=______.|38.4a2n-an-(3an-2a2n)=______.39.若一个多项式加上-3x2y+2x2-3xy-4得2x2y+3xy2-x2+2xy,则这个多项式为______.!40.-5xm-xm-(-7xm)+(-3xm)=______.41.当a=-1,b=-2时,[a-(b-c)]-[-b-(-c-a)]=______.42.-6x2-7x2+15x2-2x2=______.$43.当a=-1,b=1,c=-1时,-[b-2(-5a)]-(-3b+5c)=______.44.-2(3x+z)-(-6x)+(-5y+3z)=______.45.-5an-an+1-(-7an+1)+(-3an)=______.[46.3a-(2a-4b-6c)+3(-2c+2b)=______.48.9a2+[7a2-2a-(-a2+3a)]=______.50.当2y-x=5时,5(x-2y)2-3(-x+2y)-100=______.【(二)选择51.下列各式中计算结果为-7x-5x2+6x3的是[ ] A.3x-(5x2+6x3-10x);B.3x-(5x2+6x3+10x);】C.3x-(5x2-6x3+10x);D.3x-(5x2-6x3-10x).52.把(-x-y)+3(x+y)-5(x+y)合并同类项得[ ] A.(x-y)-2(x+y);【B.-3(x+y);C.(-x-y)-2(x+y);D.3(x+y).53.2a-[3b-5a-(2a-7b)]等于[ ]》A.-7a+10b;B.5a+4b;C.-a-4b;D.9a-10b..54.减去-3m等于5m2-3m-5的代数式是[ ]A.5(m2-1);B.5m2-6m-5;C.5(m2+1);}D.-(5m2+6m-5).55.将多项式2ab-9a2-5ab-4a2中的同类项分别结合在一起,应为[ ] A.(9a2-4a2)+(-2ab-5ab);B.(9a2+4a2)-(2ab-5ab);…C.(9a2-4a2)-(2ab+5ab);D.(9a2-4a2)+(2ab-5ab).56.当a=2,b=1时,-a2b+3ba2-(-2a2b)等于[ ]A.20;—B.24;C.0;D.16.57.若A和B均为五次多项式,则A-B一定是[ ])A.十次多项式;B.零次多项式;C.次数不高于五次的多项式;D.次数低于五次的多项式.、58.-{[-(x+y)]}+{-[(x+y)]}等于[ ]A.0;B.-2y;C.x+y;(D.-2x-2y.59.若A=3x2-5x+2,B=3x2-5x+6,则A与B的大小是A.A>B;B.A=B;|C.A<B;D.无法确定.60.当m=-1时,-2m2-[-4m2+(-m2)]等于[ ]A.-7;&B.3;C.1;D.2.61.当m=2,n=1时,多项式-m-[-(2m-3n)]+[-(-3m)-4n]等于[ ] 】A.1;B.9;C.3;D.5.$62.4x2y-5xy2的结果应为[ ]A.-x2y;B.-1;C.-x2y2;—D.以上答案都不对.(三)化简63.2(a2-ab-b2)-3(4a-2b)+2(7a2-4ab+b2).64.4x-2(x-3)-3[x-3(4-2x)+8].~65.5m2n+(-2m2n)+2mn2-(+m2n).66.4(x-y+z)-2(x+y-z)-3(-x-y-z).67.2(x2-2xy+y2-3)+(-x2+y2)-(x2+2xy+y2).68./69.(4x2-8x+5)-(x3+3x2-6x+2).69.(-x2+4+3x4-x3)-(x2+2x-x4-5).70.若A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算A+B.71.已知A=3a2-5a-12,B=2a2+3a-4,求2(A-B).)72.+xy2-y3)-+.73.-{2a2b-[3abc-(4ab2-a2b)]}.74.(5a2b+3a2b2-ab2)-(-2ab2+3a2b2+a2b).75.(x2-2y2-z2)-(-y2+3x2-z2)+(5x2-y2+2z2)./76.(3a6-a4+2a5-4a3-1)-(2-a+a3-a5-a4).77.(4a-2b-c)-5a-[8b-2c-(a+b)].78.(2m-3n)-(3m-2n)+(5n+m).79.(3a2-4ab-5b2)-(2b2-5a2+2ab)-(-6ab).、80.xy-(2xy-3z)+(3xy-4z).81.(-3x3+2x2-5x+1)-(5-6x-x2+x3).82.3x-(2x-4y-6x)+3(-2z+2y).83.2m-{-3n+[-4m-(3m-n)]}.^(四)将下列各式先化简,再求值84.已知a+b=2,a-b=-1,求3(a+b)2(a-b)2-5(a+b)2×(a-b)2的值.85.已知A=a2+2b2-3c2,B=-b2-2c2+3a2,C=c2+2a2-3b2,求(A-B)+C.86.求(3x2y-2xy2)-(xy2-2x2y),其中x=-1,y=2.@87.已知|x+1|+(y-2)2=0,求代数式5(2x-y)-3(x-4y)的值.88.当P=a2+2ab+b2,Q=a2-2ab-b2时,求P-[Q-2P-(P-Q)].&89.求2x2-{-3x+5+[4x2-(3x2-x-1)]}的值,其中x=-3.90.当x=-2,y=-1,z=3时,求5xyz-{2x2y-[3xyz-(4xy2-x2y)]}的值.91.已知A=x3-5x2,B=x2-6x+3,求A-3(-2B).—(五)综合练习92.去括号:{-[-(a+b)]}-{-[-(a-b)]}.93.去括号:-[-(-x)-y]-[+(-y)-(+x)].$94.已知A=x3+6x-9,B=-x3-2x2+4x-6,计算2A-3B,并把结果放在前面带“-”号的括号内.95.计算下式,并把结果放在前面带“-”号的括号内:(-7y2)+(-4y)-(-y2)-(+5y)+(-8y2)+(+3y).96.去括号、合并同类项,将结果按x的升幂排列,并把后三项放在带有“-”号的括号内:.97.不改变下式的值,将其中各括号前的符号都变成相反的符号:(x3+3x2)-(3x2y-7xy)+(2y3-3y2).98.用竖式计算(-x+5+2x4-6x3)-(3x4+2x2-3x3-7).99.已知A=11x3+8x2-6x+2,B=7x3-x2+x+3,求2(3A-2B).)100.已知A=x3-5x2,B=x3-11x+6,C=4x-3,求(1)A-B-C;(2)(A-B-C)-(A-B+C).|101.已知A=3x2-4x3,B=x3-5x2+2,计算(1)A+B;(2)B-A.102.已知x<-4,化简|-x|+|x+4|-|x-4|.(103.求两代数式+,的差与++的和.104.已知(x-3)2+|y+1|+z2=0,求x2-2xy-5x2+12xz+3xy-z2-8xz-2x2的值.105.在括号内填上适当的项:<(1)x2-xy+y-1=x2-( );(2)[( )+6x-7]-[4x2+( )-( )]=x2-2x+1.106.计算4x2-3[x+4(1-x)-x2]-2(4x2-1)的值.107.化简:2x2-{-3x-[4x2-(3x2-x)+(x-x2)]}.108.化简:-(7x-y-2z)-{[4x-(x-y-z)-3x+z]-x}.109.计算:(+3a)+(-5a)+(-7a)+(-31a)-(+4a)-(-8a).110.化简:a3-(a2-a)+(a2-a+1)-(1-a4+a3).111.将x2-8x+2x3-13x2-2x-2x3+3先合并同类项,再求值,其中x=-4.112.把多项式4x2y-2xy2+4xy+6-x2y2+x3-y2的三次项放在前面带有“-”号的括号内,二次项放在前面带有“+”号的括号内,四次项和常数项放在前面带有“-”号的括号内.113.合并同类项:114.合并同类项:5m2n+5mn2-mn+3m2n-6mn2-8mn.115.把下列多项式的括号去掉,合并同类项,并将其各项放在前面带有“-”号的括号内,再求2x-2[3x-(5x2-2x+1)]-4x2的值,其中x=-1.116.去括号,合并同类项:(1)(m+1)-(-n+m);(2)4m-[5m-(2m-1)].117.在括号内填上适当的项:[( )-9y+( )]+2y2+3y-4=11y2-( )+13.118.在括号内填上适当的项:(-x+y+z)(x+y-z)=[y-( )][y+( )].119.在括号内填上适当的项:(3x2+xy-7y2)-( )=y2-2xy-x2.。
专题04 代数式化简求值的三种考法(解析版)-2024年常考压轴题攻略(7年级上册人教版)
专题04代数式化简求值的三种考法类型一、整体代入求值【变式训练3】已知a+b=2ab,那么=()a ab b-+A .6B .7C .9D .10【答案】B【详解】解:∵2a b ab +=,∴232a ab b a ab b++-+=2()3a b ab a b ab +++-=2232ab ab ab ab ⨯+-=43ab ab ab +=7abab =7,故选:B .类型二、特殊值法代入求值例1.已知关于x 的多项式4323ax bx cx dx e ++++,其中a ,b ,c ,d 为互不相等的整数.(1)若4abcd =,求+++a b c d 的值;(2)在(1)的条件下,当1x =时,这个多项式的值为27,求e 的值;(3)在(1)、(2)条件下,若=1x -时,这个多项式4323ax bx cx dx e ++++的值是14,求a c +的值.【答案】(1)0(2)3e =(3) 6.5-【分析】(1)由a b c d 、、、是互不相等的整数,4abcd =可得这四个数由1-,1,2-,2组成,再进行计算即可得到答案;(2)把1x =代入432327ax bx cx dx e ++++=,即可求出e 的值;(3)把=1x -代入432314ax bx cx dx e ++++=,再根据0a b c d +++=,即可求出a c +的值.【详解】(1)解:4abcd = ,且a b c d 、、、是互不相等的整数,∴a b c d 、、、为1-,1,2-,2,0a b c d ∴+++=;(2)解:当1x =时,4323ax bx cx dx e ++++43231111a b c d e =⨯+⨯+⨯+⨯+3a b c d e =++++30e =+27=,3e ∴=;(3)解:当=1x -时,4323ax bx cx dx e ++++()()()()43231111a b c d e=⨯-+⨯-+⨯-+⨯-+3a b c d e =-+-+14=,【变式训练2】若6543210,则5310a a a a ++-=______.【答案】365-【详解】解:令x =0,代入等式中得到:()601-=a ,∴0=1a ,令x =1,代入等式中得到:65432101①=++++++ a a a a a a a ,令x =-1,代入等式中得到:66543210(3)②----=+++ a a a a a a a ,将①式减去②式,得到:65311(3)2()--+=+a a a ,∴536113)3642(-+=+=-a a a ,∴53103641365++-=--=-a a a a ,故答案为:365-.【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=;(3)取1x =-时,可以得到432106a a a a a -+-+=-;(4)把(2),(3)的结论相加,就可以得到4222a a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=.求:(1)0a 的值;(2)6543210++++++a a a a a a a 的值;(3)642a a a ++的值.【答案】(1)4;(2)8;(3)0【解析】(1)解:当1x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴0414a =⨯=;(2)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+①;当0x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432100+-++=--a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=-=.类型三、降幂思想求值例.若2230x x -+=,则3227122020x x x -++=_____;【答案】2029【详解】解:∵2230x x -+=,∴223x x -=-,∴3227122020x x x -++=x (2x 2-4x -3x +12)+2020=x [2(x 2-2x )-3x +12]+2020=x [2×(-3)-3x +12]+2020=x (-3x +6)+2020=-3(x 2-2x )+2020=-3×(-3)+2020=9+2020=2029故答案为:2029.【分析】根据已知得到2232022x x -=,再将所求式子变形为()()22232320222020x x x x x x =-+---,整体代入计算即可.【详解】解:∵22320220x x --=,∴2232022x x -=,∴32220252020x x x ---322232*********x x x x x =-+---()()22232320222020x x x x x x =-+---2022202220222020x x =+--2=故答案为:2.【点睛】本题主要考查了代数式求值,利用整体代入的思想求解是解题的关键.【变式训练2】如果2233x x -+的值为5,则2695x x --的值为______.【答案】1【详解】∵22335x x -+=,∴2232x x -=∴2695x x --()23235x x =--325=⨯-1=,故答案为:1.【变式训练3】已知21x x +=,求43222023x x x x +--+的值.【答案】2022【分析】把所求式子变形成含已知的代数式,结合整体代入的思想解答即可.【详解】解:∵21x x +=,∴43222023x x x x +--+()22222023x x x x x =+--+2222023x x x =--+22023x x =--+()22023x x =-++12023=-+2022=.【点睛】本题考查了代数式求值和整式的乘法,正确变形,灵活应用整体思想是解题的关键.【变式训练4】已知210x x --=,则3222021x x -++的值是______.【答案】2022【详解】解:∵210x x --=,∴230x x x --=,∴32210x x -+-=,∴3221x x -+=,∴3222021120212022x x -++=+=,故答案为:2022.1.已知2|1|(2)0x y -++=,a 与b 互为倒数,c 与d 互为相反数,求32()()33x y ab c d +--++的值.【答案】-2【详解】解:()2120x y -++= ,()21020x y -≥+≥,.10x ∴-=,20y +=1x ∴=,2y =-因为a 与b 互为倒数,所以1ab =因为c 与d 互为相反数,所以0c d +=∴原式()()()321213c d =---++()311=--=-2.2.已知23a bc +=,222b bc -=-.则22543a b bc +-的值是()A .23-B .7C .13D .23【答案】B【分析】将所求式子变形为()()22542a bc b bc ++-,再整体代入计算.【详解】解:∵23a bc +=,222b bc -=-,∴22543a b bc+-225548a bc b bc =+-+()()22254a bc b bc =+-+()5342=⨯+⨯-158=-7=故选B .【点睛】本题考查了整式的加减,代数式求值,解题的关键是掌握整体思想的灵活运用.3.已知21a a +=,那么3222023a a ++的值是()A .2021B .2022C .2023D .2024【答案】D【分析】先将3a 降次为2a a -+,然后代入代数式,再根据已知条件即可求解.【详解】解:∵21a a +=,∴21a a =-+,则32a a a =-+,∴3222023a a ++2222023a a a =-+++22023a a =++12023=+已知2,【答案】1或-3【详解】∵24a +=,()214b -=,∴a +2=±4,b −1=±2,∴a =2或a =−6,b =3或b =−1;∵0ab <,∴a =2,b =−1或a =−6,b =3,当a =2,b =−1时,则2(1)1a b +=+-=;当a =−6,b =3时,则633a b +=-+=-;故答案为:1或-3.。
人教版数学七年级上学期专题03 代数式化简求值的四种考法(原卷版)(原卷版+解析版)(人教版)
专题03 代数式化简求值的四种考法类型一、整体代入求值例1.若2m n -=,那么922m n -+=_________.例2.已知2310x x -+=,则2395x x -+=_________.例3.当1x =时,多项式534ax bx ++的值为5,则当1x =-时,该多项式的值为()A .5-B .5C .3-D .3【变式训练1】已知3x y -=,则722x y -+的值为_______.【变式训练2】若1m n -=,2mn =,则(2)(2)m n -+=___.【变式训练3】若33a b -=,则(2)(2)a b a b +--的值为( )A .13- B .13 C .3 D .3-【变式训练4】已知a +b =2ab ,那么232a ab ba ab b ++-+=( )A .6B .7C .9D .10类型二、特殊值法代入求值例1.设()3321x ax bx cx d -=+++,则a b c d -+-的值为( )A .2B .8C .2-D .8-【变式训练1】已知(x ﹣1)6=a 6x 6+a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,将x =0代入这个等式中可以求出a 0=1.用这种方法可以求得a 6+a 5+a 4+a 3+a 2+a 1的值为( )A .﹣16B .16C .﹣1D .1【变式训练2】若()665432654321021x a x a x a x a x a x a x a -=++++++,则5310a a a a ++-=______.【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=;(3)取1x =-时,可以得到432106a a a a a -+-+=-;(4)把(2),(3)的结论相加,就可以得到4222a a +020+=a ,结合(1)00a =的结论,从而得出420a a +=. 请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=.求:(1)0a 的值;(2) 6543210++++++a a a a a a a 的值;(3) 642a a a ++的值.类型三、降幂思想求值例.若2230x x -+=,则3227122020x x x -++=_____;【变式训练1】若实数x 满足x 2﹣2x ﹣1=0,则2x 3﹣7x 2+4x ﹣2016=_____.【变式训练2】如果2233x x -+的值为5,则2695x x --的值为______.【变式训练3】已知x 2﹣3x =2,那么多项式x 3﹣x 2﹣8x +9的值是 _____.【变式训练4】已知210x x --=,则3222021x x -++的值是______.类型四、含绝对值的代数式求值例1.若19,97a b ==,且a b a b +≠+,则-a b 的值是________例2.已知x =5,y =4,且,则x y >,则2x y -的值为( )A .6B .±6C .14D .6或14【变式训练1】已知23,25a b ==,且0a b +<,则-a b 的值为( ) A .2或8-B .2-或8C .2或8D .2-或8-【变式训练2】已知2|1|(2)0x y -++=,a 与b 互为倒数,c 与d 互为相反数,求32()()33x y ab c d +--++的值.【变式训练3】已知24a +=,()214b -=,且0ab <,则a b +=______.专题03 代数式化简求值的四种考法类型一、整体代入求值例1.若2m n -=,那么922m n -+=_________.【答案】5 【详解】解:m -n =2,∴()922929225m n=-m n -+-=-⨯=,故答案为:5.例2.已知2310x x -+=,则2395x x -+=_________.【答案】2【详解】22239539323(31)+2x x x x x x -+=-++=-+∵2310x x -+=∵23950+2=2x x -+=故答案为:2.例3.当1x =时,多项式534ax bx ++的值为5,则当1x =-时,该多项式的值为( ) A .5-B .5C .3-D .3【答案】D【详解】解:当x =1时,多项式53445ax bx a b ++=++=,即a +b =1,则x =-1时,多项式()53444143ax bx a b a b ++=--+=-++=-+= 故选:D .【变式训练1】已知3x y -=,则722x y -+的值为_______.【答案】1【详解】解:∵3x y -=,∵()722727231-+--=-⨯=x y x y =.故答案为:1【变式训练2】若1m n -=,2mn =,则(2)(2)m n -+=___.【答案】0【详解】解:∵1m n -=,2mn =,∵(2)(2)m n -+=2()4mn m n +--=224+- =0,故答案为0【变式训练3】若33a b -=,则(2)(2)a b a b +--的值为( )A .13-B .13C .3D .3-【答案】D【详解】解:∵33a b -=,∵(2)(2)a b a b +--22a b a b =+-+3b a =-()3a b =--3=-故选:D .【变式训练4】已知a +b =2ab ,那么232a ab b a ab b ++-+=( ) A .6B .7C .9D .10【答案】B【详解】解:∵2a b ab +=, ∵232a ab b a ab b ++-+=2()3a b ab a b ab +++-=2232ab ab ab ab ⨯+-=43ab ab ab +=7ab ab =7, 故选:B .类型二、特殊值法代入求值例1.设()3321x ax bx cx d -=+++,则a b c d -+-的值为( )A .2B .8C .2-D .8-【答案】B【详解】解:将x =-1代入()3321x ax bx cx d -=+++得,()311a b c d --=-+-+, 8a b c d ∴-+-+=-,()8a b c d ∴--+-+=,即8a b c d -+-=,故选:B .【变式训练1】已知(x ﹣1)6=a 6x 6+a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,将x =0代入这个等式中可以求出a 0=1.用这种方法可以求得a 6+a 5+a 4+a 3+a 2+a 1的值为( )A .﹣16B .16C .﹣1D .1【答案】C【详解】解:当x =0时,可得a 0=1当x =1时,∵(x −1)6=a 6x 6+a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0∵a 6+a 5+a 4+a 3+a 2+a 1+a 0=0,∵a 6+a 5+a 4+a 3+a 2+a 1=−a 0=−1,故选:C .【变式训练2】若()665432654321021x a x a x a x a x a x a x a -=++++++,则5310a a a a ++-=______.【答案】365-【详解】解:令x =0,代入等式中得到:()601-=a ,∵0=1a ,令x =1,代入等式中得到:65432101①=++++++a a a a a a a ,令x =-1,代入等式中得到:66543210(3)②----=+++a a a a a a a , 将①式减去②式,得到:65311(3)2()--+=+a a a ,∵536113)3642(-+=+=-a a a , ∵53103641365++-=--=-a a a a ,故答案为:365-.【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=;(3)取1x =-时,可以得到432106a a a a a -+-+=-;(4)把(2),(3)的结论相加,就可以得到4222a a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=.求:(1)0a 的值;(2) 6543210++++++a a a a a a a 的值;(3) 642a a a ++的值.【答案】(1)4;(2)8;(3)0【解析】(1)解:当1x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∵0414a =⨯=;(2)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∵65432108a a a a a a a +++++=+;(3)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∵65432108a a a a a a a +++++=+①;当0x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∵65432100+-++=--a a a a a a a ②;用①+②得:406282222++=+a a a a ,∵642040a a a a ++=-=.类型三、降幂思想求值例.若2230x x -+=,则3227122020x x x -++=_____;【答案】2029【详解】解:∵2230x x -+=,∵223x x -=-,∵3227122020x x x -++=x (2x 2-4x -3x +12)+2020=x [2(x 2-2x )-3x +12]+2020= x [2×(-3)-3x +12]+2020=x (-3x +6)+2020=-3(x 2-2x )+2020=-3×(-3)+2020=9+2020=2029 故答案为:2029.【变式训练1】若实数x 满足x 2﹣2x ﹣1=0,则2x 3﹣7x 2+4x ﹣2016=_____.【答案】2019- 【详解】解:实数x 满足x 2﹣2x ﹣1=0,∴221x x -=,322742016∴-+-x x x ()()22222222016=-----x x x x x x222018=--x x ()222018=---x x 12018=--2019=-故答案为:2019-.【变式训练2】如果2233x x -+的值为5,则2695x x --的值为______.【答案】1【详解】∵22335x x -+=,∵2232x x -=∵2695x x --()23235x x =--325=⨯-1=,故答案为:1. 【变式训练3】已知x 2﹣3x =2,那么多项式x 3﹣x 2﹣8x +9的值是 _____.【答案】13【详解】解:∵x 2﹣3x =2,∵x 3﹣x 2﹣8x +932232629x x x x x =-+--+()()2232329x x x x x x =-+--+=22229x x +⨯-+13=.故答案为:13.【变式训练4】已知210x x --=,则3222021x x -++的值是______.【答案】2022【详解】解:∵210x x --=,∵230x x x --=,∵32210x x -+-=,∵3221x x -+=,∵3222021120212022x x -++=+=,故答案为:2022.类型四、含绝对值的代数式求值例1.若19,97a b ==,且a b a b +≠+,则-a b 的值是________【答案】116或78【详解】解:∵19a =,97b =,∵19a =±、97b =±,又∵a b a b +≠+ ,∵0a b +<,∵19a =,97b =-或19a =-,97b =-,∵()1997116a b -=--=或()199778a b -=---=,∵a b -的值是116或78.故答案为:116或78.例2.已知x =5,y =4,且,则x y >,则2x y -的值为( ) A .6 B .±6 C .14D .6或14 【答案】D 【详解】解:5x =,4y =,∴5x =±,4y =±, 又x y >,∴54x y =⎧⎨=⎩或54x y =⎧⎨=-⎩.当5x =,4y =时,22546x y -=⨯-=;当5x =,4y =-时,225(4)14x y -=⨯--=.综上,2x y -的值为6或14.故选:D .【变式训练1】已知23,25a b ==,且0a b +<,则-a b 的值为( ) A .2或8- B .2-或8 C .2或8D .2-或8- 【答案】C【详解】解:∵3a =,225b =,∵3a =±,5b =±,∵0a b +<,∵3a =-,5b =-或3a =,5b =-,当3a =-,5b =-时,3(5)2a b -=---=,当3a =,5b =-时,3(5)8a b -=--=,故选C .【变式训练2】已知2|1|(2)0x y -++=,a 与b 互为倒数,c 与d 互为相反数,求32()()33x y ab c d +--++的值.【答案】-2 【详解】解:()2120x y -++=,()21020x y -≥+≥, .10x ∴-=,20y +=1x ∴=,2y =-因为a 与b 互为倒数,所以1ab =因为c 与d 互为相反数,所以0c d +=∴原式()()()321213c d =---++()311=--=-2.【变式训练3】已知24a +=,()214b -=,且0ab <,则a b +=______.【答案】1或-3【详解】∵24a +=,()214b -=,∵a +2=±4,b −1=±2,∵a =2或a =−6,b =3或b =−1;∵0ab <,∵a =2,b =−1或a =−6,b =3,当a =2,b =−1时,则2(1)1a b +=+-=;当a =−6,b =3时,则633a b +=-+=-;故答案为:1或-3.。
初中数学化简求值经典练习题(含答案)
初中数学化简求值经典练习题(含答案)先化简再求值: 1.(1+ 1x +1x+1)÷x (x+1)+2(x+1)−1x 2−1-1,其中:x=√2-1 ;2.1-(1x−1-1)( 1x-1),其中:x=√5+2 ;3.25x -12x−3y ·(4x 2-9y 2+4x−6y 5x),其中:x=√3+12,y= √3−13;4.2(x-2y )+3(2x-3y )-4(3x-4y ),其中:x= - 34,y= 23;5.7x 3-2x (3x-5)-(4+5x-6x 2+7x 3),其中:x=2;6.(x+1)(x-3)+3x 2- 2〔2(x-2)(x+1)+(5x+4〕),其中:x= 34 ;7.x (x-1)-(x-2)(x+3)+6[32(6+x )+ 13(5-x )],其中x= -1.2 ;8.x−9x 2−9·x 2−6x+99−x+(4x−142x 2−x−21+3),其中x=√3-3 ;9.x−2y 3x+4y ÷(x +−2xy+4y 2x−2y)·3x 2+7xy+4y 2x 2−y 2,其中:x=√5-1,y=√3-1 ;10.12(2x+4)(x-2)+x−5x 2−10x+25·(x 2-x-20),其中:x 是大于3且小于6的自然数; 11.(4x+31x−5+x+5)-x 2−9x−5·x−2x+3,其中:x 满足|x |=4 ;12.(x+3)÷ x 2+x−6x 2−6x+8-x−1x+1×2x 2−x−3x−1,其中:x=2sin60°-1 ;参考答案1.(1+ 1x +1x+1)÷x (x+1)+2(x+1)−1x 2−1-1,其中:x=√2-1 ; 解:(1+ 1x + 1x+1)÷x (x+1)+2(x+1)−1x 2−1-1=(x+1x+ 1x+1)÷x 2+x+2x+2−1(x+1)(x−1)-1=x 2+3x+1x (x+1)÷x 2+3x+1(x+1)(x−1)-1 = x 2+3x+1x (x+1) ·(x+1)(x−1)x 2+3x+1-1=x−1x-1=1 - 1x-1 = - 1x将x=√2-1代入 原式= - √2−1= -√2+1(√2−1)(√2+1)= -√2−1故当 x=√2-1时原代数式的值是:-√2−1 2. 1-(1x−1-1)( 1x-1),其中:x=√5+2 ;解:1-(1x−1 -1)( 1x-1)=1-(1x−1-x−1x−1)( 1x- xx)=1- −x+2x−1 ·1−xx=1-x−2x=1-(1- 2x) = 2x将x=√5+2代入 原式= √5+2=√5−2(√5+2)(√5−2)=2√5-4故当 x=√5+2时原代数式的值是:2√5-4 3.25x -12x−3y ·(4x 2-9y 2+4x−6y5x ),其中:x= √3+12,y= √3−13 ; 解:25x - 12x−3y (4x 2-9y 2+4x−6y 5x)= 25x -12x−3y〔(2x+3y )(2x-3y ) +2(x−3y )5x〕= 25x - 〔(2x+3y )+ 25x〕 = -(2x+3y ) = -2x-3y将x= √3+12,y= √3−13代入原式= -2·√3+12 -3·√3−13= -(√3+1)-(√3−1)=2√3故当x= √3+12,y= √3−13时原代数式的值是:2√34.2(x-2y)+3(2x-3y)-4(3x-4y),其中:x= - 34,y= 23;解:2(x-2y)+3(2x-3y)-4(3x-4y) =2x-4y+6x-9y-12x+16y= -4x+3y将x= - 34,y= 23代入原式= -4·(- 34)+3·23=3+2=5故当 x=2时原代数式的值是:55. 7x3-2x(3x-5)-(4+5x-6x2+7x3),其中:x=2;解:7x3-2x(3x-5)-(4+5x-6x2+7x3)=7x3-6x2+10x-4-5x+6x2-7x3=5x-4将x=2代入原式=5·2-4=6故当 x=2时原代数式的值是:66.(x+1)(x-3)+3x 2- 2〔2(x-2)(x+1)+(5x+4〕),其中:x= 34 ;解:(x+1)(x-3)+3x 2- 2〔2(x-2)(x+1)+(5x+4〕) = x 2-2x-3+3x 2-2〔2(x 2-x-2)+(5x+4〕) =4x 2-2x-3-2〔2x 2-2x-4+5x+4) =4x 2-2x-3-2(2x 2+3x ) =4x 2-2x-3-4x 2-6x = -8x-3 将x= 34 代入原式= -8·34-3= -9故当 x= 34 时原代数式的值是:-97.x (x-1)-(x-2)(x+3)+6[32(6+x )+ 13(5-x )],其中x= -1.2 ;解:x (x-1)-(x-2)(x+3)+6[32(6+x )+ 13(5-x )]=x 2-x-(x 2+x-6)+ [6*32(6+x )+ 6*13(5-x )]=-2x+6+[9(6+x )+ 2(5-x )] =6-2x+(54+9x+10-2x ) =6-2x+(64+7x )=70+5x 将x= -1.2代入 原式=70+5×(-1.2)=64故当x= -1.2时原代数式的值是:64 8.x−9x 2−9·x 2−6x+99−x+(4x−142x 2−x−21+3),其中x=√3-3 ; 解:x−9x 2−9·x 2−6x+99−x +(4x−142x 2−x−21 +3)=x−9(x+3)(x−3)·(x−3)2−(x−9)+〔2(2x−7)(2x−7)(x+3)+3〕= - x−3x+3+2x+3+3= 5−x x+3+3= 5−x+3x+9x+3= 2x+14x+3=(2x+6)+8x+3=2+8x+3将x=√3-3代入 原式=2+(√3−3)+3=2+8√33故当x=√3-3时原代数式的值是:2+ 8√339.x−2y 3x+4y÷(x +−2xy+4y 2x−2y)·3x 2+7xy+4y 2x 2−y 2,其中:x=√5-1,y=√3-1;解:x−2y3x+4y ÷(x + −2xy+4y2x−2y)·3x2+7xy+4y2x2−y2= x−2y3x+4y ÷x2−4xy+4y2x−2y·(3x+4y)(x+y)(x+y)(x−y)=x−2y3x+4y ÷(x−2y)2x−2y·3x+4yx−y=x−2y3x+4y ·1x−2y·3x+4yx−y= 1x−y将x=√5-1,y=√3-1代入原式=(√5−1)−(√3−1)=√5−√3= √5+√3(√5−√3)(√5+√3)= √5+√35−3= √5+√32故当x=√5-1,y=√3-1时原代数式的值是:√5+√3210.12(2x+4)(x-2)+ x−5x2−10x+25·(x2-x-20),其中:x是大于3且小于6的自然数;解:12(2x+4)(x-2)+ x−5x2−10x+25·(x2-x-20)=(x+2)(x-2)+ x−5(x−5)2·(x+4)(x-5)=x2 -4 +x+4=x2 +xx是大于3且小于6的自然数那么x 是自然数4或5,但是当x=5时,分式 x−5x 2−10x+25的分母等于0,故x 不能为5,所以x 只能是自然数4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学期中压轴题:代数式化简求值
初一数学期中压轴题:代数式化简求值小编整理了关于初一数学期中压轴题:代数式化简求值,赶紧来练习一下吧,为期中考试打下坚实基础!
一、【考点】整体法求值、数形结合思想、加减法计算
【师大附中期中】
已知a-b=3,b-c=4,c-d=5,则(a-c)(d-b)=
【解析】
方法①(代数法:整体思想)
a-c=(a-b)+(b-c)=3+4=7;
b-d=(b-c)+(c-d)=4+5=9;d-b=-9
原式=7*(-9)=-63
方法②(几何法:借助数轴)
如图:易得a-c=7,d-b=-9,原式=-63
【答案】-63
二、【考点】整体法求值、有理数加减法计算
【清华附中期中】
已知(2x-1)5=ax5+bx4+cx+dx+ex+f(a,b,c,d,e,f为常数),则b+d=_______【解析】
令x=1得,1=a+b+c+d+e+f①
令x=-1得,-243=-a+b-c+d-e+f②
令x=0得,-1=f
①+②得:2b+2d+2f=-242
b+d+f=-121
b+d=-120
【答案】-120
三、【考点】整体法求值、二元一次方程组
【五中分校期中】
如果四个有理数满足下列等式
a+bc=-1,2b-a=5,2a+b=2d,3a+bc=5,求:abcd的值.
【解析】
a+bc=-1①,
2b-a=5②,
2a+b=2d③,
3a+bc=5④
由①、④解得:a=3,bc=-4
把a=3代入②得:b=4
把a=3、b=4代入③得:d=5
所以abcd=3(-4)5= - 60
【答案】-60
四、【考点】整体代入化简求值
【清华附中期中】
已知x+y=6,xy=4,代数式的值是__________。
【解析】
原式=(xy+y+xy+2x)/xy=[(x+y)y+(xy+2)x]/xy=(6y+6x)/4=9
【答案】9
五、【考点】整体法求值
【北京四中期中】
已知:a为有理数,a+a+a+1=0,求1+a+a+a++a2019的值。
【解析】
已知为a的三次四项式,求a的2019次多项式的值,需要把已知升次
左右同时乘以a2009得:a2019+a2019+a2019+a2009=0
即从高次到低次,连续四项和为零
20194=5030
原式=1
【答案】1
初一数学期中考试压轴题》》》
初一数学期中压轴题:绝对值化简求值初一数学期中压轴题:列方程解应用题
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。
初一数学期中压轴题:探索类附加题练习初一数学期中压轴题:定义新运算和程序运算初一数学期中压轴题:一元一次方程概念和计算
要练说,得练看。
看与说是统一的,看不准就难以说得好。
练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。
在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。