人教版九年级数学第23章《旋转》复习参考教案

合集下载

人教版九年级数学上册教案:第二十三章《旋转》小结与复习

人教版九年级数学上册教案:第二十三章《旋转》小结与复习

【数学·九年级·上册】第二十三章小结与复习【教学目标】1.总结和复习图形旋转、中心对称的基本性质的应用及两个点关于原点对称时坐标之间的关系;2.注意复习平移、轴对称、旋转的联系和区别,旋转和中心对称的联系和区别,运用图形旋转、中心对称的基本性质解一些简单问题.【学情简析】本章先学习了旋转的有关知识,要求能够从旋转的角度观察图形,进而认识特殊的旋转——中心对称,最后运用轴对称、平移、旋转的组合进行图案设计.【教学重点】复习图形旋转的基本性质和中心对称的基本性质及两个点关于原点对称时,它们坐标之间的关系.【教学难点】运用旋转的性质解决问题.【课时安排】3课时【教学过程】环节教学内容教师的行为学生的活动唤起希望差异指导引发碰撞再激希望一、复习展示问题1平移、轴对称、旋转的区别与联系个人二次备课二、典型例题例 1 (1)如图,△ABC 为等边三角形,D 是△ABC 内一点,若将△ABD 经过旋转后到△ACP 位置,则旋转中心是______,旋转角等于_____度,△ADP是______三角形.(2)如图,正方形ABCD 中,E 是AD上一点,将△CDE 逆时针旋转后得到△CBM.则旋转中心是______,△CDE 旋转了___度,△CEM 是_____三角形.例2(1)画出点P 绕点O 顺时针旋PPT给出图片及问题个人二次备课板书课题巡视,指导,检查学生独立思考个人二次备课整理笔记小组合作探究ABDPCDAEBCM转 30°后的对应点.(2)画出线段AB 绕点A(或点M )逆时针旋转45°后的图形.(3)画出△DEC 绕点C 逆时针旋转 90°后的图形.个人二次备课三、复习展示问题2旋转和中心对称的区别与联系.四、典型例题例3下列图形中,既是轴对称图形,又是中心对称图形的是().例4已知:△ABC 中,A(-2,3),B(-3,1), C(-1,2).请画出△ABC关于原点O 对称的△A1B1C1.五、小结1.平移、轴对称和旋转有什么区别与联系?2.旋转和中心对称有什么区别与联系?3.怎样利用旋转的定义和性质作图?个人二次备课个人二次备课巡视指导巡视,检查对各组完成的情况进行点评归纳本节课所学布置作业教科书复习题23第 1,4,5 题.个人二次备课小组合作探究整理笔记个人二次备课个人二次备课教学反思。

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转图形的旋转 (第2课时)教案

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转图形的旋转 (第2课时)教案

23.1图形的旋转(第2课时)一、教学目标【知识与技能】进一步加深对旋转性质的理解,能用旋转的性质解决具体问题及进行图案设计.【过程与方法】经历对生活中旋转现象的观察、推理和分析过程,学会用数学的眼光看待生活中的有关问题,体验数学与现实生活的密切联系.【情感态度与价值观】进一步培养学生学习数学的兴趣和热爱生活的情感,体会生活的旋转美,发展学生的美感,增强学生的艺术创作能力和艺术欣赏能力.二、课型新授课三、课时第2课时,共2课时。

四、教学重难点【教学重点】利用旋转的性质设计简单的图案.【教学难点】利用旋转性质进行旋转作图.五、课前准备课件、直尺、圆规、铅笔、图片等.六、教学过程(一)导入新课教师问:1.平移的特征有哪些.(出示课件2)2.旋转的特征有哪些.(出示课件3)3.如何做出符合要求的旋转后的图形呢?学生回顾前面所学过知识,巩固旋转的性质.(二)探索新知探究一简单的旋转作图画一画:如图,画出线段AB绕点A按顺时针方向旋转60°后的线段.(出示课件5)学生回顾前面所学过知识,并完成画图.作法:(1)如图,以AB为一边按顺时针方向画∠BAX,使得∠BAX=60°.(2)在射线AX上取点C,使得AC=AB,线段AC为所求.画出下图所示的四边形ABCD以O为中心,旋转角都为60°的旋转图形.(出示课件6)学生画图,教师加以巡视并订正.师生共同总结:平移与旋转的异同(出示课件7)2同:都是一种运动;运动前后不改变图形的形状和大小.②不同:出示课件8:例如图,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.图形变换运动方向运动量的衡量平移直线移动一定距离旋转顺时针或逆时针转动一定的角度教师问:本题中作图的关键是什么?学生答:作图关键-确定点E的对应点E′.师生共同解答如下:(出示课件9)解:∵点A是旋转中心,∴它的对应点是点A.正方形ABCD中,AD=AB,∠DAB=90°,所以旋转后点D与点B重合.设点E的对应点为E′.∵△ADE≌△ABE′∴∠ABE′=∠ADE=90°,BE′=DE,因此在CB的延长线上截取点E′,使BE′=DE.则△ABE′为旋转后的图形.教师问:还有其他方法确定点E的对应点E′吗?(出示课件10)学生答:延长CB,以点A为圆心,AE的长为半径画弧,交CB的延长线于E',连接AE',则△ABE'为旋转后的图形.教师归纳:旋转作图的基本步骤:(出示课件11)(1)明确旋转三要素:旋转中心、旋转方向和旋转角度;(2)找出关键点;(3)作出关键点的对应点;(4)作出新图形;(5)写出结论.巩固练习:1.如何确定它们的旋转中心位置?(出示课件12,13)学生自主解答:找到两条对应点所连线段的垂直平分线的交点.2.下图为4×4的正方形网格,每个小正方形的边长均为1,将△OAB绕点O逆时针旋转90°,你能画出△OAB旋转后的图形△O'A'B'吗?学生自主操作:如图所示.探究二利用多种图形变化的方法进行图形变化教师问:下图由四部分组成,每部分都包括两个小“十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?还有其他方式吗?(出示课件14)学生1:仅靠平移无法得到.学生2:整个图形可以看作是右边的两个小“十字”绕着图案的中心旋转3次,分别旋转90°、180°、270°前后图形组成的.(出示课件15)学生3:整个图形可以看作是右边的两个小“十字”先通过一次平移成图形左侧的部分,然后左、右部分一起绕图形的中心旋转90°前后图形组成的.(出示课件16)出示课件17:例怎样将甲图案变成乙图案?学生通过观察,感受图案的形成过程,然后师生共同解答.可以先将甲图案绕图上的A点旋转,使得图案被“扶直”,然后,再沿AB 方向将所得图案平移到B点位置,即可得到乙图案.巩固练习:如图,怎样将右边的图案变成左边的图案?(出示课件18)学生观察后自主解答.答:以右边图案的中心为旋转中心,将图案按逆时针方向旋转90°,然后平移,即可得到左边的图案探究三利用旋转设计图案选择不同的旋转中心、不同的旋转角旋转同一个图案,会出现不同的效果.(出示课件19)教师利用课件19,20,21进一步展示“月芽”的旋转效果.思考:(1)在旋转过程中,产生了不同旋转效果,这是什么原因造成的呢?(2)你能仿照上述图示方法进行图案设计吗?与同伴交流.(三)课堂练习(出示课件22-28)1.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O、A1、B为顶点的三角形的形状.(无须说明理由)2.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A. B. C. D.3.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是()A.甲B.乙C.丙D.丁4.如图,正方形ABCD和正方形CDEF有公共边CD,请设计方案,使正方形ABCD旋转后能与正方形CDEF重合,你能写出几种方案?5.如图,△ABC中,∠C=90°,∠B=40°,点D在边BC上,BD=2CD.△ABC绕着点D顺时针旋转一定角度后,点B恰好落在初始△ABC的边上.求旋转角α(0°<α<180°)的度数.参考答案:1.解:(1)如图所示,△A1B1C1即为所求。

新听课记录2024秋季九年级人教版数学上册第二十三章旋转《复习题23》

新听课记录2024秋季九年级人教版数学上册第二十三章旋转《复习题23》

教学设计:新2024秋季九年级人教版数学上册第二十三章旋转《复习题23》一、教学目标(核心素养)1、知识与技能:通过复习题23的解答,巩固学生对旋转概念、性质、作图方法以及旋转在解决实际问题中应用的理解,提高学生的空间想象能力和解题能力。

2、数学思维:培养学生运用旋转知识解决实际问题的能力,提升学生的逻辑推理、图形变换和数学建模思维。

3、情感态度:激发学生对数学学习的兴趣,增强学习数学的自信心,培养合作学习的意识和探究精神。

二、教学重点•旋转的基本概念和性质。

•旋转作图的步骤和方法。

•旋转在解决实际问题中的应用。

三、教学难点•如何引导学生将旋转知识灵活应用于解决实际问题中。

•提升学生空间想象能力,准确进行旋转作图。

四、教学资源•多媒体课件(包含旋转概念回顾、例题解析、复习题展示)。

•教材及配套习题册。

•旋转作图工具(如直尺、圆规)。

•小组讨论题卡,用于合作探究。

五、教学方法•复习导入法:通过回顾旋转的基本概念和性质,引出复习题23。

•讲解示范法:教师讲解例题,示范解题过程,特别是旋转作图的步骤和方法。

•练习巩固法:学生独立或小组合作完成复习题,巩固所学知识。

•讨论交流法:组织小组讨论,分享解题思路和经验,相互启发。

六、教学过程1. 导入新课(5分钟)•复习回顾:利用多媒体课件,快速回顾旋转的基本概念(定义、性质)、旋转作图的基本步骤和方法,以及旋转在几何证明和解决实际问题中的应用实例。

•引入复习题:明确本节课的任务——解答复习题23,强调复习的重要性和目的。

2. 新课教学(30分钟)•例题解析(10分钟):•选取几道具有代表性的例题,涉及旋转概念的理解、旋转作图的实践以及旋转在解决实际问题中的应用。

•教师详细讲解解题过程,特别是旋转作图的步骤和注意事项,引导学生观察图形变换的规律。

•复习题解答(20分钟):•学生独立或小组合作完成复习题23中的题目。

•教师巡视指导,鼓励学生尝试多种解题方法,特别是对于难度较大的题目,引导学生分析题目条件,找出旋转元素,设计解题策略。

新人教版初中数学九年级上册第23章《图形的旋转》教案

新人教版初中数学九年级上册第23章《图形的旋转》教案
二、自主
探究
二、自主
探究
1.旋转中心不变,改变旋转角
画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.
2.旋转角不变,改变旋转中心
画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30 °的旋转图形.
3、图案设计:(1)、如下图是菊花一叶和中心与圆圈,现以O 为旋转中心画出分别旋转45°、90°、135°的菊花图案.
(2)、 如图,如果上面的菊花一叶,绕下面的点O′为旋转中心, 请同学画出图案,它还是原来的菊花吗?
选择不同的旋转中心、不同的旋转角来进行研究.
学生独立作图,两名同学上台展示。
画完之后相互批改、评价。
从画图中,师生共同归纳出:旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.
(3)旋转前、后的图形全等.
根据图形思考老师所给的问题,然后分组讨论,教师参与讨论交流,最后一组推荐一人上台回答结论
1.OA=OA′,OB=OB′,OC=OC′
2.∠AOA′=∠BOB′=∠COC′
3.△ABC和△A′B′C′形状相同和大小相等,即全等.
综合以上的实验操作,师生共同归纳出旋转的性质。
(5)由平面图形转动而产生的奇妙图案。
2、提出问题:
这些情境中的转动现象,有什么共同特征?
用课件展示图片并显示现实生活中部分物体的旋转现象
学生观察图片
学生思考,归纳它们的共同特征。
让学生再举一些类似的例子
通过这些画面的展示让学生切身感受到我们身边除了平移、轴对称变换等图形变换之外,生产、生活中广泛存在着转动现象,从而产生对这种变换进一步探究的强烈欲望,为本节课探究问题作好铺垫。

人教版数学九年级上册第二十三章旋转全章复习 教学设计

人教版数学九年级上册第二十三章旋转全章复习 教学设计

本章我们学习了一种新的图形变换——旋转,下面我们来对这一章节进行简要的梳理.首先我们遵循几何变换的一般研究思路,从定义、性质、应用几个方面对旋转进行了细致、深入的学习.然后我们又对其中一种特殊的旋转——中心对称进行了研究.最后结合之前学过的图形变换平移和轴对称,利用这三种图形之间的变化关系,以及它们变化前后只改变图形的位置,不改变图形的形状和大小的共性,进行了图案设计.下面我们通过具体问题,来对本章一些具体的知识和方法进行复习和回顾.复习回顾:图形的旋转例如图所示,把一个直角三角尺ACB顺时针旋转到△EDB的位置,使得点A落在CB的延长线上的点E处,则旋转中心是___,旋转角等于___度,∠BDC的度数为___度.设计意图:通过本题复习旋转的定义及性质.图形:定义:把一个平面图形绕着平面内某一点O转动一个角度的图形变换叫做旋转. 三要素:旋转中心、旋转方向、旋转角度.性质:1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前、后的图形全等.例:已知:点A与点B.AB情况1:点A与点D对应,点B与点C对应.做线段AD与BC的垂直平分线,交于点E1,则点E1即为所求.进而∠A E1D、∠BE1C为旋转角.根据网格,可计算得出△AED的三边符合勾股定理逆定理,因此∠AE1D=90°,同理也可计算出∠BE1C=90°.因此线段DC可以看成是线段AB绕点E逆时针旋转90°得到的.情况2:点A与点C对应,点B与D对应.与情况1完全同理,可以确定此时点E2的位置如图所示,根据网格,可根据勾股定理逆定理得到旋转角∠AE2D=∠BE2D=90°.所以线段CD可以看成线段AB绕点E顺时针旋转90°得到的.复习回顾:中心对称例:如图,△ABC与△A′B′C′关于点O成中心对称,下列结论中不一定成立的是( ).(A)OC=OC′(B)OA=OA′(C)BC=B′C′(D)∠ABC=∠A′C′B′设计意图:复习中心对称的定义及性质.图形:定义:把一个图形绕着某一点旋转180゜,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.性质:(1)对称点所连线段都经过对称中心,而且被对称中心所平分.(2)中心对称的两个图形是全等图形.例:如图,△DEF是△ABC经过某种变换后得到的图形.△ABC内任意一点M的坐标为(x,y),点M经过这种变换后得到点N,点N的坐标是( ).(A) (-y,-x) (B)( x,-y)(C) (-x,y) (D)(-x,-y)设计意图:中心对称、关于原点对称的点的坐标.例:下列图案中,既是轴对称图形也是中心对称图形的是()。

《第二十三章_旋转_章末复习》名师教案

《第二十三章_旋转_章末复习》名师教案

第23章 章末复习(曹瑶)一、本章思维导图二、典型例题讲解例1、随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【知识点】中心对称图形;轴对称图形质【解题过程】解:A 、不是轴对称图形,是中心对称图形;定义性质定义性质1、平面内、一个图形定义2、绕旋转中心、某个方向3、转动一定角度(旋转角)性质1、图形的形状、大小不变2、对应线段、对应角相等3、对应点到旋转中心距离相等4、对应点与旋转中心连线夹角相等性质3、转动180°1、图形的形状、大小不变2、对应线段、对应角相等3、对应线段平行(或者在同一直线上)且相等4、对称点所连线段都经过对称中心,并且被对称中心所平分中心对称定义1、平面内、一个图形2、绕旋转中心 图案设计成中心对称中心对称图形 关于原点对称的点的坐标旋转平移轴对称B 、是轴对称图形,不是中心对称图形;C 、是轴对称图形,也是中心对称图形;D 、不是轴对称图形,是中心对称图形. 故选C .【思路点拨】根据轴对称图形与中心对称图形的概念求解 【答案】C例2、如图,菱形OABC 的一边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至OA′B′C′的位置,若OB =23,∠C =120°,则点B′的坐标为 ( )C'B'A'ACBOx yA.(3,3)B. (3,3)-C. (6,6)D. (6,6)-【知识点】坐标与图形的旋转变化,菱形的性质,垂直的定义,旋转的性质 【数学思想】数形结合【解题过程】首先根据菱形的性质,即可求得∠AOB 的度数,又由将菱形OABC 绕原点O 顺时针旋转75°至OA′B′C′的位置,可求得∠B′OA 的度数,然后在Rt △B′OF 中,利用三角函数即可求得OF 与B′F 的长,则可得点B′的坐标:过点B 作BE ⊥OA 于E ,过点B′作B′F ⊥OA 于F ,∴∠BEO =B′FO =90°. ∵四边形OABC 是菱形,∴OA ∥BC ,∠AOB =12∠AOC .∵∠AOC +∠C =180°,∠C =120°,∴∠AOC =60°,∠AOB =30°. ∵菱形OABC 绕原点O 顺时针旋转75°至OA′B′C′的位置, ∴∠BOB′=75°,O B′=OB=.∴∠B′OF =45°. 在等腰Rt △B ′OF 中,OF =OB ′÷2=×2=∴B′F=∵点B′在第四象限,∴点B′的坐标为:.故选D.【思路点拨】利用旋转的性质,找到特殊的直角三角形即可解题. 【答案】D例3、在Rt △ABC 中,∠A =90°,AC =AB =4, D 、E 分别是AB 、AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)如图1,当α=90°时,线段BD 1的长等于 ,线段CE 1的长等于 ;(直接填写结果)(2)如图2,当α=135°时,求证:BD 1= CE 1,且BD 1⊥CE 1.E 1BCE D (D 1)APE 1BCEDD 1A图1 图2【知识点】旋转变换 【数学思想】数形结合 【解题过程】解:(1)∵∠A =90°,AC =AB =4,D 、E 分别是边AB 、AC 的中点,∴AE =AD =2,∵等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°), ∴当α=90°时,AE 1=2,∠E 1AE =90°,1BD ==∴1E C ==故答案为25,25;(2)证明:当α=135°时,如图2,∵Rt△AD1E1是由Rt△ADE绕点A逆时针旋转135°得到∴AD1=AE1,∠D1AB=∠E1AC=135°,在△D1AB和△E1AC中∵1111AD AED ABE ACAB AC=⎧⎪∠=∠⎨⎪=⎩∴△D1AB≌△E1AC(SAS),∴BD1=CE1,且∠D1BA=∠E1CA,记直线BD1与AC交于点F,∴∠BF A=∠CFP,∴∠CPF=∠F AB=90°,∴BD1⊥CE1 .【思路点拨】(1)利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和CE1的长;(2)根据旋转的性质得出,∠D1AB=∠E1AC=135°,进而求出△D1AB≌△E1AC(SAS),即可得出答案.【答案】详见解题过程第23章章末检测题(曹瑶)一、选择题(每小题4分,共48分)1、下列图形中,是中心对称但不是轴对称图形的是()A.B.C.D.【知识点】轴对称图形与中心对称图形的概念【解题过程】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,是中心对称图形,故此选项错误.故选C.【思路点拨】结合选项根据轴对称图形与中心对称图形的概念求解即可.【答案】C2、将叶片图案旋转180°后,得到的图形是()【知识点】图案旋转【解题过程】A是叶片图案经过翻转、旋转得到;B与叶片图案成轴对称;C是叶片图案经过平移得到;D是叶片图案旋转180°后得到.所以应选D.【思路点拨】以旋转图形的定义为依据进行判断,观察图形可知【答案】D.3、如图,在等腰直角△ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则∠BAC'等于()A.60°B.105°C.120°D.135°【知识点】旋转角【数学思想】数形结合【解题过程】∵△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,∴∠CAC′=60°,又∵等腰直角△ABC中,∠B=90°,∴∠BAC=45°,∴∠BAC′=∠BAC+∠CAC′=45°+60°=105°.故答案为105°【思路点拨】抓准旋转的性质,旋转角相等即可解题.【答案】B.4、在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转90°得到OB,则点B 的坐标是()A.(-4,3)B.(-3,4)C.(3,-4)D.(4,-3)【知识点】坐标系中点的旋转【数学思想】数形结合【解题过程】解:如图:∴点B的坐标为(-4,3).故选A.【思路点拨】画出坐标系,利用全等三角形解题.【答案】A.5、如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB'的长为()A.4 B.2 C.1 D.3【知识点】中心对称【数学思想】数形结合【解题过程】∵此图是中心对称图形,A为对称中心,∴△BAC≌△B′AC′,∴∠B=∠B′,∠C=∠C′,AC=AC′,AB=AB',∵∠C =90°,∠B =30°,AC =1, ∴AB′=2AC′=2,∴BB'=2AB'=4. 故选A .【思路点拨】利用中心对称图形关于A 为对称中心,得出两图形全等,即可解决. 【答案】A .6、如图,8×8方格纸上的两条对称轴EF 、MN 相交于中心点O ,对△ABC 分别作下列变换: ①先以点A 为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;②先以点O 为中心作中心对称图形,再以点A 的对应点为中心逆时针方向旋转90°; ③先以直线MN 为轴作轴对称图形,再向上平移4格,再以点A 的对应点为中心顺时针方向旋转90°.其中,能将△ABC 变换成△PQR 的是( ) A.①② B.①③ C.②③ D.①②③【知识点】平移、旋转、轴对称 【数学思想】数形结合【解题过程】根据题意分析可得:①②③都可以使△ABC 变换成△PQR . 故选D .【思路点拨】利用平移、旋转、轴对称的定义. 【答案】D7、如图,边长为1的正方形ABCD 绕点A 逆时针旋转30°到正方形AB'C'D',图中阴影部分的面积为( ) A.21B.33C. 33-1D.43-1【知识点】旋转的性质 【数学思想】数形结合【解题过程】如图,设B′C′与CD 的交点为E ,连接AE ,在Rt △AB′E 和Rt △ADE 中, AE =AE ,AB′=AD ,∴Rt △AB′E ≌Rt △ADE (HL ), ∴∠DAE =∠B′AE , ∵旋转角为30°, ∴∠DAB′=60°, ∴∠DAE =0.5×60°=30°, ∴DE =33∴阴影部分的面积=1—33 故选C .【思路点拨】找准旋转角,利用30°的直角三角形解题. 【答案】C8、如图,直线434+-=x y 与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺针旋转90°后得到△AOB′,则点B′的坐标是( )A.(3,4)B.(4,5)C.(7,4)D.(7,3)【知识点】坐标系中点的旋转 【数学思想】数形结合【解题过程】直线434+-=x y 与x 轴,y 轴分别交于A (3,0),B (0,4)两点.旋转前后三角形全等.由图易知点B′的纵坐标为OA 长,即为3, ∴横坐标为OA +OB =OA +O′B′=3+4=7. 故选D .【思路点拨】找对应线段,利用三角形全等. 【答案】D9、将含有30°角的直角三角板OAB 如图放置在平面直角坐标中,OB 在x 轴上,若OA =2,将三角板绕原点O 顺时针旋转75°,则点A 的对应点A′的坐标为( )A.3(,)1B.1(,)3-C.2(,)2-D.2(-,)2 【知识点】坐标与图形变化-旋转. 【数学思想】数形结合 【解题过程】解:如图,∵三角板绕原点O 顺时针旋转75°, ∴旋转后OA 与y 轴夹角为45°, ∵OA =2, ∴OA′=2,∴点A′的横坐标为2222=⨯,纵坐标为2222-=⨯-,所以A′点的坐标为)2,2(-,故选C. 【思路点拨】利用旋转性质得出OA′线段长度和各夹角大小,然后求出A′的坐标. 【答案】C.10、已知坐标平面上的机器人接受指令“[a ,A ]”(a ≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向面对方向沿直线行走a . 若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( )A. (-1,-3)B. (-1,3)C.(3,-1)D.(-3,-1)【知识点】图形旋转【数学思想】数形结合【解题过程】由已知得到:OA=2,∠COA=60°,过A作AB⊥x轴于B,∴∠BOA=90°-60°=30°,∴AB=1,由勾股定理得:OB=3,∴A的坐标是(-3,-1).故选C.【思路点拨】旋转过程中对应线段相等【答案】D.11、如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为().A.),132014(+-B.),132014(--C.),132014(-D.),132014(+【知识点】翻折变换(折叠问题);等边三角形的性质;坐标与图形变化-平移.【数学思想】数形结合【解题过程】解:∵△ABC 是等边三角形AB =3﹣1=2,∴点C 到x 轴的距离为1+2×23=3+1, 横坐标为2,∴A (2,3+1),第2016次变换后的三角形在x 轴上方,点A 的纵坐标为3+1,横坐标为2-2016×1=-2014, 所以,点A 的对应点A′的坐标是(-2014,3+1)故答案为:A (-2014,3+1).【思路点拨】据轴对称判断出点A 变换后在x 轴上方,然后求出点A 纵坐标,再根据平移的距离求出点A 变换后的横坐标,最后写出即可.【答案】A .12、如图,边长为1的正方形ABCD 的对角线AC 、BD 相交于点O .有直角∠MPN ,使直角顶点P 与点O 重合,直角边PM 、PN 分别与OA 、OB 重合,然后逆时针旋转∠MPN ,旋转角为θ(0°<θ<90°),PM 、PN 分别交AB 、BC 于E 、F 两点,连接EF 交OB 于点G ,则下列结论中正确的个数是( ).(1)EF =2OE ;(2)S 四边形OEBF :S 正方形ABCD =1:4;(3)BE +BF =2OA ;(4)在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE =43.A.1个B.2个C.3个D.4个【知识点】四边形的旋转【数学思想】数形结合【解题过程】解:(1)∵四边形ABCD 是正方形,∴OB=OC ,∠OBE =∠OCF =45°,∠BOC =90°,∴∠BOF +∠COF =90°,∵∠EOF =90°,∴∠BOF +∠COE =90°,∴∠BOE =∠COF ,在△BOE 和△COF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠OCF OBE OCOB COF BOE , ∴△BOE ≌△COF (ASA ),∴OE =OF ,BE =CF ,∴EF =2OE ;故正确; (2)∵S 四边形OEBF =S △BOE +S △BOF =S △BOF +S △COF =S △BOC =41S 正方形ABCD , ∴S 四边形OEBF :S 正方形ABCD =1:4;故正确;(3)∴BE +BF =BF +CF =BC =2OA ;故正确;(4)过点O 作OH ⊥BC , ∵BC =1,∴OH =21BC =21, 设AE =x ,则BE =CF =1﹣x ,BF =x ,∴S △BEF +S △COF =21BE •BF +21CF •OH =21x (1﹣x )+21(1﹣x )×21 =﹣21(x ﹣41)2+329, ∵a =﹣21<0, ∴当x =41时,S △BEF +S △COF 最大;即在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE =41;故错误. 【思路点拨】(1)由四边形ABCD 是正方形,直角∠MPN ,易证得△BOE ≌△COF (ASA ),则可证得结论;(2)由(1)易证得S 四边形OEBF =S △BOC =41S 正方形ABCD ,则可证得结论; (3)由BE =CF ,可得BE +BF =BC ,然后由等腰直角三角形的性质,证得BE +BF =2OA ; (4)首先设AE =x ,则BE =CF =1﹣x ,BF =x ,继而表示出△BEF 与△COF 的面积之和,然后利用二次函数的最值问题,求得答案.【答案】C二、填空题(每小题4分,共24分)13、下面图形:①四边形,②等边三角形,③正方形,④等腰梯形,⑤平行四边形,⑥圆,其中既是轴对称图形又是中心对称图形的有 .(填序号)【知识点】轴对称、中心对称【解题过程】①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③不是轴对称图形,是中心对称图形;④是轴对称图形,不是中心对称图形;⑤不是轴对称图形,是中心对称图形;⑥是轴对称图形,也是中心对称图形.故选答案为:①⑥.【思路点拨】把握住轴对称和中心对称的定义即可.【答案】①⑥14、小明、小辉两家所在位置关于学校中心对称,如果小明家距学校2公里,那么他们两家相距 公里.【知识点】中心对称图形的性质【解题过程】解:∵小明、小辉两家所在位置关于学校中心对称,∴小明、小辉两家到学校距离相等,∵小明家距学校2公里,∴他们两家相距:4公里. 故答案为4.【思路点拨】根据中心对称图形的性质,得出小明、小辉两家到学校距离相等,即可得出答案.【答案】4.15、将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD =110°,则∠BOC =_____. D C B A O【知识点】旋转角【数学思想】数形结合【解题过程】由题意可得∠AOB +∠COD =180°,又∠AOB +∠COD =∠AOC +2∠COB +∠BOD =∠AOD +∠COB ,∵∠AOD =110°,∴∠COB =70°.故答案为70°.【思路点拨】旋转角相等【答案】70°16、如图,在正方形ABCD 内作∠EAF =45°,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,过点A 作AH ⊥EF ,垂足为H ,将△ADF 绕点A 顺时针旋转90°得到△ABG ,若BE =2,DF =3,则AH 的长为 .【知识点】旋转的性质【数学思想】数形结合【解题过程】解:由旋转的性质可知:AF=AG ,∠DAF =∠BAG .∵四边形ABCD 为正方形,∴∠BAD =90°.又∵∠EAF =45°,∴∠BAE+∠DAF =45°.∴∠BAG +∠BAE =45°.∴∠GAE =∠F AE .在△GAE 和△F AE 中⎪⎩⎪⎨⎧=∠=∠=AE AE FAE GAE AF AG∴△GAE ≌△F AE .∵AB ⊥GE ,AH ⊥EF ,∴AB=AH ,GE=EF =5.设正方形的边长为x ,则EC=x-2,FC=x-3.在Rt △EFC 中,由勾股定理得:EF 2=FC 2+EC 2,即(x -2)2+(x -3)2=25.解得:x =6.∴AB =6.∴AH =6.故答案为:6.【思路点拨】由旋转的性质可知:AF =AG ,∠DAF =∠BAG ,接下来再证明∠GAE =∠F AE ,由全等三角形的性质可知:AB=AH ,GE=EF =5.设正方形的边长为x ,接下来,在Rt △EFC 中,依据勾股定理列方程求解即可.【答案】6.17、如图,等边△ABC 绕点B 逆时针旋转30°时,点C 转到C′的位置,且BC′与AC 交于点D ,则CDD C '的值为 . 【知识点】旋转的性质,等边三角形的性质【数学思想】数形结合【解题过程】设等边△ABC 的边长是a ,则BD =23BC 3, C′D =331a a ⎛= ⎝⎭,CD = 12a .∴31'2312a C D CD a ⎛ ⎝⎭==【思路点拨】等边△ABC 绕点B 逆时针旋转30°时,则△BCD 是直角三角形,即可求解.【答案】23.18、如图,边长为1的正方形ABCD 中绕点A 逆时针旋转30°得到正方形AB′C′D′,则图中阴影部分的面积为 .【知识点】旋转的性质;正方形的性质.【数学思想】数形结合【解题过程】如图,连接AO ,根据旋转的性质,得∠BAB′=30°,则∠DAB′=60°.在Rt △ADO 和Rt △AB′O 中,AD=AB′,AO=AO ,∴Rt △ADO ≌Rt △AB′O .∴∠OAD =∠OAB′=30°.又∵AD =1,∴OD =AD •tan ∠OAD =33 ∴阴影部分的面积33133212=⨯⨯⨯=,故答案为33 【思路点拨】此题只需把公共部分分割成两个三角形,根据旋转的旋转发现两个三角形全等,从而求得直角三角形的边,再进一步计算其面积.【答案】33 三、解答题(共78分)19、(6分)如图,在平面直角坐标系中,点A 、B 、C 的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC 沿一确定方向平移得到△A 1B 1C 1,点B 的对应点B 1的坐标是(1,2),再将△A 1B 1C 1绕原点O 顺时针旋转90°得到△A 2B 2C 2,点A 1的对应点为点A 2.(1)画出△A 1B 1C 1;(2)画出△A 2B 2C 2;(3)求出在这两次变换过程中,点A 经过点A 1到达A 2的路径总长.【知识点】作图-旋转变换;作图-平移变换【数学思想】数形结合【解题过程】解:(1)如图,△A 1B 1C 1为所作;(2)如图,△A 2B 2C 2为所作;(3)OA =244422=+.点A 经过点A 1到达A 2的路径总长=18024901522••++π=π2226+. 【思路点拨】(1)由B 点坐标和B 1的坐标得到△ABC 向右平移5个单位,再向上平移1个单位得到△A 1B 1C 1,则根据点平移的规律写出A 1和C 1的坐标,然后描点即可得到△A 1B 1C 1;(2)利用网格特点和旋转的性质画出点A1的对应点为点A2,点B1的对应点为点B2,点C1的对应点为点C2,从而得到△A2B2C2;(3)先利用勾股定理计算平移的距离,再计算以OA1为半径,圆心角为90°的弧长,然后把它们相加即可得到这两次变换过程中,点A经过点A1到达A2的路径总长.【答案】(1)见上图(2)见上图(3)π226+220、(8分)四边形ABCD是正方形,△ADF旋转一定角度后得△ABE,如图所示,如果AF=4,AB=7.(1)指出旋转中心和旋转角度;(2)求DE的长度.【知识点】旋转的性质【数学思想】数形结合【解题过程】(1)根据正方形的性质可知:△AFD≌△AEB,即AE=AF=4,∠EAF=90°,∠EBA=∠FDA;可得旋转中心为点A;(2)DE=AD-AE=7-4=3.【思路点拨】利用旋转的性质找到旋转角和对应线段即可.【答案】(1)点A;旋转角度为90°或270°(2)321、(8分)如图,在直角三角形ABC中,∠ACB=90°,AC=BC=10,将△ABC绕点B沿顺时针方向旋转90°得到△A1BC1.(1)线段A1C1的长度是,∠CBA1的度数是.(2)连接CC1,求证:四边形CBA1C1是平行四边形.【知识点】旋转的性质,等腰直角三角形的性质,平行四边形的判定【解题过程】解:(1)10;135°.(2)证明:∵∠A 1C 1B =∠C 1BC =90°,∴A 1C 1∥BC .又∵A 1C 1=AC =BC ,∴四边形CBA 1C 1是平行四边形.【思路点拨】(1)由于将△ABC 绕点B 沿顺时针方向旋转90°得到△A 1BC 1,根据旋转的性质可以得到A 1C 1=AC =10,∠CBC 1=90°,而△ABC 是等腰直角三角形,利用等腰直角三角形的性质即可求出∠CBA 1=∠CBC 1+∠A 1BC 1=90°+45°=135°.(2)由∠A 1C 1B =∠C 1BC =90°可以得到A 1C 1∥BC ,又A 1C 1=AC =BC ,利用评选四边形的判定即可证明.【答案】(1)10;135° (2)略22、(10分)两个长为2cm ,宽为1cm 的长方形,摆放在直线l 上(如图①),CE =2cm ,将长方形ABCD 绕着点C 顺时针旋转α角,将长方形EFGH 绕着点E 逆时针旋转相同的角度.(1)当旋转到顶点D 、H 重合时,连接AE 、CG ,求证:△AED ≌△GCD (如图②).(2)当α=45°时(如图③),求证:四边形MHND 为正方形.【知识点】旋转的性质;全等三角形的判定与性质;矩形的性质与判定;正方形的判定【数学思想】数形结合【解题过程】证明:(1)如图②,∵由题意知,AD=GD ,ED=CD ,∠ADC=∠GDE=90°,∴∠ADC+∠CDE=∠GDE+∠CDE ,即∠ADE=∠GDC ,在△AED 与△GCD 中,AD GD ADE GDC ED CD =⎧⎪∠=∠⎨⎪=⎩∴△AED ≌△GCD (SAS );(2)如图③,∵α=45°,BC∥EH,∴∠NCE=∠NEC=45°,CN=NE,∴∠CNE=90°,∴∠DNH=90°,∵∠D=∠H=90°,∴四边形MHND是矩形,∵CN=NE,∴DN=NH,∴矩形MHND是正方形.【思路点拨】(1)根旋转的性质得AD=GD,CD=ED,由于∠CDE=∠EDC,则可根据全等三角形的判定方法SAS得到△AED≌△GCD(SAS);(2)由于α=45°,结合旋转的性质,∠CNE=90°,再根据矩形的性质∠GHN=∠AND=90°,可以判定四边形MHND是矩形,最后根据DN=NH,所以可判断矩形MHND是正方形.【答案】见解题过程23、(10分)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.【知识点】全等三角形的判定与性质;菱形的判定;旋转的性质.【数学思想】数形结合【解题过程】证明:(1)∵△ABC是等腰三角形,顶角∠BAC=α(α<60°),线段AD绕点A顺时针旋转α到AE,∴AB =AC , ∴∠BAE =∠CAD , 在△ACD 和△ABE 中,⎪⎩⎪⎨⎧=∠=∠=AD AE CAD BAE AC AB , ∴△ACD ≌△ABE (SAS ), ∴BE =CD ; (2)∵AD ⊥BC , ∴BD =CD ,∴BE =BD =CD ,∠BAD =∠CAD , ∴∠BAE =∠BAD , 在△ABD 和△ABE 中,⎪⎩⎪⎨⎧=∠=∠=AD AE BAD BAE AB AB , ∴△ABD ≌△ABE (SAS ), ∴∠EBF =∠DBF , ∵EF ∥BC , ∴∠DBF =∠EFB , ∴∠EBF =∠EFB , ∴EB =EF , ∴BD =BE =EF =FD , ∴四边形BDFE 为菱形 【思路点拨】(1)根据旋转可得∠BAE =∠CAD ,从而SAS 证明△ACD ≌△ABE ,得出答案BE =CD ; (2)由AD ⊥BC ,SAS 可得△ACD ≌△ABE ≌△ABD ,得出BE =BD =CD ,∠EBF =∠DBF ,再由EF ∥BC ,∠DBF =∠EFB ,从而得出∠EBF =∠EFB ,则EB =EF ,证明得出四边形BDFE 为菱形【答案】 详见解题过程24、(12分)数学问题:计算m 1+21m +31m +...+n m1(其中m 、n 都是正整数,且m ≥2,n ≥1). 探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究. 探究一:计算21+221+321+...+n 21. 第1次分割,把正方形的面积二等分,其中阴影部分的面积为21; 第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为21+221; 第3次分割,把上次分割图中空白部分的面积继续二等分,…; …第n 次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为21+221+321+...+n 21,最后空白部分的面积是n 21. 根据第n 次分割图可得等式:21+221+321+...+n 21.=1﹣n 21.探究二:计算31+231+331+...+n 31.第1次分割,把正方形的面积三等分,其中阴影部分的面积为32; 第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为32+232; 第3次分割,把上次分割图中空白部分的面积继续三等分,…; …第n 次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为32+232+332+...+n 32,最后空白部分的面积是n 31. 根据第n 次分割图可得等式:32+232+332+...+n 32=1﹣n 31,两边同除以2,得31+231+331+...+n 31=21-n321⨯.探究三:计算n 41...41414132++++.(仿照上述方法,只画出第n 次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算m 1+21m +31m +...+n m1. (只需画出第n 次分割图,在图上标注阴影部分面积,并完成以下填空) 根据第n 次分割图可得等式: , 所以,m 1+21m +31m +...+n m1= . 拓广应用:计算n n 51-5...51-551-551-53322++++. 【知识点】作图—应用与设计作图;规律型:图形的变化类 【数学思想】数形结合【解题过程】解:探究三:第1次分割,把正方形的面积四等分,其中阴影部分的面积为43; 第2次分割,把上次分割图中空白部分的面积继续四等分, 阴影部分的面积之和为24343+; 第3次分割,把上次分割图中空白部分的面积继续四等分, …,第n 次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为:n 43...43434332++++,最后的空白部分的面积是n 41,根据第n 次分割图可得等式:n n 41-143...43434332=++++,两边同除以3,得nn 431-3141...41414132⨯=++++; 解决问题:n n mm m m m m m m m 1-11-...1-1-1-32=++++,m 1+21m +31m +...+n m 1=nm m m ⨯---)(1111; 故答案为:n n 41-143...43434332=++++,nmm m ⨯---)(1111.拓广应用:n n 51-5...51-551-551-53322++++ =1﹣51+1﹣251+1﹣351+…+1﹣n 51,=n ﹣(51+251+351+…+n 51),=n ﹣(41﹣n 541⨯),=nn 54141⨯+-.【思路点拨】探究三:根据探究二的分割方法依次进行分割,然后表示出阴影部分的面积,再除以3即可;解决问题:按照探究二的分割方法依次分割,然后表示出阴影部分的面积及,再除以(m ﹣1)即可得解;拓广应用:先把每一个分数分成1减去一个分数,然后应用公式进行计算即可得解.【答案】n n 41-143...43434332=++++,nm m m ⨯---)(1111,n n 51-5...51-551-551-53322++++=n n 54141⨯+-25、(12分)在校园文化建设活动中,需要裁剪一些菱形来美化教室.现有平行四边形ABCD 的邻边长分别为1,a (a >1)的纸片,先剪去一个菱形,余下一个四边形,在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,…依此类推,请画出剪三次后余下的四边形是菱形的裁剪线的各种示意图,并求出a 的值. 【知识点】作图—应用与设计作图 【数学思想】数形结合【解题过程】解:①如图,a =4,②如图,a =25,③如图,a =34,④如图,a =35,【思路点拨】平行四边形ABCD 的邻边长分别为1,a (a >1),剪三次后余下的四边形是菱形的4种情况画出示意图. 【答案】a =4、a =25、a =34、a =35. 26、(12分)已知:点P 是平行四边形ABCD 对角线AC 所在直线上的一个动点(点P 不与点A 、C 重合),分别过点A 、C 向直线BP 作垂线,垂足分别为点E 、F ,点O 为AC 的中点. (1)当点P 与点O 重合时如图1,易证OE =OF (不需证明)(2)直线BP 绕点B 逆时针方向旋转,当∠OFE =30°时,如图2、图3的位置,猜想线段CF 、AE 、OE 之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.【知识点】四边形中的旋转 【数学思想】数形结合【解题过程】解:(1)∵AE ⊥PB ,CF ⊥BP , ∴∠AEO =∠CFO =90°, 在△AEO 和△CFO 中,⎪⎩⎪⎨⎧∠=∠=∠=∠COF AOE OCAO CFOAEO , ∴△AOE ≌△COF , ∴OE =OF .(2)图2中的结论为:CF =OE +AE . 图3中的结论为:CF =OE ﹣AE . 选图2中的结论证明如下: 延长EO 交CF 于点G , ∵AE ⊥BP ,CF ⊥BP , ∴AE ∥CF , ∴∠EAO =∠GCO ,在△EOA 和△GOC 中,⎪⎩⎪⎨⎧∠=∠=∠=∠COG AOE OCAO GCO EAO , ∴△EOA ≌△GOC , ∴EO =GO ,AE =CG , 在RT △EFG 中,∵EO =OG , ∴OE =OF =GO , ∵∠OFE =30°,∴∠OFG =90°﹣30°=60°, ∴△OFG 是等边三角形, ∴OF =GF , ∵OE =OF , ∴OE =FG , ∵CF =FG +CG , ∴CF =OE +AE .选图3的结论证明如下: 延长EO 交FC 的延长线于点G , ∵AE ⊥BP ,CF ⊥BP , ∴AE ∥CF , ∴∠AEO =∠G , 在△AOE 和△COG 中,⎪⎩⎪⎨⎧=∠=∠∠=∠OC AO GOC AOE G AEO∴△AOE ≌△COG , ∴OE =OG ,AE =CG , 在RT △EFG 中,∵OE =OG , ∴OE =OF =OG , ∵∠OFE =30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=FG,∵OE=OF,∴OE=FG,∵CF=FG﹣CG,∴CF=OE﹣AE.【思路点拨】(1)由△AOE≌△COF即可得出结论.(2)图2中的结论为:CF=OE+AE,延长EO交CF于点G,只要证明△EOA≌△GOC,△OFG 是等边三角形,即可解决问题.图3中的结论为:CF=OE﹣AE,延长EO交FC的延长线于点G,证明方法类似.【答案】略。

九年级数学上册 第23章 旋转章末复习教案 (新版)新人教版

九年级数学上册 第23章 旋转章末复习教案 (新版)新人教版

旋转章末复习一、复习导入1.导入课题:本节课对全章的知识作一回顾,梳理其知识脉络,弄清其重点和考点.2.复习目标:(1)梳理全章知识要点,能画出它的知识结构框图.(2)进一步明确旋转、中心对称、中心对称图形等概念的含义及它们的性质和作图等.3.复习重、难点:重点:旋转、中心对称的概念和性质.难点:性质的应用及图案的设计.二、分层复习1.复习指导:(1)复习内容:教材第58页至第77页的内容.(2)复习时间:7分钟.(3)复习要求:搜集知识要点,画知识结构框图.(4)复习参考提纲:①梳理知识要点:a.旋转的概念.b.旋转的性质.c.中心对称与中心对称图形的概念.d.中心对称的性质.e.关于原点对称的点的坐标特征.f.旋转和中心对称的作图.②画全章知识结构框图.180180⎧⎪⎨⎪⎩︒⎧⎪⎧⎪⎨⎪⎨⎩⎪︒⎪⎪⎩定义(三要素:旋转中心、旋转方向、旋转角)对应点到旋转中心的距离相等性质对应点与旋转中心连线的夹角等于旋转角旋转不改变图形的形状和大小定义:两个图形旋转后互相重合旋转对称点的连线经过对称中心且被对称中心平分性质特殊的旋转中心对称关于对称中心对称的两个图形是全等图形中心对称图形(一个图形旋转后与其自身重合)关于原点对称的两点:横、纵坐标分别互为相反数⎧⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎩利用平移、轴对称、旋转进行图案设计 2.自主复习:可结合复习指导进行自主复习.3.互助复习:(1)师助生:①明了学情:知识点的梳理是否详细、准确;知识结构框图是否能清晰展现全章的知识脉络.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:生生互动、交流、研讨、改正.4.强化:学习成果展示:画出全章知识结构框图.1.复习指导:(1)复习内容:典例剖析,考点跟踪.(2)复习时间:10分钟.(3)复习要求:注意体会知识点的考查方式,以及所学知识的综合运用.(4)复习参考提纲:①在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以将图形进行以下的操作(A )A .先逆时针旋转90°,再向左平移B .先顺时针旋转90°,再向左平移C .先逆时针旋转90°,再向右平移D .先顺时针旋转90°,再向右平移②下列四个图形中,既是轴对称图形又是中心对称图形的有(B )A.4个B.3个C.2个D.1个③若点A(2m-1,2n+3)与B(2-m,2-n)关于原点O对称,则m= -1 ,n= -5 .④如图,在平面直角坐标系中,点A的坐标为(-2,3),点B的坐标为(-5,0),画出点A、点B关于原点的对称点A′、B′,并写出对称点的坐标.A′(2,-3)B′(5,0)⑤如图,在平面直角坐标系中,Rt△AOB的两条直角边OA、OB分别在x轴、y轴的负半轴上,且OA=2,OB=1,将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的图形沿x轴正方向平移1个单位得到△CDO,写出A、C两点的坐标并求出点A和点C之间的距离.A(-2,0),C(1,2),点A和点C之间的距离AC===.2.自主复习:可结合复习指导自主复习,或相互交流研讨.3.互助复习:(1)师助生:①明了学情:特别关注学生是否对以往学过的旧知识不熟悉.②差异指导:根据学情进行针对性指导.(2)生助生:小组内研讨、总结.4.强化:结合复习参考提纲,让学生明确本章的主要考点有:(1)中心对称图形的识别(或综合轴对称图形);(2)关于原点对称的点的坐标的运用;(3)利用旋转进行相关的计算或证明;(4)平移、轴对称和旋转变换的综合运用;(5)中心对称的性质的应用及相关的作图等.三、评价1.学生的自我评价(围绕三维目标):在这节课的学习中有何新的认识和收获?自我感觉还有什么不足的地方吗?2.教师对学生的评价:(1)表现性评价:点评学生学习的主动参与情况,小组交流协作状况,以及学习效果和存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):针对本课时的主要问题,从多个角度、分层次引导复习,让学生在复习中得到提升,设置典型的问题考查学生对于基础知识的理解和运用,从课堂反馈来看,大部分学生掌握了本章知识要点,还有部分学生对中心对称(图形)还是有些迷惑,在后面的教学中,要不定时检验他们对这方面知识的掌握情况.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分) 如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为(C)A.60°B.75°C.85°D.90°第1题图第3题图第4题图2.(10分)已知点P(a,a+2)在直线y=2x-1上,则点P关于原点的对称点P′的坐标为(D)A.(3,5)B.(-3,5)C.(3,-5)D.(-3,-5)3.(10分) 如图,边长为4的正方形ABCD的对角线相交于点O,过点O的直线分别交边AD、BC于E、F两点,则阴影部分的面积是(B)A.1B.4C.6D.84.(10分) 如图,在△ABC中,∠C=90°,AC=BC=4cm,若以AC的中点O为旋转中心,将这个三角形旋转180°后,点B落在点B′处,则BB′=cm.5.(10分) 在艺术字中,有些汉字或字母是中心对称图形.下面的汉字或字母是中心对称图形吗?如果是,请标出它们的对称中心.解:都是中心对称图形,对称中心如图所示.6.(10分)如图,在张伯与王叔联合承包的平行四边形田地ABCD中,有块圆形低洼地,现要修建一条笔直的路,将平行四边形田地和圆形低洼地同时平分成两部分,请设计路线.解:连接AC,BD,交于O′,则O′是平行四边形ABCD的对称中心,连接圆心O与O′,则OO′所在的直线将平行四边形田地和圆形低洼地同时分成两部分.7.(10分) 如图,写出△ABC三顶点的坐标,并在图中描出点A1(3,3),B1(2,-2),C1(4,-1),并说明△A1B1C1是△ABC通过怎样的变化得到的?解:A(-2,2),B(-3,-3),C(-1,-2).描点如图.△A1B1C1是由△ABC先向右平移5个单位,再向上平移1个单位得到的.二、综合应用(20分)8.(20分) 如图,有三个菱形位于同一个平面直角坐标系中,解答下列问题:(1)这三个菱形的对称中心坐标分别为:①(8,0),②(0,8),③(-8,0),面积都等于12.(2)菱形②可以看做是由菱形①如何旋转得到的?解:绕点O逆时针旋转90°得到的.(3)菱形③与菱形②可看做是关于直线l对称的,则直线l所对应的函数关系式是y=-x.(4)从菱形①变换到菱形③,可以满足什么几何变换?请你设计两种不同的变换方法.解:第一种:向左平移16个单位长度.第二种:关于原点作中心对称.三、拓展延伸(10分)9.(10分) 如图,平行四边形ABCD中,AB⊥AC,AB=2,BC=25,对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC、AD于点F、E.(1)当旋转角度为90°时,四边形ABFE的形状是平行四边形;(2)试说明在旋转过程中,线段AF与EC总是保持相等;(3)在旋转过程中四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由,并求出此时AC绕点O顺时针旋转的度数.解:(2)连接AF,EC.∵四边形ABCD是平行四边形∴AD与CB关于点O中心对称.又E、F分别在AD、BC上.∴AE与CF关于点O中心对称.∴AE=CF,又AE∥CF,∴四边形AFCE是平行四边形.∴AF=CE.(3)可能是菱形,当AC绕点O旋转45°时,∵AC=BC2-AB2=4,∴OA=OC=2,∴OA=AB,又∠BAC=90°,∴△OAB为等腰直角三角形,∴∠AOB=45°.当AC绕点O顺时针旋转45°时,∠AOE=45°,∴∠BOE=90°,EF垂直平分BD,∴BE=ED.易证四边形BEDF为平行四边形. ∴四边形BEDF是菱形.。

九年级数学上册 第二十三章 旋转复习教案 (新版)新人教版

九年级数学上册 第二十三章 旋转复习教案 (新版)新人教版

旋转
教师活动
(一)图形的旋转
1.旋转的定义:
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形变换称为旋转,这个定点称为旋转中心,转动的角称为旋转角
注意:
在旋转过程中保持不动的点是旋转中心.
2.旋转的三个要素:
旋转中心、旋转的角度和方向.
3.旋转的性质:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
.中心对称
边形、圆是中心对称图形.
.下列图形中,中心对称图形是
( )
把一个图形绕着某一点旋转180°后,如果它能和另一个图形完全重合,么称这两个图形成中心对称,
对称中心平分;反之,如果两个图形的对应点连成的线段都经过某一点,将其中的两个关键点和它们的对称点的连线作出来,两条连线的交点就是)确定关键点;
,四边形ABC=
____________.。

九年级数学第二十三章旋转全章教案 新人教版

九年级数学第二十三章旋转全章教案 新人教版

九年级数学第二十三章旋转全章教案单元要点分析教学内容1.主要内容:图形的旋转及其有关概念:包括旋转、旋转中心、旋转角.图形旋转的有关性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.通过不同形式的旋转,设计图案.中心对称及其有关概念:中心对称、对称中心、关于中心的对称点;关于中心对称的两个图形.中心对称的性质:对称点所连线段都经过对称中心,而且被对称中心所平分;关于中心对称的两个图形是全等图形.中心对称图形:概念及性质:包括中心对称图形、对称中心.关于原点对称的点的坐标:两个点关于原点对称时,它们的坐标符号都相反,即点P(x,y)关于原点的对称点为P′(-x,-y).课题学习.图案设计.2.本单元在教材中的地位与作用:学生通过平移、平面直角坐标系,轴对称、反比例函数、四边形等知识的学习,初步积累了一定的图形变换数学活动经验.本章在此基础上,让学生进行观察、分析、画图、简单图案的欣赏与设计等操作性活动形成图形旋转概念.它又对今后继续学习数学,尤其是几何,包括圆等内容的学习起着桥梁铺垫之作用.教学目标1.知识与技能了解图形的旋转的有关概念并理解它的基本性质.了解中心对称的概念并理解它的基本性质.了解中心对称图形的概念;掌握关于原点对称的两点的关系并应用;再通过几何操作题的练习,掌握课题学习中图案设计的方法.2.过程与方法(1)让学生感受生活中的几何,•通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.(2)•通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题.(3)经历复习图形的旋转的有关概念和性质,分析不同的旋转中心,•不同的旋转角,出现不同的效果并对各种情况进行分类.(4)复习对称轴和轴对称图形的有关概念,•通过知识迁移讲授中心对称图形和对称中心的有关内容,并附加练习巩固这个内容.(5)通过几何操作题,探究猜测发现规律,并给予证明,附加例题进一步巩固.(6)复习中心对称图形和对称中心的有关概念,然后提出问题,让学生观察、•思考,老师归纳得出中心对称图形和对称中心的有关概念,最后用一些例题、练习来巩固这个内容.(7)复习平面直角坐标系的有关概念,•通过实例归纳出两个点关于原点对称时,坐标符号之间的关系,并运用它解决一些实际问题.(8)通过复习平移、轴对称、旋转等有关概念研究如何进行图形设计.3.情感、态度与价值观让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情.教学重点1.图形旋转的基本性质.2.中心对称的基本性质.3.两个点关于原点对称时,它们坐标间的关系.教学难点1.图形旋转的基本性质的归纳与运用.2.中心对称的基本性质的归纳与运用.教学关键1.利用几何直观,经历观察,产生概念;2.利用几何操作,通过观察、探究,•用不完全归纳法归纳出图形的旋转和中心对称的基本性质.单元课时划分本单元教学时间约需10课时,具体分配如下:23.1 图形的旋转 3课时23.2 中心对称 4课时23.3 课题学习;图案设计 1课时教学活动、习题课、小结 2课时23.1 图形的旋转(1)第一课时教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度. 2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材P65 练习1、2、3.23.1 图形的旋转(2)第二课时教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.重难点、关键1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、探索新知上面的解题过程中,能否得出什么结论,请回答下面的问题:1.A、B、C、D、E、F到O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA 全等吗?老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O 作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作和刚才作的(3),得出(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD(2)以CB为一边作∠BCE,使得∠BCE=∠ACD(3)在射线CE上截取CB′=CB则B′即为所求的B的对应点.(4)连结DB′则△DB′C就是△ABC绕C点旋转后的图形.例2.如图,四边形ABCD是边长为1的正方形,且DE=14,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF 的长度是多少?(4)如果连结EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE 的长度,由勾股定理很容易得到.•△ABF 与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是A 点.(2)∵△ABF 是由△ADE 旋转而成的∴B 是D 的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE=14 ∴AE=2211()4 =174 ∵对应点到旋转中心的距离相等且F 是E 的对应点∴AF=174(4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF 是等腰直角三角形.三、巩固练习 教材P64 练习1、2.四、应用拓展例3.如图,K 是正方形ABCD 内一点,以AK 为一边作正方形AKLM ,使L 、M•在AK 的同旁,连接BK 和DM ,试用旋转的思想说明线段BK 与DM 的关系.分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.解:∵四边形ABCD 、四边形AKLM 是正方形∴AB=AD ,AK=AM ,且∠BAD=∠KAM 为旋转角且为90°∴△ADM 是以A 为旋转中心,∠BAD 为旋转角由△ABK 旋转而成的∴BK=DM五、归纳小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.23.1 图形的旋转(3)第三课时教学内容选择不同的旋转中心或不同的旋转角,设计出不同的美丽的图案.教学目标理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.重难点、关键1.重点:用旋转的有关知识画图.2.难点与关键:根据需要设计美丽图案.教具、学具准备小黑板教学过程一、复习引入1.(学生活动)老师口问,学生口答.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.请同学独立完成下面的作图题.如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.(老师点评)分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A′.二、探索新知从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.1.旋转中心不变,改变旋转角画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.2.旋转角不变,改变旋转中心画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30•°的旋转图形.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.例1.如下图是菊花一叶和中心与圆圈,现以O•为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.分析:只要以O为旋转中心、旋转角以上面为变化,•旋转长度为菊花的最长OA,按菊花叶的形状画出即可.解:(1)连结OA(2)以O点为圆心,OA长为半径旋转45°,得A.(3)依此类推画出旋转角分别为90°、135°、180°、225°、270°、315°的A、A、A、A、A、A.(4)按菊花一叶图案画出各菊花一叶.那么所画的图案就是绕O点旋转后的图形.例2.(学生活动)如图,如果上面的菊花一叶,绕下面的点O′为旋转中心,•请同学画出图案,它还是原来的菊花吗?老师点评:显然,画出后的图案不是菊花,而是另外的一种花了.三、巩固练习教材P65 练习.四、应用拓展例3.如图,如何作出该图案绕O点按逆时针旋转90°的图形.分析:该备案是一个比较复杂的图案,是作出几个复合图形组成的图案,因此,要先画出图中的关键点,这些关键点往往是图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特征,作出这些关键点的对应点,最后再按原图案作出旋转后的图案.解:(1)连结OA,过O点沿OA逆时针作∠AOA′=90°,在射线OA′上截取OA′=OA;(2)用同样的方法分别求出B、C、D、E、F、G、H的对应点B′、C′、D′、E′、F′、G′、H′;(3)作出对应线段A′B′、B′C′、C′D′、D′E′、E′F′、F′A′、A•′G′、G′D′、D′H′、H′A′;(4)所作出的图案就是所求的图案.五、归纳小结(学生归纳,老师点评)本节课应掌握:1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案;2.作出几个复合图形组成的图案旋转后的图案,•要先求出图中的关键点──线的端点、角的顶点、圆的圆心等.六、布置作业1.教材P67 综合运用7、8、9.1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.23.2 中心对称(1)第一课时教学内容两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题.教学目标了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题.复习运用旋转知识作图,•旋转角度变化,•设计出不同的美丽图案来引入旋转180°的特殊旋转──中心对称的概念,并运用它解决一些实际问题.重难点、关键1.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题.2.难点与关键:从一般旋转中导入中心对称.教具、学具准备小黑板、三角尺教学过程一、复习引入请同学们独立完成下题.如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,•并写出简要作法.老师点评:分析,本题已知旋转后点A的对应点是点D,且旋转中心也已知,所以关键是找出旋转角和旋转方向.显然,逆时针或顺时针旋转都符合要求,•一般我们选择小于180°的旋转角为宜,故本题选择的旋转方向为顺时针方向;•已知一对对应点和旋转中心,很容易确定旋转角.如图,连结OA、OD,则∠AOD即为旋转角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可.作法:(1)连结OA、OB、OC、OD;(2)分别以OB、OB为边作∠BOM=∠CON=∠AOD;(3)分别截取OE=OB,OF=OC;(4)依次连结DE、EF、FD;即:△DEF就是所求作的三角形,如图所示.二、探索新知问题:作出如图的两个图形绕点O旋转180°的图案,并回答下列的问题:1.以O为旋转中心,旋转180°后两个图形是否重合?2.各对称点绕O旋转180°后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB与△COD重合.像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.例1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.分析:(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,•对称中心就是旋转中心.(3)旋转后的对应点,便是中心的对称点.解:作法:(1)延长AD,并且使得DA′=AD(2)同样可得:BD=B′D,CD=C′D(3)连结A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图23-44所示.答:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D 点.(2)A 、B 、C 、D 关于中心D 的对称点是A ′、B ′、C ′、D ′,这里的D ′与D 重合.例2.如图,已知AD 是△ABC 的中线,画出以点D 为对称中心,与△ABD•成中心对称的三角形.分析:因为D 是对称中心且AD 是△ABC 的中线,所以C 、B 为一对的对应点,因此,只要再画出A 关于D 的对应点即可.解:(1)延长AD ,且使AD=DA ′,因为C 点关于D 的中心对称点是B (C ′),B•点关于中心D 的对称点为C (B ′) (2)连结A ′B ′、A ′C ′.则△A ′B ′C ′为所求作的三角形,如图所示.C(B ')B(C ')AA 'D三、巩固练习 教材P74 练习2.23.2 中心对称(2)第二课时教学内容1.关于中心对称的两个图形,对称点所连线段都经过对称中心,•而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.教学目标理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质.重难点、关键1.重点:中心对称的两条基本性质及其运用.2.难点与关键:让学生合作讨论,得出中心对称的两条基本性质.教学过程一、复习引入(老师口问,学生口答)1.什么叫中心对称?什么叫对称中心?2.什么叫关于中心的对称点?3.请同学随便画一三角形,以三角形一顶点为对称中心,•画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论.(每组推荐一人上台陈述,老师点评)(老师)在黑板上画一个三角形ABC,分两种情况作两个图形(1)作△ABC一顶点为对称中心的对称图形;(2)作关于一定点O为对称中心的对称图形.第一步,画出△ABC.第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′和△A′B′C′,如图1和用2所示.(1) (2)从图1中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′、BB′、CC′,点O在这些线段上且O平分这些线段.下面,我们就以图2为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′∴△AOB≌△A′OB′∴AB=A′B′同理可证:AC=A′C′,BC=B′C′∴△ABC≌△A′B′C′(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O•旋转180•°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.例1.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO、BO、CO并延长,取与它们相等的线段即可得到.解:(1)连结AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连结DE、EF、FD.则△DEF即为所求的三角形.例2.(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B•′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).二、巩固练习教材P70 练习.四、归纳小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,•而且被对称中心所平分;2.关于中心对称的两个图形是全等图形及其它们的应用.五、布置作业1.教材P74 复习巩固1 综合运用6、7.1.下面图形中既是轴对称图形又是中心对称图形的是()A.直角 B.等边三角形 C.直角梯形 D.两条相交直线2.下列命题中真命题是()A.两个等腰三角形一定全等B.正多边形的每一个内角的度数随边数增多而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等3.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60° B.50° C.75° D.55°23.2 中心对称(3)第三课时教学内容1.中心对称图形的概念.2.对称中心的概念及其它们的运用.教学目标了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.重难点、关键1.重点:中心对称图形的有关概念及其它们的运用.2.难点与关键:区别关于中心对称的两个图形和中心对称图形.教具、学具准备小黑板、三角形教学过程一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段AO关于O点的对称图形,如图所示.A O(2)作出三角形AOB关于O点的对称图形,如图所示.B AO(2)延长AO使OC=AO,延长BO使OD=BO,连结CD则△COD为所求的,如图所示.B ACDOB ACDO二、探索新知从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=•OB,所以,就是线段AB绕它的中点旋转180°后与它重合.上面的(2)题,连结AD、BC,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.∵AO=OC,BO=OD,∠AOB=∠COD∴△AOB≌△COD∴AB=CD也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答.(学生活动)例2:请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳.例3.求证:如图任何具有对称中心的四边形是平行四边形.B ACDO分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC、•BD 必过点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,•四边形ABCD 是平行四边形.。

第23章:旋转课堂(教案)2023-2024学年人教版九年级数学上册

第23章:旋转课堂(教案)2023-2024学年人教版九年级数学上册
)利用动态教具或多媒体演示旋转变换过程,帮助学生形象地理解旋转变换的性质。
(2)设计实际操作活动,让学生动手测量旋转角度,加强对测量方法的掌握。
(3)通过观察和讨论,引导学生识别旋转对称图形,总结旋转对称性的特点。
(4)通过具体实例,指导学生寻找旋转对称轴,掌握寻找方法。
(3)旋转对称图形的识别:学生可能难以判断一个图形是否具有旋转对称性,尤其是复杂的图形。例如,一个五角星具有旋转对称性,但学生可能不清楚旋转角度是多少。
(4)旋转对称轴的确定:在确定旋转对称轴时,学生可能不知道如何寻找或验证。例如,一个矩形有两条旋转对称轴,学生需要学会如何找出这两条轴。
(5)旋转知识在解决实际问题中的应用:将旋转知识应用于实际问题,学生可能不知道如何入手。例如,在建筑设计中,如何运用旋转对称性来设计美观且实用的结构。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“旋转变换在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-掌握旋转角度的计算方法
3.知识点三:旋转对称图形与旋转对称轴
-认识旋转对称图形
-理解旋转对称轴的概念
-学会判断旋转对称图形及其旋转对称轴
4.知识点四:旋转的应用
-了解旋转在现实生活中的应用
-学会运用旋转变换解决实际问题
5.课堂练习:旋转相关习题练习,巩固所学知识。
二、核心素养目标
1.培养学生的空间观念:通过旋转变换的学习,使学生能够观察、想象、分析几何图形在空间中的位置关系和运动变化,提高空间想象力。

九年级数学上册 23 旋转复习教案 新人教版-新人教版初中九年级上册数学教案

九年级数学上册 23 旋转复习教案 新人教版-新人教版初中九年级上册数学教案

23.1 图形的旋转教学目标1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.2. 通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.教学重点旋转及对应点的有关概念及其应用.教学难点从活生生的数学中抽出概念.教具准备教学过程主要教学过程个人修改【复习引入】(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?【探索新知】我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.【例题讲解】下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(3)(2)•画图略.(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.【随堂练习】教材P65 练习1、2、3.【应用拓展】例3.两个边长为1的正方形,如图所示,•让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为14,现把其中一个正方形固定不动,•另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?•说明理由.分析:设任转一角度,如图中的虚线部分,•要说明旋转后正方形重叠部分面积不变,只要说明S△OEE`=S△ODD`,那么只要说明△OEF′≌△ODD′.解:面积不变.理由:设任转一角度,如图所示.在Rt△ODD′和Rt△OEE′中∠ODD′=∠OEE′=90°∠DOD′=∠EOE′=90°-∠BOEOD=OD∴△ODD′≌△OEE′∴S△ODD`=S△OEE`∴S四边形OE`BD`=S正方形OEBD=1 4【归纳小结】本节课要掌握:1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.【课后练习】1.教材P66 复习巩固1、2、3.2.《同步练习》教后反思:教学过程【课堂引入】(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?【探索新知】上面的解题过程中,能否得出什么结论,请回答下面的问题:1.A、B、C、D、E、F到O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作和刚才作的(3),得出(1)对应点到旋转中心的距离相等;(老师点评):能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.(2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等. 【例题讲解】例1.如图,△ABC 绕C 点旋转后,顶点A 的对应点为点D ,试确定顶点B•对应点的位置,以及旋转后的三角形. 解:(1)连结CD(2)以CB 为一边作∠BCE ,使得∠BCE=∠ACD (3)在射线CE 上截取CB ′=CB 则B ′即为所求的B 的对应点. (4)连结DB ′则△DB ′C 就是△ABC 绕C 点旋转后的图形.例2.如图,四边形ABCD 是边长为1的正方形,且DE=14, △ABF 是△ADE 的旋转图形. (1)旋转中心是哪一点? (2)旋转了多少度? (3)AF 的长度是多少?(4)如果连结EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE 的长度,由勾股定理很容易得到.•△ABF 与△ADE 是完全重合的,所以它是直角三角形. 解:(1)旋转中心是A 点. (2)∵△ABF 是由△ADE 旋转而成的 ∴B 是D 的对应点 ∴∠DAB=90°就是旋转角 (3)∵AD=1,DE=14∴AE=2211()4=174∵对应点到旋转中心的距离相等且F 是E 的对应点分析:绕C点旋转,A点的对应点是D 点,那么旋转角就是∠ACD ,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB ′=ACD ,•又由对应点到旋转中心的距离相等,即CB=CB ′,就可确定B ′的位置,如图所示分析:要用旋转的思想说明就是要用旋转中∴AF=17 4(4)∵∠EAF=90°(与旋转角相等)且AF=AE∴△EAF是等腰直角三角形.【随堂练习】教材P64 练习1、2.【应用拓展】例3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.解:∵四边形ABCD、四边形AKLM是正方形∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的∴BK=DM【归纳小结】本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.【课后练习】1.教材P66 复习巩固4 综合运用5、6.心、旋转角、对应点的知识来说明.教后反思:课题23.1 图形的旋转(3)课型新知课教学目标理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.教学重点用旋转的有关知识画图.教学难点根据需要设计美丽图案.教具准备教学过程主要教学过程个人修改【课堂引入】1.(学生活动)老师口问,学生口答.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.请同学独立完成下面的作图题.如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.(老师点评)分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A′.【探索新知】从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.1.旋转中心不变,改变旋转角画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.2.旋转角不变,改变旋转中心画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30•°的旋转图形.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.【例题讲解】例1.如下图是菊花一叶和中心与圆圈,现以O•为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.分析:只要以O为旋转中心、旋转角以上面为变化,•旋转长度为菊花的最长OA,按菊花叶的形状画出即可.解:(1)连结OA(2)以O点为圆心,OA长为半径旋转45°,得A.(3)依此类推画出旋转角分别为90°、135°、180°、225°、270°、315°的A、A、A、A、A、A.(4)按菊花一叶图案画出各菊花一叶.那么所画的图案就是绕O点旋转后的图形.例2.(学生活动)如图,如果上面的菊花一叶,绕下面的点O′为旋转中心,•请同学画出图案,它还是原来的菊花吗?老师点评:显然,画出后的图案不是菊花,而是另外的一种花了.【随堂练习】教材P65 练习.【应用拓展】例3.如图,如何作出该图案绕O点按逆时针旋转90°的图形.分析:该备案是一个比较复杂的图案,是作出几个复合图形组成的图案,因此,要先画出图中的关键点,这些关键教学重点利用中心对称、对称中心、关于中心对称点的概念解决一些问题.教学难点从一般旋转中导入中心对称.教具准备小黑板、三角尺教学过程主要教学过程个人修改【课堂引入】如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,•并写出简要作法.老师点评:分析,本题已知旋转后点A的对应点是点D,且旋转中心也已知,所以关键是找出旋转角和旋转方向.显然,逆时针或顺时针旋转都符合要求,•一般我们选择小于180°的旋转角为宜,故本题选择的旋转方向为顺时针方向;•已知一对对应点和旋转中心,很容易确定旋转角.如图,连结OA、OD,则∠AOD即为旋转角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可.作法:(1)连结OA、OB、OC、OD;(2)分别以OB、OB为边作∠BOM=∠CON=∠AOD;(3)分别截取OE=OB,OF=OC;(4)依次连结DE、EF、FD;即:△DEF就是所求作的三角形,如图所示.【探索新知】问题:作出如图的两个图形绕点O旋转180°的图案,并回答下列的问题:1.以O为旋转中心,旋转180°后两个图形是否重合?2.各对称点绕O旋转180°后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB与△COD重合.分析:(1)根据中心对像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.【例题讲解】例1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.(3)旋转后的对应点,便是中心的对称点.解:作法:(1)延长AD,并且使得DA′=AD(2)同样可得:BD=B′D,CD=C′D(3)连结A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图23-44所示.答:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D点.(2)A、B、C、D关于中心D的对称点是A′、B′、C′、D′,这里的D′与D重合.例2.如图,已知AD是△ABC的中线,画出以点D为对称中心,与△ABD•成中心对称的三角形.解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),B•点关于中心D的对称点为C(B′)(2)连结A′B′、A′C′.则△A′B′C′为所求作的三角形,如图所示.称的定义便直接可知这两个图形是中心对称图形,•对称中心就是旋转中心.分析:因为D是对称中心且AD是△ABC的中线,所以C、B为一对的对应点,因此,只要再画出A关于D的对应点即可.分析:(1)∵BC=4,AC=4∴△ABC是等腰直角三角形,易得△BDC′也是等腰直角【随堂练习】教材P74 练习2.【应用拓展】例3.如衅,在△ABC中,∠C=70°,BC=4,AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置.(1)若平移的距离为3,求△ABC与△A′B′C′重叠部分的面积.(2)若平移的距离为x(0≤x≤4),求△ABC与△A′B′C′重叠部分的面积y,写出y与x的关系式.解:(1)∵CC′=3,CB=4且AC=BC∴BC′=C′D=1∴S△BDC`=12×1×1=12(2)∵CC′=x,∴BC′=4-x ∵AC=BC=4∴DC′=4-x∴S△BDC`=12(4-x)(4-x)=12x2-4x+8【归纳小结】本节课应掌握:1.中心对称及对称中心的概念;2.关于中心的对称点的概念及其运用.【课后练习】1.教材P73 练习1.三角形且BC′=1(2)∵平移的距离为x,∴BC′=4-x教后反思:课题23.2 中心对称(2) 课型新知课教学目标理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质.教学重点中心对称的两条基本性质及其运用.教学难点让学生合作讨论,得出中心对称的两条基本性质.教具准备教学过程主要教学过程个人修改【课堂引入】1.什么叫中心对称?什么叫对称中心?2.什么叫关于中心的对称点?3.请同学随便画一三角形,以三角形一顶点为对称中心,•画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论.【探索新知】(老师)在黑板上画一个三角形ABC,分两种情况作两个图形(1)作△ABC一顶点为对称中心的对称图形;(2)作关于一定点O为对称中心的对称图形.第一步,画出△ABC.第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′和△A′B′C′,如图1和用2所示.(1) (2)从图1中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′、BB′、CC′,点O在这些线段上且O平分这些线段.下面,我们就以图2为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′∴△AOB≌△A′OB′∴AB=A′B′同理可证:AC=A′C′,BC=B′C′分析:中心对称就是旋∴△ABC≌△A′B′C′(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O•旋转180•°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.【例题讲解】例1.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.解:(1)连结AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连结DE、EF、FD.则△DEF即为所求的三角形.例2.(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B•′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).【随堂练习】教材P70 练习.转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO、BO、CO 并延长,取与它们相等的线段即可得到.分析:要证明OA+OB>OC,必然把OA、OB、OC转为在一个三角形内,应用两边之和大于第三边(两点之间线段最短)来说明,因【应用拓展】例3.如图等边△ABC内有一点O,试说明:OA+OB>OC.解:如图,把△AOC以A为旋转中心顺时针方向旋转60°后,到△AO′B•的位置,则△AOC≌△AO′B.∴AO=AO′,OC=O′B又∵∠OAO′=60°,∴△AO′O为等边三角形.∴AO=OO′在△BOO′中,OO′+OB>BO′即OA+OB>OC【归纳小结】本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,•而且被对称中心所平分;2.关于中心对称的两个图形是全等图形及其它们的应用.【课后练习】1.教材P74 复习巩固1 综合运用6、7.此要应用旋转.以A为旋转中心,•旋转60°,便可把OA、OB、OC转化为一个三角形内.教后反思:课题23.2 中心对称(3) 课型新知课教学目标了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.教学重点中心对称图形的有关概念及其它们的运用.教学难点区别关于中心对称的两个图形和中心对称图形.B ACDO教具准备小黑板、三角形X k b 1 . c o m教学过程主要教学过程个人修改【课堂引入】1.(老师口问)口答:关于中心对称的两个图形具有什么性质?2.(学生活动)作图题.(1)作出线段AO关于O点的对称图形,如图所示.(2)作出三角形AOB关于O点的对称图形,如图所示.(2)延长AO使OC=AO,延长BO使OD=BO,连结CD则△COD为所求的,如图所示.【探索新知】从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=•OB,所以,就是线段AB绕它的中点旋转180°后与它重合.上面的(2)题,连结AD、BC,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.∵AO=OC,BO=OD,∠AOB=∠COD∴△AOB≌△COD∴AB=CD也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.【例题讲解】(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答.(学生活动)例2:请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳.A O例3.求证:如图任何具有对称中心的四边形是平行四边形.B ACDO分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC、•BD 必过点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,•四边形ABCD 是平行四边形.【随堂练习】教材P72 练习.【应用拓展】例4.如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使C点和A点重合,•求折痕EF的长.分析:将矩形折叠,使C点和A点重合,折痕为EF,就是A、C两点关于O点对称,这方面的知识在解决一些翻折问题中起关键作用,对称点连线被对称轴垂直平分,进而转化为中垂线性质和勾股定理的应用,求线段长度或面积.解:连接AF,X|k |b| 1 . c|o |m∵点C与点A重合,折痕为EF,即EF垂直平分AC.∴AF=CF,AO=CO,∠FOC=90°,又四边形ABCD为矩形,∠B=90°,AB=CD=3,AD=•BC=4 设CF=x,则AF=x,BF=4-x,由勾股定理,得AC2=BC2+AB2=52∴AC=5,OC=12AC=52∵AB2+BF2=AF2∴32+(4-x)=2=x2教学重点两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P′(-x,-y)及其运用.教学难点运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.教具准备教学过程主要教学过程个人修改【课堂引入】(学生活动)请同学们完成下面三题.1.已知点A和直线L,如图,请画出点A关于L对称的点A′.2.如图,△ABC是正三角形,以点A为中心,把△ADC顺时针旋转60°,画出旋转后的图形.3.如图△ABO,绕点O旋转180°,画出旋转后的图形.【探索新知】(学生活动)如图23-74,在直角坐标系中,已知A(-3,1)、B(-4,0)、C(0,3)、•D(2,2)、E(3,-3)、F(-2,-2),作出A、B、C、D、E、F点关于原点O的中心对称点,并写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?老师点评:画法:(1)连结AO并延长AO(2)在射线AO上截取OA′=OA(3)过A作AD′⊥x轴于D′点,过A′作A′D″⊥x轴于点D″.∵△AD′O与△A′D″O全等∴AD′=A′D″,OA=OA′∴A′(3,-1)同理可得B、C、D、E、F这些点关于原点的中心对称点的坐标.(学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,•①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?老师点评:老师通过巡查,根据学生解答情况进行点评.(略)提问几个同学口述上面的问题.lA-3-33OBAC-2-21-1yx3-4D4221-1(2)把纸片任意撕成两部分(如图b,如图c)(3)将撕好的如图b沿正三角形的一边作轴对称,得到新的图形.(4)并将(3)得到的图形以正三角形的一个顶点作为旋转中心旋转,得到如图(d)(如图c)保持不动)(5)把如图(d)平移到如图(c)的右边,得到如图(e)(6)对如图(e)进行适当的修饰,使得到一个别致美丽的如图(f)的图案.老师必要时可以给予一定的指导.【随堂练习】教材P78 活动1.【应用拓展】例2.(学生活动)请利用线段、三角形、矩形、菱形、圆作为基本图形,•绘制一幅反映你身边面貌的图案,并在班级里交流展示.老师点评:老师点到为止,让学生自由联想,老师也可在黑板上设计一、二图案.【归纳小结】本节课应掌握:利用平移、轴对称和旋转的图形变换中的一种或组合设计图案.【课后练习】1.教材P78 活动2 P80 综合运用4、5、6、7.2.选用作业设计.一、选择题1.在图所示的4个图案中既包含图形的旋转,还有图形轴对称是()2.将三角形绕直线L旋转一周,可以得到如图所示的立体图形的是()二、填空题1.基本图案在轴对称、平移、旋转变化的过程中,图形的______和______都保持不变.2.如上右图,是由________关系得到的图形.三、综合提高题1.(1)图案设计人员在进行图设计时,•常常用一个模具板来设计一幅幅美丽漂亮的图案,你能说出用同一模具板设计出的两个图案之间是什么关系吗?(2)现利用同一模具板经过平移、旋转、轴对称设计一个图案,•并说明你所表达的意义.2.如图,你能利用平移、旋转或轴对称这样的变化过程来分析它的形成过程吗?教后反思:。

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转(教案) 课题学习 图案设计教案

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转(教案) 课题学习 图案设计教案

23.3课题学习图案设计一、教学目标【知识与技能】赏析生活中的精美图案,探究团的组成规律,能够利用图形的平移、轴对称和旋转变换进行一些简单的图案设计。

【过程与方法】在应用图形变换进行图案设计的过程中,对所学数学知识进行“再认识”,同时进行独立的数学创造,发展形象思维和创造性思维能力.【情感态度与价值观】在经历应用数学知识进行独立的图案设计的活动中,感受到数学美与创造的同时获得自我创造的成就感,激发创造性地应用数学知识的热情.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】利用各种图形变换设计组合图案.【教学难点】将基本图形创造性地应用平移、轴对称、旋转等变换设计出和谐、丰富、美观的组合图案.五、课前准备课件、圆规、直尺、三角尺、铅笔、图片等.六、教学过程(一)导入新课让学生说一说:下列图形可以通过其中一个圆怎样变化而得到?(出示课件2)(二)探索新知探究一分析构成图案的基本图形出示课件4,例试说出构成下列图形的基本图形.学生观察后,师生共同分析:思考:成轴对称时基本图形是什么?学生思考后教师总结:对于这三种图形变换一般从定义区分即可.分清图形变换的几个最基本概念是解题的关键.(出示课件5)探究二分析图形形成过程例分析下列图形的形成过程.(出示课件6)(1)(2)(3)(4)(1)(2)(3)(4)学生观察交流后,师生共同分析:(出示课件7,8)出示课件9:教师总结归纳:图形的变换可以通过选择不同的变换方式得到,可能需要旋转、轴对称、平移等多种变换组合才能得到完美的图案,希望同学们认真分析,精心设计出漂亮的图案来.探究三图案的设计出示课件10:例1下面花边中的图案以正方形为基础,由圆弧、圆或线段构成.仿照例图,请你为班级的板报设计一条花边.要求:(1)只要画出组成花边的一个图案;(2)以所给的正方形为基础,用圆弧、圆或线段画出;(3)图案应有美感.让学生自主设计图案(应以平移、旋转、轴对称变换为基本方法),然后同学间相互交流,看看谁设计的图案最美,并由设计者说说图案设计中所运用的图形交换有哪些?出示课件11,12,13:教师展示参考图案,让学生感受数学的美.出示课件14:例2怎样用圆规画出这个六花瓣图?教师出示课件15,对学生画图进行进行启发:学生在教师的指导下进行画图.(出示课件16)教师问:图中A点的位置对六花瓣的形状有没有影响?对花瓣的位置有影响吗?(出示课件17)学生答:对形状没影响,对位置有影响.教师归纳总结:(出示课件18)在读清要求后,然后根据要求,进行方案的尝试设计,一般要经历一个不断修改的过程,使问题在修正中得以解决.探究四图案设计欣赏出示课件19-22,教师引导学生反思图案设计的关键在于选取简单的基本几何图形,通过不同的变换组合出丰富的图案,在欣赏教师出示的课件中组合图案,进一步增强图案设计方法的理解和掌握.(三)课堂练习(出示课件23-28)1.图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.2.图案可以通过将字母___经过______变换得到.3.图案可以通过将________经过______变换得到.4.图案可以看做将汉字___经过________变换得到.5.如图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法,在坐标纸上将该图形绕原点顺时针依次旋转90°、180°、270°,并画出它在各象限内的图形,你会得到一个美丽的立体图形,但是涂阴影时要注意利用旋转变换的特点,不要涂错了位置,否则不会出现理想的效果.6.如图已知每个网格中小正方形的边长都是1,图中的图案是由三段以格点(每个小正方形的顶点叫格点)为圆心,半径分别为1、2、3的圆弧围成.(1)填空:图中三段圆弧所围成的封闭图形的面积是.(结果保留π);(2)请你在图中以(1)中的图为基本图案,借助轴对称变换和旋转变换设计一个完整的图案.7.用直尺,圆规,三角尺再设计一个新颖的(课堂上未见过的)美丽图案.参考答案:1.解:如图所示:2.S;旋转3.正方形;平移4.弓;轴对称5.如图所示:6.解:(1)3π-6⑵如图所示:7.略.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(24.1.1)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:通过反思图案设计的过程和欣赏变换产生的美,展现了数学的应用价值和美学价值.帮助学生了解数学是图形变换的根本,了解数学在人类文明发展中的作用,促进其形成正确的数学观.。

第二十三章旋转单元复习教案

第二十三章旋转单元复习教案

第二十三章旋转单元复习教案教案标题:第二十三章旋转单元复习教案教案目标:1. 复习第二十三章旋转单元的关键概念和重要知识点;2. 强化学生对旋转单元的理解和应用能力;3. 提供多样化的学习活动,培养学生的合作与创造能力;4. 激发学生对数学学习的兴趣和自信心。

教学准备:1. 教材:包含第二十三章旋转单元的教材;2. 学习资源:计算器、白板、标尺、图形工具等;3. 学生资源:学生教材、练习册、作业本等;4. 教学辅助工具:PPT、视频等。

教学过程:引入活动:1. 利用一张PPT或者一段视频引入旋转单元的概念,激发学生的学习兴趣。

2. 引导学生回顾前几章的知识,如平移、缩放等,与旋转单元进行对比。

知识点复习和讲解:1. 复习旋转单元的基本概念和术语,如旋转中心、旋转角度等。

2. 讲解旋转单元的性质和特点,如旋转对称、旋转不变等。

3. 通过示例和图形展示,讲解旋转单元的计算方法和公式。

练习活动:1. 分组讨论:将学生分成小组,让他们在小组内共同解决一些旋转单元的实际问题,如旋转图形的面积计算、旋转体的体积计算等。

2. 个人练习:发放练习册或者作业本,让学生进行个人练习,巩固旋转单元的计算方法和应用能力。

3. 案例分析:给学生提供一些旋转单元的实际案例,让他们进行分析和解决,培养学生的问题解决能力和创造力。

总结和评价:1. 学生展示:让学生展示他们在练习活动中的解决方法和答案,进行互相评价和讨论。

2. 总结复习:总结本节课的重点知识和方法,澄清学生的疑惑和困惑。

3. 课后作业:布置相关的课后作业,巩固学生对旋转单元的理解和应用能力。

教学扩展:1. 拓展学习:引导学生进一步了解旋转单元在实际生活中的应用,如建筑设计、机械制造等领域。

2. 探究学习:鼓励学生自主探究旋转单元的性质和特点,提出自己的问题和解决方法。

教学反思:1. 教学方法:根据学生的学习特点和需求,选择合适的教学方法,如合作学习、探究学习等。

九年级数学人教版上册第23单元复习 教学设计 教案

九年级数学人教版上册第23单元复习 教学设计 教案

第23章旋转复习教案【教学目标:】1、知识与能力:复习图形旋转、中心对称的基本性质及应用和两个点关于原点对称时坐标之间的关系;2、过程与方法:通过总结、归纳等过程,总结平移、轴对称、旋转的联系和区别、旋转和中心对称的联系和区别;运用图形旋转、中心对称的基本性质解一些简单问题3、情感态度与价值观:通过复习,对知识点查漏补缺,使学生充分掌握和运用本章知识,培养学生学习数学的兴趣。

【教学重点:】图形旋转、中心对称的基本性质及两个点关于原点对称时,它们坐标之间的关系【教学难点:】运用图形旋转、中心对称的基本性质解一些生活问题【教学过程:】教学过程设计二度备课 一、复习展示 总结回顾1、本章知识结构图2、复习本章详细知识点。

二、合作讨论 展示讲评经典题例1、例1.台风“麦莎”过去后,许多大树被大风刮倒吹折.一棵笔直的大树被风吹折后倒地,折断点为B (B 点离地面为树高的处).求∠B 的度数.2、下列图形中,既是中心对称又是轴对称的图形是BC AA3、已知:△ABC 中,A(-2,3),B(-3,1),C(-1,2).请画出△ABC 关于原点O 对称的△A1B1C1.4、例4.已知E、F分别在正方形ABCD边AB和BC上,AB=1,∠EDF=45°.求△BEF的周长.拓展延伸5.如图,水渠旁有一大块L形耕地,要画一条直线为分界线,把耕地平均分成两块,分别承包给两个人,BC边是灌溉用的水渠的一岸.每块土地都要有水渠,6.把正方形ADCB绕着点A,按顺时针方向旋转得到正方形AGFE,边BC与GF交于点H(如图).试问线段GH与线段HF相等吗?请先观察猜想,然后再证明你的猜想.三、检测反馈分层练习教材p76~P77 复习巩固四、归纳总结强化训练(一)小结1.平移、轴对称和旋转有什么区别与联系?2.旋转和中心对称有什么区别与联系?3.怎样利用旋转的定义和性质作图?(二)作业教科书复习题23第1,4,5 题。

第二十三章旋转复习教学设计

第二十三章旋转复习教学设计

23章旋转复习课教学设计一、教材分析1、教材的地位与作用本章是义务教育实验教材人教版《数学》九年级上册第23章《旋转》,在此之前,学生已经学习了轴对称、平移两种图形变换,加上旋转的学习,对图形变换已具有一定的认识,在原有基础上发展学生空间观念的一个渗透,隐含着重要的变换思想,是培养学生思维能力,树立运动变化观点的好素材。

另外旋转是空间与图形领域的基础知识,在教材中,起着承上启下的作用,是学习圆的知识内容的铺垫,是构建学生数学知识体系并形成相应的数学技能的重要内容。

通过本章节的复习,学生对图形的变换的认识会更完整,同时,图形变换在日常生活中的应用也非常广泛,利用图形变换可以帮助我们解决很多实际问题。

而且近年龙岩中考题常以选择、作图、操作题、压轴(综合)题的形式出现,图形变换是近年学生中考失分较多的知识板块。

2、学情分析通过新课的学习,学生对旋转变换有了一些接触和认识,又因为生活中的旋转无处不在,学生对旋转的有些知识并不陌生,但从作业及检测来看,一部分学生容易将旋转和轴对称混淆,一些定义似是而非,如轴对称图形与中心对称图形的概念不清,特别是学生在应用旋转的性质解决问题还存在一定的困难。

针对初三学生毕业班,为了让学生知道中考如何考,尽早适应中考考题,因而在选题时将近几年的中考题作为练习题目。

本班学生大部分学生基础较差,优生较少。

通过小组合作让不同认知倾向的学生组合在一起,让他们在小组学习中,依据各自不同的特点去研究分析问题,相互取长补短。

复习课不象新授课那样使学生觉得有“新鲜感”,因而很多时候是一边复习概念,一边练习,复习概念时学生又不爱听,导致教师上复习课常常是以练代课,“穿新鞋走老路”,课堂效率不高。

基于这种情况,本着“课堂三导教学”的方式,充分发挥学生的主体作用,让学生在讨论竞赛中得到知识的构建。

另外根据中学生的特点,在课堂上要对学生多加肯定,表扬。

二.教法学法分析1.教学方法(1)通过“导学、导疑、导练”三个教学环节,来体现学生自主学习的教改模式,既让学生明确自主学习的目标、途径、方法,又能对学生自主学习效果进行检测,通过检测暴露学生存在的问题,经过学生合作,教师的点拨解惑,落实学生的学习目标,促使学生学会主动提出问题,独立思考问题,合作探究问题,并对所学知识进行当堂有效训练与评价。

九年级数学上册23旋转复习教案新人教版

九年级数学上册23旋转复习教案新人教版

第23章旋转一、复习目标1.理解旋转、中心对称以及中心对称图形的概念.2.掌握旋转以及中心对称的性质.3.能利用旋转和中心对称的性质作图.4.掌握关于原点对称的点的坐标.二、课时安排1课时三、复习重难点重点:旋转以及中心对称的性质以及应用.难点:旋转以及中心对称的性质以及应用.四、教学过程(一)知识梳理⎩⎪⎪⎪⎨⎪⎪⎪⎧旋转⎩⎪⎨⎪⎧旋转的概念旋转作图旋转的性质⎩⎪⎨⎪⎧旋转前后的两个图形全等对应点到旋转中心的距离相等对应点与旋转中心所连线段的夹角等于对应角中心对称⎩⎪⎨⎪⎧中心对称的概念中心对称作图中心对称的性质⎩⎪⎨⎪⎧对称点所连线段都经过对称中心,并且被对称中心所平分中心对称的两个图形是全等形中心对称图形平面直角坐标系中的中心对称(二)题型、方法归纳类型1 旋转的概念和性质【主题训练1】(吉林中考)如图,将Rt △ABC 绕点A 逆时针旋转40°,得到Rt △AB′C′,点C′恰好落在斜边AB 上,连接BB′,则∠BB′C′= 度.【自主解答】由旋转的性质可得:AB=AB′,∠BAB′=40°,∴∠BB′A=(180°-40°)÷2=70°,又∵∠AB′C′=90°-∠BAB′=90°-40°=50°,∴∠BB′C′=∠BB′A-∠AB′C′=70°-50°=20°.答案:20归纳:应用旋转性质的两点技巧1.在旋转变换中存在两类相等的角:(1)旋转前后的对应角相等.(2)对应点与旋转中心连线的夹角(即旋转角)相等.2.在旋转中存在两类相等的线段:(1)旋转前后的对应线段相等.(2)对应点与旋转中心所连的线段相等.类型2 中心对称图形的识别【主题训练2】(黄冈中考)随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是( )【自主解答】选A.在A选项中,图形按其中心旋转180°后能与原图重合,是中心对称图形,而其他三项都按其中心旋转180°后不能与原图重合,所以不是中心对称图形.【备选例题】(义乌中考)下列图形中,既是轴对称图形又是中心对称图形的有( )A.4个B.3个C.2个D.1个【解析】选C.因为第一、第四个图形不仅可以沿某条直线折叠后重合,而且绕圆心旋转180°后也能与原图形重合,所以既是轴对称图形也是中心对称图形.故选C.归纳:中心对称图形与轴对称图形的区别与联系1.相同点:(1)都是指具有特殊对称性的一个图形;(2)变换后都能够与自身重合.2.不同点:中心对称图形是绕一个点进行旋转,而轴对称图形是沿一条直线翻折.【知识归纳】三种特殊图形的特征1.中心对称图形:把图形绕着旋转中心旋转180°,能够与原来的图形重合.2.轴对称图形:把一个图形沿着对称轴折叠,直线两旁的部分能够重合.3.旋转图形:把图形绕着旋转中心旋转一定的角度,能够与原来的图形重合.类型3 旋转、对称与坐标系【主题训练3】(牡丹江中考)如图,△ABO中,AB⊥把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为( )或(-2,0)或【自主解答】选B.∵∴OA=2,∠AOB=30°.如图,若将△ABO绕点O逆时针旋转150°,则点A1落在x轴的负半轴上,易得A1的坐标为(-2,0);若将△ABO绕点O顺时针旋转,则点A1落在第三象限,易得此时点A1的坐标为(-1,-故选B.归纳:旋转中的数学思想1.对于旋转知识与平面直角坐标系等知识的综合题,最好的解题方法是运用数形结合思想.2.运用数形结合思想解题,这样可以把抽象的数学问题转化为直观的形,也可以把复杂的形转化为具体的数.类型4 与旋转变换有关的作图【主题训练4】( 茂名中考)在方格纸上按以下要求作图,不用写作法:(1)作出“小旗子”向右平移6格后的图案.(2)作出“小旗子”绕O点按逆时针方向旋转90°后的图案.【解析】作图如下:【备选例题】( 厦门中考)在平面直角坐标系中,已知点A(-4,1),B(-2,0),C(-3,-1),请在图上画出△ABC,并画出与△ABC关于原点O对称的图形.【解析】画图如下:归纳:旋转作图的方法与步骤1.分析题目要求,找出旋转中心、旋转角.2.分析所作图形,找出构成图形的关键点.3.沿一定的方向,按一定的角度,通过截取线段的方法,旋转各个关键点.4.连接所作的各个关键点,并标上相应的字母.5.写出结论.(三)典例精讲例题1.( 温州中考)如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上.按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图.(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.【解析】(1)答案不唯一,如图示:(2)答案如图示:例题 2.( 绥化中考)如图,方格纸中的每个小方格都是边长为一个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1.(2)画出将△ABC绕点O按顺时针方向旋转90°后所得的△A2B2C2.(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形吗?如果是轴对称图形,请画出对称轴.【解析】(1),(2)如图.(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形,对称轴如图中两条斜线.(四)归纳小结知识模块一旋转的概念及性质知识模块二中心对称、中心对称图形的概念以及性质知识模块三旋转、中心对称的作图(五)随堂检测1.(长沙中考)在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是( )2.(烟台中考)以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )3. (青海中考)下面的图形中,既是轴对称图形又是中心对称图形的是( )4.(玉溪中考)在下列图形中,既是轴对称图形又是中心对称图形的是( )5.(荆门中考)在平面直角坐标系中,线段OP的两个端点坐标分别为O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为( )A.(3,4)B.(-4,3)C.(-3,4)D.(4,-3)6.(安顺中考)如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.7.如图,在平面直角坐标系中,将线段AB绕点B按顺时针方向旋转90°后,得到线段BA′,则点A′的坐标为.8.(河池中考)如图(1),已知两个全等直角三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD,AC于点F,G,则在图(2)中,全等三角形共有( )A.5对B.4对C.3对D.2对9.(宁夏中考)如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为.【答案】1. 【解析】选C.选项A中的图形是轴对称图形,也是旋转图形;选项B中的图形是轴对称图形;选项D中的图形是轴对称图形,也是旋转图形;选项C中的图形既不是轴对称图形,也不能由旋转得到.2. 【解析】选B.选项A为旋转对称图形,选项B为中心对称图形,选项C为轴对称图形,选项D不是对称图形.3. 【解析】选C.选项A中图形是中心对称图形,但不是轴对称图形,选项B中图形是中心对称图形,但不是轴对称图形,选项C中图形既是轴对称图形又是中心对称图形,选项D中图形是轴对称图形但不是中心对称图形,故选C.4. 【解析】选A.选项A是轴对称图形,也是中心对称图形;选项B是轴对称图形,不是中心对称图形;选项C是轴对称图形,不是中心对称图形;选项D不是轴对称图形,是中心对称图形.5. 【解析】选C.点P的横坐标是4,纵坐标是3,把线段OP绕点O逆时针旋转90°到OP′位置,点P对应点P′的横坐标绝对值等于点P的纵坐标,点P′的纵坐标等于点P的横坐标,因此答案是(-3,4).6. 【解析】作图如下,可知B′的坐标为(4,2).答案:(4,2)7. 【解析】作图如下,可知点A′的坐标为(2,1).答案:(2,1)8. 【解析】选B.由题意,得:△ACB≌△A′CB′≌△ACD,所以∠A=∠A′,∠D=∠B′,∠ACD=∠A′CB′,AC= A′C,DC= B′C,A′B′=AD,所以图中能够成为全等三角形的有:△A′EF≌△AGF,△A′CG≌△ACE,△GCB′≌△ECD,△A′CB′≌△ACD,共4对.9. 【解析】∵△EDC是由△ABC绕点C按顺时针方向旋转后得到的,∴CB=CD,又点D在AB边上,则△CBD是等腰三角形,∴底角∠B=∠BDC=(90°-α),∴∠BCD=180°-2(90°-α)=2α,即旋转角的大小为2α.答案:2α五、板书设计第23章旋转知识模块一旋转的概念及性质知识模块二中心对称、中心对称图形的概念以及性质知识模块三旋转、中心对称的作图六、作业布置单元检测试题七、教学反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十三章《旋转》复习教案
一.概念:
1.旋转:如果一个图形绕某一个定点沿某一个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角度称为旋转角.
例:(1)旋转中心是什么?旋转角是什么?
(2)经过旋转,点A 、B 、C 分别移动到什么位置?
图1

2
2 .中心对称图形:图形绕着中心旋转180°后与自
身重合称中心对称图形(如:平行四边形、圆等)。

有 )

1旋转不改变图形的形状和大小(即旋转前后的两个图形全等). ○
2任意一对对应点与旋转中心的连线所成的角彼此相等(都是旋转角). ○
3经过旋转,对应点到旋转中心的距离相等 2.旋转三要点:旋转①中心,②方向,③角度.
例:1.若两个图形关于某一点成中心对称,那么下列说法:

1对称点的连线必过对称中心; ○
2这两个图形一定全等; ○
3对应线段一定平行且相等; ○4将一个图形绕对称中心旋转180°必定与另一个图形重合。

其中正确的是( )。

(A) ①② (B) ①③(C) ①②③ (D) ①②③④
2.如图,四边形ABCD 是边长为1的正方形,且DE=14
,△ABF 是△ADE 的旋转
图形.(1)旋转中心是哪一点?(2)旋转了多少度?
(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?
三.基本练习
1.将三角形绕直线L旋转一周,可以得到如图所示的立体图形的是()2.下面图形中既是轴对称图形又是中心对称图形的是()
A.直角 B.等边三角形 C.直角梯形 D.两条相交直线3.下列命题中真命题是()
A.两个等腰三角形一定全等
B.正多边形的每一个内角的度数随边数增多而减少
C.菱形既是中心对称图形,又是轴对称图形
D.两直线平行,同旁内角相等
4.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()
A.60° B.50° C.75° D.55°
5.如图,△ABC是等边三角形。

D是BC上一点,△ABD经过旋转后到达△ACE 的位置。

○1旋转中心是哪一点
○2旋转了多少度?
○3如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置?
6. 如图甲,正方形ABCD和正方形CEFG共一顶点C,且B,C,E在一条直线上。

连接BG, DE.
○1请你猜测BG,DE的位置关系和数量关系,并说明理由;
○2若正方形CEFG绕C点顺时针方向旋转一个角度后,如图乙,BG和DE是否还有上述关系?是说明理由。

三.应用
1.两个点关于原点对称时,它们的坐标符号相反,
即点P(x,y)关于原点O的对称点P′(-x,-y)
例.如图,利用关于原点对称的点的坐标的特点,作出与线段AB•关于原点对称的图形.
2.对称、平移、旋转及其组合
①按要求作出简单平面图形变换后的图形.
②灵活运用轴对称、中心对称、平移和旋转的组合进行图案设计.
例1.以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.
例2.以下图所示的是以四边形ABCD以O点为对称中心所得的中心对称图形
四.基本练习
1.基本图案在轴对称、平移、旋转变化的过程中,图形的______和______都保持不变.
2.如上右图,是由________关系得到的图形.
3. 如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.
4.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.
5.作图题
(1)作出三角形AOB关于O点的对称图形,如图所示.
(2).如图,已知线段CD是线段AB平移后的图形,D是B•点的对称点, •作出线段AB,并回答,AB与CD有什么位置关系.
(3).如图,已知线段CD,作出线段CD关于对称轴L的对称线段C′D′,•并说明CD与对称线段C′D′之间有什么关系?
(4).如图,已知线段CD,作出线段CD关于D点旋转90°的旋转后的图形,•并说明这两条线段之间有什么关系?
(5)下图是某设计师设计的方桌边图案的一部分。

请你运用旋转变换的方法,在坐标纸上将该图形绕原点顺时针依次旋转90°,180°,270°,并画出它在各象限内的图形。

6.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O 按逆时针方向旋转30°得到点P1,延长OP1到点P2使O P2=2OP1;再将点P2
绕原点O按逆时针方向旋转30°得到点P3,延长OP3到点P4使O P4=2OP3;……如此继续下去。

求:
○1点P2的坐标;
○2点P2019的坐标.。

相关文档
最新文档