导数的几何意义及运算
导数的概念及运算
导数的概念及运算知识清单:考点1 函数y =f (x )在x =x 0处的导数 1.概念称函数y =f (x )在x =x 0处的瞬时转变率lim Δ x →0f x 0+Δx -f x 0Δx=lim Δ x →0 ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δ x →0 Δy Δx =lim Δ x →0 f x 0+Δx -f x 0Δx. 2.几何意义函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度确实是位移函数s (t )对时刻t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).考点2 大体初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x f ′(x )=a x ln a (a >0且a ≠1)f (x )=e x f ′(x )=e xf (x )=log a xf ′(x )=1x ln a(a >0且a ≠1)f (x )=ln xf ′(x )=1x考点3 假设y =f (x ),y =g (x )的导数存在,那么 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 考点4 复合函数的导数设函数u =φ(x )在点x 处有导数u ′=φ′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′=f ′(u ),那么复合函数y =f [φ(x )]在点x 处也有导数y ′x =f ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. [必会结论]1.f ′(x 0)与x 0的值有关,不同的x 0,其导数值一样也不同. 2.f ′(x 0)不必然为0,但[f (x 0)]′必然为0.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数仍是周期函数.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时转变趋势,其正负号反映了转变的方向,其大小|f ′(x )|反映了转变的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.例题讲解:1.已知()f x 为可导函数,且)4(2f '=,则02()l )i (2mh f h f h h→--+=( )A .8B .8-C .4D .4-2.函数y =f (x )的图象在点P (5,f (5))处的切线方程是y =-x +8,那么f (5)+f ′(5)=( ) A .1 B .2 C .3D .43.曲线y =sin x sin x +cos x-12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为( ).A .-12B .12C .-22D .224.[2016·云南一检]函数f (x )=ln x -2xx的图象在点(1,-2)处的切线方程为( ) A .2x -y -4=0B .2x +y =0C.x -y -3=0 D .x +y +1=05.(2021·烟台期末)设函数f (x )=x sin x +cos x 的图像在点(t ,f (t ))处切线的斜率为k ,那么函数k =g (t )的部份图像为( ).6.[2016·大同质检]一点P 在曲线y =x 3-x +23上移动,设点P 处切线的倾斜角为α,那么角α的取值范围是( )A.⎣⎡⎦⎤0,π2B.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎣⎡⎭⎫3π4,π D.⎝⎛⎦⎤π2,3π4 7.[2016·天津东丽质检]若f (x )=2xf ′(1)+x 2,那么f ′(0)等于( ) A .2 B .0 C .-2 D .-48.已知函数()f x 在R 上知足2()2(2)88f x f x x x =--+-,那么曲线()y f x =在点(1,(1))f 处的切线方程是A .B .C .D .9.已知曲线f (x )=x n +1(n ∈N +)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,那么log 2 013x 1+log 2 013x 2+…+log 2 013x 2 012的值为______10.[2021·江苏高考]在平面直角坐标系xOy 中,假设曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,那么a +b 的值是________.11.[2016·沈阳模拟]假设存在过点O (0,0)的直线l 与曲线f (x )=x 3-3x 2+2x 和y =x 2+a 都相切,那么a 的值是( )A .1 B.164 C .1或164 D .1或-16421y x =-y x =32y x =-23y x =-+12.函数f (x )(x ∈R)知足f (1)=1,且f (x )在R 上的导函数f ′(x )>12,那么不等式f (x )<x +12的解集为________.13.[2016·山西师大附中质检]已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.14.[2016·云南大理月考]设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.课后作业:1.[2016·襄阳调研]曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为( ) A .30°B .45°C .60°D .120°2. (2021·浙江卷)已知函数y =f (x )的图像是以下四个图像之一,且其导函数y =f ′(x )的图像如右图所示,那么该函数的图像是( ).3.[2021·昆明调研]假设曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,那么a +b =( ) A .-1 B .0 C .1 D .24.已知函数f (x )=(ax 2+bx +c )e x 的导函数y =f ′(xa -b 的值为________.5.[2016·沈阳模拟]假设存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,那么a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或76.已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)假设曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值;(2)当a =1时,假设直线l :y =kx -1与曲线y =f (x )相切,求l 的直线方程.。
导数的概念,计算,几何意义
导数的概念,计算,几何意义(一)知识点 1.平均变化率:函数()f x 从1x 到2x 的平均变化率为 ,若21x x x ∆=-21y y y ∆=-则,平均变化率可表示为 。
2.导数的概念:函数()y f x =的导数'()f x ,就是当0x ∆→时,函数的增量y ∆与自变量的增量x ∆的比yx∆∆(平均变化率) 的 , 即'()f x = = . 3.导函数:函数()y f x =在区间(,)a b 内 的导数都存在,就说()f x 在区间(,)a b 内 .其导数也是(,)a b 内的函数,叫做()f x 的 ,记作'()f x 或'x y , 函数()f x 的导函数'()f x 在0x x =时的导函数值 ,就是)(x f 在0x 处的导数.4.导数的几何意义:设函数()y f x =在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的 。
相应的切线方程为 (点斜式) 。
5.求导数的方法: (1) 八个基本求导公式()c 为常数'c = ; ()'n x = ; (sin )'x = , (cos )'x = ()'x a = , ()'x e =(log )'a x = , (ln )'x =(2) 导数的四则运算(()())f x g x '±= [()]Cf x '= (()())f x g x '= , ()()()f xg x '= 推论:()c 为常数[()]'cf x = ;21'()[]'()()f x f x f x =-; ()''''fgh f gh fgh fgh =++(3) 复合函数的导数设()u x θ=在点x 处可导,()y f u =在点()u x θ=处可导,则复合函数[()]f x θ在点x 处可导, 且'()f x = ,即'''x u x y y u =. 典型例题:例1.(变化率)求函数y=12+x 在x 0到x 0+Δx 之间的平均变化率.解 ∵Δy=11)(11)(11)(2202020220+++∆+--+∆+=+-+∆+x x x x x x x x x.11)(2,11)()(220200202020+++∆+∆+=∆∆∴+++∆+∆+∆=x x x xx x y x x x x x x变式训练1.1.设函数()f x 在0x 处可导,则000()()limx f x x f x x∆→-∆-=∆( )A .0'()f x B.0'()f x - C.0()f x D.0()f x -2.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈,则000()()limh f x h f x h h→+--=A.0'()f xB. 02'()f xC. 02'()f x -D.0例2. 求下列各函数的导数: (1);sin 5x xx x y ++=(2));3)(2)(1(+++=x x x y(3);4cos 212sin 2⎪⎭⎫⎝⎛--=x x y (4).1111xxy ++-=解 (1)∵,sin sin 23232521x x x xx x x x y ++=++=-∴y′.cos sin 2323)sin()()(232252323x x x x x x x x x x-----+-+-='+'+'=(2)y=(x 2+3x+2)(x+3)=x 3+6x 2+11x+6,∴y′=3x 2+12x+11.(3)∵y=,sin 212cos 2sin x x x =⎪⎭⎫ ⎝⎛--∴.cos 21)(sin 21sin 21x x x y ='='⎪⎭⎫ ⎝⎛='(4)xx x xx x x y -=+--++=++-=12)1)(1(111111, ∴.)1(2)1()1(21222x x x x y -=-'--='⎪⎭⎫ ⎝⎛-=' 变式训练2:(1)求y=tanx 的导数.解 y′.cos 1cos sin cos cos )(cos sin cos )(sin cos sin 22222x x xx x x x x x x x =+='-'='⎪⎭⎫ ⎝⎛=(2)求下列各函数的导数:①2(1)(231)y x x x =++- ②y ③()(cos sin )x f x e x x =⋅+利用导数求切线方程 例3:如果曲线103-+=x x y 的某一切线与直线34+=x y 平行,求切点坐标与切线方程. 分析:本题重在理解导数的几何意义:曲线()y f x =在给定点00(,())P x f x 处的切线的斜率0()k f x '=,用导数的几何意义求曲线的斜率就很简单了。
导数的概念及其意义、导数的运算
§3.1 导数的概念及其意义、导数的运算学习目标了解导数的概念、掌握基本初等函数的导数. 2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数(形如f (ax +b ))的导数.知识梳理 1.导数的概念(1)函数y =f (x )在x =x 0处的导数记作f ′(x 0)或0'|x x y =.f ′(x 0)=lim Δx →0 ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . (2)函数y =f (x )的导函数 f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx.2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q ,且α≠0)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln_a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x4.导数的运算法则若f ′(x ),g ′(x )存在,则有 [f (x )±g (x )]′=f ′(x )±g ′(x ); [f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); [cf (x )]′=cf ′(x ).5.复合函数的定义及其导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 常用结论1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条. (2)过点处的切线,该点不一定是切点,切线至少有一条. 2.⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (3)f ′(x 0)=[f (x 0)]′.( × )(4)若f (x )=sin (-x ),则f ′(x )=cos (-x ).( × ) 教材改编题1.函数f (x )=e x +1x 在x =1处的切线方程为________.答案 y =(e -1)x +2 解析 f ′(x )=e x -1x 2,∴f ′(1)=e -1, 又f (1)=e +1,∴切点为(1,e +1),切线斜率k =f ′(1)=e -1, 即切线方程为y -(e +1)=(e -1)(x -1), 即y =(e -1)x +2.2.已知函数f (x )=x ln x +ax 2+2,若f ′(e)=0,则a =________. 答案 -1e解析 f ′(x )=1+ln x +2ax , ∴f ′(e)=2a e +2=0,∴a =-1e.3.若f (x )=ln(1-x )+e 1-x ,则f ′(x )=________. 答案1x -1-e 1-x题型一 导数的运算例1 (1)(多选)(2022·济南质检)下列求导运算正确的是( ) A.⎝⎛⎭⎫1ln x ′=-1x ln 2x B .(x 2e x )′=2x +e xC.⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-sin ⎝⎛⎭⎫2x -π3 D.⎝⎛⎭⎫x -1x ′=1+1x 2 答案 AD解析 ⎝⎛⎭⎫1ln x ′=-1ln 2x ·(ln x )′=-1x ln 2x , 故A 正确;(x 2e x )′=(x 2+2x )e x ,故B 错误;⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-2sin ⎝⎛⎭⎫2x -π3,故C 错误;⎝⎛⎭⎫x -1x ′=1+1x 2,故D 正确.(2)函数f (x )的导函数为f ′(x ),若f (x )=x 2+f ′⎝⎛⎭⎫π3sin x ,则f ⎝⎛⎭⎫π6=________. 答案 π236+2π3解析 f ′(x )=2x +f ′⎝⎛⎭⎫π3cos x , ∴f ′⎝⎛⎭⎫π3=2π3+12f ′⎝⎛⎭⎫π3, ∴f ′⎝⎛⎭⎫π3=4π3, ∴f ⎝⎛⎭⎫π6=π236+2π3.教师备选1.函数y =sin 2x -cos 2x 的导数y ′等于( )A .22cos ⎝⎛⎭⎫2x -π4B .cos 2x +sin xC .cos 2x -sin 2xD .22cos ⎝⎛⎭⎫2x +π4 答案 A解析 y ′=2cos 2x +2sin 2x =22cos ⎝⎛⎭⎫2x -π4. 2.(2022·济南模拟)已知函数f ′(x )=e x sin x +e x cos x ,则f (2 021)-f (0)等于( ) A .e 2 021cos 2 021 B .e 2 021sin 2 021 C.e2 D .e答案 B解析 因为f ′(x )=e x sin x +e x cos x , 所以f (x )=e x sin x +k (k 为常数), 所以f (2 021)-f (0)=e 2 021sin 2 021.思维升华 (1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解. (3)复合函数求导,应由外到内逐层求导,必要时要进行换元.跟踪训练1 (1)若函数f (x ),g (x )满足f (x )+xg (x )=x 2-1,且f (1)=1,则f ′(1)+g ′(1)等于( )A .1B .2C .3D .4 答案 C解析 当x =1时,f (1)+g (1)=0, ∵f (1)=1,得g (1)=-1,原式两边求导,得f ′(x )+g (x )+xg ′(x )=2x , 当x =1时,f ′(1)+g (1)+g ′(1)=2, 得f ′(1)+g ′(1)=2-g (1)=2-(-1)=3.(2)已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a =________. 答案 e 2解析 f ′(x )=12x -3·(2x -3)′+a e -x +ax ·(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.题型二 导数的几何意义 命题点1 求切线方程例2 (1)(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为__________.答案 5x -y +2=0 解析 y ′=⎝⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为__________. 答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 命题点2 求参数的值(范围)例3 (1)(2022·青岛模拟)直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2),则2a +b 等于( )A .4B .3C .2D .1 答案 A解析 ∵直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2), 将P (1,2)代入y =kx +1, 可得k +1=2,解得k =1, ∵ f (x )=a ln x +b ,∴ f ′(x )=a x ,由f ′(1)=a1=1,解得a =1,可得f (x )=ln x +b , ∵P (1,2)在曲线f (x )=ln x +b 上, ∴f (1)=ln 1+b =2,解得b =2,故2a +b =2+2=4.(2)(2022·广州模拟)过定点P (1,e)作曲线y =a e x (a >0)的切线,恰有2条,则实数a 的取值范围是________. 答案 (1,+∞)解析 由y ′=a e x ,若切点为(x 0,0e x a ), 则切线方程的斜率k =0'|x x y =0e x a >0,∴切线方程为y =0e x a (x -x 0+1), 又P (1,e)在切线上, ∴0e x a (2-x 0)=e ,即ea =0e x (2-x 0)有两个不同的解, 令φ(x )=e x (2-x ), ∴φ′(x )=(1-x )e x ,当x ∈(-∞,1)时,φ′(x )>0; 当x ∈(1,+∞)时,φ′(x )<0,∴φ(x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴φ(x )max =φ(1)=e , 又x →-∞时,φ(x )→0; x →+∞时,φ(x )→-∞, ∴0<ea<e ,解得a >1,即实数a 的取值范围是(1,+∞). 教师备选1.已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)或(-1,3) D .(1,-3)答案 C解析 设切点P (x 0,y 0), f ′(x )=3x 2-1,又直线x +2y -1=0的斜率为-12,∴f ′(x 0)=3x 20-1=2,∴x 20=1, ∴x 0=±1,又切点P (x 0,y 0)在y =f (x )上, ∴y 0=x 30-x 0+3, ∴当x 0=1时,y 0=3;当x 0=-1时,y 0=3. ∴切点P 为(1,3)或(-1,3).2.(2022·哈尔滨模拟)已知M 是曲线y =ln x +12x 2+(1-a )x 上的任一点,若曲线在M 点处的切线的倾斜角均是不小于π4的锐角,则实数a 的取值范围是( )A .[2,+∞)B .[4,+∞)C .(-∞,2]D .(-∞,4]答案 C解析 因为y =ln x +12x 2+(1-a )x ,所以y ′=1x +x +1-a ,因为曲线在M 点处的切线的倾斜角均是不小于π4的锐角,所以y ′≥tan π4=1对于任意的x >0恒成立,即1x +x +1-a ≥1对任意x >0恒成立, 所以x +1x ≥a ,又x +1x≥2,当且仅当x =1x ,即x =1时,等号成立,故a ≤2,所以a 的取值范围是(-∞,2].思维升华 (1)处理与切线有关的参数问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. (2)注意区分“在点P 处的切线”与“过点P 处的切线”. 跟踪训练2 (1)(2022·南平模拟)若直线y =x +m 与曲线y =e x -2n相切,则( )A .m +n 为定值 B.12m +n 为定值 C .m +12n 为定值D .m +13n 为定值答案 B解析 设直线y =x +m 与曲线y =e x -2n切于点(x 0,02e x n -),因为y ′=e x-2n,所以02e x n -=1,所以x 0=2n ,所以切点为(2n ,1),代入直线方程得1=2n +m , 即12m +n =12. (2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是______. 答案 [2,+∞)解析 直线2x -y =0的斜率k =2,又曲线f (x )上存在与直线2x -y =0平行的切线, ∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0.又4x +1x≥24x ·1x=4, 当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞). 题型三 两曲线的公切线例4 (1)(2022·邯郸模拟)已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于( ) A .0 B .-1 C .3 D .-1或3 答案 D解析 由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln 1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1,因为直线l 与g (x )的图象也相切,则方程组⎩⎪⎨⎪⎧y =x -1,g (x )=x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根, 因此Δ=(a -1)2-4=0,解得a =-1或a =3, 所以a =-1或a =3.(2)(2022·韶关模拟)若曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,则a 的取值范围为________. 答案 ⎣⎡⎭⎫e24,+∞ 解析 由y =ax 2(a >0),得y ′=2ax , 由y =e x ,得y ′=e x ,曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线, 设公切线与曲线C 1切于点(x 1,ax 21), 与曲线C 2切于点(x 2,2e x ),则2ax 1=222121e e ,x x ax x x -=-可得2x 2=x 1+2,∴a =1121e2x x +, 记f (x )=12e2x x +, 则f ′(x )=122e(2)4x x x+-, 当x ∈(0,2)时,f ′(x )<0,f (x )单调递减; 当x ∈(2,+∞)时,f ′(x )>0,f (x )单调递增. ∴当x =2时,f (x )min =e 24.∴a 的取值范围是⎣⎡⎭⎫e 24,+∞.延伸探究 在本例(2)中,把“存在公共切线”改为“存在两条公共切线”,则a 的取值范围为________. 答案 ⎝⎛⎭⎫e 24,+∞ 解析 由本例(2)知,∵两曲线C 1与C 2存在两条公共切线,∴a =1121e2x x +有两个不同的解. ∵函数f (x )=12e2x x+在(0,2)上单调递减, 在(2,+∞)上单调递增,且f (x )min =f (2)=e 24,又x →0时,f (x )→+∞, x →+∞时,f (x )→+∞, ∴a >e 24.教师备选1.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于( )A .1B .2C .3D .3或-1 答案 D解析 设在函数f (x )=ln x 处的切点为(x ,y ),根据导数的几何意义得到k =1x =1,解得x =1,故切点为(1,0),可求出切线方程为y =x -1,此切线和g (x )=x 2+ax 也相切, 故x 2+ax =x -1,化简得到x 2+(a -1)x +1=0,只需要满足Δ=(a -1)2-4=0,解得a =-1或a =3. 2.已知曲线y =e x 在点(x 1,1e x )处的切线与曲线y =ln x 在点(x 2,ln x 2)处的切线相同,则(x 1+1)(x 2-1)等于( )A .-1B .-2C .1D .2 答案 B解析 已知曲线y =e x 在点(x 1,1e x )处的切线方程为 y -1e x =1e x (x -x 1),即1111e e e ,xxxy x x =-+曲线y =ln x 在点(x 2,ln x 2)处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2x -1+ln x 2,由题意得1112121e ,e e 1ln ,x x x x x x ⎧=⎪⎨⎪-=-+⎩ 得x 2=11ex , 1e x -1e x x 1=-1+ln x 2=-1+11lnex =-1-x 1, 则1e x =x 1+1x 1-1.又x 2=11e x ,所以x 2=x 1-1x 1+1,所以x 2-1=x 1-1x 1+1-1=-2x 1+1,所以(x 1+1)(x 2-1)=-2.思维升华 公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3 (1)(2022·青岛模拟)已知定义在区间(0,+∞)上的函数f (x )=-2x 2+m ,g (x )=-3ln x -x ,若以上两函数的图象有公共点,且在公共点处切线相同,则m 的值为( ) A .2 B .5 C .1 D .0答案 C解析 根据题意,设两曲线y =f (x )与y =g (x )的公共点为(a ,b ),其中a >0, 由f (x )=-2x 2+m ,可得f ′(x )=-4x ,则切线的斜率为k =f ′(a )=-4a , 由g (x )=-3ln x -x ,可得g ′(x )=-3x -1,则切线的斜率为k =g ′(a )=-3a -1,因为两函数的图象有公共点,且在公共点处切线相同,所以-4a =-3a -1,解得a =1或a =-34(舍去),又由g (1)=-1,即公共点的坐标为(1,-1), 将点(1,-1)代入f (x )=-2x 2+m , 可得m =1.(2)已知f (x )=e x (e 为自然对数的底数),g (x )=ln x +2,直线l 是f (x )与g (x )的公切线,则直线l 的方程为____________________. 答案 y =e x 或y =x +1解析 设直线l 与f (x )=e x 的切点为(x 1,y 1), 则y 1=1e x ,f ′(x )=e x , ∴f ′(x 1)=1e x , ∴切点为(x 1,1e x ), 切线斜率k =1e x ,∴切线方程为y -1e x =1e x (x -x 1), 即y =1e x ·x -x 11e x +1e x ,①同理设直线l 与g (x )=ln x +2的切点为(x 2,y 2), ∴y 2=ln x 2+2, g ′(x )=1x ,∴g ′(x 2)=1x 2,切点为(x 2,ln x 2+2), 切线斜率k =1x 2,∴切线方程为y -(ln x 2+2)=1x 2(x -x 2),即y =1x 2·x +ln x 2+1,②由题意知,①与②相同,∴111121221e e ,e e ln 1,x x x x x x x x -⎧=⎪⎨⎪-+==+⇒⎩③④ 把③代入④有111e e x x x -+=-x 1+1, 即(1-x 1)(1e x -1)=0, 解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ; 当x 1=0时,切线方程为y =x +1, 综上,直线l 的方程为y =e x 或y =x +1.课时精练1.(2022·营口模拟)下列函数的求导正确的是( ) A .(x -2)′=-2xB .(x cos x )′=cos x -x sin xC .(ln 10)′=110D .(e 2x )′=2e x 答案 B解析 (x -2)′=-2x -3,∴A 错; (x cos x )′=cos x -x sin x ,∴B 对; (ln 10)′=0,∴C 错; (e 2x )′=2e 2x ,∴D 错.2.(2022·黑龙江哈师大附中月考)曲线y =2cos x +sin x 在(π,-2)处的切线方程为( ) A .x -y +π-2=0 B .x -y -π+2=0 C .x +y +π-2=0 D .x +y -π+2=0答案 D解析 y ′=-2sin x +cos x ,当x =π时,k =-2sin π+cos π=-1,所以在点(π,-2)处的切线方程,由点斜式可得y +2=-1×(x -π),化简可得x +y -π+2=0.3.(2022·长治模拟)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4 答案 B解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝⎛⎭⎫-13=0. 4.已知点A 是函数f (x )=x 2-ln x +2图象上的点,点B 是直线y =x 上的点,则|AB |的最小值为( ) A. 2 B .2 C.433 D.163答案 A解析 当与直线y =x 平行的直线与f (x )的图象相切时,切点到直线y =x 的距离为|AB |的最小值.f ′(x )=2x -1x =1,解得x =1或x =-12(舍去),又f (1)=3,所以切点C (1,3)到直线y =x 的距离即为|AB |的最小值,即|AB |min =|1-3|12+12= 2.5.设曲线f (x )=a e x +b 和曲线g (x )=cos πx2+c 在它们的公共点M (0,2)处有相同的切线,则b+c -a 的值为( ) A .0 B .π C .-2 D .3 答案 D解析 ∵f ′(x )=a e x ,g ′(x )=-π2sin πx2,∴f ′(0)=a ,g ′(0)=0,∴a =0,又M (0,2)为f (x )与g (x )的公共点,∴f (0)=b =2,g (0)=1+c =2,解得c =1, ∴b +c -a =2+1-0=3.6.(2022·邢台模拟)设点P 是函数f (x )=2e x -f ′(0)x +f ′(1)图象上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是( ) A.⎣⎡⎭⎫0,3π4 B.⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫3π4,π C.⎝⎛⎭⎫π2,3π4 D.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π 答案 B解析 ∵f (x )=2e x -f ′(0)x +f ′(1), ∴f ′(x )=2e x -f ′(0),∴f ′(0)=2-f ′(0),f ′(0)=1, ∴f (x )=2e x -x +f ′(1), ∴f ′(x )=2e x -1>-1.∵点P 是曲线上的任意一点,点P 处切线的倾斜角为α, ∴tan α>-1. ∵α∈[0,π), ∴α∈⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫3π4,π. 7.(多选)已知函数f (x )的图象如图,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .f ′(3)>f ′(2)B .f ′(3)<f ′(2)C .f (3)-f (2)>f ′(3)D .f (3)-f (2)<f ′(2) 答案 BCD解析 f ′(x 0)的几何意义是f (x )在x =x 0处的切线的斜率.由图知f ′(2)>f ′(3)>0, 故A 错误,B 正确. 设A (2,f (2)),B (3,f (3)), 则f (3)-f (2)=f (3)-f (2)3-2=k AB ,由图知f ′(3)<k AB <f ′(2),即f ′(3)<f (3)-f (2)<f ′(2),故C ,D 正确.8.(多选)(2022·重庆沙坪坝区模拟)若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=[f ′(x )]′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,3π4上是凸函数的是( ) A .f (x )=-x 3+3x +4 B .f (x )=ln x +2x C .f (x )=sin x +cos x D .f (x )=x e x 答案 ABC解析 对A ,f (x )=-x 3+3x +4, f ′(x )=-3x 2+3, f ″(x )=-6x ,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故A 为凸函数; 对B ,f (x )=ln x +2x ,f ′(x )=1x +2,f ″(x )=-1x2,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故B 为凸函数; 对C ,f (x )=sin x +cos x , f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin ⎝⎛⎭⎫x +π4, 当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故C 为凸函数; 对D ,f (x )=x e x ,f ′(x )=(x +1)e x , f ″(x )=(x +2)e x ,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )>0,故D 不是凸函数. 9.(2022·马鞍山模拟)若曲线f (x )=x cos x 在x =π处的切线与直线ax -y +1=0平行,则实数a =________. 答案 -1解析 因为f (x )=x cos x , 所以f ′(x )=cos x -x sin x , f ′(π)=cos π-π·sin π=-1,因为函数在x =π处的切线与直线ax -y +1=0平行,所以a =f ′(π)=-1.10.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a =________.答案 2解析 f ′(x )=-(ax -1)′(ax -1)2+e xcos x -e xsin x =-a(ax -1)2+e x cos x -e x sin x , ∴f ′(0)=-a +1=-1,则a =2.11.(2022·宁波镇海中学质检)我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=2e x,则f ′(x )=________,其在点(0,1)处的切线方程为________.答案 22e xx y =1 解析 ∵f (x )=2e x ,故f ′(x )=(x 2)′2e x =22e x x ,则f ′(0)=0.故曲线y =f (x )在点(0,1)处的切线方程为y =1.12.已知函数f (x )=x 3-ax 2+⎝⎛⎭⎫23a +1x (a ∈R ),若曲线y =f (x )存在两条垂直于y 轴的切线,则a 的取值范围为____________________. 答案 (-∞,-1)∪(3,+∞)解析 因为f (x )=x 3-ax 2+⎝⎛⎭⎫23a +1x (a ∈R ),所以f ′(x )=3x 2-2ax +23a +1,因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2-2ax +23a +1=0有两个不等的实根,则Δ=4a 2-12⎝⎛⎭⎫23a +1>0,即a 2-2a -3>0, 解得a >3或a <-1,所以a 的取值范围是(-∞,-1)∪(3,+∞).13.拉格朗日中值定理又称拉氏定理,是微积分学中的基本定理之一,它反映了函数在闭区间上的整体平均变化率与区间某点的局部变化率的关系,其具体内容如下:若f (x )在[a ,b ]上满足以下条件:①在[a ,b ]上图象连续,②在(a ,b )内导数存在,则在(a ,b )内至少存在一点c ,使得f (b )-f (a )=f ′(c )(b -a )(f ′(x )为f (x )的导函数).则函数f (x )=x e x -1在[0,1]上这样的c 点的个数为( ) A .1 B .2 C .3 D .4 答案 A解析 函数f (x )=x e x -1, 则f ′(x )=(x +1)e x -1, 由题意可知,存在点c ∈[0,1], 使得f ′(c )=f (1)-f (0)1-0=1,即(1+c )e c -1=1,所以e c -1=11+c ,c ∈[0,1],作出函数y =e c -1和y =11+c的图象,如图所示,由图象可知,函数y =e c-1和y =11+c的图象只有一个交点,所以e c -1=11+c ,c ∈[0,1]只有一个解,即函数f (x )=x e x -1在[0,1]上c 点的个数为1.14.(2021·新高考全国Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( ) A .e b <a B .e a <b C .0<a <e b D .0<b <e a答案 D解析 方法一 设切点(x 0,y 0),y 0>0, 则切线方程为y -b =0e x (x -a ),由⎩⎨⎧y 0-b =0e x (x 0-a ),y 0=0e x ,得0e x (1-x 0+a )=b ,则由题意知关于x 0的方程0e x (1-x 0+a )=b 有两个不同的解. 设f (x )=e x (1-x +a ),则f ′(x )=e x (1-x +a )-e x =-e x (x -a ), 由f ′(x )=0得x =a ,所以当x <a 时,f ′(x )>0,f (x )单调递增, 当x >a 时,f ′(x )<0,f (x )单调递减, 所以f (x )max =f (a )=e a (1-a +a )=e a , 当x <a 时,a -x >0,所以f (x )>0,当x →-∞时,f (x )→0, 当x →+∞时,f (x )→-∞,函数f (x )=e x (1-x +a )的大致图象如图所示,因为f (x )的图象与直线y =b 有两个交点,所以0<b <e a .方法二 (用图估算法)过点(a ,b )可以作曲线y =e x 的两条切线 ,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方, 得0<b <e a .15.若曲线y =14sin 2x +32cos 2x 在A (x 1,y 1),B (x 2,y 2)两点处的切线互相垂直,则|x 1-x 2|的最小值为( ) A.π3 B.π2 C.2π3 D .π 答案 B解析 ∵y =14sin 2x +32cos 2x=14sin 2x +32×1+cos 2x2 =12sin ⎝⎛⎭⎫2x +π3+34, ∴y ′=cos ⎝⎛⎭⎫2x +π3, ∴曲线的切线斜率在[-1,1]范围内, 又曲线在两点处的切线互相垂直,故在A (x 1,y 1),B (x 2,y 2)两点处的切线斜率必须一个是1,一个是-1.不妨设在A 点处切线的斜率为1, 则有2x 1+π3=2k 1π(k 1∈Z ),2x 2+π3=2k 2π+π(k 2∈Z ),则可得x 1-x 2=(k 1-k 2)π-π2=k π-π2(k ∈Z ),∴|x 1-x 2|min =π2.16.(2022·南昌模拟)已知曲线C 1:y =e x +m ,C 2:y =x 2,若恰好存在两条直线l 1,l 2与C 1,C 2都相切,则实数m 的取值范围是____________. 答案 (-∞,2ln 2-2)解析 由题意知,l 1,l 2的斜率存在,设直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,设l 1与C 1,C 2的切点坐标分别为(x 1,y 1),(x 2,y 2), 则⎩⎨⎧k 1=1e x m+=2x 2(k 1>0),k 1x 1+b 1=1e x m+,k 1x 2+b 1=x 22,可得⎩⎪⎨⎪⎧x 1=ln k 1-m ,x 2=k 12,k 1(x 2-x 1)=x 22-1ex m+,故k 1⎝⎛⎭⎫k 12-ln k 1+m =k 214-k 1, 整理得m =ln k 1-k 14-1,同理可得,当直线l 2:y =k 2x +b 2与C 1,C 2都相切时, 有m =ln k 2-k 24-1,综上所述,只需m =ln k -k4-1(k >0)有两解,令f (k )=ln k -k4-1,则f ′(k )=1k -14=4-k4k ,故当f ′(k )>0时,0<k <4, 当f ′(k )<0时,k >4,所以f (k )在(0,4)上单调递增,在(4,+∞)上单调递减, 故f (k )max =f (4)=ln 4-44-1=2ln 2-2,所以只需满足m <2ln 2-2即可.。
导数的概念几何意义及其运算
导数的概念几何意义及其运算导数是微积分中的重要概念,用于描述函数在其中一点上的变化率。
它的几何意义可以通过切线来进行解释,并且有一些运算规则可以用来求解导数。
首先,我们来看一下导数的定义和几何意义。
给定一个函数f(x),如果x的变化引起f(x)的变化,那么这个变化率可以用导数来表示。
导数的定义如下:如果函数f(x)在点x上有定义,那么它在这一点的导数可以表示为:f'(x) = lim(h->0) (f(x+h) - f(x))/h这个定义表示的是在x点附近,当x的增量趋近于0时,f(x)的增量与x的增量之比的极限。
换句话说,导数描述了函数在x点附近的平均而微小的变化率。
几何上,导数表示了函数曲线在一个点上的切线的斜率。
切线是曲线在其中一点附近与曲线最为接近的直线,所以导数就是曲线在这一点上的斜率。
如果导数为正,曲线向上倾斜,而如果导数为负,曲线向下倾斜。
导数的运算有一些规则可以用来求导。
下面是一些常用的导数运算规则:1. 常数规则: 对于常数k,导函数为0,即d/dx (k) = 0。
2. 幂规则: 如果f(x) = x^n,其中n是任意实数,那么导数为f'(x) = nx^(n-1)。
3.和、差、积法则:如果函数f(x)和g(x)都可导,那么它们的和、差和积的导数可以通过以下规则得到:d/dx (f(x) + g(x)) = f'(x) + g'(x)d/dx (f(x) - g(x)) = f'(x) - g'(x)d/dx (f(x) * g(x)) = f'(x) * g(x) + f(x) * g'(x)4.商法则:如果函数f(x)和g(x)都可导,并且g(x)在其中一点x上的值不为0,那么它们的商的导数可以通过以下规则求得:d/dx (f(x) / g(x)) = (f'(x) * g(x) - f(x) * g'(x)) / g(x)^2这些运算规则可以帮助我们快速求解导数,从而帮助我们更好地理解函数的变化率。
10导数的概念及运算
变化率与导数、导数的计算1.导数的概念(1)函数y =f (x )在x =x 0处的导数:如果当Δx →0时,Δy Δx→常数A ,就说函数y =f (x )在x 0处可导,并把A 叫做f (x )在点x 0处的导数,记作f ′(x 0)或y ′|x =x 0.(2)导数的几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率,相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数:如果函数f (x )在开区间(a ,b )内每一点都可导,其导数值在(a ,b )内构成一个新的函数,叫做f (x )在开区间(a ,b )内的导函数,记作f ′(x );(4)瞬时速度是位移函数S (t )对时间t 的导数,即v (t )=S ′(t );瞬时加速度是速度函数v (t )对时间t 的导数,即a (t )=v ′(t ).2.基本初等函数的导数公式(sin x )′=cos_x ,(cos x )′=-sin_x ,(a x )′=a x ln_a ,(e x )′=e x ,(log a x )=1x ln a ,(ln x )′=1x. 3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.简单复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.若y =f (u ),u =ax +b ,则y ′x =f ′(u )·u x ′,即y ′x =f ′(u )·a .1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.[试一试]1.曲线C :y =x ln x 在点M (e ,e)处的切线方程为__________________.解析:因为y ′=ln x +1,故点M (e ,e)处的切线的斜率为2,所求切线方程为y =2x -e.答案:y =2x -e2.过坐标原点作函数y =ln x 图像的切线,则切线斜率为________.解析:设切点为(x 0,y 0),因为y ′=1x ,所以切线方程为y -y 0=1x 0(x -x 0).因为切线过原点,故y 0=1.又y 0=ln x 0,得x 0=e ,所以所求斜率为1e. 答案:1e考点一导数的运算[典例] 求下列函数的导数.(1)y =x 2sin x ;(2)y =e x +1e x -1;(3)y =ln(2x -5). [解] (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x(e x -1)2. (3)令u =2x -5,y =ln u ,则y ′=(ln u )′u ′=12x -5·2=22x -5, 即y ′=22x -5. [类题通法]1.求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.2.有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导,有时可以避免使用商的求导法则,减少运算量.3.复合函数的求导,要正确分析函数的复合层次,通过设中间变量,确定复合过程,然后求导.[针对训练]已知f (x )=sin 2x ,记f n +1(x )=f n ′(x )(n ∈N *),则f 1⎝⎛⎭⎫π6+f 2⎝⎛⎭⎫π6+…+f 2 013⎝⎛⎭⎫π6+f 2 014⎝⎛⎭⎫π6=________. 解析:由题意,可知f 2(x )=f 1′(x )=(sin 2x )′=2cos 2x ;f 3(x )=f 2′(x )=(2cos 2x )′=-4sin 2x ;f 4(x )=f 3′(x )=(-4sin 2x )′=-8cos 2x ;f 5(x )=f 4′(x )=(-8cos 2x )′=16sin 2x ;…故f 4k +1(x )=24k sin 2x ,f 4k +2(x )=24k +1cos 2x ,f 4k +3(x )=-24k +2sin 2x ,f 4k +4(x )=-24k +3cos 2x (k ∈N ).所以f 1⎝⎛⎭⎫π6+f 2⎝⎛⎭⎫π6+…+f 2 014⎝⎛⎭⎫π6 =20sin ⎝⎛⎭⎫2×π6+21cos ⎝⎛⎭⎫2×π6-22sin ⎝⎛⎭⎫2×π6- 23cos ⎝⎛⎭⎫2×π6+24sin ⎝⎛⎭⎫2×π6+…-22 010sin ⎝⎛⎭⎫2×π6-22 011cos ⎝⎛⎭⎫2×π6+22 012sin ⎝⎛⎭⎫2×π6+22 013cos ⎝⎛⎭⎫2×π6 =(20-22+24-26+…+22 008-22 010+22 012)sin π3+(21-23+25-27+…+22 009-22 011+22 013)cos π3=1×[1-(-22)1 007]1-(-22)×32+2×[1-(-22)1 007]1-(-22)×12 =1+22 0145×32+2×(1+22 014)5×12=(3+2)(1+22 014)10答案:(3+2)(1+22 014)10考点二导数的几何意义导数的几何意义是每年高考的重点,求解时应把握导数的几何意义是切点处切线的斜率,利用这一点可以解决有关导数的几何意义等问题.归纳起来常见的命题角度有:(1)求切线方程;(2)求切点坐标;(3)求参数的值.角度一 求切线方程。
导数的意义知识点总结
导数的意义知识点总结一、导数的定义导数是函数在某一点上的变化率,它表示了函数在这一点上的瞬时变化速率。
具体来说,对于函数y=f(x),其在点x处的导数可以定义为:f'(x) = lim(Δx->0) [f(x+Δx)-f(x)] / Δx其中,lim表示极限运算,Δx表示自变量x的增量。
这个定义可以直观地理解为,当Δx 趋向于0时,函数在点x处的变化率,即斜率,就是函数在这一点的导数。
二、导数的意义1. 几何意义导数在几何学中有重要的意义,它可以表示函数图像在某一点的切线斜率。
具体地说,函数y=f(x)在点(x, f(x))处的切线斜率就是函数在这一点的导数f'(x)。
这个切线斜率可以告诉我们函数在这一点上的变化趋势,以及函数在这一点的局部性质。
2. 物理意义在物理学中,导数表示了物理量随时间的变化率。
例如,位移随时间的导数就是速度,速度随时间的导数就是加速度。
这些物理量的导数可以告诉我们物体在某一时刻的变化速度和变化趋势,对于研究物体的运动和变化有着重要的意义。
3. 经济意义在经济学中,导数表示了经济变量随时间的变化率。
例如,收入随时间的导数就是收入增长率,成本随时间的导数就是成本增长率。
这些导数可以告诉我们经济变量的变化趋势,对于研究经济发展和经济政策有着重要的意义。
三、导数的应用1. 最优化导数在最优化问题中有着重要的应用,它可以帮助我们找到函数的最大值和最小值。
具体地说,函数在最大值和最小值点处的导数为0,因此我们可以通过求导数为0的点来解决最优化问题。
2. 运动学在运动学中,导数可以帮助我们研究物体的运动轨迹和速度变化。
通过求解物体位移随时间的导数,我们可以得到物体的速度;通过求解速度随时间的导数,我们可以得到物体的加速度。
这些导数可以帮助我们研究物体的运动规律和行为。
3. 曲线拟合导数可以帮助我们进行曲线拟合和数据分析。
通过求解数据点的导数,我们可以得到数据的变化率和趋势,从而对数据进行分析和预测。
导数的概念及运算知识点讲解(含解析)
导数的概念及运算一、知识梳理1.函数y =f(x)在x =x 0处的导数(1)定义:称函数y =f(x)在x =x 0处的瞬时变化率0lim x ∆→f (x 0+Δx )-f (x 0)Δx=lim x ∆→ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0limx ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).2.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx称为函数y =f (x )在开区间内的导函数.3.导数公式表4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1) [f (x )±g (x )]′=f ′(x )±g ′(x ); (2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3) ⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为 y x ′=y u ′·u x ′.知识点小结:1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2. ⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2. 3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (4)曲线的切线与曲线不一定只有一个公共点.( ) 解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错.(3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错. 答案 (1)× (2)× (3)× (4)√2.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A.-9B.-3C.9D.15解析 因为y =x 3+11,所以y ′=3x 2,所以y ′|x =1=3,所以曲线y =x 3+11在点P (1,12)处的切线方程为y -12=3(x -1).令x =0,得y =9. 答案 C3.在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________ m/s ,加速度a =______ m/s 2.解析 v =h ′(t )=-9.8t +6.5,a =v ′(t )=-9.8. 答案 -9.8t +6.5 -9.84.(2019·青岛质检)已知函数f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A.e 2B.1C.ln 2D.e解析 f ′(x )=2 018+ln x +x ×1x =2 019+ln x .由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1. 答案 B5.(2018·天津卷)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________.解析 由题意得f ′(x )=e xln x +e x·1x ,则f ′(1)=e.答案 e6.(2017·全国Ⅰ卷)曲线y =x 2+1x 在点(1,2)处的切线方程为________.解析 设y =f (x ),则f ′(x )=2x -1x 2, 所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 答案 y =x +1考点一 导数的运算角度1 根据求导法则求函数的导数 【例1-1】 分别求下列函数的导数: (1)y =e x ln x ; (2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)f (x )=ln 1+2x .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e xx =e x ⎝⎛⎭⎪⎫ln x +1x .(2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x 3. (3)因为y =ln1+2x =12ln ()1+2x ,所以y ′=12·11+2x ·(1+2x )′=11+2x .角度2 抽象函数的导数计算【例1-2】 (2019·天津河西区调研)已知函数f (x )的导函数是f ′(x ),且满足f (x )=2xf ′(1)+ln 1x ,则f (1)=( ) A.-eB.2C.-2D.e解析 由已知得f ′(x )=2f ′(1)-1x ,令x =1得f ′(1)=2f ′(1)-1,解得f ′(1)=1,则f (1)=2f ′(1)=2. 答案 B【训练1】 (1)若y =x -cos x 2sin x2,则y ′=________. (2)已知f (x )=x 2+2xf ′(1),则f ′(0)=________. 解析 (1)因为y =x -12sin x ,所以y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .(2)∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2.∴f ′(x )=2x -4,∴f ′(0)=-4. 答案 (1)1-12cos x (2)-4考点二 导数的几何意义 角度1 求切线方程【例2-1】 (2018·全国Ⅰ卷)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( ) A.y =-2x B.y =-x C.y =2xD.y =x解析 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以a -1=0,则a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x . 答案 D角度2 求切点坐标【例2-2】 (1)(2019·聊城月考)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( ) A.3B.2C.1D.12(2)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________. 解析 (1)设切点的横坐标为x 0(x 0>0),∵曲线y =x 24-3ln x 的一条切线的斜率为12, ∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意),即切点的横坐标为3. (2)∵函数y =e x 的导函数为y ′=e x ,∴曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1.设P (x 0,y 0)(x 0>0),∵函数y =1x 的导函数为y ′=-1x 2,∴曲线y =1x (x >0)在点P 处的切线的斜率k 2=-1x 20,由题意知k 1k 2=-1,即1·⎝ ⎛⎭⎪⎫-1x 20=-1,解得x 20=1,又x 0>0,∴x 0=1.又∵点P 在曲线y =1x (x >0)上,∴y 0=1,故点P 的坐标为(1,1). 答案 (1)A (2)(1,1)角度3 求参数的值或取值范围【例2-3】 (1)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A.(-∞,2] B.(-∞,2) C.(2,+∞)D.(0,+∞)(2)(2019·河南六市联考)已知曲线f (x )=x +ax +b (x ≠0)在点(1,f (1))处的切线方程为y =2x +5,则a -b =________.解析 (1)由题意知f ′(x )=2在(0,+∞)上有解. ∴f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x . 因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). (2)f ′(x )=1-ax 2,∴f ′(1)=1-a ,又f (1)=1+a +b ,∴曲线在(1,f (1))处的切线方程为y -(1+a +b )=(1-a )(x -1),即y =(1-a )x +2a +b ,根据题意有⎩⎪⎨⎪⎧1-a =2,2a +b =5,解得⎩⎪⎨⎪⎧a =-1,b =7,∴a -b =-1-7=-8. 答案 (1)B (2)-8规律方法 1.求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·东莞二调)设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( ) A.(0,0)B.(1,-1)C.(-1,1)D.(1,-1)或(-1,1)(2)(2018·全国Ⅱ卷)曲线y =2ln(x +1)在点(0,0)处的切线方程为________________.解析 (1)由f (x )=x 3+ax 2,得f ′(x )=3x 2+2ax . 根据题意可得f ′(x 0)=-1,f (x 0)=-x 0,可列方程组⎩⎪⎨⎪⎧x 30+ax 20=-x 0, ①3x 20+2ax 0=-1, ②解得⎩⎪⎨⎪⎧x 0=1,a =-2或⎩⎪⎨⎪⎧x 0=-1,a =2.当x 0=1时,f (x 0)=-1,当x 0=-1时,f (x 0)=1. ∴点P 的坐标为(1,-1)或(-1,1). (2)由题意得y ′=2x +1.在点(0,0)处切线斜率k =y ′|x =0=2.∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 答案 (1)D (2)y =2x三、课后练习1.(2019·深圳二模)设函数f (x )=x +1x +b ,若曲线y =f (x )在点(a ,f (a ))处的切线经过坐标原点,则ab =( ) A.1B.0C.-1D.-2解析 由题意可得,f (a )=a +1a +b ,f ′(x )=1-1x 2,所以f ′(a )=1-1a 2,故切线方程是y -a -1a -b =⎝⎛⎭⎪⎫1-1a 2(x -a ),将(0,0)代入得-a -1a -b=⎝ ⎛⎭⎪⎫1-1a 2(-a ),故b =-2a ,故ab =-2. 答案 D2.已知函数f (x )=|x 3+ax +b |(a ,b ∈R ),若对任意的x 1,x 2∈[0,1],f (x 1)-f (x 2)≤2|x 1-x 2|恒成立,则实数a 的取值范围是________. 解析 当x 1=x 2时,f (x 1)-f (x 2)≤2|x 1-x 2|恒成立;当x 1≠x 2时, 由f (x 1)-f (x 2)≤2|x 1-x 2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f (x )在[0,1]上的导函数f ′(x )满足|f ′(x )|≤2,函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎪⎨⎪⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1]. 答案 [-2,-1]3.函数g (x )=ln x 图象上一点P 到直线y =x 的最短距离为________. 解析 设点(x 0,ln x 0)是曲线g (x )=ln x 的切线中与直线y =x 平行的直线的切点,因为g ′(x )=(ln x )′=1x ,则1=1x 0,∴x 0=1,则切点坐标为(1,0),∴最短距离为(1,0)到直线y =x 的距离, 即为|1-0|1+1=22. 答案 224.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).答案 [2,+∞)。
导数的定义与几何意义例题和知识点总结
导数的定义与几何意义例题和知识点总结在数学的广袤天地中,导数无疑是一颗璀璨的明珠。
它不仅在微积分中占据着核心地位,更是解决众多实际问题的有力工具。
让我们一同深入探索导数的定义与几何意义,并通过一些具体的例题来加深对其的理解。
一、导数的定义导数,从本质上来说,描述的是函数在某一点处的变化率。
如果给定一个函数$y = f(x)$,那么在点$x_0$ 处的导数可以表示为:$f'(x_0) =\lim\limits_{\Delta x \to 0} \frac{f(x_0 +\Delta x) f(x_0)}{\Delta x}$这个极限值反映了函数在$x_0$ 点处的瞬时变化率。
为了更好地理解导数的定义,我们来看一个简单的例子。
例 1:设函数$f(x) = x^2$,求$f'(2)$。
解:\\begin{align}f'(2)&=\lim\limits_{\Delta x \to 0} \frac{f(2 +\Delta x)f(2)}{\Delta x}\\&=\lim\limits_{\Delta x \to 0} \frac{(2 +\Delta x)^2 2^2}{\Delta x}\\&=\lim\limits_{\Delta x \to 0} \frac{4 + 4\Delta x +(\Delta x)^2 4}{\Delta x}\\&=\lim\limits_{\Delta x \to 0} (4 +\Delta x)\\&= 4\end{align}\二、导数的几何意义导数的几何意义是函数在某一点处切线的斜率。
对于函数$y =f(x)$,在点$(x_0, f(x_0))$处的切线斜率就是$f'(x_0)$。
例如,对于函数$y = x^2$,在点$(1, 1)$处的切线斜率为$f'(1) = 2$。
例 2:求函数$f(x) =\sqrt{x}$在点$(4, 2)$处的切线方程。
3.1 导数的概念及几何意义、导数的运算
∴x2=-2x1,∴f
'(x2)=3 x22=12 x12.∴
f f
'(x1) = 1 .
'(x2 ) 4
(2)由题意,得f '(x)=2x.
设直线与曲线相切于点(x0,y0), 则所求切线的斜率k=2x0,
由题意知2x0= y0 0 = y0 ①.
x0 1 x0 1
林老师网络编辑整理
12
又y0= x02 ②,所以由①②解得x0=0或x0=-2, 所以k=0或k=-4, 所以所求切线方程为y=0或y=-4(x+1), 即y=0或4x+y+4=0. 答案 (1) 1 (2)y=0或4x+y+4=0
2
2
(4)y'
=
cos ex
x
'=(cos
x)
'ex cos (ex )2
x(ex
)'
=-
sin
x cos ex
x.
林老师网络编辑整理
9
栏目索引
栏目索引
方法二 求曲线y=f(x)的切线方程
1.求“在”曲线y=f(x)上一点P(x0,y0)处的切线方程,则点P(x0,y0)为切点,
'(x1)(x0 x1),
点A(x1,y1),代入方程y-y1=f '(x1)(x-x1),化简即得所求的切线方程.
林老师网络编辑整理
10
栏目索引
例2 (1)(2018江苏淮安高三期中)已知函数f(x)=x3.设曲线y=f(x)在点P(x1,
f(x1))处的切线与该曲线交于另一点Q(x2, f(x2)),记f '(x)为函数f(x)的导
导数的概念几何意义与运算
导数的概念几何意义与运算一、导数的概念导数是微积分的重要概念之一,是描述函数变化速度的衡量工具。
对于一条曲线上的任意一点,其导数值表示了该点处的切线斜率。
导数的定义为:若函数f(x)在点x0处有定义,那么函数在该点的导数为:f'(x0) = lim(h→0) [f(x0+h) - f(x0)] / h其中 lim 表示极限,h 表示的是 x 的增加量。
导数的概念可以推广到函数的各种高阶导数,分别表示函数变化的速率、加速度、变化的变化率等。
二、导数的几何意义1.切线斜率:导数可以看作是函数曲线在其中一点处切线的斜率。
特定点处的切线斜率表示了函数在该点的变化速度。
2.函数的增减性:若函数在其中一区间内的导数恒大于0,则函数在该区间上是递增的;若导数恒小于0,则函数在该区间上是递减的。
导数的正负性能够直观地反映函数的增减趋势。
3.极值点:若函数在其中一点的导数为0,那么这个点称为函数的极值点。
导数为0相当于切线水平,函数在这一点上由增转为减或由减转为增。
三、导数的运算法则1.常数乘法:对于常数k,(k*f(x))'=k*f'(x)。
2.求和与差:(f(x)±g(x))'=f'(x)±g'(x)。
3.乘法法则:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。
4.商法则:(f(x)/g(x))'=[f'(x)*g(x)-f(x)*g'(x)]/[g(x)]^25.复合函数求导:对于复合函数y=f(g(x)),若g(x)在点x处可导,而f在g(x)处可导,则y也在点x处可导,且y'=f'(g(x))*g'(x)。
四、应用举例1.速度和加速度:对于一个物体的位移函数s(t),其导数s'(t)表示在时间t的瞬时速度。
二次导数s''(t)则表示在时间t的瞬时加速度。
导数讲义
导数一、基本概念 1. 导数的定义:设是函数定义域的一点,如果自变量在处有增量,则函数值也引起相应的增量;比值称为函数在点到之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做在处的导数。
()f x 在点0x 处的导数记作xx f x x f x f y x xx ∆-∆+='='→∆=)()(lim)(000002导数的几何意义:(求函数在某点处的切线方程)函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P 处的切线的斜率是,切线方程为3.基本常见函数的导数:①0;C '=(C 为常数) ②()1;nn x nx-'=③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();xxe e '=⑥()ln xxa a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x'=. 二、导数的运算 1.导数的四则运算:法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦常数与函数的积的导数等于常数乘以函数的导数:).())((''x Cf x Cf =(C 为常数) 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦。
导数的几何意义及四则运算
f
f (x)
( x)
在对应区间I
1.
x
( y)
证
任取
由y
x
f(
Ix
x)
, 给 x 一个增量 x,且
的单调性可知,y 0,
(x 0, x x Ix
于是有
y x
1 x
)
,
f (x) 连续,y 0 (x 0),
y
又知 (
即
y)
f
(
0, f ( x)
x) 1
( y)
也可简写为
(1u1 2u2 nun ) 1u1 2u2 nun
证明 (略)
15
定理3 设函数 y u(x)及y v(x) 都在点 x 处可导,则 f (x) u(x)v(x)也在 x 处可导,且其导数为
f ( x) u( x)v( x) u( x)v( x) u( x)v( x)
( x) ( x ) (sin x) (ln π)
1 1 cos x. 2x
13
例2已知 y 2x3 5x2 3x 7,求 y.
解 y (2x3 5x2 3x 7) 2( x3 ) 5( x2 ) 3( x) (7) 2 3x2 5 2x 3 0 6x2 10x 3.
不连续,一定不可导.
4. 判断可导性
直接用定义;
连续 看左右导数是否存在且相等.
11
§2-4 求导法则
一、 函数的和、差、积、商的求导法则
定理1 设函数 u(x)及 v( x) 都在点x处可导,则 f ( x) u( x) v( x)也在x 处可导,且其导数为
f ( x) u( x) v( x) 其中、 为常数.
导数概念及几何意义意义-2023届高三数学二轮复习讲义
目录4.1 导数的概念及运算..................................................................................................................... 1 4.2 导数的几何意义 .. (14)4.1 导数的概念及运算【知识点一】一、导数的基本概念 1.函数的平均变化率:2.函数的瞬时变化率、函数的导数:3.设函数的图象如图所示.为过点与的一条割线.由此割线的斜率是,可知曲线割线的斜率就是函数的平均变化率.当点沿曲线趋近于点时,割线绕点转动,它的最终位置为直线,这条直线叫做此曲线过点的切线,即切线的斜率.由导数意义可知,曲线过点的切线的斜率等于.()y f x =AB 00(,())A x f x 00(,())B x x f x x +∆+∆00()()f x x f x y x x+∆-∆=∆∆B A AB A AD AD A 000()()limx f x x f x x∆→+∆-=∆AD ()y f x =00(,())x f x 0()f x '二:导数公式,为正整数(0,)αα≠∈Q ,为有理数注:,称为的自然对数,其底为,是一个和一样重要的无理数.注意.()y f x =()y f x ''=y c =0y '=n y x =()n +∈N 1n y nx -'=n y x α=1y x αα-'=αx y a =(0,1)a a >≠ln x y a a '=log a y x =(0,1,0)a a x >≠>1ln y x a'=sin y x =cos y x '=cos y x =sin y x '=-e a e e π2.7182818284e =()x x e e '=【典型例题】考点一: 导数的基本概念例1.如图,函数()f x 的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则((0))f f =_____;函数()f x 在1x =处的导数'(1)f =_____.练1.已知函数()f x 在0x x =处可导,则000(3)()lim x f x x f x x∆→+∆-=∆_____0'()f x .练2.设函数2()24f x x =-的图像上一点(1,2)以及邻近一点(1,2)x y +∆+∆,则yx∆∆等于__________.考点二: 导数公式及其应用例1.求下列函数的导数: 3x ,13x ,21x练1.求下列函数的导数: x ,3log x ,cos x练2.下列结论不正确的是 A .若3y =,则'0y = B .若3x y =,则1'3x y x -=-⋅C .若y x =-则'2y x=D .若3y x =,则'3y =【知识点二:导数的四则运算法则】(1)函数和(或差)的求导法则:设()f x ,()g x 是可导的,则(()())()()f x g x f x g x '''±=±,即两个函数的和(或差)的导数,等于这两个函数的导数和(或差). (2)函数积的求导法则:设()f x ,()g x 是可导的,则[()()]()()()()f x g x f x g x f x g x '''=+,即两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数的乘上第二个函数的导数.由上述法则即可以得出[()]()Cf x Cf x ''=,即常数与函数之积的导数,等于常数乘以函数的导数.(3)函数的商的求导法则: 设()f x ,()g x 是可导的,()0g x ≠,则2()()()()()[]()()f xg x f x f x g x g x g x ''-'=. 特别是当()1f x ≡时,有21()[]()()g x g x g x ''=-.【典型例题】例1.求下列函数的导数:(1)()3sin=;f x x x(2)()ln x=;f x e x(3)()sin xf x=;x(4)()tanf x x=.例2.2=+-的导数为()(2)()f x x a x aA.22x a2()+ 2()x a-B.22 C.22x a+3() 3()x a-D.22练习1.求下列函数的导数:2xx e 1ln x211x x ++练习2.求下列函数的导数: (1)()e sin x f x x -=;(2)2()()ln f x x x x =-; (3)2()()e x f x x ax a -=-+⋅;(4)()3ln x f x x =.【知识点三:复合函数求导】一般地,对于两个函数()y f u =和()u g x =,如果通过变量,u y 可以表示成x 的函数.那么称这个函数为函数()y f u =和()u g x =的复合函数,记(())y f g x =.复合函数(())y f g x =的导数和函数(),y f u =()u g x =的导数间的关系为'''x u x y y u =⋅ (注:'x y 表示y 对x 的导数,'u y 表示y 对u 的导数)【典型例题】例1.(1)函数2sin y x =的导数是_____.(2)函数2412x y e +=的导数是_____.(3)函数2(1cos )y x =-的导数是_____.(4)设3121y x =+,则y '=_____.2'2cos y x x =练习1.求下列复合函数的导数:(1)2()ln(5)f x x =+;(2)10(35)()x f x x +=;(3)1()ln()1xf x x+=-.【小试牛刀】1.已知函数()f x 在1x =处可导,则0(1)(1)__________lim3x f x f x∆→+∆-=∆.2.求下列函数的导数: (1)ln y x = (2)53y x = (3)2x y =3.求下列函数导数值: (1)()f x x =,求(1)f ',1()2f '(2)()sin f x x =,求π()4f '(3)2()log f x x =,求1()2f '4.求下列函数的导数: (1)2()2ln f x x x =+(2)3()x f x x e =+【巩固练习——基础篇】1.若小球自由落体的运动方程为21()2s t gt =(g 为常数),该小球在13t t ==到的平均速度为v ,在2t =的舒适速度为2v ,2v v 和关系为A .2v v >B .2v v <C .2v v =D .不能确定2. 已知函数()f x 和()g x 在区间[]a b ,上的图像如图所示,纳闷下列说法正确的是A .()f x 在a 到b 之间的平均变化率大于()g x 在a 到b 之间的平均变化率B .()f x 在a 到b 之间的平均变化率小于()g x 在a 到b之间的平均变化率C .对于任意0()x a b ∈,,函数()f x 在0x x =处的瞬时变化率总大于函数()g x 在0x x =处的瞬时变化率D .存在0()x a b ∈,,使得函数()f x 在0x x =处的瞬时变化率总小于函数()g x 在0x x =处的瞬时变化率3.求下列函数在给定点的导数 (1)34=16y x x =, (2) sin =2y x x π=, (3)cos =2y x x π=,4.已知函数,则的最小正周期是;如果的导函数是,则________.21()sin 23cos 2f x x x =+()f x ()f x ()f x '()6f π'=t 4t 3t 2100t 1tOV5.求下列函数的导数:(1)()sin cos 22x xf x x =-(2)()sin(21)x f x e x =+6.求下列函数的导数: (1)()sin(ln )f x x =;(2)43()(21)f x x +【巩固练习——提高篇】1.某堆雪在融化过程中,其体积V (单位:3m )与融化时间t (单位:h )近似满足函数关系:31()(10)10V t H t =-(H 为常数),其图象如图所示.记此堆雪从融化开始到结束的平均融化速度为3(m /)v h .那么瞬时融化速度等于3(m /)v h 的时刻是图中的A .1tB .2tC .3tD .4t2.已知函数,则A .B .C .D .03.设函数,其中,则导数的取值范围是A .B .C .D .4.设、是上的可导函数,、分别是、的导函数,且,则当时,有A .B .C .D .5.已知是定义在(0,+∞)上的非负可导函数,且满足,对任意正数、,若<,则,的大小关系为A .<B .=C .≤D .≥6.求下列函数的导数:()(1)(2)(3)(100)f x x x x x =----(1)f '=99!-100!-98!-()32sin 3cos tan 3f x x x θθθ=++5π012θ⎡⎤∈⎢⎥⎣⎦,()1f '[]22-,23⎡⎤⎣⎦,32⎡⎤⎣⎦22⎡⎤⎣⎦()f x ()g x R ()f x '()g x '()f x ()g x ()()()()0f x g x f x g x ''+<a x b <<()()()()f x g x f b g b >()()()()f x g a f a g x >()()()()f x g b f b g x >()()()()f x g x f a g a >()f x '()()0xf x f x ->a b a b ()af a ()bf b ()af a ()bf b ()af a ()bf b ()af a ()bf b ()af a ()bf b(1)1()sin tan ln cos f x x x x x=++; (2)2()cos(ln(1))f x x =+;(3)121()()xf x e x a x=++.7.已知1()sin cos f x x x =+,记21()'()f x f x =,32()'()f x f x =,…,1()'()(,2)n n f x f x n N n *-=∈≥,则122018()()()_________222f f f πππ+++=.4.2 导数的几何意义【课前诊断】成绩(满分10分):_____ 完成情况: 优/中/差1.曲线在处切线的倾斜角为A .B .C .D .2.直线l 经过点(,0)A t ,且与曲线2y x =相切,若直线l 的倾斜角为45︒,则t =______.3. 已知函数()ln()f x x a =+在点(1,(1))f 处的切线与直线20x y -=平行. (Ⅰ)求a 的值;4.已知函数2()ln (,)f x a x bx a b =-∈R .(Ⅰ)若()f x 在1x =处与直线12y =-相切,求,a b 的值;313y x =1=x 1π4-π45π4【知识点一:切线的求法】1、曲线的切线的求法:若已知曲线过点00(,)P x y ,求曲线过点P 的切线,则需分点00(,)P x y 是切点和不是切点两种情况求解.(1)当点00(,)P x y 是切点时,切线方程为000()()y y f x x x '-=-; (2)当点00(,)P x y 不是切点时,可分以下几步完成: 第一步:设出切点坐标11(,())P x f x ';第二步:写出过11(,())P x f x '的切线方程为111()()()y f x f x x x '-=-; 第三步:将点P 的坐标00(,)x y 代入切线方程求出1x ;第四步:将1x 的值代入方程111()()()y f x f x x x '-=-,可得切线方程. 2、求曲线=()y f x 的切线方程的类型及方法(1)已知切点00(,)P x y ,求=()y f x 过点P 的切线方程:求出切线的斜率0()f x ',由点斜式写出方程;(2)已知切线的斜率为k ,求=()y f x 的切线方程:设切点00(,)P x y ,通过方程0()k f x '=解得0x ,再由点斜式写出方程;(3)已知切线上一点(非切点),求=()y f x 的切线方程:设切点00(,)P x y ,利用导数求得切线斜率0()f x ',再由斜率公式求得切线斜率,列方程(组)解得0x ,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由0()k f x '=求出切点坐标00(,)x y ,最后写出切线方程. (5)①在点P 处的切线即是以P 为切点的切线,P 一定在曲线上.②过点P 的切线即切线过点P ,P 不一定是切点.因此在求过点P 的切线方程时,应首先检验点P 是否在已知曲线上.【典型例题】考点一:导数的几何意义例1.若过曲线上的点的切线的斜率为, 则点的坐标是.例2. 已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程;练习1.已知函数()()ln 1f x x a x x =+-+.(Ⅰ)若曲线()y f x =在点(e (e))f ,处的切线斜率为1,求实数a 的值;练习2. 已知函数()ln()f x x a =+在点(1,(1))f 处的切线与直线20x y -=平行. (Ⅰ)求a 的值;()ln f x x x =P 2P ______例1.曲线在处的切线方程为A .B .C .D .例2.曲线在处切线的倾斜角为A .B .C .D .练习1.曲线在点处的切线方程是 A . B . C . D .练习2.已知函数()(sin )ln f x x a x =+,a ∈R .若0a =,求曲线()y f x =在点(,())22f ππ处的切线方程;练习3.已知函数2()(0)f x ax bx a =->和()ln g x x =的图象有公共点P ,且在点P 处的切线相同.(Ⅰ)若点P 的坐标为1(,1)e-,求,a b 的值;e ()1xf x x =-0=x 10--=x y 10++=x y 210--=x y 210++=x y 313y x =1=x 1π4-π45π42()1xf x x =+(1,(1))f 1x =12y =1+=x y 1-=x y例1.曲线在点处的切线经过点,则.例2.直线l 经过点(,0)A t ,且与曲线2y x =相切,若直线l 的倾斜角为45︒,则t =______.练习1. 已知函数ln ()xf x ax x=-,曲线()y f x =在1x =处的切线经过点(2,1)-. (Ⅰ)求实数a 的值;考点四: 切线证明例1.已知函数()e (sin cos )x f x x x =+.(切线斜率)(Ⅱ)求证:曲线()y f x =在区间(0,)2π上有且只有一条斜率为2的切线.练1.已知函数()3(0)ax f x e ax a =--≠.()e x f x =00(,())x f x (1,0)P 0=x ______(Ⅱ)当0a >时,设211()32ax g x e ax x a =--,求证:曲线()y g x =存在两条斜率为1-且不重合的切线.例2.已知函数32()f x x ax =-.(3a >)(切线个数) (Ⅱ)求证:过点(1,(1))P f 恰有2条直线与曲线()y f x =相切.练2.已知函数321()3()3f x x x ax a =--∈R .(Ⅱ)在直线1x =上是否存在点P ,使得过点P 至少有两条直线与曲线()y f x =相切?若存在,求出P 点坐标;若不存在,说明理由.例3.已知函数()1e 1x x x f x --+=.(公切线问题)(Ⅲ)设0x 是()f x 的一个零点,证明曲线e x y =在点00(,e )x x 处的切线也是曲线ln y x =练3.已知函数()ln,()x==.f x xg x e(Ⅲ)判断曲线()f x与()g x是否存在公切线,若存在,说明有几条,若不存在,说明理由.【小试牛刀】1.若曲线的某一切线与直线垂直,则切线坐标为.2.已知函数()e cos x f x x x =-. (Ⅰ)求曲线在点处的切线方程; 23122y x x =+-134y x =-+______()y f x =(0,(0))f1.已知函数2()ln (,)f x a x bx a b =-∈R .(Ⅰ)若()f x 在1x =处与直线12y =-相切,求,a b 的值;2.已知函数321()3f x ax x bx c =+++. 曲线()y f x =在点()0,(0)f 处的切线方程为1y x =+.(Ⅰ)求b ,c 的值;3. 已知函数().xe f x x= (Ⅰ)若曲线()y f x =在点00(,())x f x 处的切线方程为0ax y -=,求0x 的值;1.已知函数()ln sin(1)f x x a x =-⋅-,其中a ∈R . (Ⅰ)如果曲线()y f x =在1x =处的切线的斜率是1-,求a 的值;2.设函数32()(1)f x x b x bx =-++.(切线斜率) (Ⅱ)当1b >时,函数()f x 与直线y x =-相切,求b 的值;3.已知函数()ln 1a f x x x =--.(Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;5.已知函数2()(0)f x ax bx a=->和()lng x x=的图象有公共点P,且在点P处的切线相同.(公切线问题)(Ⅰ)若点P的坐标为1(,1)e-,求,a b的值;(Ⅱ)已知a b=,求切点P的坐标.。
14导数运算与几何意义
(1)求曲线在点 P(2,4)处的切线方程; (2)求曲线过点 P(2,4)的切线方程; (3)求斜率为 1 的曲线的切线方程. 1 4
3
x0,1x3+4, (2)设曲线 y= x + 与过点 P(2,4)的切线相切于点 A 2 3 0 3 3 3 则切线的斜率为:y′|x=x0=x0. 则切线的斜率为:y′|x=x =
题 型二
导数的几何意义
1 3 4 【例 2】已知曲线 y= x + . 3 3 (1)求曲线在点 P(2,4)处的切线方程; (2)求曲线过点 P(2,4)的切线方程; (3)求斜率为 1 的曲线的切线方程.
1 4 1 33 44 2 1 x 3 4 解:(1)∵P(2,4)在曲线y= x1+ 上,且 y′=x2,2 y= 3 + 上,且 解:(1)∵P(2,4)在曲线 , 3 3 解:(1)∵P(2,4)在曲线 y=y=+ + 上,且 y′=x , x x3 上,且 y′=x2, 解:(1)∵P(2,4)在曲线 33 3 3 3
3 3
故所求的切线方程为 4x-y-4=0 或 x-y+2=0. 故所求的切线方程为 4x-y-4=0 或 x-y+2=0. 故所求的切线方程为 4x-y-4=0 或 x-y+2=0. 1. (3)设切点为(x0,y0),则切线的斜率为:x2=1,x0=± ,y ),则切线的斜率为:x2=1,x =± 0 (3)设切点为(x0 0 1. 20 0 (3)设切点为(x0,y0),则切线的斜率为:x02 =1,x0=± 1. 5
变式训练 2
求下列各函数的导数:
x 2 x (1)y=(x+1)(x+2)(x+3);(2)y=-sin 1-2cos 4; 2 1 1 cos 2x (3)y= + ;(4)y= . sin x+cos x 1- x 1+ x
第三章 第1讲 导数的概念及运算
第1讲导数的概念及运算基础知识整合1.导数的概念(1)f(x)在x=x0处的导数就是f(x)在x=x0处的□01瞬时变化率,记作:y′|x=x0或f′(x0),即f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx.(2)当把上式中的x0看作变量x时,f′(x)即为f(x)的导函数,简称导数,即y′=f′(x)=□02limΔx→0f(x+Δx)-f(x)Δx.2.导数的几何意义函数f(x)在x=x0处的导数就是曲线y=f(x)在点□03P(x0,f(x0))处的切线的斜率,即曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k=f′(x0),切线方程为□04y -y0=f′(x0)(x-x0).3.基本初等函数的导数公式(1)C′=□050(C为常数);(2)(x n)′=□06nx-(n∈Q*);(3)(sin x)′=□07cos x;(4)(cos x)′=□08-sin x;(5)(a x)′=□09a ln_a;(6)(e x)′=□10e;(7)(log a x)′=1x ln a;(8)(ln x)′=□111x.4.导数的运算法则(1)[f(x)±g(x)]′=□12f′(x)±g′(x).(2)[f (x )·g (x )]′=□13f ′(x )g (x )+f (x )g ′(x ). 特别地:[C ·f (x )]′=□14Cf ′(x )(C 为常数). (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=□15f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数设函数u =φ(x )在点x 处有导数u ′=φ′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′=f ′(u ),则复合函数y =f [φ(x )]在点x 处也有导数y ′x =f ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.f ′(x 0)与x 0的值有关,不同的x 0,其导数值一般也不同. 2.f ′(x 0)不一定为0,但[f (x 0)]′一定为0.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.1.(2019·海南模拟)曲线y =x2x -1在点(1,1)处的切线方程为( )A .x -y -2=0B .x +y -2=0C .x +4y -5=0D .x -4y -5=0答案 B 解析 y ′=2x -1-2x (2x -1)2=-1(2x -1)2,当x =1时,y ′=-1,所以切线方程是y -1=-(x -1),整理得x +y -2=0.故选B.2.函数f (x )=x (2017+ln x ),若f ′(x 0)=2018,则x 0的值为( ) A .e 2 B .1 C .ln 2 D .e 答案 B解析 f ′(x )=2017+ln x +x ·1x =2018+ln x ,故由f ′(x 0)=2018,得2018+ln x 0=2018,则ln x 0=0,解得x 0=1.故选B.3.若曲线y =e x +ax +b 在点(0,2)处的切线l 与直线x +3y +1=0垂直,则a +b =( )A .3B .-1C .1D .-3 答案 A解析 因为直线x +3y +1=0的斜率为-13,所以切线l 的斜率为3,即y ′|x=0=e 0+a =1+a =3,所以a =2;又曲线过点(0,2),所以e 0+b =2,解得b =1.故选A.4.(2019·河北质检)已知直线y =kx 是曲线y =ln x 的切线,则k 的值是( ) A .e B .-e C.1e D .-1e 答案 C解析 依题意,设直线y =kx 与曲线y =ln x 切于点(x 0,kx 0),则有⎩⎨⎧kx 0=ln x 0,k =1x 0,由此得ln x 0=1,x 0=e ,k =1e .故选C.5.f (x )=2x +3x 的图象在点(1,f (1))处的切线方程为________. 答案 x -y +4=0解析 f ′(x )=-2x 2+3,f ′(1)=1,即切线的斜率为1,又f (1)=5,即切点坐标为(1,5),故切线方程为y -5=x -1,即x -y +4=0.6.(2019·郑州模拟)直线x -2y +m =0与曲线y =x 相切,则切点的坐标为________.答案 (1,1)解析 ∵y =x =x12 ,∴y ′=12x -12 ,令y ′=12x -12 =12,则x =1,则y =1=1,即切点坐标为(1,1).核心考向突破考向一 导数的基本运算 例1 求下列函数的导数:(1)y =cos x e x ;(2)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3;(3)y =sin 3x +sin3x ;(4)y =1(2x -1)3.解 (1)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x.(2)因为y =x 3+1x 2+1,所以y ′=3x 2-2x 3. (3)y ′=(sin 3x )′+(sin3x )′=3sin 2x cos x +3cos3x . (4)y ′=⎣⎢⎡⎦⎥⎤1(2x -1)3′=[(2x -1)-3]′=-3(2x -1)-4×2=-6(2x -1)-4. 触类旁通导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导.(3)对数形式:先化为和、差的形式,再求导. (4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. (6)复合函数:确定复合关系,由外向内逐层求导.即时训练 1.求下列函数的导数: (1)y =(3x 2-4x )(2x +1);(2)y =x 2sin x ; (3)y =11-2x;(4)y =ln xx 2+1.解 (1)因为y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x ,所以y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(3)y ′=[(1-2x ) -12]′=-12(1-2x )-32 ×(-2)=(1-2x ) -32 .(4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x(x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2.考向二 导数的几何意义角度1 求切线的方程例2 (1)(2019·四川成都模拟)曲线y =x sin x 在点P (π,0)处的切线方程是( )A .y =-πx +π2B .y =πx +π2C .y =-πx -π2D .y =πx -π2答案 A解析 因为y =x sin x ,所以y ′=sin x +x cos x ,在点P (π,0)处的切线斜率为k =sinπ+πcosπ=-π,所以曲线y =x sin x 在点P (π,0)处的切线方程是y =-π(x -π)=-πx +π2.故选A.(2)曲线y =f (x )=e 2x +1在点⎝ ⎛⎭⎪⎫-12,1处的切线方程为________.答案 2x -y +2=0解析 ∵f ′(x )=e 2x +1·(2x +1)′=2e 2x +1, ∴f ′⎝ ⎛⎭⎪⎫-12=2e 0=2,∴曲线y =e 2x +1在点⎝ ⎛⎭⎪⎫-12,1处的切线方程为y -1=2⎝ ⎛⎭⎪⎫x +12,即2x -y +2=0.角度2 求切点的坐标例3 (1)(2019·陕西模拟)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则点P 的坐标为( )A .(1,1)B .(-1,-1)C .(1,-1)D .(-1,1)答案 A解析 对y =e x 求导得y ′=e x ,令x =0,得曲线y =e x 在点(0,1)处的切线斜率为1,故曲线y =1x (x >0)上点P 处的切线斜率为-1,由y ′=-1x 2=-1,得x =1,则y =1,所以点P 的坐标为(1,1).故选A.(2)(2018·江西模拟)若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.答案 (e ,e)解析 设点P (x 0,y 0),∵y =x ln x ,∴y ′=ln x +x ·1x =1+ln x .∴曲线y =x ln x 在点P 处的切线斜率k =1+ln x 0.又k =2,∴1+ln x 0=2,∴x 0=e ,y 0=eln e =e.∴点P 的坐标是(e ,e). 角度3 求公切线的方程例4 (1)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2 答案 D解析 ∵f ′(x )=1x ,∴直线l 的斜率为k =f ′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2.故选D.(2)若直线l 与曲线y =e x及y =-14x 2都相切,则直线l 的方程为________.答案 y =x +1解析 设直线l 与曲线y =e x 的切点为(x 0,e x 0),直线l 与曲线y =-14x 2的切点为⎝ ⎛⎭⎪⎫x 1,-x 214,因为y =e x 在点(x 0,e x 0)处的切线的斜率为y ′|x =x 0=e x0,y =-x 24在点⎝ ⎛⎭⎪⎫x 1,-x 214处的切线的斜率为y ′|x =x 1=⎝ ⎛⎭⎪⎫-x 2| x =x 1=-x 12,则直线l 的方程可表示为y =e x 0x -x 0e x 0+e x0或y =-12x 1x +14x 21,所以⎩⎪⎨⎪⎧e x0=-x 12,-x 0e x 0+e x0=x 214,所以e x 0=1-x 0,解得x 0=0,所以直线l 的方程为y =x +1.触类旁通(1)求曲线切线方程的步骤①求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率;②由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).(2)求曲线f (x ),g (x )的公切线l 的方程的步骤,①设点求切线,即分别设出两曲线的切点的坐标(x 0,f (x 0)),(x 1,g (x 1)),并分别求出两曲线的切线方程;,②建立方程组,即利用两曲线的切线重合,则两切线的斜率及在y 轴上的截距都分别相等,得到关于参数x 0,x 1的方程组,解方程组,求出参数x 0,x 1的值;,③求切线方程,把所求参数的值代入曲线的切线方程中即可.即时训练 2.(2019·衡水调研)已知曲线y =x 22-3ln x 的一条切线的斜率为2,则切点的横坐标为( )A .3B .2C .1 D.12 答案 A解析 设切点坐标为(x 0,y 0),且x 0>0,由y ′=x -3x ,得k =x 0-3x 0=2,∴x 0=3.故选A.3.曲线y =1-2x +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2答案 A 解析 ∵y =1-2x +2=x x +2,∴y ′=x +2-x(x +2)2=2(x +2)2,y ′|x =-1=2, ∴曲线在点(-1,-1)处的切线斜率为2, ∴所求切线方程为y +1=2(x +1),即y =2x +1.4.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =________.答案 1-ln 2解析 直线y =kx +b 与曲线y =ln x +2,y =ln (x +1)均相切,设切点分别为A (x 1,y 1),B (x 2,y 2),由y =ln x +2得y ′=1x ,由y =ln (x +1)得y ′=1x +1,∴k =1x 1=1x 2+1,∴x 1=1k ,x 2=1k -1,∴y 1=-ln k +2,y 2=-ln k .即A ⎝ ⎛⎭⎪⎫1k ,-ln k +2,B ⎝ ⎛⎭⎪⎫1k -1,-ln k ,∵A ,B 在直线y =kx +b 上, ∴⎩⎪⎨⎪⎧2-ln k =k ·1k +b ,-ln k =k ·⎝ ⎛⎭⎪⎫1k -1+b ⇒⎩⎪⎨⎪⎧b =1-ln 2,k =2.考向三 求参数的范围例5 (1)(2019·沈阳模拟)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( )A .1B .2C .5D .-1 答案 A解析 由题意可得3=k +1,3=1+a +b ,则k =2.又曲线的导函数y ′=3x 2+a ,所以3+a =2,解得a =-1,b =3,所以2a +b =1.故选A.(2)已知函数f (x )=e x -mx +1的图象为曲线C ,若曲线C 存在与直线y =e x 垂直的切线,则实数m 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫1e ,+∞解析 由题意知,方程f ′(x )=-1e 有解,即e x -m =-1e 有解,即e x=m -1e 有解,故只要m -1e >0,即m >1e 即可.故填⎝ ⎛⎭⎪⎫1e ,+∞.触类旁通处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.即时训练 5.已知函数f (x )=ax 2+2b ln x ,若曲线y =f (x )在点(2,f (2))处的切线方程为y =x +2-6ln 2,则a +b =( )A .-2B .-1C .2D .1 答案 A解析 由切线方程,得f (2)=4-6ln 2,f ′(2)=1. ∵f (x )=ax 2+2b ln x ,∴f ′(x )=2ax +2bx ,∴⎩⎪⎨⎪⎧4a +2b ln 2=4-6ln 2,4a +b =1,解得a =1,b =-3, ∴a +b =-2.故选A.6.若曲线y =13x 3+ax 2+x 存在垂直于y 轴的切线,则实数a 的取值范围为( )A.⎝ ⎛⎦⎥⎤-∞,-12∪[1,+∞) B .(-∞,-1]∪[1,+∞) C .(-∞,-1]∪[0,+∞) D.⎣⎢⎡⎭⎪⎫-12,+∞ 答案 B解析 令y =f (x )=13x 3+ax 2+x ,则f ′(x )=x 2+2ax +1,∵曲线y =f (x )存在垂直于y 轴的切线,∴f ′(x )=0有解,即x 2+2ax +1=0有解,∴Δ=(2a )2-4≥0,∴a ≥1或a ≤-1,即实数a 的取值范围为(-∞,-1]∪[1,+∞),故选B.。
导数综合运算知识点总结
导数综合运算知识点总结一、导数的定义及意义:1. 导数的定义:函数f(x)在点x=a处的导数,记为f'(a),定义为极限$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$其中f'(a)表示函数f(x)在点x=a处的导数。
2. 导数的几何意义:函数f(x)在点x=a处的导数f'(a)表示函数f(x)在点x=a处的切线斜率。
也即在点x=a处,函数f(x)的变化率。
3. 导数的物理意义:如果函数f(x)表示某一物理量y关于另一物理量x的变化规律,那么函数f'(x)表示物理量y关于物理量x的变化率。
4. 导数的符号:函数f(x)在点x=a处的导数f'(a)的符号表示函数f(x)在点x=a处的增减情况。
当f'(a)>0时,函数f(x)在点x=a处是增加的;当f'(a)<0时,函数f(x)在点x=a处是减小的;当f'(a)=0时,函数f(x)在点x=a处是不变的。
二、导数的运算法则:1. 基本导数法则:(常数函数规则、幂函数规则、指数函数规则、对数函数规则、三角函数规则、反三角函数规则、双曲函数规则)。
2. 复合函数的导数法则:函数f(g(x))的导数等于f'(g(x))g'(x)。
链式法则。
3. 反函数的导数法则:如果函数y=f(x)在区间I上单调、可导,并且在区间I上f'(x)≠0,则有反函数x=f^(-1)(y)在区间J上也可导,并且在区间J上f^(-1)'(y)=1/f'(f^(-1)(y))。
4. 参数方程的导数:如果x=f(t)、y=g(t)是参数方程,且函数f(t)、g(t)在t处可导,则参数方程x=f(t)、y=g(t)的导数dx/dt=f'(t)、dy/dt=g'(t)。
5. 隐函数的导数:若函数F(x,y)=0表示隐函数,且F(x,y)在点P(x0,y0)的邻域内具有连续偏导数,则隐函数y=f(x)的导数dy/dx可用偏导数表示:dy/dx=-∂F/∂x/∂F/∂y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的几何意义及运算复习
一、 导数的几何意义:
)(0x f ⋅=x y ∆∆=x x x x x f x f 0
000)()()(-∆+-∆+=x f x f x x ∆-∆+)()(00=K 当Δx----0时, )(0x f ⋅
=K 趋近于一常数 二、 导数的求导公式及运算
典型例题:
例1、当h 无限趋近于0时,h h 4)4(22-+无限趋近于 ;h
h 44-+无限趋近于 .
练习:若
)(0x f ⋅=3,当Δx 无限趋近于0时,x x f x f x x ∆∆--∆+)3()(00= .
例2.已知函数y=f(x)的图像在点(1,f(1))处的切线方程是x-2y+1=0,则'(1)2(1)f f +=
训练1:已知函数y=f(x)的图像在点(0,f(0))处的切线方程是2x-y+2=0,则'(0)(0)f f += 2.曲线 '2(1)
1().(0)2x f x f x e f e x
=-+在点(1,f(1))处的切线方程为 题型二:求切线方程
例3、已知曲线y=3
4313+x , (1)、求曲线在点P (2,4)处的切线方程;
(2)、求斜率为4的曲线的切线方程;
(3)、求过点P (2,4)的切线方程;
练习1:已知曲线3
y x =
(1) 求曲线在点P (1,1)处的切线方程;
(2) 求与直线3x-y=0平行的直线方程;
(3) 求过点P(1,1)处的直线方程;
练习2:已知kx+1=㏑x 有实数解,求k 的取值范围
题型三:告诉切线方程求参数的值
例4:函数y=12+x a
图像与直线y=x 相切,则a= .
练习: 曲线y=
13++ax x 的一条切线方程为y=2x+1则实数a=
题型四:两个曲线的公切线
例5.若存有过点(1,0)的直线与曲线3y x =和21594
y ax x =+-都相切,则实数a=
例6已知曲线C 1:y=x 2与C 2:y=-)2(2-x ,直线l 与C 1,C 2都相切,求直线l 的方程.
变式1:已知曲线C 1x y x 22+=和C 2:a y x +-=2,a 取什么值时, C 1和C 2有且仅有一条公切线。
题型五:求函数解析式
例7:已知 抛物线y=c bx a x ++2经过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a,b,c 的值.
变式:偶函数432
()f x ax bx cx dx e =++++的图像过点P (0,1),且在x=1处的切线方程为y=x-2,则f(x)的解析式为
题型六:求多项式的导数
例8设f(x)=x(x+1)(x+2)(x+3)(x-2)求)0('f )2('-f
练习:曲线y=(x+1)(x+2)(x-2)在点(2,0)处的切线的斜率为
答案:例1、【8;41】;变式:【12】;例2、2变式1,4,2,12
y ex x =- 例3:(1) (2) (3) 变式:
例4:【41】变式【2】 例5.-1或- 2564
例6:【y=0或4x-y-4=0】 变式:【-21】 例7:【a=3;b=-11;c=9】 变式:。