工程力学-第三章-平面力系的合成与平衡
工程力学I-第3章 力矩与平面力偶系
D
x
§3-2 关于力偶的概念
力偶:一对等值、反向而不共线的平行力,用 符号(F ,F′)表示。
力偶臂:两个力作用
线之间的垂直距离d。
F’
F
力偶的作用面:两个 力作用线所决定的平 面
§3-2 关于力偶的概念
F F
d
d
F
d
F
F
F
转动游戏方向盘
拧水龙头
扳手拧螺母
§3-2 关于力偶的概念
Q AABD AABC 显然, 并注意到力偶矩的转向也相同, 则有M ( F , F ) M ( P, P) P
M (P 1, P 1 ) M ( P, P ) 显然, 1, P 1) 从而有M ,( F , F ) M ( P
P1
力偶等效
M ( F , F ) M ( P 1, P 1)
(1)力对点之矩,不仅取决于力的大小,还与矩心的位置有关。
(2)力对任一点之矩,不因该力的作用点沿其作用线移动而改变。 *(3)力的大小等于零或其作用线通过矩心时,力矩等于零。 (4)互成平衡的两个力对同一点之矩的代数和为零。
Mo(F)=±Fd
§3-1 关于力矩的概念及其计算
合力矩定理:
y Fy
(3)将力P和P’沿各自的作用 线移至任意点A’,B’,根 据力的可传性原理,有 (P,P’) =(P1,P1’) 。
§3-2 关于力偶的概念
(4) A′
P1′ b F′ A A F B Q′ D P′ B′ C
M (F , F ) AB BD 2 AABD ,
M(P, P') AB BC 2 AABC
《工程力学》第三章 平面一般力系
• 故主矢R′的模为
• 主矢R′的方向从图3-3(b)中可知
图3-3
• 2.对点O的主矩 • 从图3-3(b)中可知,MO应是该平面一般力偶
系m1,m2,…,mn的合力偶矩。由平面力偶 系的合成定理可知,
• 由于Fd也等于力F对B点的矩,mB(F)=Fd,于 是得
• §3-2 平面一般力系向一点的简化 • 一、平面一般力系向一点的简化 • 在力系的作用平面内,被任选的一点O称为简
化中心。将力系中诸力平移至简化中心,同时 附加一个力偶系的过程,称为力系向给定点的 简化。
图3-2
•经 简 化 后 的 平 面 共 点 力 系 合成为一个合力R′,该合力作用点在简化 中心上;把简化后的附加力偶系m1, m2,…,mn合成得一力偶MO(图32(c))。自然,依据力的平移定理,可将 力R′和MO合成为一个力R(图3-2(d)), 这个力R就是原力系F1,F2,…,Fn的合 力。
• 二、截面法求桁架内力
• 截面法一般采用如下步骤:
• (1)先求出桁架支承约束反力。
• (2)如需求某杆的内力,可通过该杆作一 假想截面,将桁架截为两段(只截杆件, 不能截在节点上)。注意被截杆件一般不 能多于三根。任选半边桁架考虑平衡,在 杆件被截处,画出杆件内力,其指向假定 沿杆件而背离杆件被截处。
图3-5
• 二、平面一般力系向一点简化结果分析
• 1.平面一般力系向一点的简化结果
• 平面一般力系向简化中心简化,其结果可能出现 四种情况:
• (1)R′=0,MO=0
• 主矢和主矩均等于零。它表明简化后的平面汇交 力
工程力学-平面任意力系
R' ( X )2 (Y )2 0
LO mO (Fi ) 0
①一般式 (一矩式)
X 0
平面力系中各力在直角坐标系oxy中
Y 0
各坐标轴上投影的代数和及对任意
点的力矩的代数和均为0。
mO (Fi ) 0
②二矩式
∑X=0 或∑Y=0
mA(Fi ) 0
mB (Fi ) 0
AB O
工程中的桁架结构
桁架的优点:轻,充分发挥材料性能。
桁架的特点:①直杆,不计自重,均为二力杆;②杆端铰接;
力
学 中 的 桁 架 模
基 本 三 角 形
型
③外力作用在节点上。
力
学
中 的 桁 架
简 化 计 算 模
模型
型
力
学
中 的 桁 架
简 化 计 算 模
节点
杆件
模型
型
一、节点法 [例3-3] 已知:如图 P=10kN,求各杆内力?
第三章 平面任意力系
平面任意力系(General coplanar force systems):各力的作用 线在同一平面内,既不汇交为一点又不相互平行的力系叫∼。
[例]
研究方法:把未知力系(平面任意力系)变成已知 力系(平面汇交力系和平面力偶系)
第三章 平面一般力系
§3–1 力向一点平移 §3–2 平面力系的简化 §3–3 平面力系的平衡条件 §3–4 刚体系统的平衡问题 §3–5 考虑有摩擦时物体的平衡问题
§3-2 平面力系的简化
一、平面力系向作用面内一点简化
O: 简化中心
主矢(Principal vector) R Fi
大小: R' R'x2 R'y2 ( X )2 (Y )2
工程力学(第三章)
MR
y
MR Mz cos MR
§3-6
力偶系的平衡条件
M 0
平衡: 力偶系平衡的充要条件是 其合力偶矩矢为零。
即:力偶系平衡
一、平面力偶系的平衡条件
M R M(代数和) i
M 0
平面力偶系的平衡方程
§3-6
力偶系的平衡条件
M 0
平衡: 力偶系平衡的充要条件是 其合力偶矩矢为零。
力对点之矩矢
作用: 用来度量力使物体绕某点转动效应的量。
(代数量) 一、平面中力对点之矩(力矩)
F
O
h
定义:M O
F Fh
正负号规定: 力使物体绕矩心逆转为正,顺转为负。
作用: 用来度量力使物体绕某点转动效应的量。 1、平面问题
(代数量) 力矩作用面
矩心 O h
力臂
定义: M O F Fh
A
O x
y
Fx
z
y
Fy
x
A x, y, z ,
F Fx , Fy , Fz
(一)、力对点的矩
1、平面问题
MO
F Fh
MO F
O
h
z
F
F
2、空间问题
MO F r F
x
(二)、力对轴的矩
空间: 力偶对空间任一点的矩矢恒等于力偶矩矢, 而与矩心位置无关。
性质二 力偶可在其作用面内任意移转,或移到另
一平行平面,而不改变对刚体的作用效应。
= =
F
F
F
F
工程力学力系平衡
D
FC
l
A B
l
FP
D
第 三 种 情 形
l
C FA A l FCy l B l FP D
FCx
C
FA A
l
B
l
FP
D
第 三 种 情 形
FCy
FCx C
E
MA ( F ) = 0 : FCx l -FP 2l = 0 MC ( F ) = 0 : -FA l - FP 2l = 0 ME ( F ) = 0 : -FCy 2l -FA l = 0
A
F =0
x
l -FQ -FW x FTB lsin=0 2 l FP x+FQ 2 = 2 FW x F FTB= Q lsin l
F =0
y
FAx FTB cos=0 FQ 2 FW x FQl FW FAx= x cos30 = 3 l 2 l FAy-FQ-FP+FTB sin=0
例题
均质方板由六根杆支 撑于水平位臵,直杆 两端各用球铰链与扳 和地面连接。板重为 P,在A 处作用一水 平 力 F , 且 F=2P , 不计杆重。求各杆的 内力。
简单的刚体系统平衡问题
前面实际上已经遇到过一些简单刚体系统 的问题,只不过由于其约束与受力都比较简单, 比较容易分析和处理。 分析刚体系统平衡问题的基本原则与处理 单个刚体的平衡问题是一致的,但有其特点, 其中很重要的是要正确判断刚体系统的静定性 质,并选择合适的研究对象
平衡方程
根据平衡的充要条件
F1 M1 O
z
F2
M2
y Mn
FR =0 , MO=0
工程力学教学课件 第3章 平面任意力系
A
MA
FAx
A
简 化
2021/7/22
FAy
11
一、简化结果分析
3.2
平
面 任
F1
A1
F2
O A n A2
M O FR'
O
意
Fn
力
系 的 简 化
1 . F R ' 0 ,M o 0
2 . F R ' 0 ,M O 0
结 果
3 . F R ' 0 ,M O 0 4 . F R ' 0 ,M O 0
的 简 化
此时主矩与简化中心的位置无关。
3、主矢不等于零,主矩等于零 (F R ' 0 ,M O 0 )
结 果
此时平面力系简化为一合力,作用在简化
中心,其大小和方向等于原力系的主矢,即
FRF
2021/7/22
13
一、简化结果分析
3.2 4、主矢和主矩均不等于零 (F R ' 0 ,M O 0 )
平
此时还可进一步简化为一合力。
面
任
FR'
FR'
FR
FR
意 力
O M O O
O
d
O
O
O
d
系 的 简 化
FR'' M O m O ( F R ) F R d F R 'd 于是
d M
F
由主矩的定义知:M O m O (F i)
O ' R
结 所以:
m O (F R ) m O (F i)
果 结论:平面任意力系的合力对作用面内任一点之矩
杆所受的力。
A
45
工程力学-平面任意力系平衡方程
4)FR=0 M0=0 力系处于平衡状态。
例3-1 图示物体平面A、B、C三点构成一等边三角形,三点分别作
用F力,试简化该力系。
解:1.求力系的主矢
F x F F cos60o F cos60o 0
Fy 0 F sin 60o F sin 60o 0
y
C
F M0 F
上作用F力,集中力偶M0=Fa,=45°,试求杆件AB的约束力。
A
M0=Fa
C
B
F
解:1.取AB杆为研究对象画受力图
2.列平衡方程求约束力
Da a
FAx
A
M0=Fa
C
FAy FC
B F
aa
M A (F ) 0 : FC sin 45 a F 2a M 0 0
FC
2Fa a
Fa 2/2
MC (F) 0:
FAx
2
3a 3
F
a
M0
0
FAy 0 FAx 3F
C aa
一 矩
MA(F) 0: Fx 0 :
二 矩
MA(F) 0: MB(F) 0:
三 矩
MA(F) 0: MB(F) 0:
2 3a
式 Fy 0 :
式 Fx 0 :
式 M C (F8) 0 :
3
本课节小结
A F
B x
FR ( Fx )2 ( Fy )2 0
2.选A点为简化中心,求力系的主矩
M0
M A (F)
F
sin 60
AB
F
AB 2
简化结果表明该力系是一平面力偶系。
4
二、平面任意力系的平衡方程
工程力学第三章力矩与平面力偶系_图文
例题讲解
【解】作 AB 梁的受力图,如图( b )所示。AB梁上作用 有二个力偶组成的平面力偶系,在 A 、B 处的约束
反力也必须组成一个同平面的力偶 ( , ) 与之平衡。 由平衡方程
() RA 、RB为正值,说明图中所示RA 、RB 的指向正确。
力臂d
=
1m
×
sinα
=
1m
×
。 sin45 =
m
MB(F)=+F×d= +15kN×0.5 m = +7.5 kN ·m
注意:负号必须标注,正号可标也可不标。一般不标注。
§3-1力矩的概念和计算
(二)合力矩定理
表达式: 证明: 由图得
而 则
Fy
F
A
Fx
()
§3-1力矩的概念和计算
()
若作用在 A 点上的是一个汇交力系( 、 、 ),则可将每个力对 o 点之矩相加,有
2. 力偶的三要素 (2)力偶的方向; (3)力偶的作用面。
3. 力偶的性质 (1)力偶在任何坐标轴上的投影等于零;
(2)力偶不能合成为一力,或者说力 偶没有合 力,即它不能与一个力等效, y
因而也不能被一个力平衡;
(3)力偶对物体不产生移动效应,只 产生转动 效应,既它可以也只能改变物
体的转动状 态。
例题讲解
【例题5】在一钻床上水平放置工件,在工件上同时钻四个等 直径的孔,每个钻头的力偶矩为 求工件的总切削力偶矩和A 、B端水平反力?
解: 各力偶的合力偶距为
根据平面力偶系平衡方程有:
由力偶只能与力偶平衡的性质 ,力NA与力NB组成一力偶。
例题讲解
第三章 平面力系
x'
工程力学 第三章 平面力系
[例] 已知 P=2kN 例 求SCD , RA
解 ①研究AB杆 ②画出受力图 研究 杆 ③选坐标系 ④列平衡方程
∑
RA ⋅ cosφ − SCD ⋅ cos450 = 0 X =0
Y = 0 −P − RA ⋅ sinφ + SCD ⋅ sin450 = 0 ∑
ϕ
工程力学 第三章 平面力系
=
=
=
工程力学 第三章 平面力系
M = FRd = Fd + F2d +L− Fnd = M1 + M2 +LMn 1
M = ∑ Mi = ∑Mi
i= 1
n
平面力偶系平衡的充要条件 M = 0 ,有如下平衡方程
∑ Mi
=0
平面力偶系平衡的必要和充分条件是: 平面力偶系平衡的必要和充分条件是:所有各力偶矩的代数 和等于零. 和等于零.
k=1
n
力在平面直角坐 标系中的解析式
FR = FRxi + FRy j
工程力学 第三章 平面力系
合力投 影定理
合力投影定理: 合力投影定理:平面汇交力系的合力在任一坐标轴 上的投影,等于各分力在同一坐标轴上投影的代数和 代数和。 上的投影,等于各分力在同一坐标轴上投影的代数和。
工程力学 第三章 平面力系
∑Fi = 0
i=1
n
注意 因为力是矢量,其包括大小和方向二个元素。所以 因为力是矢量,其包括大小和方向二个元素。
用封闭力多边形可以求出二个未知元素,即可以有一个力大 封闭力多边形可以求出二个未知元素, 可以求出二个未知元素 小和方向都未知,或者有二个力各有一个未知元素( 小和方向都未知,或者有二个力各有一个未知元素(大小或 方向)。 方向)。
工程力学第三章静力平衡问题
平面一般力系平衡方程还可表达为下列二种形式:
M
Fx A(F )
0
0
M B (F ) 0
M M
A B
(F (F
) )
0 0
MC (F ) 0
二力矩式
三力矩式
(AB不垂直于x轴) (A、B、C三点不共线)
注意:平衡方程中,投影轴和矩心可任意选取,可 写出无数个平衡方程。但只要满足了其中一组,其 余方程均应自动满足,故独立平衡方程只有三个。
矩心取在二未知力交点A 解处:,1力)矩画方整程体中受只力有图一。个未 知量F注C,意可B直C为接二求力解杆。。 2)取坐标,列平衡方程。
Fx=FAx-FCcos30=0
Fy=FAy+FCsin30-F-Fq=0
MA(F)=FCL/2-1.5F-FqL/2=0
FC
y
C
Fq=2q=1 kN
FAy
x
FAx 30
26
讨论:判断下述分析的正误。
FACy FAy
FACx
2a
M
3a
P
F
aA
MA
FAyFAx
FAx
B
B FABy
FABx
C
CP
A
FAx FAy
P
A
FFABAyy
A
FFAABxxFFAACyy
FACxx
FAx =F ; FAy =P ;
MA = M ?
MA = M+Fa-2Pa
固定铰的约束力作用于销钉上。 多杆用同一销钉连接,讨论某杆时, 须考虑各杆与销钉间作用的不同。
5
平面力系的平衡条件
平面一般力系处于平衡,充分和必要条件为力系
工程力学b215魏媛第三章
例10: 已知:P 5kg ABC 300
l
求:杆BC 所受的力 解: 方法一 对AB杆及电机
B
l 2
A
P
Fx 0
Fy 0
S B cos30 RAcos30 0
S Bsin 30 RAsin 30 P 0
C
A
RA
P
SB
B
© 2008.Wei Yuan. All rights reserved.
已知:AB l , m , 45 例7: 求:A、B 处约束反力
m
A
B
解: 对AB杆
m
B
B
0
m
A
RA
RAlcos m 0
NB
解得:RA N B
2m l
© 2008.Wei Yuan. All rights reserved.
F 0 x Fy 0 M o F 0
平衡方程基本形式
© 2008.Wei Yuan. All rights reserved.
例1: 已知:AC 3l , P , m , 45 求:A、B 处约束反力
m
A
P
B
C
l
l
l
© 2008.Wei Yuan. All rights reserved.
解得: S B RA P 5kg
© 2008.Wei Yuan. All rights reserved.
3、 三力矩式
m A F 0 mB F 0 mC F 0
B
C
FR
2016工程力学(高教版)教案:2.2平面汇交力系合成与平衡的解析法
第二节 平面汇交力系合成与平衡的解析法求解平面汇交力系问题的几何法,具有直观简捷的优点,但是作图时的误差难以避免。
因此,工程中多用解析法来求解力系的合成和平衡问题。
解析法是以力在坐标轴上的投影为基础的。
一、在坐标轴上的投影如图2-5所示,设力F 作用于刚体上的A 点,在力作用的平面内建立坐标系oxy ,由力F 的起点和终点分别向x 轴作垂线,得垂足a 1和b 1,则线段a 1b 1冠以相应的正负号称为力F 在x 轴上的投影,用X 表示。
即X=±a 1b 1;同理,力F 在y 轴上的投影用Y 表示,即Y=±a 2b 2。
力在坐标轴上的投影是代数量,正负号规定:力的投影由始到末端与坐标轴正向一致其投影取正号,反之取负号。
投影与力的大小及方向有关,即⎭⎬⎫=±==±=βαcos cos F ab Y F ab X (2-3) 式中α、β分别为F 与X 、Y 轴正向所夹的锐角。
图2-5反之,若已知力F 在坐标轴上的投影X 、Y ,则该力的大小及方向余弦为⎪⎭⎪⎬⎫=+=F X Y X F αcos 22 (2-4) 应当注意,力的投影和力的分量是两个不同的概念。
投影是代数量,而分力是矢量;投影无所谓作用点,而分力作用点必须作用在原力的作用点上。
另外仅在直角坐标系中在坐标上的投影的绝对值和力沿该轴的分量的大小相等。
二、合力投影定理设一平面汇交力系由F 1、F 2、F 3和F 4作用于刚体上,其力的多边形abcde 如图2-6所示,封闭边ae 表示该力系的合力矢F R ,在力的多边形所在平面内取一坐标系oxy ,将所有的力矢都投影到x 轴和y 轴上。
得X=a 1e 1, X 1=a 1b 1, X 2=b 1c 1,X 3=c 1d 1 ,X 4=d 1e 1由图2-6可知a 1e 1=a 1b 1+b 1c 1+c 1d 1 +d 1e 1即 X=X 1+X 2+X 3+X 4同理 Y=Y 1+Y 2+Y 3+Y 4将上述关系式推广到任意平面汇交力系的情形,得⎭⎬⎫∑=+++=∑=+++=Y Yn Y Y Y X Xn X X X 2121 (2-5)图2-6即合力在任一轴上的投影,等于各分力在同一轴上投影的代数和,这就是合力投影定理。
《工程力学第三章》PPT课件
FA= y - l- l xFW+F2Q
h
15
平面力系的平衡条件与平衡方程
平面一般力系的平衡条件与平衡方程-例题 1
FTB=FWlxs+ iF nQ2l=2FlWxFQ
解: 3.讨论 由结果可以看出,当x=l,即电动机移动到吊车大梁 右端B点处时,钢索所受拉力最大。钢索拉力最大值为
因此,力系平衡的必要与充分条件是力系的主矢和对任意一 点的主矩同时等于零。这一条件简称为平衡条件
满足平衡条件的力系称为平衡力系。 本章主要介绍构件在平面力系作用下的平衡问题。
h
8
平面力系的平衡条件与平衡方程
平面一般力系的平衡条件与平衡方程
对于平面力系,根据第2章中所得到的主矢和主矩 的表达式,力系的平衡条件可以写成
吊 车 大 梁 AB 上 既 有 未 知 的 A 处 约 束力和钢索的拉力,又作用有已知的 电动机和重物的重力以及大梁的重力。 所以选择吊车大梁AB作为研究对象。 将吊车大梁从吊车中隔离出来。
h
12
平面力系的平衡条件与平衡方程
平面一般力系的平衡条件与平衡方程-例题 1
解: 1.分析受力
建立Oxy坐标系。 A处约束力分量为FAx和FAy ;钢 索的拉力为FTB。
平面一般力系的平衡条件与平衡方程-例题 1
解: 2.建立平衡方程
Fx=0
MAF= 0
- F Q2 l- F W xF T Blsi= n0
FTB=FWlxs+ inFQ2l=2FlWxFQ
FAxFTBco= s0
Fy=0
F A= x 2F W x lF Q l co= s3 3 0 F lW xF 2 Q
工程力学 第3章 力系的平衡
6
解 :1. 受力分析, 确定平衡对象 圆弧杆两端 A 、 B 均为铰链,中间无外力作用,因此圆弧杆为二力杆。 A 、 B 二处的 约束力 FA 和 FB 大小相等、 方向相反并且作用线与 AB 连线重合。 其受力图如图 3-6b 所示。 若 以圆弧杆作为平衡对象,不能确定未知力的数值。所以,只能以折杆 BCD 作为平衡对象。 ' 折杆 BCD , 在 B 处的约束力 FB 与圆弧杆上 B 处的约束力 FB 互为作用与反作用力, 故 二者方向相反; C 处为固定铰支座,本有一个方向待定的约束力,但由于作用在折杆上的 ' 只有一个外加力偶,因此,为保持折杆平衡,约束力 FC 和 FB 必须组成一力偶,与外加力 偶平衡。于是折杆的受力如图 3-6c 所示。 2.应用平衡方程确定约束力 根据平面力偶系平衡方程(3-10) ,对于折杆有 M + M BC = 0 (a) 其中 M BC 为力偶( FB , FC )的力偶矩代数值
图 3-8 例 3-3 图
解 :1. 选择平衡对象 本例中只有平面刚架 ABCD 一个刚体(折杆) ,因而是唯一的平衡对象。 2 受力分析 刚架 A 处为固定端约束, 又因为是平面受力, 故有 3 个同处于刚架平面内的约束力 FAx、 FAy 和 MA 。 刚架的隔离体受力图如图 3-8b 所示。 其中作用在 CD 部分的均布荷载已简化为一集中 力 ql 作用在 CD 杆的中点。 3. 建立平衡方程求解未
习 题
本章正文 返回总目录
2
第 3 章 力系的平衡
§3-1 平衡与平衡条件
3-1-1 平衡的概念
物体静止或作等速直线运动,这种状态称为平衡。平衡是运动的一种特殊情形。
平衡是相对于确定的参考系而言的。例如,地球上平衡的物体是相对于地球上固定参 考系的, 相对于太阳系的参考系则是不平衡的。 本章所讨论的平衡问题都是以地球作为固定 参考系的。 工程静力学所讨论的平衡问题,可以是单个刚体,也可能是由若干个刚体组成的系统, 这种系统称为刚体系统。 刚体或刚体系统的平衡与否,取决于作用在其上的力系。
工程力学第3章
1第三章力系的平衡§3–1 平面力系的平衡方程§3–2 空间力系的平衡方程§3–3 物体系统的平衡方程§3–4 静定与静不定的基本概念§3-1 平面力系的平衡方程由于=0 为力平衡M O =0 为力偶也平衡所以平面任意力系平衡的充要条件为:力系的主矢F R 和主矩M O 都等于零,即:)()(22=+=∑∑Y X F R 0)(==∑i O O F m M 1、平面任意力系的平衡方程R F=∑X 0)(=∑i A F m 0)(=∑i B F m ②二矩式条件:x 轴不AB连线⊥0)(=∑i A F m 0)(=∑i B F m 0)(=∑i C F m ③三矩式条件:A ,B ,C 不在同一直线上上式有三个独立方程,只能求出三个未知数。
=∑X 0=∑Y 0)(=∑i O F m ①一矩式①平面汇交力系=∑xF 0=∑yF2、平面特殊力系的平衡方程②平面力偶系=∑M ③平面平行力系=∑y F 0)(=∑F M O 0)(=∑F MB0)(=∑F M A AB 不x 轴⊥[例] 已知:P , a , 求:A 、B 两点的支座反力?解:①选AB 梁研究②画受力图(以后注明解除约束,可把支反力直接画在整体结构的原图上))(=∑i A F m 由32 ,032PN a N a P B B =∴=⋅+⋅-0=∑X 0=A X 0=∑Y 3,0PY P N Y A B B =∴=-+解除约束,0==∑A X X 由022;0)(=⋅-+⋅⋅+⋅=∑a P m aa q a R F m B A 0=∑Y 0=--+∴P qa R Y B A )kN (122028.01628.02022=⨯+-⨯-=+--=P a m qa R B )kN (24128.02020=-⨯+=-+=B A R qa P Y [例] 已知:P =20kN, m =16kN·m, q =20kN/m, a =0.8m求:A 、B 的支反力。
工程力学 第2版 第3章 平面力系的平衡方程及其应用
3.2 物系的平衡问题
物体系统:由若干个物体通过约束联系所组成的系统,简称为 物系。
系统平衡:当整个系统平衡时,组成该系统的每个物体也都 平衡。因此研究这类问题时,既可以取系统中的某一个物体为 分离体,也可以取几个物体的组合或者取整个系统为分离体。
1 静定和超静定问题
独立方程数目≥未知数数目时,是静定问题(可求解) 独立方程数目<未知数数目时,是静不定问题(超静定问题)
注意:不能漏画固定端的约束反力偶MA,力偶只参与力矩方程,将力偶矩的大小直接代入方程, 而不参与投影方程。
在需同的样不求建要的平的一的立指矩衡,样结平定心方求,果矩位程解但是衡心置是过最一方,列不程终样程不出一也所,时,的在们的不正结这 要 选 同 确果个 意 择 , 的就过 识 所 但 道是程 到 经 只 路正中 , 历 要 ,确同 不 的 选 最的学 同 就 择 后。
Fx 0
Fy
0
➢ 平面平行力系的平衡方程
Fx 0( Fy 0)
M0(F) 方程组,皆可解与其平衡方程数对 应的未知数。应用力系平衡方程可以确定工程中构件在平衡时 的未知力。
2 平面力系平衡方程的应用
步骤
1)确定研究对象,画受力图 2)建立直角坐标系,确定各力与坐标轴的夹角 3)确定该平面力系的种类,列出相应的平衡方程求解未知力。
第3章 平面力系的平衡方程及其应用
平面力系的平衡方程及其应用
单个物体的平衡问题 物系的平衡问题
考虑摩擦时物体的 平衡问题
3.1 单个物体的平衡问题 1 平面力系的平衡条件
平面力系平衡的充要条件是:合力为零
➢ 平面一般力系的平衡方程 ➢ 平面汇交力系的平衡方程
Fx 0 Fy 0
M O (F ) 0
工程力学03章静力学平衡问题
FP
l
l
FP
l
l
M
q
M
q
2l l
2l l
A
FAx A MA
解:1.选择研究对象。
FAy
2 受力分析,画出受力图如图所示。
8
2l l
FP
l
l
M
FAx
A MA
FAy
3. 建立平衡方程求解未知力 应用平衡方程
Fx = 0, FAx ql 0
q Fy = 0, FAy FP 0
MA= 0,
B
C
M1
A 60o
M2
60o D
20
解: 取杆AB为研究对象画受力图。
杆AB只受力偶的作用而平衡且C处为光滑面约束,则A 处约束反力的方位可定。
B
B FA = FC = F,
M1
A 60o
C
C AC = a
FC
Mi = 0
M2 M1
60o D A
FA
a F - M1 = 0
M1 = a F (1)
的各坐标轴上投影的代数和及所有力对
各轴之矩的代数和均等于零
Fx 0 Fy 0 Fz 0
M M
x y
(F ) (F )
0 0
M
z
(F
)
0
26
§3-3 简单的刚体系统平衡问题
一、刚体系统静定与静不定的概念
1、静定问题:一个静力平衡问题,如果系统中未知量 的数目正好等于独立的平衡方程数,单用平衡方程就 能解出全部未知量。
y
4. 联立求解,得
FAB 54.5KN FBC 74.5KN
工程力学平面力系
例3-9
求杆BD、CD和CE的内力
Ⅰ
Ⅰ
40
HOHAI UNIVERSITY
例3-10
求1杆内力。 Ⅰ
Ⅰ
41
HOHAI UNIVERSITY
F
A
Ⅲ
I
B
例3-11 F Ⅲ Ⅱ ② Ⅰ
E C
求指定4根杆的内力。 可以求出杆2内力
①
J
D
I-I Ⅱ Ⅰ
③
K
④
F
II-II 可以求出杆3、4内力
III-III 可以求出杆1的内力
∑Fix =0 ∑ Fiy =0
35
HOHAI UNIVERSITY
空间汇交力系:
∑Fix =0
∑ Fiy =0
∑ Fiz =0
36
HOHAI UNIVERSITY
例3-8
用节点法求各杆内力
零杆——内力为零的杆件
零杆判断:
②
①
1.如有三根杆件在某一节点相交,其中两根在同一直线上,且该节点不 受外力作用,则第三根杆(不必与另两根杆垂直)必为零杆; 2.如只有两根不共线的杆件相交于一节点,节点上无外力,则该两杆必 37 均为零杆。
25
HOHAI UNIVERSITY
按材料分:
木桁架
钢桁架
钢筋混凝土桁架
26
HOHAI UNIVERSITY
按空间形式分: 平面桁架:所 有杆件的轴线 在同一平面内。
空间桁架
27
HOHAI UNIVERSITY
按内力计算分: 静定桁架
超静定桁架
28
HOHAI UNIVERSITY
木桁架的榫接节点
21
HOHAI UNIVERSITY
工程力学(李卓球) 第3章 力系的简化和平衡
∑X =0 ∑Y = 0 ∑M = 0
O
3.2
力系的平衡条件和平衡方程 ∑X =0
∑Y = 0 ∑F = 0
z
y
F1 F2
4 5 3
F3
∑M
x
=0
y
O
x
∑M ∑M
平面汇交力系
=0
=0
z
∑ ∑
X = 0
Y = 0
Y = 0
M
O
平面平行力系
∑ ∑
( Fi ) = 0
3.2
力系的平衡条件和平衡方程
四、平面任意力系平衡方程的其他形式 (1)二力矩式 二力矩式
3.2
力系的平衡条件和平衡方程
平面平行力系的平衡方程
∑ ∑ ∑
Fx = 0
∑ M ∑ M
A B
(F i ) = 0 (Fi ) = 0
Fy = 0
M
O
(Fi ) = 0
∑
Fx = 0
A
B
∑Y ∑M
= 0
O
∑ M
(F i ) = 0
(Fi ) = 0
∑
M
(Fi ) = 0
AB连线与力不平行 连线与力不平行 只有两个独立方程,只能求解两个独立的未知数。 只有两个独立方程,只能求解两个独立的未知数。
h h
γy (1 × dy )
dy
= γy
1 2 γh 2
由合力矩定理, 由合力矩定理,有
1 Qd = ∫ yqdy = ∫ γy dy = γh 3 0 0 3
h h 2
d=
2 h 3
3.1
力系向一点简化
y A
2m
在长方形平板的O 例题 3-2 在长方形平板的 、A、 B、C 点上分别作用着有四个力: 点上分别作用着有四个力: F1=1kN,F2=2kN,F3=F4=3kN , , 如图), ),试求以上四个力构成 (如图),试求以上四个力构成 的力系对点O 的简化结果, 的力系对点 的简化结果,以及 该力系的最后的合成结果。 该力系的最后的合成结果。 取坐标系Oxy。 解:取坐标系 。 1、求向 点简化结果: 点简化结果: 、求向O点简化结果 求主矢R′ ①求主矢 ′:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
mO (F ) + mO (F′)
经推导,力偶对矩心O点的力矩只与力F和力偶臂d 的乘积 有关,而与矩心位置无关,该乘积称为力偶矩。
m(F, F′) = ± F ⋅ d
m(F, F′) = ± F ⋅ d
力偶的三要素: (1)力偶矩的大小; (2)力偶的转动方向; (3)力偶的作用平面;
§3.2.3 力偶的等效
Rx = ∑ X
证明:
Ry = ∑ Y
3、力系合成的解析法 力系合成的解析法基于以下两点: (a)合力投影定理;(b)合力的投影与合力之间的关系
2 R = Rx2 + R y =
(∑ X ) + (∑ Y )
2
2
tan α =
Ry Rx
=
∑Y ∑X
合力的具体指向由分力的正负号判定。
力系合成解析法的基本步骤: (1)将力系中各力分解到坐标轴方向上; (2)将坐标轴方向上的各力的投影相加,得到合力的投影; (3)由合力的投影求解合力。
算例:
解: 1、选定研究对象:刚架 2、画受力图:平面汇交力系 3、根据力系平衡的几何条件求解 (力多边形封闭) 分析讨论: 几何法的优点:直观 几何法的缺点:不适合于复杂受力情况
§3.1.3 平面汇交力系合成的解析法
解析法以力的分解为基础,因此先介绍力在坐标轴上的投影。 1、力在坐标轴上的投影
算例:
解:
算例:
解:
物体系平衡问题的解法: (1)判断是否是静定问题 (2)恰当地选择研究对象 (3)受力分析(与选择研究对象有关) (4)列平衡方程,求未知量: 只列必要的平衡方程,尽量减少方程数目,避免联立求解
§3-5 桁架
桁架是一种常见的工程结构,许多桥梁、房架都是桁架结构。
桁架的特点: (1)由杆件组成 (2)桁架的两端为铰连接,不计摩擦 (3)桁架所受的力都作用在桁架平面内的节点上 (4)不计各杆的自重,或将杆重平均分配到杆两端的节点上 根据上述假设,桁架每个杆件都是 “二力杆”,各杆内力必然沿杆 轴方向。
n i =1
主矢与主矩的解析求解: (1)各反力向x、y轴投影: X i (2)确定主矢的大小和方向:
2 R = Rx2 + Ry =
Yi
(∑ X ) + (∑ Y )
2
2
tan α =
Ry Rx
=
∑Y ∑X
(3)确定主矩的大小和方向
§3.3.3 平面任意力系的合成讨论
平面力系向一点简化后,可得一个主矢 R′ 和一个主矩 L 0 (1)R′ = 0 ,L0 ≠ 0 ,原力系简化为一个力偶 (2)R′ ≠ 0 ,L 0 = 0 , 原力系简化为一个通过简化中心的合力 (3) R′ ≠ 0 ,L 0 ≠ 0 , 原力系简化为通过简化中心的一个合力 和一个力偶。还可以继续简化为通过另一个点的合力。 证明:
工程力学
第三章 平面力系的合成与平衡
授课教师: 丁 勇 (宁波大学) 授课对象: 建工城建专业考生 电子邮件: dingyong@
§3-1 平面汇交力系
平面汇交力系: 各力的作用线都在同一平面内,且汇交于一点的力系。 (1)平面汇交力系的合成方法 (2)平面汇交力系的平衡方程
§3.1.1 平面汇交力系合成的几何法
平面力偶的等效定理: 同一平面内的两个力偶,只要它们的力偶矩大小相等、 转动方向相同,则两力偶必等效。
解释:力偶对物体的效应是使物体转动,其作用效应的大小 是通过力偶矩表达的,因此只要力偶矩相等,两力偶 必然等效。
示例: 力偶等效定理的推论: (1)力偶可以在作用面内任意转移,而不影响它对物体的作用 ( 2 )在保持力偶矩不变的条件下,可以任意改变力偶臂的大 小、力的大小而不影响它对物体的作用 注意:(1)平面力偶的等效定理不适用于变形效应的研究
§3-2 平面力偶系
平面汇交力系和平面力偶系是基本的平面力系,也是研究 平面一般力系的基础。
§3.2.1 力对点之矩
力矩的概念: 力F对O点的力矩,等于O点到力F 作用线的垂直距离与力F的乘积。
mO (F ) = ± F d
其中d 称为力臂,O点称为力矩中心。
力矩的性质: (1)力矩不仅取决于力F的大小,同时还与矩心的位置有关; (2)力F对任一点之矩,不会因该力沿作用线移动而改变; (3)力矩具有方向,广义上也是一个矢量;(逆时针为正); (4)互成平衡的二力对于同一点之矩的代数和等于零。 算例:
∑X =0⎫ ⎪ m 0 = ⎬ ∑ ∑ m = 0⎪ ⎭
A B
前提:A、B两点的连线不与x轴垂直 第三种求解方法:
∑ m (F ) = 0 ⎫ ⎪ ( ) m F 0 = ⎬ ∑ ∑ m (F ) = 0⎪ ⎭
A B C
前提: A、B、C三点不在同一直线上
算例:
解:
§3-4 物体系统的平衡
1、物体系统:
M = ∑ mi = 0
算例:
解:(1)选取研究对象 (2)列平衡方程,求解螺栓所受的力
算例:
解: 1)选取整体为研究对象, 求A、B点的约束反力 2)选取CD杆为研究对象, 求C、D点的约束反力 3)选取ED杆为研究对象, 求E点的约束反力
§3-3 平面任ቤተ መጻሕፍቲ ባይዱ力系
平面任意力系由平面汇交力系和平面力偶系组成。 示例:房架
§3.1.2 平面汇交力系平衡的几何条件
平面汇交力系平衡的充分必要条件:合力为零。
R = ∑ Fi = 0
i =1 n
在几何法中,当合力为零时,力多边形封闭
算例:
解:用几何法合成力系,并根据力系 平衡的几何条件求钢丝绳的反力。
1、选定研究对象:钢梁 2、画受力图:平面汇交力系 3、根据力系平衡的几何条件求解 (力多边形封闭) 4、分析讨论:角度的影响
解略
§3.2.2 力偶与力偶矩
力偶: 大小相等、方向相反、作用线相互平行的两个力叫做力偶
(F, F′)
示例:
力偶中两力作用的平面叫力偶作用面,两力作用线间的距离叫 力偶臂d。
力偶的作用: 力偶的合力为0,所以力偶对物体不产生移动效应,而只 能使物体产生转动效应。
力偶大小的度量: 力偶的大小可以用力偶中两个力对矩心的力矩之和来度量。
证明:(1)任一力F (2)任取一点,附加一对平衡力 (3)重新组合,合成为力F与力偶矩Fd
§3.3.2 平面一般力系向一点简化
汇交力系简化方法:(1)几何法 ;(2)解析法 力偶系简化方法: 合成 平面一般力系简化方法: 将平面一般力系分成平面汇交力系和平面力偶系,再将这 两个力系进行合成。
2 0 O
2
⎪ = 0⎫ ⎬ ⎪ ⎭
化简为:
∑X =0 ⎫ ⎪ Y 0 = ⎬ ∑ ⎪ ( ) m F 0 = ∑ ⎭
O
此即为平面一般力系的平衡方程
算例:
解:(1)选研究对象 (2)画受力图
(3)列平衡方程
∑X =0 ⎫ ⎪ ∑Y = 0 ⎬ ∑ m (F ) = 0⎪ ⎭
O
(4)分析讨论 第二种求解方法:
算例:
§3.1.4 平面汇交力系平衡方程及其应用
根据(1)平面汇交力系的平衡条件:合力 (2)合力的解析表达式:
R=
2
R=0
2
(∑ X ) + (∑ Y )
=0
得到 平面汇交力系的平衡方程:
∑ X = 0⎫ ⎬ ∑Y = 0 ⎭
用解析法求解题: 刚架如图所示,在B点受一水平力作用。设P=20 kN, 刚架的质量略去不计。求A、D处的约束反力。 解:(1)选刚架为研究对象 (2)画受力图 (3)列平衡方程 (4)求解未知量
桁架内力的计算方法: 1、节点法 算例:
2、截面法 用截面法求上例中第14杆的内力。
解:
工程结构中由许多物体通过一定方式连接而成的系统。 举例:
2、物体系统的外力: 物体系统以外的物体对这个物体系统的作用 物体系统的内力: 物体系统内各物体之间的相互作用。
3、物体系统的静力学平衡问题的解法 (1)选择研究对象:整体?局部?单个部件? (2)列平衡方程:尽量避免联立方程 下面举例说明物体系平衡问题的解法
根据平行四边形法则(三角形法则),可以用几何法来合 成平面汇交力系。 示例:
几何法的解析表达:
R = F1 + F 2 + " + F n = ∑ Fi
i =1 n
用几何法求合力时的要点: (1)按照力的比例画出各力的大小。 (2)可以任意变换力的次序,合成的结果不变。
(3)力多边形中各力应该首尾相连,合力从第一个力的起 点指向最后一个力的终点。
(2)力偶在作用面内转移时,可能影响对物体构件的作用
§3.2.4 平面力偶系的合成与平衡
1、平面力偶系的合成 根据力偶的等效定理来合成 :
结论:平面力偶系的合成结果为一合力偶,合力偶矩等于各已知 力偶矩的代数和
M = m1 + m2 + " + mn = ∑ mi
2、平面力偶系的平衡 平面力偶系的平衡条件是合力偶矩为零 : (平面汇交力系的平衡条件为合力等于零 )
X = F cos α ⎫ ⎬ Y = F sin α ⎭
力的投影是代数量,正负由其 与坐标轴方向的关系决定。 如果已知力在坐标轴上的投影,也可以求出力
cos α = F= X X +Y
2 2
X 2 +Y 2 , sin α =
⎫ ⎪ Y ⎬ X 2 +Y 2 ⎪ ⎭
2、合力投影定理 合力在任意轴上的投影,等于各分力在同一轴上投影的代数和。
§3.3.4 平面一般力系的平衡条件与平衡方程
力系简化结果: (1)一个主矢 R′ ;(2)一个主矩 L 0
R′ ≠ 0
L0 ≠ 0