平面一般力系的平衡方程
平面一般力系的平衡方程及其应用
MB 0
W1
l 2
W
l
x
FAyl
0
得
FAy 7k N
Y 0
F T
sin
FAy
W1
W
0
得
FT 34k N
X 0 FAx FT cos 0
得
FAx FT cos 29.44k N
目录
平面力系\平面一般力系的平衡方程及其应用
4) 讨论。 本题若列出对A、B两点的力矩方程 和在x轴上的投影方程,即
F,平衡锤重WQ,已知W、F、a、b、e、l,欲使起重机满载和空载
时均不致翻倒,求WQ的范围。
目录
力系的平衡\平面力系的平衡方程及其应用 【解】 1)考虑满载时的情况 受力如图所示。 列平衡方程并求解 MB=0 WQmin(a+b)WeFl=0
得 We F l
WQmin a b
目录
平面力系\平面一般力系的平衡方程及其应用
理论力学
平面力系\平面一般力系的平衡方程及其应用
平面一般力系的平衡方程及其应用
1.1 平面一般力系的平衡方程
1. 基本形式 如果平面力系的主矢和对平面内任一点的主矩均为零,则力系
平衡。反之,若平面力系平衡,则其主矢、主矩必同时为零(假如 主矢、主矩有一个不等于零,则平面力系就可以简化为合力或合力 偶,力系就不平衡)。因此,平面力系平衡的充要条件是力系的主 矢和对任一点的主矩都等于零,即
应用平面力系的平衡方程求解平衡问题的步骤如下: 1) 取研究对象。根据问题的已知条件和待求量,选择合适的研 究对象。 2) 画受力图。画出所有作用于研究对象上的外力。 3) 列平衡方程。适当选取投影轴和矩心,列出平衡方程。 4) 解方程。 在列平衡方程时,为使计算简单,通常尽可能选取与力系中多 数未知力的作用线平行或垂直的投影轴,矩心选在两个未知力的交 点上;尽可能多的用力矩方程,并使一个方程只含一个未知数。
平面一般力系的平衡方程及其应用简化及平衡方程名师公开课获奖课件百校联赛一等奖课件
FW 2 G FW1 FRA FRB 0
解得: FRB 870kN
FRA 210kN
17
3、平面力偶系旳平衡方程
因为平面力偶系合成旳成果为一合力偶,M=Σm,而力偶
在任一轴上投影旳代数和均为零。即平面一般力系旳平衡方
程旳基本形式旳两个投影方程均变成恒等式,故平面力偶系
旳平衡方程为:
G 10 FP 4 FRB 20sin 600 0
mB (F) 0
FRAy 20 FP 4 G 10 0
Fx 0 FRAx FRB cos 600 FP 0
解得:FRB 62.4kN
FRAy 46kN
FRAx
11.2kN 9
平面汇交力系、平面平行力系和平面力偶系,皆可看作平面 一般力系旳特殊力系,它们旳平衡方程皆可由平面一般力系 旳平衡方程导出。
1.平衡方程旳基本形式
FR' ( Fx )2 ( Fy )2
M o mo (F )
Fx 0 Fy 0
mo
(
F
)
0
2
由此可得结论,平面一般力系平衡旳解析条件是:全部各 力在两个任选旳坐标轴上旳投影旳代数和都等于零;力系 中全部各力对任一点旳力矩旳代数和等于零。
需要指出旳是,上述平衡方程是相互独立旳,用来求 解平面一般力系旳平衡问题时,能且最多只能求解三个未 知量。为了防止求解联立方程,应使所选旳坐标轴尽量垂 直于未知力,所选矩心尽量位于两个未知力旳交点(可在 研究对象之外)上。另外,列平衡方程时,既可先列投影 方程,也可先列力矩方程。总之,应尽量使每一方程式中 只含一种未知量,以便简化计算。
在研究对象上画出它受到旳全部主动力和约束反力。约束反力 根据约束类型来画。当约束反力旳指向未定时,能够先假设其指 向。假如计算成果为正,则表达假设指向正确;假如计算成果为 负,则表达实际旳指向与假设旳相反。
建筑力学第三章 平面力系的平衡方程
③ FR≠' 0,MO =0,即简化为一个作用于简化中心的合力。这时, 简化结果就是合力(这个力系的合力), FR FR'。(此时
与简化中心有关,换个简化中心,主矩不为零)
重庆大学出版社
建筑力学
④ FR' ≠0,MO ≠0,为最任意的情况。此种情况还可以继续
重庆大学出版社
建筑力学
[例] 已知:Q=7.5kN, P=1.2kN , l=2.5m , a=2m , =30o , 求:
BC杆拉力和铰A处的支座反力?
解:(1)选AB梁为研究对象。
C
(2)画受力图
FAy
FBC
A
FAx
l/2 P
B Q
a
Байду номын сангаас
l
A
l/2 P
B Q
a
l
重庆大学出版社
建筑力学
(3)列平衡方程,求未知量。
静不定问题在材料力学,结构力学,弹性力学中 用变形协调条件来求解。
重庆大学出版社
建筑力学
物系平衡问题的特点: ①物体系统平衡,物系中每个单体也是平衡的。 ②每个单体可列3个(平面任意力系)平衡方程,整个系统
可列3n个方程(设物系中有n个物体)。
解物系问题的一般方法:
机构问题: 个体 个体
个体
“各个击破”
力系中各力对于同一点之矩的代数和。
重庆大学出版社
建筑力学
3.2平面力系的平衡方程及应用
FR=0, MO =0,力系平衡
FR =0 为力平衡
MO =0 为力偶也平衡 平面力系平衡的充要条件为:
平面一般力系的平衡和应用
由 mA (Fi ) 0
P2aNB 3a0,
N B
2P 3
X 0 XA 0
解除约束
Y 0 YB NB P0,
YA
P 3
衡第 三
静节 定 和物 超体 静系 定的
平
三铰拱ABC的支承及荷载情况如图所示.已知
P =20kN,均布荷载q = 4kN/m.求铰链支座A和
B的约束反力.
P
1m
q
C
2m
A
2m
为载荷集度(单位为牛顿/米),其左端的集度为零,右端集度为 q 。载荷的长度为 l,载荷的方向垂直向下。求支承处对梁的约束 力。
首先在 O 点建立坐标系
y
第二步作受力分析
q
Foy
q
• 主动力为分布载荷(忽略重
力),且为一平行力系
O Fox
• 约束反力:
x
dx
l
x
Aq
FA
O 为固定铰支座,A 为活动铰 支座。
和 物 RC = 7.07 kN
B XB
YB
2m
Q
C
RC
2m
超 体 整体分析
P
静系
Q
定的 平
A
XA
mA
YA 2m
B
C
RC
2m
2m 2m
衡第
P = 30kN, Q = 20kN, = 45o
三 静节 定
Xi = 0 Yi = 0
XA - 20 cos45o = 0 XA = 14.14 kN YA - 30 - 20 sin45o + RC = 0 YA = 37.07 kN
的坐标轴上的投影的代数和分别等于零,以及各力对于任意
平面一般力系的平衡
m m F
A B
0 0 0
x
m m m
A B
0 0 0
C
三、平面平行力系平衡方程 1、基本形式
2、二力矩式
Fy 0 Mo( F ) 0
m m
A B
0 0
解题技巧: (1)选择某坐标轴与一个或两个未知力相垂直,使一个投 影方程式出现一个未知数。 (2)将力矩方程的矩心选在未知力的作用线上 或两个 (或两个以上) 未知力的交点上,使一个力矩方程式出现一个未知数。 平衡方程使用说明: (1)对一个平衡的平面一般力系,只能建立三个独 立的平衡方程,因此,只能求解三个未知数。其它的平衡方程不再是独立的。 (2)求解平面一般力系的平衡问题时,应力求在一个方程中只包含一个未 知数。 (3)在计算中,通常用其他形式的平衡方程进行校核。
m
A
例 5:悬臂刚架在 BC 段受到集度 q = 4KN/m 及集中力 F=5KN 的作用,求 固定端支座 A 处的反力。
解:1、取脱离体,画受力图 2、列平衡方程求未知力
F
x
0
0
FAx 5 0
FAx 5KN
m
F
A
5 6 4 3 1 .5 m A 0 m A 30 18 48 KNm
F
y
0 0
FAy F 4q FB 0
(1)
m
A
1 F 4q 2 m 4 FB 0 (2)
由(2)式得 FB
1 F 4q 2 m 40 4 20 2 20 45 KN 4 4
将 FB 代入(1)式得
FAy F 4q FB 40 4 20 45 75 KN
平面一般力系的二力矩式平衡方程
平面一般力系的二力矩式平衡方程平面一般力系的二力矩式平衡方程引言在物理学和工程学中,力学的平衡是一个重要的概念。
力学的平衡可以分为平面力系的平衡和空间力系的平衡。
在本文中,我们将讨论平面力系的平衡,并重点关注二力矩式平衡方程。
平面力系的定义和特点平面力系是指作用在一个平面内的一组力。
平面力系具有以下特点:1. 所有的力和力矩都在一个平面内;2. 力系中的力可以同时作用在一个物体的不同点上;3. 力系中的力可能会产生力矩。
力矩的概念力矩是指力对旋转物体造成的影响。
它由两个因素确定:力的大小和作用点与旋转轴的距离。
力矩的大小可以通过以下公式计算:M = Fd其中,M表示力矩,F表示力的大小,d表示力的作用点与旋转轴之间的距离。
力矩的方向可以通过以下规则确定:1. 如果力的作用点在旋转轴上,力矩的大小为零;2. 如果力由旋转轴向外作用,力矩的方向为顺时针方向;3. 如果力由旋转轴向内作用,力矩的方向为逆时针方向。
二力矩式平衡方程的推导在平面力系中,如果力系处于平衡状态,那么力系的合力和合力矩都必须为零。
根据牛顿第一定律,合力为零意味着物体的加速度为零;根据牛顿第二定律,合力矩为零意味着物体的角加速度为零。
设平面力系中共有n个力,分别记为F1, F2, ..., Fn。
考虑到每个力都可以产生力矩,那么每个力产生的力矩之和为:M1 + M2 + ... + Mn = 0力矩的正负号要根据力矩的方向来确定,根据上述力矩的规则,如果力矩是顺时针方向的,那么取正号;如果力矩是逆时针方向的,那么取负号。
根据力矩的计算公式,将每个力的力矩带入上述方程,得到二力矩式平衡方程:F1d1 + F2d2 + ... + Fndn = 0这就是平面力系的二力矩式平衡方程。
应用实例下面通过一个实例来说明如何应用二力矩式平衡方程。
假设有一个悬臂梁,上面有一个重物挂着。
悬臂梁的长度为L,重物的质量为m,重物与悬臂梁的连接处距离悬臂梁固定点的距离为d。
建筑力学平面一般力系的平衡方程及其应用
普通高等教育“十一五”国家级规划教材
满足平衡方程时,物体既不能移动,也不能 转动,物体就处于平衡状态。当物体在平面一般 力系的作用下平衡时,可用三个独立的平衡方程 求解三个未知量。 二、平衡方程的其它形式
1.二力矩形式的平衡方程 ∑FX= 0 ∑MA (F ) = 0 ∑MB (F ) = 0 式中x轴不可与A、B两点的连线垂直。
FAx
FNCD = 30kN (↗)
∑MD (F ) = 0
FNCD
- FAy×0.6 + 14 ×0.3 = 0
14kN 8kN
300
300 100
A 30° D B
FAy
C
FAy = 7kN (↑)
∑MC (F ) = 0
- FAx×0.6/ 3- 14 ×0.3
- 8 ×0.6 = 0 FAx = - 25.98kN (←)
5 + FAy= 0
普通高等教育“十一五”国家级规划教材
3kN·m 6kN
3m
6
A
B
5
5
3m
可取∑MB (F ) = 0这一未用过的方程进行校核: 3 + 5×3 - 6×3 = 0
说明计算无误。
普通高等教育“十一五”国家级规划教材
例4-4 梁AB一端是固定端支座,另一端无
约束,这样的梁称为悬臂梁。它承受荷载作用如
普通高等教育“十一五”国家级规划教材
在使用三力矩式计算出结果后,可用另外两 个投影方程之一进行校核。可知计算无误。
例4-6 外伸梁受荷载如图所示。已知均布荷载 集度q=20kN/m,力偶的力偶矩M=38kN·m,集中 力FP=10kN。试求支座A、B的反力。
10kN 20kN/m 38kN·m
建筑力学 平面一般力系的平衡
Fcy F 2 sin 60 F ND 20 0.866 8.66 8.66kN
(2) 取梁AC为研究对象,受力图如图(c)
M
A
(F
)
0,
F1
2
F
' Cy
6
F
NB
4
0
F
NB
F1 2
F
' Cy
4
6
10 2
8.66 6 4
17.99kN()
F
x
0,
F
Ax
F
' Cx
0
F
Ax
F
' Cx
10kN()
(1) 取梁CD 为研究对象,受力图如图(b)
M C (F ) 0, F 2 sin 60 2 F ND 4 0
F
ND
sin
60
2
8.66 k N()
F x 0, Fcx F 2 cos60 0
Fcx F 2 cos60 20 0.5 10kN
F y 0, F cy F ND F 2 sin 60 0
F
y
0,
F
Ay
F
NB
F1
F
' Cy
0
F
Ay
F
NB
F1
F
' Cy
17.99
10
8.66
0.67k
N()
求解物体系统平衡问题的要领如下: (1) “拆”:将物体系统从相互联系的地方拆开,在拆开的地方用 相应的约束力代替约束对物体的作用。这样,就把物体系统分解为若 干个单个物体,单个物体受力简单,便于分析。 (2)“ 比”:比较系统的独立平衡方程个数和未知量个数,若彼此 相等,则可根据平衡方程求解出全部未知量。一般来说,由n 个物体 组成的系统,可以建立3n 个独立的平衡方程。 (3) “取”:根据已知条件和所求的未知量,选取研究对象。通常 可先由整体系统的平衡,求出某些待求的未知量,然后再根据需要适 当选取系统中的某些部分为研究对象,求出其余的未知量。 (4) 在各单个物体的受力图上,物体间相互作用的力一定要符合作 用与反作用关系。物体拆开处的作用与反作用关系,是顺次继续求解 未知力的“桥”。在一个物体上,可能某拆开处的相互作用力是未知 的,但求解之后,对与它在该处联系的另一物体就成为已知的了。可 见,作用与反作用关系在这里起“桥”的作用。 (5) 注意选择平衡方程的适当形式和选取适当的坐标轴及矩心,尽 可能做到在一个平衡方程中只含有一个未知量,并尽可能使计算简化。
平面一般力系的平衡方程的三种形式
平面一般力系的平衡方程的三种形式
平面一般力系的平衡方程有以下三种形式:
1. 矢量和式形式:若平面一般力系中作用力F1、F2、F3、...、Fn与参考点O的连线分别为r1、r2、r3、...、rn,且F1、F2、
F3、...、Fn的和为零,则平衡条件可以表示为F1 + F2 + F3 + ...
+ Fn = 0。
2. 分力和式形式:根据平面一般力系的平衡条件,可以将作用
在此力系上的力分解为水平分力和垂直分力。
平衡条件可以表示为水
平分力的和等于零,即∑Fx = 0;垂直分力的和等于零,即∑Fy = 0。
3. 正负向分式形式:根据平面一般力系的平衡条件,可以选择
合适的坐标系,将力的方向分为正向和负向。
若力Fi与坐标系确定的
正向相背离,则可表示为Fi > 0;若力Fi与坐标系确定的正向相同,则可表示为Fi < 0。
平衡条件可以表示为所有正向力的代数和等于所
有负向力的代数和,即ΣFi > 0 - ΣFi < 0 = 0。
以上是平面一般力系的平衡方程的三种形式。
5-2 平面一般力系的平衡
FL
11
答案:
m
FA y
A
F Ax
A
AB梁:
Q 1 qL 2
Fx 0
B
F Ax 0
Fy 0
F Ay Q 0
1 F Ay 2 qL
mA 0
mA
Q
L 3
0
mA
qL2 6
12
其他例题
P92-94例5-2,例5-3,例5-5 。
上一节 下一节 返回上级13菜单
梁的自重不计
求:A、B支座反力。 解:取简支梁AB为研究对象
Q
1 2
qc
L 2
3kN
AD 2 L L 2m 32 3
yQ F
F L/3 L
x
αF
mA 0
F B cos 300 L m Q AD 0
F B 1.54kN ( )
FX 0
α
F Ax F B sin 300 0
e G1
由(4)、(5)式 得:
G3
G1(b a
e)
6
A
B
FN A
b
FN B
由式(3)和(6)可得,起重机满载和空载均不致
翻倒时,平衡重的重量G3所应满足的条件为:
G2L G1e ab
G3
G1(b a
e)
8
例4.匀质刚杆ABC
θ
FA
P
θ θ
θ 2P
已知: BC=2AB=2L
mA 0
求:当刚杆ABC平衡时 BC与水平面的倾角θ? 解:取刚杆ABC为研究
2P
L
cos
L
cos(900
)
P
L 2
cos(900
平面一般力
平面一般力平面一般力系:平面一般力系:指的是力系中各力的作用线在同一平面内任意分布的力系称为平面一般力系。
又称为平面任意力系。
平面一般力系通常可以简化为一个力和一个力偶共同作用的情况。
平面一般力系的平衡条件是;平面一般力系中,所有各力在力系作用的平面内,两个互相垂直的坐标轴上投影的代数和分别等于零。
即平面一般力系平衡的充分必要条件:主矢量和主矩都为零。
其平衡方程为:ΣFx=0ΣFy=0ΣMo(F)=0即力系中所有各力在两个坐标轴中每一轴上的投影的代数和都等于零;力系中所有各力对于任一点的力矩的代数和等于零2.平衡方程的应用平衡方程虽然有三种形式,但不论采用哪种形式,都只能写出三个独立的平衡方程。
因此,应用平面一般力系的平衡方程,只能求解三个未知量。
应用平面一般力系平衡方程解题的步骤如下:①确定研究对象。
根据题意,取能反映出未知量和已知量关系的物体为研究对象。
②画受力图。
在研究对象上画出它受到的所有主动力和约束反力。
约束反力根据约束类型来画。
约束反力的方向未定时,一般可用两个相互垂直的分反力表示;当约束反力的指向未定时,必须先假设其指向。
如计算结果为正,则表示假设的指向正确;如果计算结果为负,则表示真实的指向与假设的相反。
③建立坐标系,列平衡方程。
选取适当的平衡方程形式、投影轴和矩心。
选取哪种形式的平衡方程,完全取决于计算的方便与否。
通常力求在一个平衡方程中只包含一个未知量,以免求解联立方程。
在应用投影方程时,投影轴应尽可能选取与较多的未知力的作用线垂直;应用力矩方程时,矩心应选取在两个未知力的交点。
计算力矩时,要善于运用合力矩定理,以便使计算简单。
④解平衡方程,求得未知量。
⑤校核。
列出非独立的平衡方程,以检查解题的正确与否。
平面力系的平衡方程及应用
各力的作用线都在同一平面内且 汇交于一点的力系。
正文
力在直角坐标轴上的投影
1
Fx=F·cosa ; Fy=F·sina = F ·cosb
说明: (1)力在坐标轴上的投影为代数量; (2)力的指向与坐标轴的正向一致时,力的投影为正值,否则为负。
正文
合力投影定理
推论1:力偶对刚体的作用与力偶在其作用面内的位置无关;
推论2:只要保持力偶矩的大小和力偶的转向不变,可以同时改变力偶中力的大小和力偶臂的长短,而不改变力偶对刚体的作用。
M
M
M
力偶表示方法
正文
思考:
力偶与力的异同
共同点:单位统一,符号规定统一。 差异点:1.力矩随矩心位置不同而变化;力 偶矩对物体作用效果与矩心选取无关。 2.力偶矩可以完全描述一个力偶;力对点之矩不能完全描述一个力。
′
F
M
单 手 攻 丝
正文
平面任意力系的简化
1
平面一般力系向平面内一点简化
F3
F1
F2
O
O
O
F
R′
MO
F
1′
M1
F1 =F1
′ M1=MO(F1)
F
2′
M2
F
3′
M3
F2 =F2
′ M2=MO(F2)
F3 =F3
′ M3=MO(F3)
简化中心
O
FR=F1+F2+F3= F1+F2+F3 MO=M1+M2+M3=MO(F1)+ MO(F2) + MO(F3)
正文
平面力偶系的合成与平衡
第3章力系的平衡条件与平衡方程
第3章 力系的平衡条件与平衡方程3.1 平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程如果一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。
力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都分别等于零,即 110()0i n R i n O O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式:11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或 00()0x y O F F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和分别等于零,以及各力对任一点的矩的代数和也等于零。
平面汇交力系:平面汇交力系对平面内任意一点的主矩都等于零,即恒满足()0O M F ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。
其中AB 为吊车大梁,BC为钢索,A 处为固定铰支座,B 处为铰链约束。
已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。
求:1、电动机处于任意位置时,钢索BC所受的力和支座A处的约束力;2、分析电动机处于什么位置时。
钢索受力最大,并确定其数值。
解:1、选择研究对象以大梁为研究对象,对其作受力分析,并建立图示坐标系。
建立平衡方程 取A 为矩心。
根据()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+由xF =∑cos 0Ax TB F F θ-=2()cos303()2Q P P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽量选在两个或多个未知力的交点上,这样建立的力矩平衡方程中将不包含这些未知力;坐标系中坐标轴取向应尽量与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数目。
平面一般力系平衡方程的其他形式
第九讲内容一、平面一般力系平衡方程的其他形式前面我们通过平面一般力系的平衡条件导出了平面一般力系平衡方程的基本形式,除了这种形式外,还可将平衡方程表示为二力矩形式及三力矩形式。
1.二力矩形式的平衡方程在力系作用面内任取两点A、B及X轴,如图4 —13所示,可以证明平面一般力系的平衡方程可改写成两个力矩方程和一个投影方程的形式,即X0M A 0 (4 —6)M B 0式中X轴不与A B两点的连线垂直。
证明:首先将平面一般力系向A点简化,一般可得到过A点的一个力和一个力偶。
若M A 0成立,则力系只能简化为通过A点的合力R或成平衡状态。
如果M B 0又成立,说明R必通过B。
可见合力R的作用线必为AB连线。
又因X 0成立,则R x X 0,即合力R在X轴上的投影为零,因AB连线不垂直X轴,合力R亦不垂直于X轴,由R X 0可推得R 0。
可见满足方程(4 - 6)的平面一般力系,若将其向A点简化,其主矩和主矢都等于零,从而力系必为平衡力系。
2.三力矩形式的平衡方程在力系作用面内任意取三个不在一直线上的点示,则力系的平衡方程可写为三个力矩方程形式,即M A 0M B 0M C 0式中,A B、C三点不在同一直线上。
A B C,如图4—14所4—7)同上面讨论一样,若M A 0和M B 0成立,则力系合成结果只能是通过A、B两点的一个力(图 4 —14)或者平衡。
如果M C 0也成立,则合力必然通过C点,而一个力不可能同时通过不在一直线上的三点,除非合力为零,M e 0才能成立。
因此,力系必然是平衡力系。
综上所述,平面一般力系共有三种不同形式的平衡方程,即式(4 - 5)、式(4 —6)、式(4—7),在解题时可以根据具体情况选取某一种形式。
无论采用哪种形式,都只能写出三个独立的平衡方程,求解三个未知数。
任何第四个方程都不是独立的,但可以利用这个方程来校核计算的结果。
【例4 —7】某屋架如图 4 —15 (a)所示,设左屋架及盖瓦共重P 3kN,右屋架受到风力及荷载作用,其合力P2 7kN , P2与BC夹角为80,试求A、B支座的反力。
平面力系的平衡方程
FBy 77.5kN
iy
F
解得
0 FAy FBy 2 P P 1P 2 0
FAy 72.5kN
解:取吊车梁,画受力图.
M
解得
D
0
8FE' 4P 1 2P 2 0
FE' 12.5kN
取右边刚架,画受力图. M C 0 6FBy 10FBx 4P FE 0 解得
M
A
0 MA M F 1 l F cos 60 l F sin 60 3l 0
解得: FAx 316.4kN FAy 300kN
MA 1188kN m
已知: P kN, P2 200kN, 尺寸如图; 1 700 求:(1)起重机满载和空载时不翻倒,平衡载重P3;
解得
FDB
3 2 ( 拉) P 8
求:
力偶矩M 的大小,轴承O处 的约束力,连杆AB受力,冲 头给导轨的侧压力。 取冲头B,画受力图. Fiy 0 F FB cos 0
解:
F
ix
0 FN FB sin 0
FN F tan FR l 2 R2
F Fl 解得: FB cos l 2 R2
三矩式
A, B, C
三个取矩点,不得共线
§3-2
平面平行力系的平衡方程
0 0 0 0 Fx 0 反例力偶 F F F 0 F 0 1 2 3 y Fx 0 F1 cos F2 cos F3 cos 0
取轮,画受力图:
F
ix
0
Fox FA sin 0
Fox
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.......................
装.............订..........
线
.....................
.
分配记
20 各力在x轴上的投影均为零,即∑Fx ≡0。
于是平面平行力系只有两独立的平衡方程,即
∑Fy=0
∑MO(F)=0
不难看出,平面平行力系的二矩式平衡方程为
∑MA(F) =0
∑MB(F) =0
其中A、B两点的连线不能与各力平行。
平面平行力系只有两个独立的方程,因而最多能解出两个未知量。
三.应用平面一般力系平衡方程的解题步骤如下:
(1)根据题意,选取适当的研究对象。
(2)受力分析并画受力图。
(3)选取坐标轴。
坐标轴应与较多的未知反力平行或垂直。
(4)列平衡方程,求解未知量。
列力矩方程时,通常选未知力较多的交点为矩心。
(5)校核结果。
应当注意:若由平衡方程解出的未知量为负,说明受力图上原假定的该未知量的方向与其实际方向相反。
而不要去改动受力图中原假设的方向。
例4-2已知F=15kN,M=3kN.m,求A、B处支座反力。
解(1)画受力图,并建坐标系
(2)列方程求解
图4-8
分配记
20 例4-3如图3-9所示外伸梁上作用有集中力FC=20kN,力偶矩M=
10kN.m ,载荷集度为q=10kN/m的均布载荷。
求支座A、B处的反力。
图4-9
解取水平梁AB为研究对象, 画受力图如图4-9(b)所示。
列平衡方程并求解
分配记
结果均为正,说明图示方向与实际方向一致。
例3-4塔式起重机如图4-10所示。
设机架自重为G,重心在C点,与右轨
距离为e,载重W,吊臂最远端距右轨为l,平衡锤重Q,离左轨的距离为a,
轨距为b。
试求塔式起重机在满载和空载时都不致翻倒的平衡锤重量的范围。
图4-10
解取塔式起重机为研究对象,作用在起重机上的力有重物W、机架重G、
平衡锤的重力Q及钢轨的约束反力NA和NB,这些力构成了平面平行力系,
起重机在该平面平行力系作用下平衡。
(1)满载时W=Wmax,Q=Qmin,机架可能绕B点右翻,在临界平
衡状态,A处悬空,NA=0,受力图如图3-10b所示。
则
分配记
(2)空载时W=0,Q=Qmax,机架可能绕A点左翻,在临界平衡状
态,B处悬空,NB=0,受力图如图3-10c所示。
则
故平衡锤的范围应满足不等式
例4-5一简易起重机如图4-11所示。
横梁AB的A端为固定铰支座,B端
用拉杆BC与立柱相连。
已知梁的重力G1=4kN,载荷G2=12kN,横梁长L
=6m,α=30°,求当载荷距A端距离x=4m时,拉杆BC的受力和铰支座A
的约束反力。
图4-11
分配记解取横梁AB为研究对象,画受力图如图4-11(b)所示。
列平衡方程并求解
小结对于平面任意力系的三种形式的方程组,都可以求解平面任意力系的平衡问题。
但对于单个刚体来说,只能列出三个独立的方程,求解三个未知量。
在具体解题时,要通过合理选取矩心和投影轴,合理的选用方程组的形式,尽量避免联立解方程组的麻烦。
另外,平面平行力系是平面任意力系的一种特殊情形。
复习思考题、作业题1、思考平面汇交力系的平衡方程中,可否取两个力矩方程,或
一个力矩方程和一个投影方程?这时,其矩心和投影轴的选择有什么限制?
2、课本习题4-7、4-6。
下次课预习要点物体系的平衡
静定和超静定问题。