数列求和的常用方法(三课时)

合集下载

数列求和的几种方法的课件

数列求和的几种方法的课件

x 0 x 1 x 1
探究:求和方法
探究一:等差、等比数列求和公式 是用何种方法推导出来的?
倒序相加法
错位相减法
求和方法二:倒加序相
3 、已知对x R,有f x +f 1 x =1成立,则 例 1 f 0 f 0.2 f 0.4 f 0.6 f 0.8 f 1 ___
1 (2)S f 2011 2 f 2011 2010 f 2011
课前检测
1.S 1 3 5 (2n 1) (n 1)
2.S 2 2 2 2 2
2 3 n n 1
2
2
n 2
3.Sn 1 x x x x
2 3 n
Sn
1, n, 1 x n 1 x
求和方法五:分组求和
例4:求数列 n 2

n

的前n项和。
答案:
n(n 1) n 1 2 2 2
求和方法五:分组求和
练习 .S 1 2 2 3 n (n 1) n( n 1)(n 2)
3
总结:
常见求和方法 直接求和 (公式法) 倒序相加法 错位相减法 裂项相消法 适用范围及方法 等差、或等比数列用求和公 式,常数列直接运算。 类比等差数列的求和方法。 数列{ anbn}的求和,其中{an}是 等差数列,{bn}是等比数列。 数列{k/f(n)g(n)}的求和,其中 f(n),g(n)是一次函数的形式。 把通项分解成几项,从而出现 几个等差数列或等比数列进行 求和,如 {an+bn}。
数列求和
高一数学备课组

高中数学 数列求和的常用方法(三课时)教案 新人教A版必修5 教案

高中数学 数列求和的常用方法(三课时)教案 新人教A版必修5 教案

数列求和的常用方法(三课时)数列求和是数列的重要内容之一,也是高考数学的重点考查对象。

数列求和的基本思路是,抓通项,找规律,套方法。

下面介绍数列求和的几种常用方法: 一、直接(或转化)由等差、等比数列的求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n例1(07高考山东文18)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +==,,,,求数列{}n b 的前n 项和T .解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=⎧⎪⎨+++=⎪⎩,解得22a =.设数列{}n a 的公比为q ,由22a =,可得1322a a q q==,. 又37S =,可知2227q q++=,即22520q q -+=, 解得12122q q ==,.由题意得12q q >∴=,. 11a ∴=.故数列{}n a 的通项为12n n a -=.(2)由于31ln 12n n b a n +==,,,,由(1)得3312nn a +=3ln 23ln 2n n b n ∴==, 又13ln 2n n n b b +-={}n b ∴是等差数列.12n n T b b b ∴=+++1()2(3ln 23ln 2)23(1)ln 2.2n n b b n n n +=+=+=故3(1)ln 22n n n T +=.练习:设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法设数列{}n a 的等比数列,数列{}n b 是等差数列,则数列{}n n b a 的前n 项和n S 求解,均可用错位相减法。

数列求和的8种常用方法

数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中非常常见的问题,它的解法有很多种。

下面我将介绍8种常用的方法来求解数列的和,让我们一起来看看吧。

一、等差数列求和公式对于等差数列$a_n=a_1+(n-1)d$,其中$a_n$表示第n个数,$a_1$表示第一个数,d表示公差,我们可以利用等差数列求和公式求解:$S = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。

二、等比数列求和公式对于等比数列$a_n = a_1 \cdot q^{(n-1)}$,其中$a_n$表示第n个数,$a_1$表示第一个数,q表示公比,我们可以利用等比数列求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1或者当q=1时,$S=a_1n$其中S表示数列的和,n表示数列的项数。

三、几何级数求和公式对于几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_1$表示第一个数,q表示公比,我们可以利用几何级数求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1四、等差数列-等比数列混合求和公式对于等差数列-等比数列混合数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用等差数列-等比数列混合求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1} + \frac{n(n-1)d}{2}q^{(n-2)}$,其中q≠1五、反比例数列求和公式对于反比例数列$s_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$,其中$a_1$表示第一个数,我们可以利用反比例数列求和公式求解:$S = \frac{n}{a_1}$六、算术-几何级数求和公式对于算术-几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差$S = \frac{a_1}{1-q} + \frac{d}{(1-q)^2}$,其中q≠1七、差分数列求和公式对于差分数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1+ (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用差分数列求和公式求解:$S = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。

专题十一数列求和的常用方法

专题十一数列求和的常用方法

专题十一 数列求和的常用方法一、公式法①等差数列求和公式;②等比数列求和公式;③常用公式:)1(211+==∑=n n k S nk n ,)12)(1(6112++==∑=n n n k S nk n ,213)]1(21[+==∑=n n k S nk n二、.并项求和法:将数列的相邻的两项(或若干项)并成一项(或一组)得到一个新的且更容易求和的数列.三、分组求和法:将数列分成可以求和的几组。

四.裂项相消法:将数列的每一项拆(裂开)成两项之差,使得正负项能互相抵消,剩下首尾若干项. ①111(1)1n n n n =-++ ②1111(k)k k n n n n =-++()③1111[](1)(2)2(1)(1)(2)n n n n n n n =--++++;④n n n n a n -+=++=111五.错位相减法:若}{n a 是等差数列,{n b }是等比数列,则数列{n n b a ⋅}的求和运用错位求和方法,这是仿照推导等比数列前n 项和公式的方法.六.倒序相加法:将一个数列的倒数第k 项(k =1,2,3,…,n )变为顺数第k 项,然后将得到的新数列与原数列相加,这是仿照推导等差数列前n 项和公式的方法. 七、通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。

【课前热身】1、数列2, ,21,,814,413,2121-+n n 的前n 项之和为n n n+112122⎡⎤+-⎢⎥⎣⎦()() 2、设5033171,)1(4321S S S n S n n ++⋅-++-+-=-则 = 1 ;3、数列1,(1+2),(1+2+22),…,(1+2+22+…+n-12),…的前n 项和等于n+12-2-n4、 已知数列{n a }的通项公式是n n n a n 则前,6512++=项和为n3n 3+() 典型例题:例1、(1)求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值(2)求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 解:(1)设S n =89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++则S n =22222sin 89sin 88sin 87sin 2sin 1+++⋅⋅⋅++ ∴2S n =89,故S n =892(2)设T n =01n-13(21)(21)nn n n n C C n C n C ++⋅⋅⋅+-++,则T n =n-110(21)(21)3n n n n n n C n C C C ++-+⋅⋅⋅++∴2T n =01n-1n(22)n n n n n C C C C ⎡⎤+++⋅⋅⋅++⎣⎦=n(22)2n +⋅ ∴nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++注:本例是运用倒序相加法求和。

数列求和常用方法(含答案)

数列求和常用方法(含答案)

数列专题 数列求和常用方法一、公式法例1在数列{a n }中,2a n =a n -1+a n +1(n ≥2),且a 2=10,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值.解: (1)因为2a n =a n -1+a n +1(n ≥2),所以a n +1-a n =a n -a n -1(n ≥2),所以数列{a n }为等差数列,设首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 2=a 1+d =10,a 5=a 1+4d =-5,解得⎩⎪⎨⎪⎧a 1=15,d =-5, 所以a n =a 1+(n -1)d =15-5(n -1)=-5n +20.(2)由(1)可知S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-52n 2+352n ,因为对称轴n =72, 所以当n =3或4时,S n 取得最大值为S 3=S 4=30. 跟踪练习1、已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3.所以b 2n -1=b 1q 2n -2=3n -1.则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.二、分组转化法例2、已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n ={b n −n 2,n 为偶数2a n,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d ,由题意得,⎩⎪⎨⎪⎧5a 1+10d =20,(a 1+2d )2=(a 1+d )(a 1+4d ),化简得⎩⎪⎨⎪⎧a 1+2d =4,a 1d =0, 因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *, 因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n ={b n −n 2,n 为偶数2a n ,n 为奇数=⎩⎪⎨⎪⎧n ,n 为偶数,4n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2) =n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).跟踪练习1、已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49. (1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7, 故公差d =a 4-a 3=7-5=2, 故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1, T n =21+1+23+3+…+22n -1+2n -1 =21+23+…+22n -1+(1+3+…+2n -1) =21-22n +11-4+n (1+2n -1)2=22n +13+n 2-23.易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000, 故T n ≥1 000,解得n ≥6,n ∈N *.三、并项求和法例3、已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25. (1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5, 又a 5=9=a 1+4d ,所以d =2,a 1=1, 所以a n =2n -1,S n =n (1+2n -1)2=n 2.(2)结合(1)知b n =(-1)n n 2,当n 为偶数时, T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)] =1+2+3+…+n =n (n +1)2.当n 为奇数时,n -1为偶数, T n =T n -1+(-1)n·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2.四、裂项相消法例4、已知数列{a n }的前n 项和为S n ,且2S n =3a n -3(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =1log 3a n ·log 3a n +1,求数列{b n }的前n 项和T n .解:(1)当n =1时,2a 1=3a 1-3,解得a 1=3;当n ≥2时,2a n =2S n -2S n -1=3a n -3-3a n -1+3=3a n -3a n -1,得a n =3a n -1, 因为a n ≠0,所以a na n -1=3,因为a 1=3, 所以数列{a n }是以3为首项,3为公比的等比数列,所以a n =3n . (2)因为log 3a n =log 33n =n ,所以b n =1log 3a n ·log 3a n +1=1n (n +1)=1n -1n +1,所以数列{b n }的前n 项和T n =⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1. 跟踪练习1、已知数列{a n }的前n 项和为S n ,S n =2a n -1,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{a n }和{b n }的通项公式;(2)若c n =1b n b n +1,记数列{c n }的前n 项和为T n ,证明:3T n <1.解: (1)由S n =2a n -1,可得n =1时,a 1=2a 1-1,解得a 1=1;n ≥2时,S n -1=2a n -1-1,又S n =2a n -1,两式相减可得a n =S n -S n -1=2a n -1-2a n -1+1,即有a n =2a n -1,所以数列{a n }是首项为1,公比为2的等比数列,所以a n =2n -1.设等差数列{b n }的公差为d ,且b 1=a 1=1,b 6=a 5=16,可得d =b 6-b 16-1=3,所以b n =1+3(n -1)=3n -2.(2)证明:c n =1b n b n +1=1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,所以T n =13⎝ ⎛⎭⎪⎫1-14+14-17+17-110+…+13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1<13,则3T n <1.2、设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =1a n -1,求数列{b n }的前n 项和S n .解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *,所以a n +1+a n -2a n +1a n =4,即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列, 所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列, 所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.3、已知数列{a n }满足:a 1=2,a n +1=a n +2n . (1)求{a n }的通项公式; (2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n . 解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n .又a 1=2,也满足上式,故a n =2n . (2)由(1)可知,b n =log 2a n =n , 1b n b n +1=1n (n +1)=1n -1n +1,T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1,故T n =nn +1.五、错位相减法例5、在数列{a n }中,a 1=1,a n +1=a n -2a n a n +1. (1)求{a n }的通项公式;(2)若b n =3na n ,求数列{b n }的前n 项和S n .解:(1)∵a 1=1,a n +1=a n -2a n a n +1,∴a n ≠0,∴1a n =1a n +1-2⇒1a n +1-1a n =2,又∵1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列, ∴1a n =1+2(n -1)=2n -1,∴a n =12n -1(n ∈N *). (2)由(1)知:b n =(2n -1)×3n ,∴S n =1×3+3×32+5×33+7×34+…+(2n -1)×3n , 3S n =1×32+3×33+5×34+7×35+…+(2n -1)×3n +1,两式相减得-2S n =3+2×32+2×33+2×34+…+2×3n -(2n -1)×3n +1 =3+2(32+33+34+…+3n )-(2n -1)×3n +1 =3+2×32(1-3n -1)1-3-(2n -1)×3n +1=3+3n +1-9-(2n -1)×3n +1=2(1-n )×3n +1-6 ∴S n =(n -1)×3n +1+3. 跟踪练习1、已知数列{a n }满足:a 1=1,a n +1=2a n +n -1.(1)证明:数列{a n +n }是等比数列并求数列{a n }的前n 项和S n ; (2)设b n =(2n -1)·(a n +n ),求数列{b n }的前n 项和T n .解: (1)因为a n +1=2a n +n -1,所以a n +1+(n +1)=2a n +2n ,即a n +1+(n +1)a n +n=2,又a 1+1=2,所以数列{a n +n }是以2为首项2为公比的等比数列, 则a n +n =2·2n -1=2n ,故a n =2n -n ,所以S n =(2+22+…+2n )-(1+2+…+n )=2·(1-2n )1-2-n (1+n )2=2n +1-2-n (1+n )2.(2)由(1)得,b n =(2n -1)·(a n +n )=(2n -1)·2n , 则T n =2+3×22+5×23+…+(2n -1)·2n ,①2T n =22+3×23+5×24+…+(2n -3)·2n +(2n -1)·2n +1,②①-②得-T n =2+2×22+2×23+…+2×2n -(2n -1)·2n +1=2×(2+22+…+2n )-2-(2n -1)·2n +1=-(2n -3)·2n +1-6,所以T n =(2n -3)·2n +1+6.2、已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式; (2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2, 两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2, 即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1), 则数列{a n -1}是首项为1,公比为3的等比数列, 则a n -1=3n -1,故a n =1+3n -1. (2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1), 设M n =1·30+2·31+3·32+…+n ·3n -1, 3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n =1-3n1-3-n ·3n , 化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.3、设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和. 解 (1)设{a n }的公比为q , ∵a 1为a 2,a 3的等差中项, ∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0, ∴q 2+q -2=0, ∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n , a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n =1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n3,∴S n =1-(1+3n )(-2)n9,n ∈N *.4、设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式; (2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5, a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1. (2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,①2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1 =6+2×22×(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2, 即S n =(2n -1)·2n +1+2.5、已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2. (1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2 022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2, 得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1, 即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1. 当n =1时,a 22=2a 1+2=4, ∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n . (2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n , 2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1, 两式相减得-T n =2·(1-2n )1-2-n ·2n +1=(1-n )2n +1-2, ∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0, ∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022, 当n =8时,T 8=7×29+2=3 586>2 022, ∴使T n >2 022的最小的正整数n 的值为8.6、已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34.当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9,解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×⎝⎛⎭⎫34n -1=-3n+14n .(2)因为3b n +(n -4)a n =0, 所以b n =(n -4)×⎝⎛⎭⎫34n.所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3. 所以-3≤λ≤1.。

数列求和的常用方法

数列求和的常用方法

数列求和的常用方法一、公式法1、 差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn例1、设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +==,,,,求数列{}n b 的前n 项和T .二、倒序相加法若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).例2、设函数222)(+=x x x f 的图象上有两点P 1(x 1, y 1)、P 2(x 2, y 2),若)(2121OP OP +=且点P 的横坐标为21. (I )求证:P 点的纵坐标为定值,并求出这个定值;(II )若;求,),()3()2()1(*n n S N n nn f nf nf nf S ∈+⋯+++=三、裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:(1)n n n n -+=++111(2)111=- (3)])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n若数列}{n a 为等差数列,0≠n a ,公差0≠d ,)11(11,11111111++++++-=∴=-=-n n n n n n n n n n n n a a d a a a a d a a a a a a则数列}1{1+n n a a 的前n 项和)11(1)11(1)11(113221+-++-+-=n n n a a d a a d a a d S111111111)11(1++++=-⋅=-=n n n n a a na a a a d a a d 。

数列求和的8种常用方法

数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中常见的问题,解决数列求和问题有很多方法。

下面将介绍数列求和的8种常用方法。

1.直接相加法:这是最基本的方法,实际上就是将数列中的所有项相加。

例如,对于等差数列1,3,5,7,9,可以直接相加得到1+3+5+7+9=252.偶数项和与奇数项和之和法:对于一些数列,可以将其分解为偶数项和与奇数项和,然后再求和。

例如,对于等差数列1,3,5,7,9,可以分解为偶数项和4+8和奇数项和1+3+5+7+9,再相加得到(4+8)+(1+3+5+7+9)=373.首项与末项和的乘法法:对于等差数列,可以利用首项与末项之和的公式来求和。

首项与末项之和等于和的平均数乘以项数。

例如,对于等差数列1,3,5,7,9,首项与末项之和等于(1+9)*(项数/2)=10*5/2=254.首项与公差与项数的乘法法:对于等差数列,可以利用首项、公差和项数的乘积来求和。

等差数列的和等于首项乘以项数,再加上项数与公差之积的和。

例如,对于等差数列1,3,5,7,9,和等于1*5+(5*4)/2=10+10=20。

5.平均数法:对于一些特殊的数列,可以利用平均数的性质来求和。

平均数等于数列中的第一项与最后一项的平均值。

例如,对于等差数列1,3,5,7,9,平均数等于(1+9)/2=5,然后将平均数乘以项数,得到5*5=256.高斯求和法:高斯求和法是一种数学推导方法,用于求等差数列的和。

首先将数列化为由首项和末项构成的和,然后将数列顺序颠倒,再将之前的和与颠倒后的和相加,得到的结果就是等差数列的和。

例如,对于等差数列1,3,5,7,9,将其化为(1+9)+(3+7)+5,然后将数列颠倒得到5+(7+3)+9,再相加得到257. telescopage法(消去法):telescopage法是一种利用抵消的思想来求和的方法。

可以将数列中相邻的两项之差相消为0,最终得到一个简单的表达式,然后再求值。

例如,对于数列1, 2, 3, 4, 5,可以将(2-1) + (3-2) + (4-3) + (5-4)相加,得到1 + 1 + 1 + 1 = 48.更一般的求和方法:对于一些复杂的数列,可能需要应用更一般的数学方法来求解。

数列求和的若干常用方法

数列求和的若干常用方法

数 列 求 和 的 常 用 方 法湖南省桑植县第一中学 涂可顺数列求和是数列的重要内容之一,也是高考数学的重点考查对象。

除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.如某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法等。

本文就此总结如下,供参考。

一、 分组求和法所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。

例1. 求下面数列的前n 项和,231,,71,41,1112-++++-n aaa n 解:前n 项和为)131()71()41()11(12-++++++++=-n aaa S n n)]23(741[)1111(12-++++++++=-n aaan设1211111-++++=n aaa S当1=a 时,;1n S =当1≠a 时111---=n nnaa a S2)13()23(7412nn n S -=-++++=;2)13(2)13(121nn nn n S S S a n +=-+=+==∴时,当当1≠a 时,2)13(11nn aa a S n nnn -+--=-注意:当1=a 的情况。

二、裂项求和法这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.例2. 等差数列}{n a 各项均为正整数,,31=a 前n 项和为n S ,等比数列}{n b 中,,11=b 6422=S b ,}{n b 是公比为64的等比数列(1) 求n a 与n b (2) 求数列}1{ns 的前n 项和解:设}{n a 的公差为d ,}{n b 的公比为q ,则d 为正整数1,)1(3-=-+=∴n n n qb d n a 由题意有61)1(3132641====--+-++dd n nd a a qqq b b nn64)6(22=+=q d b S 8,2==∴q d 故18,12-=+=n n n b n a (2))2()12(53+=++++=n n n S n )2(21)1(2143)2115131311(21)2(153131111121+-+-=+-++-+-=+++⨯+⨯=+++∴n n n n n n s s s n点评:(1)通项分解(裂项)形如))((1B n A n a n ++=)(B A <我们总是可以先把它写成)11(Bn An P a n +-+=的形式,在然后求出P 的值,若n 的系数不同可先等价变成相同的系数之后再裂开(2)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n 等。

数列求和常见法

数列求和常见法

数列求和常见法数列求和常见法数列是高中代数的重要内容,数列求和是数列的重要内容之一。

数列求和是对按照一定规律排列的数进行求和。

除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。

常见的方法有公式法、错位相减法、倒序相加法、分解分组法、裂项法、通项化归、并项求和等等。

1. 公式法:适用题型:直接是等差数列或是等比数列形式的可以直接利用公式求和sn= 2)(1a a n n + = na1+2)1(dn n - sn=na 1(q=1) Sn=qq a n--1)1(1 (q ≠1)例如:已知数列﹛an﹜满足a1=23,a a n n n 113--+=(n ≥2),求数列的前n 项和。

解:11=a 3112=-a a 3223=-a a (31)1--=-n n n a a 所有等式的左边与左边相加等于右式与右式相加(叠加法)得a n=23n,所以﹛an﹜是以23为首项,以3为公比的等比数列,直接应用公式31)1(233--=n n s 4331-=+n 注意:有些题目需要经过转化才能利用公式。

2.错位相减法(倍差法)适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式,如 {an}、{}b n分别是等差数列和等比数列. 则s n= b a b a b a nn++2211例如:13-=n a n2nn b =c n=a nb n求c n的前n 项和Tn。

解:T n= 2×21+5×2+8×23+………(3n-1)×2n (1)2Tn= 2×22+5×23+………(3n -4) ×2n+(3n-1)21+n (2)(1)-(2)得-Tn= 2×21+ 3×22+3×3+…………3×2n-(3n-1)21+n 从第二项起到倒数第二项这(n-1)项正好是以2为公比的等比数列,共n-1项可以利用公式化简即-Tn=2×21+3×21)1(421--?-n -(3n-1)21+n整理,得Tn=8+(3n-4)21+n .注意:在错位相减后要数准形成的等比数列的项数。

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)

求数列前n 项和的8种常用方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+⋅,即前n 项和为中间项乘以项数。

这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,()111nn a q S q-=-,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+;(2)21nk k ==∑222211631123(1)(21)()(1)2n n n n n n n ++++=++==++;(3)31nk k ==∑33332(1)2123[]n n n +++++=;(4)1(21)nk k =-=∑2135(21)n n ++++-=.例1 已知3log 1log 23-=x ,求23n x x x x ++++的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 23n n S x x x x =++++=xx x n--1)1(=211)211(21--n =1-n 21例2 设123n S n =++++,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n n S n S n f =64342++n n n=n n 64341++=50)8(12+-n n 501≤∴ 当 88-n ,即8n =时,501)(max =n f .二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。

数列求和的常用方法

数列求和的常用方法

数列求和的常用方法一、公式法1、当{}n a 时等差数列时,()()1112n n n a a S na n d +==+-当{}n a 时等比数列时,()11,11,11n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩(在求等比数列的前n 相和的时候一定要注意讨论q 的情况)。

2、常用的数列求和()()222121126n n n n +++++=,()23331122n n n +⎛⎫+++= ⎪⎝⎭二、错位相减法——差比数列这是推导等比数列的前n 项和公式时所用的方法,这种方法主要用于数列{}n b a b 的前n 项和,其中{}n a 是公差不为0的等差数列,{}n b 是公比不为1的等比数列。

操作方法:1122n n n S a b a b a b =+++ ……(1) 对(1)式两边同时乘以等比数列的公比q 得1122n n n qS a b q a b q a b q =+++ 12231n n n n a b a b a b a b q -=++++ (2)(1)-(2)得()()1121n n n n q S a b d b b a b q -=+++- = ()121111n n n b q a b da b q q--=+--,将上式两边同时除以()1q -即可求出n S 。

例1数列{}n a 的通项为21n a n =-,{}n b 的通项为12n nb =,n n nc a b =,求n c 的前n 项和n S 例2 22nn S x x nx =+++ (0x ≠) 三、分组求和若数列{}n a 可转化为n n n a b c =+的形式,并且{}n b ,{}n c 可求和b S ,c S 那么a b c S S S =+。

对形如nn a An Bq C =++和n nn a Ap Bq C =++均可用分组求和。

例1 21n n n a x x ⎛⎫=+ ⎪⎝⎭,求前n 项和n S例2 235nn a -=-⨯,求前n 项和n S四、裂项相消法裂项相消的关键是将数列的每一项分成二项或多项,使数列中的项出现有规律的抵消进而达到求和的目的若数列n a 可拆分成某数列相邻两项之差的形式即1n n n a b b +=-或1n n n a b b -=-则可用裂项相消法求和例1 n a 是公差为d (0d ≠)的等差数列,11n n n b a a +=,求n b 的前n 和n S 例2 210nn a -=, ()13lg n n b n a =-,求n b 的前n 和n S*常见的裂项公式(1)()11111n n n n =-++ (2) ()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭(3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭(4)()11a b a ba b =--+(5) ()()()()()1111122112n n n n n n n ⎛⎫=- ⎪ ⎪+++++⎝⎭五、并相求和一个数列的前n 项和中可以两两结合求解则称之为并项求和 形如()()1nn a f n =-的可以采用两项合并求和例2222210099989721n S =-+-++- ()()()2222210099989721=-+-++-10099989721=++++++ =5050六、倒序相加法将一个数列倒过来写与原数列相加时,若有公因式可提并且剩余的项的和易求出,则这样的数列可用倒序相加法。

数列求和7种方法

数列求和7种方法

数列求和7种方法一、求等差数列的和:等差数列的通项公式为 an = a1 + (n-1)d ,其中an 表示第 n 个数,a1 表示首项,d 表示公差,n 表示项数。

1.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。

例如:已知等差数列的首项 a1 = 2,公差 d = 3,项数 n = 5,求和公式为 S = (a1 + an) * n / 2 = (2 + 2 + 4 * 3) * 5 / 2 = 35 2.公式法:利用等差数列的求和公式:S = (a1 + an) * n / 2例如:已知等差数列的首项a1=2,公差d=3,项数n=5,代入公式即可得到结果。

3.递推法:利用数列的递推关系a(n)=a(n-1)+d,可得到递归式,通过递归累加求和。

例如:已知等差数列的首项a1=2,公差d=3,项数n=5,则S(n)=S(n-1)+(a(n-1)+d)=S(n-1)+a(n-1)+d。

二、求等比数列的和:等比数列的通项公式为 an = a1 * q^(n-1),其中an 表示第 n 个数,a1 表示首项,q 表示公比,n 表示项数。

4.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。

例如:已知等比数列的首项a1=2,公比q=3,项数n=5,求和公式为S=(a1*(q^n-1))/(q-1)=(2*(3^5-1))/(3-1)=2425.公式法:利用等比数列的求和公式:S=(a1*(q^n-1))/(q-1)。

例如:已知等比数列的首项a1=2,公比q=3,项数n=5,代入公式即可得到结果。

6.迭代法:利用数列的递推关系a(n)=a(n-1)*q,可得到递归式,通过递归累加求和。

例如:已知等比数列的首项a1=2,公比q=3,项数n=5,则S(n)=S(n-1)+a(n-1)*q=S(n-1)+a(n-1)*q。

三、其他数列的求和方法:7.利用数列的递归关系:对于一些特殊的数列,可能没有通项公式,但可以根据数列的递归关系利用递归求和。

数列求和的常用方法

数列求和的常用方法

数列求和的常用方法1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求 和。

例:求数列n {223}n +-的前n 项和n S .2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列)即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。

例:若数列{}n a 的通项n n n a 3)12(⋅-=,求此数列的前n 项和n S3.裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。

适用于数列11n n a a +⎧⎫⎨⎬⋅⎩⎭和⎧⎫(其中{}n a 等差)。

可裂项为:111111()n n nn a a d a a ++=-⋅1d=-例:求和:S=1+n++++++++++ 321132112114.倒序相加法:n n n a a a a S ++++=-121121a a a a S n n n ++++=- 把这两个式子相加: ()()()11212a a a a a a S n n n n ++++++=- 例:设221)(xxx f +=,求:⑴)4()3()2()()()(213141f f f f f f +++++; ⑵).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++数列求和练习题:1. 求和12321-++++n nx x x (0≠x )2. 求和)12)(12(1751531311+-++⨯+⨯+⨯n n3. 求和n n +++++++++113212311214. 数列,1614,813,412,211的前n 项和5. 已知数列}{n a 的前n 项和12-=n n S ,则22221na a a ++6.等比数列}{n a 同时满足下列条件:①3361=+a a ,②3243=a a ,③三个数432,2,4a a a 依次成等差数列.(1)求数列}{n a 的通项公式; (2)记nn a n b =,求数列}{n b 的前n 项和T n .7.等差数列}{n a 各项均为正整数,31=a ,前n 项和为n S ,在等比数列}{n b 中,11=b 且6422=S b ,公比为8。

求数列的前n项和常用方法

求数列的前n项和常用方法

数列求和的常用方法1. 公式法:①等差数列求和公式;②等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与 1的关系,必要时需分类讨论1 2 3 ||| n u^n" 1),12 22 川 n 2 二丄n(n 1)(2n 1),13 23 33 n 3 珂 2 6练一练:等比数列{a n }的前n 项和s 匸2"—1,则a ;十…+ a ; = __________ ; 2. 分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和11 1例2、 求数列的前n 项和:1 1, 4,-y • 7,…,• 一• 3n -2,…a a a n练一练:求和:S n 1 ・3-5 7 -||( ■ (-1)n (2n -1) 3. 倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序 相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).2 ' 2 ' 2 ' 2 ' 2 “ 例 3、求 sin 1 sin 2 sin 3飞in 88 sin 89 的值 2 x练一练:已知f (x) 2 ,1 +x11 1 则 f(1) f(2) f(3) f(4) f(;) f (:) f (;)=23 4 4. 错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成, 法(这也是等比数列前 n 和公式的推导方法). 例 4、求和:S n =1 3x 5x 2 7x 3 (2n -1)x n° 例5、求数列2, $, 2,…;2^,…前n 项的和. 2 2 2 2n练一练:设{a n }为等比数列,T n =na 1 • (n -1底• III - 2a n - a n ,已知X =1 , T^4,①求数列{a n }的首项和公 比;②求数列{T n }的通项公式.;5. 裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求 和.常用裂项形式有:① 11 J :②一1 n(n 1) n n 11 1 1 ③丄:::一^ =1 k2 k 2 -1 2 'k -1 k 11111k 1 (k 1)k k 2(k -1)k k -1 1 1r 1 1[ ;(n 1)! n! (n 1)! 例 1、已知 log 3 x =;—,求 x x 2 x 3 log 2 3 • • • x n •…的前n 项和..;③常用公式: n(n 1),2 —2].那么常选用错位相减九); n(n k) 1 [一 n(n 1)(n 2)2 n(n 1) (n 1)(n 2) n 1 1⑥ 2(.n~?—,n):—2:: 1::2=2(韦一.百).V n1 , ,例6、求数列------ , ---- ,…,——,■■的前n项和.1 +V2 +V3 €n+%'n+11 2 n 2例7、在数列{a n}中,a n ,又b n ,求数列{b n}的前n项的和.n +1 n +1 n 十1 a n a n出(1)求和:1 1---- + ---- +||| +---------------- =1 4 4 7 (3n _2) (3n 1)1{a n}中,a n : ----------------- ,且Sn=9,贝y n=J n Z n +16■通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。

解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。

本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。

尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。

二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$1,3,5,7,9$ 的和。

分析:此数列的首项为1,公差为2,总共有5项。

解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。

2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$2,4,8,16,32$ 的和。

分析:此数列的首项为2,公比为2,总共有5项。

解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。

3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。

分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。

数列求和的8种方法

数列求和的8种方法

数列求和的8种方法数列求和是数学中一个很重要的概念,常常在数学课上出现,也被广泛应用于其他学科中。

本文将为您介绍数列求和的8种常用方法。

一、公式法公式法是数列求和中最常用的一种方法。

当数列具有规律性时,可以通过观察数列的特点和规律,得出数列求和的公式。

例如,等差数列的求和公式为Sn = (a1 + an) × n / 2,其中a1为首项,an为尾项,n为项数。

二、差累加法差累加法是一种通过累加差值来求和的方法。

将一个数列中的每一项与其前一项的差相加,即可得到数列的和。

例如,斐波那契数列的差累加法求和公式为Sn=Fn+2-1三、奇偶分拆法奇偶分拆法是一种将数列分为奇数项和偶数项两个数列的方法。

通过将原数列中的项按照奇偶分类,并分别求和,然后将奇数部分和偶数部分的和相加,即可得到原数列的和。

这种方法特别适用于等差数列或等比数列求和。

四、数形结合法数形结合法是通过图形化数列来求和的方法。

将数列用图形的形式展现出来,然后通过计算图形的面积、周长或者中点之间的连线长度等等,来求得数列的和。

这种方法特别适用于几何数列或者满足其中一种几何规律的数列。

五、递推关系法递推关系法是通过递推关系来求和的方法。

数列中的每一项可以通过前面一项或者多项之间的关系得到,因此可以通过递推关系来直接求得数列的和。

例如,斐波那契数列的递推关系是Fn=Fn-1+Fn-2,可以利用这个关系式求得数列的和。

六、数列分解法数列分解法是通过将数列分解成其他数列的和来求和的方法。

通过将数列拆分成两个或多个数列,然后分别求得每个数列的和,并将它们相加,即可得到原数列的和。

这种方法适用于数列可以被分解成多个简单数列的情况。

七、夹逼定理法夹逼定理法是一种通过构造相等的两个或多个数列来求和的方法。

通过找到与原数列相等的其他数列,然后求得这些数列的和,并将它们相加,就可以求得原数列的和。

这种方法特别适用于数列无法通过常规的方法求和的情况。

八、换元法换元法是一种通过将数列中的索引进行变换,来求得数列的和的方法。

数列求和的常用方法

数列求和的常用方法

一.数列求和的常用方法:1. 公式法(1) 直接用等差、等比数列求和公式等差数列的求和公式为 11()(1)22n n n a a n n S na d +-==+ 等比数列的求和公式为 1q 1n S na ==当时,11(1)q 111n n n a a q a q S q q--≠==--当时, (2) 掌握一些常用的数列的前n 项和 ①2)1(.....54321+=++++++n n n ②2)12(...7531n n =-+++++③ )1(2..108642+=++++++n n n ④6)12)(1(....432122222++=+++++n n n n 2. 倒序相加法如果一个数列, 与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒叙相加法来求,如等差数列的前n 项和公式即是用此法推导的。

3. 错位相减法由等比数列的前n 项和公式的推导方法延展而来。

可适用于一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的数列。

4. 裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。

5. 分组转化法把数列的每一项分成多个项或把数列的项重新组合,是其转化成已知数列,然后由已知数列求和公式求解。

6. 并项求和法一个数列的前n 项和中,可两项相结合求解,则称之为并项求和,形如)()1(n f a n n -=.二. 易错的地方1. 公式法 公式没记准确而用错2. 倒序相加法 没有看出来求和方法3. 错位相减法 剩余哪些项写错,中间指数运算错,合并出错等4. 裂项相消法 不会裂项,不知道中间量消去后剩余的项有哪些5. 分组转化法 不知道或没看出来怎么分组6. 并项求和法 看到题没思路。

常用的数列求和方法

常用的数列求和方法

常用的数列求和方法数列求和是中学数学中一个十分有趣的课题,它对于加深巩固中学课程的学习,开拓中学生的知识领域都十分有益。

这个开阔、有趣的“数列求和”的世界,可以极大的丰富我们的数学知识,提高我们的数学思维能力。

其中最重要的是等差数列和等比数列的和。

我们采用倒序像相加法和错位相减法推导他们的前n 项和。

除此之外还应掌握有等差数列和等比数列这两个基本数列出发组合变形构造的新数列的求和方法。

除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。

对各种类型的数列给出数列求和是中学数学中一个十分有趣的课题,它对于加深巩固中学课程的学习,开拓中学生的知识领域都十分有益。

对各种类型的数列给出求和的主要方法与实例。

这些方法是我们求一般数列的通法。

一:公式法直接利用公式求和,如果是等差、等比数列可直接利用其求和公式求和,而有些特殊的常见数列则应记住其求和结果,以便于应用。

直接利用公式求和是数列求和的最基本的方法.常用的数列求和公式有:等差数列的前n项和公式:等比数列的前n项和公式:③1+3+5+……+(2n-1)=2n,2222123+++……+n=(1)(21)6nnn++,3333123+++……+n=2(1)2n n+⎡⎤⎢⎥⎣⎦例1、(1)求和:naaa11112++++(2)已知3log1log23-=x,求的前n项和.例2:{}n a是等差数列,前10项的和为100,前100项的和为10,求前110项的和110S.解析:运用等差数列的性质:若m n p q+=+,则m n p qa a a a+=+.∵1110010010111210090()902a aS S a a a+-=+++==-,⋅⋅⋅++⋅⋅⋅+++n xxxx32∴ 111002a a +=-. 因此,11100110110()1102a a S +==-. 点评:在运用公式求和时,已知1n a d a ,,可以求n S ,但往往在不易求得这些值时,利用“整体值”求和十分有效,这种“整体值”的运用在后面的等比数列求和时也常用.练习:已知等比数列{}n a 中,11a =,634S S =,则4a =.例3. 求数列{}n a 的前n 项和n S ′已知数列{}n a 的前n 项和2320522n S n n =-+,求数列{}n a 的前n 项和n T . 解:11101a S ==,当2n ≥时,13104n n n a S S n -=-=-+,当1n =时,也适合上式, ∴n *∈N 时,3104n a n =-+,令0n a >,则34.7n <, ∴ 34n ≤时,0n a >;当35n >时,0n a <. (1)当34n ≤时,21212320522n n n n T a a a a a a S n n =+++=+++==-+;(2)当35n ≥时,123435n n T a a a a a =+++++12343536123412()()2()()n n a a a a a a a a a a a a =+++-+++=++-+++23432052350222n S S n n =-=-+.故2232053422320535023522n n n n T n n n ⎧-+⎪⎪=⎨⎪-+⎪⎩, ,,.≤≥点评:对于带绝对值号的数列求和问题,应先弄清n 取什么值时,0n a >或0n a <,然后再求解.练习:1..在等差数列{}n a 中,n S 是数列{}n a 的前n 项和, (1)(2)若2416,24S S ==,求12n a a a +++.二. 错位相减法求和。

数列求和的常用方法

数列求和的常用方法

数列求和的经典方法一、直接(或转化)由等差、等比数列的求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、 等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n【例】 设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +== ,,,,求数列{}n b 的前n 项和T .解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=⎧⎪⎨+++=⎪⎩,解得22a =. 设数列{}n a 的公比为q ,由22a =,可得1322a a q q==,. 又37S =,可知2227q q++=,即22520q q -+=, 解得12122q q ==,.由题意得12q q >∴=,. 11a ∴=.故数列{}n a 的通项为12n n a -=.(2)由于31ln 12n n b a n +== ,,,,由(1)得3312n n a +=3ln 23ln 2n n b n ∴==, 又13ln 2n n n b b +-={}n b ∴是等差数列. 12n n T b b b ∴=+++1()2(3ln 23ln 2)23(1)ln 2.2n n b b n n n +=+=+= 故3(1)ln 22n n n T +=.二、错位相减法设数列{}n a 的等比数列,数列{}n b 是等差数列,则数列{}n n b a 的前n 项和n S 求解,均可用错位相减法。

【例】设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b += (Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =.所以1(1)21n a n d n =+-=-,112n n n b q --==.(Ⅱ)1212n n n a n b --=. 122135232112222n n n n n S ----=+++++ ,① 3252321223222n n n n n S ----=+++++ ,② ②-①得22122221222222n n n n S ---=+++++- , 221111212212222n n n ---⎛⎫=+⨯++++- ⎪⎝⎭ 1111212221212n n n ----=+⨯-- 12362n n -+=-.三、裂项求和法这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1)111)1(1+-=+=n n n n a n (2))121121(211)12)(12()2(2+--+=+-=n n n n n a n (3)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n 等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求和的常用方法(三课时)数列求和是数列的重要内容之一,也是高考数学的重点考查对象。

数列求和的基本思路是,抓通项,找规律,套方法。

下面介绍数列求和的几种常用方法:一、直接(或转化)由等差、等比数列的求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n例1(07高考山东文18)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +== ,,,,求数列{}n b 的前n 项和T . 解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=⎧⎪⎨+++=⎪⎩,解得22a =.设数列{}n a 的公比为q ,由22a =,可得1322a a q q==,.又37S =,可知2227q q ++=,即22520q q -+=,解得12122q q ==,.由题意得12q q >∴=,.11a ∴=.故数列{}n a 的通项为12n n a -=.(2)由于31ln 12n n b a n +== ,,,,由(1)得3312n n a +=3ln 23ln 2n n b n ∴==, 又13ln 2n n n b b +-= {}n b ∴是等差数列. 12n n T b b b ∴=+++1()2(3ln 23ln 2)23(1)ln 2.2n n b b n n n +=+=+= 故3(1)ln 22n n n T +=.练习:设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式)∴ 1)32()(++=n nS n S n f =64342++n n n=n n 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法设数列{}n a 的等比数列,数列{}n b 是等差数列,则数列{}n n b a 的前n 项和n S 求解,均可用错位相减法。

例2(07高考天津理21)在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ;(Ⅰ)解:由11(2)2()n n n n a a n λλλ+*+=++-∈N ,0λ>,可得111221n nn n n na a λλλλ+++⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭, 所以2nn n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭为等差数列,其公差为1,首项为0,故21n n n a n λλ⎛⎫-=- ⎪⎝⎭,所以数列{}n a 的通项公式为(1)2n n n a n λ=-+.(Ⅱ)解:设234123(2)(1)n n n T n n λλλλλ-=++++-+- , ①345123(2)(1)n n n T n n λλλλλλ+=++++-+- ② 当1λ≠时,①式减去②式,得212311(1)(1)(1)1n n n n n T n n λλλλλλλλλ+++--=+++--=--- , 21121222(1)(1)(1)1(1)n n n n n n n n T λλλλλλλλλ++++----+=-=---. 这时数列{}n a 的前n 项和21212(1)22(1)n n n n n n S λλλλ+++--+=+--. 当1λ=时,(1)2n n n T -=.这时数列{}n a 的前n 项和1(1)222n n n n S +-=+-. 例3(07高考全国Ⅱ文21)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式;(Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =.所以1(1)21n a n d n =+-=-,112n n n b q --==.(Ⅱ)1212n n n a n b --=.122135232112222n n n n n S ----=+++++ ,①3252321223222n n n n n S ----=+++++ ,②②-①得22122221222222n n n n S ---=+++++- ,221111212212222n n n ---⎛⎫=+⨯++++- ⎪⎝⎭1111212221212n n n ----=+⨯--12362n n -+=-.三、逆序相加法把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广)例4(07豫南五市二联理22.)设函数222)(+=x xx f 的图象上有两点P 1(x 1, y 1)、P 2(x 2, y 2),若)(2121OP OP +=,且点P 的横坐标为21.(I )求证:P 点的纵坐标为定值,并求出这个定值;(II )若;求,),()3()2()1(*n n S N n nn f n f n f n f S ∈+⋯+++=(III )略 (I )∵)(2121OP OP +=,且点P 的横坐标为21. ∴P 是12P P的中点,且121x x+=((())1221122212112141222222222px xx x x x x x x y yy +++==+=+=++∴=由(I )知,121x x+=()()()121,12f f f x x +==-且()()12111212n n n n f f f f n n n n n n f f f f n n n n S S -⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭又,(1)+(2)得:()()()11221211211113n n n n n f f f f f f f f n n n n n n f n S S ⎡-⎤⎡-⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦=++++=+-∴=四、裂项求和法这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1)111)1(1+-=+=n n n n a n (2))121121(211)12)(12()2(2+--+=+-=n n n n n a n(3)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n 等。

例5 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和. 解:设n n n n a n -+=++=111(裂项) 则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n例6(06高考湖北卷理17)已知二次函数()y f x =的图像经过坐标原点,其导函数为'()62f x x =-,数列{}n a 的前n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x =的图像上。

(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设11n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有n N *∈都成立的最小正整数m ;解:(Ⅰ)设这二次函数f(x)=ax 2+bx (a ≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x -2,得 a=3 , b=-2, 所以 f(x)=3x 2-2x.又因为点(,)()n n S n N *∈均在函数()y f x =的图像上,所以n S =3n 2-2n.当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[])1(2)132---n n (=6n -5.当n =1时,a 1=S 1=3×12-2=6×1-5,所以,a n =6n -5 (n N *∈) (Ⅱ)由(Ⅰ)得知13+=n n n a a b =[]5)1(6)56(3---n n =)161561(21+--n n ,故T n =∑=ni i b 1=21⎥⎦⎤⎢⎣⎡+--++-+-)161561(...)13171()711(n n =21(1-161+n ). 因此,要使21(1-161+n )<20m (n N *∈)成立的m,必须且仅须满足21≤20m,即m ≥10,所以满足要求的最小正整数m 为10.评析:一般地,若数列{}n a 为等差数列,且公差不为0,首项也不为0,则求和:∑=+ni i i a a 111首先考虑=∑=+ni i i a a 111∑=+-n i i i a a d 11)11(1则∑=+n i i i a a 111=1111)11(1++=-n n a a n a a d 。

下列求和:∑=++ni i i a a 111也可用裂项求和法。

五、分组求和法所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。

例7数列{a n }的前n 项和12-=n n a S ,数列{b n }满)(,311*+∈+==N n b a b b n n n . (Ⅰ)证明数列{a n }为等比数列;(Ⅱ)求数列{b n }的前n 项和T n 。

解析:(Ⅰ)由12,,1211-=∴∈-=++*n n n n a S N n a S ,两式相减得:,2211n n n a a a -=++01.,211≠=∈=∴*+n n n a a N n a a 知同,,21=∴+nn a a 同定义知}{n a 是首项为1,公比为2的等比数列. (Ⅱ),22,211111-+-+-=-+==n n n n n n n n b b b b a ,2,2,2234123012=-=-=-b b b b b b,221--=-n n n b b 等式左、右两边分别相加得: ,222121322211211+=--+=++++=---n n n n b bn T n n n 2)2222()22()22()22()22(12101210+++++=++++++++=∴--=.12222121-+=+--n n n n例8求2222121234(1)n S n -=-+-++- (n N +∈) 解:⑴ 当n 为偶数时,222222(1)(12)(34)[(1)](12)2n n S n n n +=-+-++--=-+++=-; ⑵ 当n 为奇数时,2222222222(1)1(12)(34)[(2)(1)][12(1)]()22n n S n n n n n n n n -=-+-++---+=-+++-+=-+=+ 综上所述,11(1)(1)2n S n n +=-+.点评:分组求和即将不能直接求和的数列分解成若干个可以求和的数列,分别求和.六、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.例9 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅kk k个个 (找通项及特征) ∴11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(911321 个n n+⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ 例10 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征) =])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组) =)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和)=418)4131(4⋅++⋅=313。

相关文档
最新文档