数列求和的8种常用方法(最全)
数列求和的8种方法
数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x ο①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:练习。
数列求和各种方法总结归纳
故数列{an}的通项公式为an=2-n.
an (2)设数列{ n-1}的前n项和为Sn, 2 a2 an 即Sn=a1+ 2 +…+ n-1,① 2 Sn a1 a2 an 故S1=1, 2 = 2 + 4 +…+2n,② 所以,当n>1时,①-②得
a2-a1 an-an-1 an Sn 2 =a1+ 2 +…+ 2n-1 -2n
- - -
(2)由题意知bn-an=3n 1,所以bn=3n 1+an=3n 1-2n+21. Tn=Sn+(1+3+…+3
n-1
3n-1 )=-n +20n+ 2 .
2
[冲关锦囊]
分组求和常见类型及方法
(1)an=kn+b,利用等差数列前n项和公式直接求解; (2)an=a·n-1,利用等比数列前n项和公式直接求解; q (3)an=bn±cn,数列{bn},{cn}是等比数列或等差数列, 采用分组求和法求{an}的前n项和.
(1)求数列{an}的通项公式; 第三行
(2)若数列{bn}满足:bn=an+(-1)nln an,求 {bn}的前2n项和S2n
[自主解答]
(1)当a1=3时,不合题意;
当a1=2时,当且仅当a2=6,a3=18时,符合题意; 当a1=10时,不合题意. 因此a1=2,a2=6,a3=18.所以公比q=3,
2 3a2=1,a3=9a2a6.
(1)求数列{an}的通项公式; 1 (2)设bn=log3a1+log3a2+…+log3an,求数列{b }的前n项和. n
[自主解答]
(1)设数列{an}的公比为q.由a2=9a2a6得 3 9 3
1 1 2 2 2 a3=9a4,所以q = .由条件可知q>0,故q= . 1 由2a1+3a2=1,得2a1+3a1q=1,得a1=3. 1 故数列{an}的通项公式为an=3n.
求数列前n项和8种的方法(史上最全)
求数列前n 项和8种的方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =时,1n S na =; (2)()1111nn a q q S q-≠=-,,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+;(2)21nk k ==∑222216123(1)(21)n n n n ++++=++;(3)31nk k ==∑33332(1)2123[]n n n +++++=;(4)1(21)n k k =-=∑2n 1)-(2n ...531=++++.例1 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32=xx x n--1)1(=211)211(21--n =1-n 21例2 设123n s n =++++,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n nS n S n f =64342++n n n=n n 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f .二.倒序相加法:如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。
数列求和的八种方法及题型
数列求和的八种方法及题型1、抽象加法法:把等差数列的元素抽象为某一个相同的数值(称为项数,式子为S),通过加法求出所求等差数列的和。
例题:这样一个等差数列:2、4、6、8……100,求这一数列的和是多少?答案:抽象加法法:元素个数n = 99,公差d = 2,首项a = 2。
由公式S=n*(a+l)/2可得:S = 99*(2+100)/2 = 99*102/2 = 4950。
2、数值加法法:直接对元素逐一加法求和。
例题:计算这一等差数列的和:1、3、5、7……99?答案:数值加法法:元素个数n = 49,即:1+3+5+7+...+99=49*100/2=4900。
3、改编组合法:将数列改编为组合形式,将大式化简,从这个组合计算其和。
例题:求这一等差数列的和:2、5、8、11……99?答案:改编组合法:元素个数n = 48,公差d = 3,首项a = 2。
将其转换为组合:2+48d ,即2+(48*3)=150,由公式S=n*(a+l)/2可得:S = 48*(2+150)/2 = 48*152/2 = 7344。
4、数表法:把数列列成表,统计其和。
例题:求这一等差数列的和:3、5、7、9……99?答案:数表法:数列:3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99和:3+5+7+9+11+13+15+17+19+21+23+25+27+29+31+33+35+37+39+41+43+ 45+47+49+51+53+55+57+59+61+63+65+67+69+71+73+75+77+79+81+83 +85+87+89+91+93+95+97+99=24505、立方法:一种特殊情形——这一数列两个元素的值等于这两个元素之间的位数的立方和。
数列求和的8种常用方法
数列求和的8种常用方法数列求和是数学中非常常见的问题,它的解法有很多种。
下面我将介绍8种常用的方法来求解数列的和,让我们一起来看看吧。
一、等差数列求和公式对于等差数列$a_n=a_1+(n-1)d$,其中$a_n$表示第n个数,$a_1$表示第一个数,d表示公差,我们可以利用等差数列求和公式求解:$S = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。
二、等比数列求和公式对于等比数列$a_n = a_1 \cdot q^{(n-1)}$,其中$a_n$表示第n个数,$a_1$表示第一个数,q表示公比,我们可以利用等比数列求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1或者当q=1时,$S=a_1n$其中S表示数列的和,n表示数列的项数。
三、几何级数求和公式对于几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_1$表示第一个数,q表示公比,我们可以利用几何级数求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1四、等差数列-等比数列混合求和公式对于等差数列-等比数列混合数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用等差数列-等比数列混合求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1} + \frac{n(n-1)d}{2}q^{(n-2)}$,其中q≠1五、反比例数列求和公式对于反比例数列$s_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$,其中$a_1$表示第一个数,我们可以利用反比例数列求和公式求解:$S = \frac{n}{a_1}$六、算术-几何级数求和公式对于算术-几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差$S = \frac{a_1}{1-q} + \frac{d}{(1-q)^2}$,其中q≠1七、差分数列求和公式对于差分数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1+ (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用差分数列求和公式求解:$S = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。
数列求和的八种重要方法与例题
练习10:
已知Sn=-1+3-5+7+…+(-1)n(2n-1),
1)求S20,S21 2)求Sn
=20 S20=-1+3+(-5)+7+……+(-37)+39
S21=-1+3+(-5)+7+(-9)+……+39+(-41)
=-21
总的方向: 1.转化为等差或等比数列的求和 2.转化为能消项的 思考方式:求和看通项(怎样的类型) 若无通项,则须先求出通项 方法及题型: 1.等差、等比数列用公式法 2.倒序相加法 3.错位相减法 4.裂项相消法
1 (1 3
2n )
5
n
12 3
1 (2n 5n 1) 3
热点题型3:递归数列与数学归纳法.
已知数列{an}的各项都是正数,且满足:a01,an1
(nN)
1 2
an (4
an ).
(1)证明an<an+1<2(nN) (2)求数列{an}的通项公式an
用数学归纳法证明:
类型a1+an=a2+an-1=a3+an-2=……
典例. 已知 lg(xy) 2 2.倒序相加法
S =lgxn +lg(xn-·1 y)+ ...+lg(x·1 yn-1)+lgyn,
(x > 0,y > 0) 求S .
S =lgxn +lg(xn-·1 y)+ ...+lgyn
S =lgyn +lg(yn-·1 x)+ ...+lgxn 2S =lg(xy)n +lg(xy)n + ...+lg(xy)n
数列求和的常用方法
数列求和的常用方法一、公式法1、 差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn例1、设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +==,,,,求数列{}n b 的前n 项和T .二、倒序相加法若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).例2、设函数222)(+=x x x f 的图象上有两点P 1(x 1, y 1)、P 2(x 2, y 2),若)(2121OP OP +=且点P 的横坐标为21. (I )求证:P 点的纵坐标为定值,并求出这个定值;(II )若;求,),()3()2()1(*n n S N n nn f nf nf nf S ∈+⋯+++=三、裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:(1)n n n n -+=++111(2)111=- (3)])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n若数列}{n a 为等差数列,0≠n a ,公差0≠d ,)11(11,11111111++++++-=∴=-=-n n n n n n n n n n n n a a d a a a a d a a a a a a则数列}1{1+n n a a 的前n 项和)11(1)11(1)11(113221+-++-+-=n n n a a d a a d a a d S111111111)11(1++++=-⋅=-=n n n n a a na a a a d a a d 。
数列求和常用方法
Sn a1 a2 a3 an Sn an an1 an2 a1
两式相加得: S n
n(a1 an ) 2
4.裂项相消法: 适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即 an=f(n+ 常用公式:
数列求和常用方法
1.公式法: 等差数列求和公式: S n
n(a1 an ) d 2 d n (a1 )n 2 2 2
举例:1+2+3+4+5+6+7+8+9=(1+9)×9÷ 2=45 等比数列求和公式:
S n n a1 (q 1) 1 q n a1 an q S n a1 (q 1) 1 q 1 q
2.错位相减法: 适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式(等差等比数列相乘) { an }、{ bn }分别是等差数列和等比数列: Sn a1b1 a2b2 a3b3 anbn
3.倒序相加法: 这是推导等差数列的前 n 项和公式时所用的方法,就是将一个数列倒过来排列(反序), 再把它与原数列相加,就可以得到 n 个(a1+an)
1 1 1 n(n 1) n n 1 1 1 1 1 ( ) (2n 1)(2n 1) 2 2n 1 2n 1 1 1 1 1 n(n 1)(n 2) 2 n(n 1) (n 1)(n 2) 1 a b ( a b) a b a b
数列求和的8种常用方法
数列求和的8种常用方法数列求和是数学中常见的问题,解决数列求和问题有很多方法。
下面将介绍数列求和的8种常用方法。
1.直接相加法:这是最基本的方法,实际上就是将数列中的所有项相加。
例如,对于等差数列1,3,5,7,9,可以直接相加得到1+3+5+7+9=252.偶数项和与奇数项和之和法:对于一些数列,可以将其分解为偶数项和与奇数项和,然后再求和。
例如,对于等差数列1,3,5,7,9,可以分解为偶数项和4+8和奇数项和1+3+5+7+9,再相加得到(4+8)+(1+3+5+7+9)=373.首项与末项和的乘法法:对于等差数列,可以利用首项与末项之和的公式来求和。
首项与末项之和等于和的平均数乘以项数。
例如,对于等差数列1,3,5,7,9,首项与末项之和等于(1+9)*(项数/2)=10*5/2=254.首项与公差与项数的乘法法:对于等差数列,可以利用首项、公差和项数的乘积来求和。
等差数列的和等于首项乘以项数,再加上项数与公差之积的和。
例如,对于等差数列1,3,5,7,9,和等于1*5+(5*4)/2=10+10=20。
5.平均数法:对于一些特殊的数列,可以利用平均数的性质来求和。
平均数等于数列中的第一项与最后一项的平均值。
例如,对于等差数列1,3,5,7,9,平均数等于(1+9)/2=5,然后将平均数乘以项数,得到5*5=256.高斯求和法:高斯求和法是一种数学推导方法,用于求等差数列的和。
首先将数列化为由首项和末项构成的和,然后将数列顺序颠倒,再将之前的和与颠倒后的和相加,得到的结果就是等差数列的和。
例如,对于等差数列1,3,5,7,9,将其化为(1+9)+(3+7)+5,然后将数列颠倒得到5+(7+3)+9,再相加得到257. telescopage法(消去法):telescopage法是一种利用抵消的思想来求和的方法。
可以将数列中相邻的两项之差相消为0,最终得到一个简单的表达式,然后再求值。
例如,对于数列1, 2, 3, 4, 5,可以将(2-1) + (3-2) + (4-3) + (5-4)相加,得到1 + 1 + 1 + 1 = 48.更一般的求和方法:对于一些复杂的数列,可能需要应用更一般的数学方法来求解。
高中数列求和方法大全
数列的求和1.直接法:即直接用等差、等比数列的求和公式求和。
(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。
常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ )121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。
6.合并求和法:如求22222212979899100-++-+-Λ的和。
7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①321ΛΛ个n n S 111111111++++=②22222)1()1()1(n n n xx x x x x S ++++++=Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。
解:①)110(9110101011112-=++++==kkk k a Λ321Λ个])101010[(91)]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ8110910]9)110(10[911--=--=+n n n n②)21()21()21(224422+++++++++=nnn x x x x x x S Λ n xx x x x x n n 2)111()(242242++++++++=ΛΛ(1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③kk k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=Λ2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n ΛΛΛ)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。
数列求和的常用方法
数列求和的常用方法一、公式法1、当{}n a 时等差数列时,()()1112n n n a a S na n d +==+-当{}n a 时等比数列时,()11,11,11n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩(在求等比数列的前n 相和的时候一定要注意讨论q 的情况)。
2、常用的数列求和()()222121126n n n n +++++=,()23331122n n n +⎛⎫+++= ⎪⎝⎭二、错位相减法——差比数列这是推导等比数列的前n 项和公式时所用的方法,这种方法主要用于数列{}n b a b 的前n 项和,其中{}n a 是公差不为0的等差数列,{}n b 是公比不为1的等比数列。
操作方法:1122n n n S a b a b a b =+++ ……(1) 对(1)式两边同时乘以等比数列的公比q 得1122n n n qS a b q a b q a b q =+++ 12231n n n n a b a b a b a b q -=++++ (2)(1)-(2)得()()1121n n n n q S a b d b b a b q -=+++- = ()121111n n n b q a b da b q q--=+--,将上式两边同时除以()1q -即可求出n S 。
例1数列{}n a 的通项为21n a n =-,{}n b 的通项为12n nb =,n n nc a b =,求n c 的前n 项和n S 例2 22nn S x x nx =+++ (0x ≠) 三、分组求和若数列{}n a 可转化为n n n a b c =+的形式,并且{}n b ,{}n c 可求和b S ,c S 那么a b c S S S =+。
对形如nn a An Bq C =++和n nn a Ap Bq C =++均可用分组求和。
例1 21n n n a x x ⎛⎫=+ ⎪⎝⎭,求前n 项和n S例2 235nn a -=-⨯,求前n 项和n S四、裂项相消法裂项相消的关键是将数列的每一项分成二项或多项,使数列中的项出现有规律的抵消进而达到求和的目的若数列n a 可拆分成某数列相邻两项之差的形式即1n n n a b b +=-或1n n n a b b -=-则可用裂项相消法求和例1 n a 是公差为d (0d ≠)的等差数列,11n n n b a a +=,求n b 的前n 和n S 例2 210nn a -=, ()13lg n n b n a =-,求n b 的前n 和n S*常见的裂项公式(1)()11111n n n n =-++ (2) ()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭(3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭(4)()11a b a ba b =--+(5) ()()()()()1111122112n n n n n n n ⎛⎫=- ⎪ ⎪+++++⎝⎭五、并相求和一个数列的前n 项和中可以两两结合求解则称之为并项求和 形如()()1nn a f n =-的可以采用两项合并求和例2222210099989721n S =-+-++- ()()()2222210099989721=-+-++-10099989721=++++++ =5050六、倒序相加法将一个数列倒过来写与原数列相加时,若有公因式可提并且剩余的项的和易求出,则这样的数列可用倒序相加法。
数列求和的常用方法
_______________________________________________________________________________________数列求和数列的求和问题是数列的一个重要内容,它往往是数列知识的综合体现。
解决在高中阶段所遇到的数列求和问题,基本方法是通过变形,转化为等差数列或等比数列的求和问题,对于非等差数列、非等比数列的求和,常用的方法有:分组求和法、裂项相消法、错位相减法、倒序相加法等。
一、公式法(直用公式)如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n 项和公式,注意等比数列公比q 的取值情况要分q =1或q ≠1.二.分组求和法方法小结:三.错位相减法例2:求S n =1·2+2·22+3·23+……n ·2n方法小结:例1:求S n = 11111+3+5++2482n ……(2n-1)_______________________________________________________________________________________四.裂项相消法方法小结:常见的裂项:111(1)1n n n n =-++ 1111()()n n k k n n k =-++ 1111()(21)(21)22121n n n n =--+-+ 11()n k n kn k n =+-++ 【课时小结】一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.主要有两种思路:①转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.②不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.例3:求S n = 1111+133557+++⨯⨯⨯……(2n-1)(2n+1)____________________________【高考链接】[1](全国新课标卷)等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6.(1)求数列{a n}的通项公式;(2)设b n=log3a1+log3a2+…+log3a n,求数列{1b n}的前n项和.[2] (四川高考)已知等差数列{a n}的前3项和为6,前8项和为-4.(1)求数列{a n}的通项公式;(2)设b n=(4-a n)2n-1(n∈N*),求数列{b n}的前n项和S n.______________________________________________________________________________________________________________________________________________________________________________课后自测1.1-2+3-4+5-6+……+99-100=_________2.数列1,211+,3211++,……,n+⋅⋅⋅++211的前n 项和为( ) A .12+n n B .122+n n C .12++n n D .nn 12+ 3.数列{}n a 的通项公式n n a n ++=11,它的前n 项和为9n S =,则n =( )A.9B.10C.99D.1004.已知数列*{}()n a n N ∈是首项为1的等差数列,其公差0d >,且379,2,3a a a +成等比数列。
数列求和的常用方法
数列求和的常见求法一、利用常用求和公式求和:利用等差或等比数列求和公式求和是数列求和的最基本最重要的方法.例1、设等差数列{}n a 满足9,5103-==a a ,求{}n a 的前n 项和n S 例2、132212121211-+⋅⋅⋅++++n二、倒序相加法求和:这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(倒序),再把它与原数列相加,就可以得到n 个)(1n a a +. 例3、求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值练习:1、已知函数()221x x x f +=,那么()()()()()20162015321f f f f f ++⋅⋅⋅+++ =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+20161201513121f f f f2、已知函数()222+=x x x f 则⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛109108102101f f f f =三、分组法求和:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 例4、求数列⋅⋅⋅1617,815,413,211的前n 项和.例5、等比数列{}n a 的通项公式是n n a 3=,等差数列{}n b 的通项公式是12+=n b n ,记n n n b a c +=,求数列{}n c 的前n 项和n S练习:求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…四、错位相减法求和:这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{}n n b a ⋅的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例6、12223221-⋅+⋅⋅⋅+⨯+⨯+n n例7、在数列{}n a 中,,3n n a =且求数列{}n b 的前n 项和n S五、裂项相消法求和:这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 例8、(1)(2)()11431321211++⋅⋅⋅+⨯+⨯+⨯=n n S n(3)()()12121751531311+-+⋅⋅⋅+⨯+⨯+⨯=n n S n(4)()()231311181851521+-+⋅⋅⋅+⨯+⨯+⨯=n n S n(5)nn S n +++⋅⋅⋅++++++=11321231121,nn a nb =⎪⎭⎫ ⎝⎛+-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=11141313121211n n S n。
数列求和的常用方法
数列求和的常用方法1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求 和。
例:求数列n {223}n +-的前n 项和n S .2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列)即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。
例:若数列{}n a 的通项n n n a 3)12(⋅-=,求此数列的前n 项和n S3.裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。
适用于数列11n n a a +⎧⎫⎨⎬⋅⎩⎭和⎧⎫(其中{}n a 等差)。
可裂项为:111111()n n nn a a d a a ++=-⋅1d=-例:求和:S=1+n++++++++++ 321132112114.倒序相加法:n n n a a a a S ++++=-121121a a a a S n n n ++++=- 把这两个式子相加: ()()()11212a a a a a a S n n n n ++++++=- 例:设221)(xxx f +=,求:⑴)4()3()2()()()(213141f f f f f f +++++; ⑵).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++数列求和练习题:1. 求和12321-++++n nx x x (0≠x )2. 求和)12)(12(1751531311+-++⨯+⨯+⨯n n3. 求和n n +++++++++113212311214. 数列,1614,813,412,211的前n 项和5. 已知数列}{n a 的前n 项和12-=n n S ,则22221na a a ++6.等比数列}{n a 同时满足下列条件:①3361=+a a ,②3243=a a ,③三个数432,2,4a a a 依次成等差数列.(1)求数列}{n a 的通项公式; (2)记nn a n b =,求数列}{n b 的前n 项和T n .7.等差数列}{n a 各项均为正整数,31=a ,前n 项和为n S ,在等比数列}{n b 中,11=b 且6422=S b ,公比为8。
数列求和的8种常用方法(最全)
数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。
解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。
本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。
尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。
二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,3,5,7,9$ 的和。
分析:此数列的首项为1,公差为2,总共有5项。
解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。
2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$2,4,8,16,32$ 的和。
分析:此数列的首项为2,公比为2,总共有5项。
解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。
3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。
分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。
数列求和的8种方法
数列求和的8种方法数列求和是数学中一个很重要的概念,常常在数学课上出现,也被广泛应用于其他学科中。
本文将为您介绍数列求和的8种常用方法。
一、公式法公式法是数列求和中最常用的一种方法。
当数列具有规律性时,可以通过观察数列的特点和规律,得出数列求和的公式。
例如,等差数列的求和公式为Sn = (a1 + an) × n / 2,其中a1为首项,an为尾项,n为项数。
二、差累加法差累加法是一种通过累加差值来求和的方法。
将一个数列中的每一项与其前一项的差相加,即可得到数列的和。
例如,斐波那契数列的差累加法求和公式为Sn=Fn+2-1三、奇偶分拆法奇偶分拆法是一种将数列分为奇数项和偶数项两个数列的方法。
通过将原数列中的项按照奇偶分类,并分别求和,然后将奇数部分和偶数部分的和相加,即可得到原数列的和。
这种方法特别适用于等差数列或等比数列求和。
四、数形结合法数形结合法是通过图形化数列来求和的方法。
将数列用图形的形式展现出来,然后通过计算图形的面积、周长或者中点之间的连线长度等等,来求得数列的和。
这种方法特别适用于几何数列或者满足其中一种几何规律的数列。
五、递推关系法递推关系法是通过递推关系来求和的方法。
数列中的每一项可以通过前面一项或者多项之间的关系得到,因此可以通过递推关系来直接求得数列的和。
例如,斐波那契数列的递推关系是Fn=Fn-1+Fn-2,可以利用这个关系式求得数列的和。
六、数列分解法数列分解法是通过将数列分解成其他数列的和来求和的方法。
通过将数列拆分成两个或多个数列,然后分别求得每个数列的和,并将它们相加,即可得到原数列的和。
这种方法适用于数列可以被分解成多个简单数列的情况。
七、夹逼定理法夹逼定理法是一种通过构造相等的两个或多个数列来求和的方法。
通过找到与原数列相等的其他数列,然后求得这些数列的和,并将它们相加,就可以求得原数列的和。
这种方法特别适用于数列无法通过常规的方法求和的情况。
八、换元法换元法是一种通过将数列中的索引进行变换,来求得数列的和的方法。
数列的求和的常用方法
数列的求和的常用方法一、公式法:(1)等差数列前n 项和公式: d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列前n 项和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n(3)重要公式①=∑=nk k 11+2+…+n=21n(n+1); ②=∑=n k k 1212+22+…+n 2=61n(n+1)(2n+1); ③=∑=nk k 1313+23+…+n 3=(1+2+…+n)2=[21n(n+1)]2=41n 2(n+1)2; ④∑=nk k 12=2+4+6+…+2n=n(n+1)⑤∑=-nk k 1)12(=1+3+5+…(2n-1)=n 2二、 倒序相加法(利用等和性)等差数列前n 项和公式2)(1n n a a n S +=就是用倒序相加法推导出来的, 这种方法主要用于求数列{a n },首末两端等“距离”的两项的和相等或等于同一个常数。
例1.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项例2.等差数列{a n }的前n 项和为S n ,已知S 6=36,S n =324,S n-6=144(n>6),则n 为( )(A )18 (B )17 (C )16 (D )15例3.求和nnn n o n n C C C C S 1)(n 3221+++++=例4.已知a,b 为不相等的两个正数,若在a,b 之间插入n 个正数,使它们构成以a 为首项,b 为末项的等比数列,求插入的这n 个正数的积P n .三、 乘q 错位相减法等比数列前n 项和公式)1(1)1(1≠--=q q q a S n n 就是用乘q 错位相减法推导出来的,这种方法主要用于求数列{a n ∙b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列例5.求数列{n ∙2n }的前n 项和S n例6.求和)1(32112≠++++=-x nx x x S n n例7.求和n n n S 212854321-++++=例8. 求数列10,200,3000,40000, …的前n 项和S n四、 裂项相消法把数列的通项拆成两项之差,即a n =f(n+1)-f(n),在求和时中间的一些项可以相互抵消,从而求得其和, 一般情况下,若{a n }是等差数列,则)11(1111++-=n n n n a a d a a ,)11(21122++-=∙n n n n a a d a a ,用裂项法求和,需要掌握一些常见的裂项,如:①)1(1+n n =n1-11+n ,)211(21)2(1+-=+n n n n ,)11(1)(1k n n k k n n +-=+②)121121(21)12)(12(1+--=+-n n n n③])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n④n n n n -+=++111⑥)(11n k n k kn n -+=++,)(11b a b a ba --=+ ⑦m n m n m n C C C -=+-11,或mn m n m n C C C 111----=⑧)!1(+n n =!1n -)!1(1+n ⑨n ·n !=(n+1)!-n! ⑩)11(1))((1CAn B An B C C An B An a n +-+-=++=等例9.已知数列{a n }的通项公式a n =)12)(12(1+-n n ,求前n 项和S n例10.已知数列{a n }:1,211+,3211++, …,n++++ 3211, … 求它的前n 项和S n例11.已知数列,841,631,421,2112222++++, 求它的前n 项和S n五、 分组求和法一个数列的通项公式是由若干个等差或等比或可求和的数列组成,则求和时可将这类数列适当拆开,分别求和而后相加减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求数列前n 项和的8种常用方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+⋅,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,()111nn a q S q-=-,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+;(2)21nk k ==∑222211631123(1)(21)()(1)2n n n n n n n ++++=++==++;(3)31nk k ==∑33332(1)2123[]n n n +++++=;(4)1(21)nk k =-=∑2135(21)n n ++++-=.例1 已知3log 1log 23-=x ,求23n x x x x ++++的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 23n n S x x x x =++++=xx x n--1)1(=211)211(21--n =1-n 21例2 设123n S n =++++,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n n S n S n f =64342++n n n=n n 64341++=50)8(12+-n n 501≤∴ 当 88-n ,即8n =时,501)(max =n f .二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。
如:等差数列的前n 项和即是用此法推导的,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.例3 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加) )89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89 ∴ S =44.5例4 函数()1x f x x =+,求()()()()1111220121201220112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.三.错位相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b ⋅叫做差比数列)即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,即可转化为等比数列求和. 如:等比数列的前n 项和就是用此法推导的.例5 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S …………①解:由题可知,{1)12(--n x n }的通项是等差数列{}21n -的通项与等比数列{1-n x }的通项之积 设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)即:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴21)1()1()12()12(x x x n x n S n n n -+++--=+变式 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,22n n ⎧⎫⎨⎬⎩⎭的通项是等差数列{}2n 的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………② (设制错位) ①-②得,1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴1242n n n S -+=-四.裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。
这是分解与组合思想(分是为了更好地合)在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 适用于1n n c a a +⎧⎫⎨⎬⋅⎩⎭,其中{}n a 是各项不为0的等差数列,c 为常数;部分无理数列、含阶乘的数列等。
其基本方法是()()1n a f n f n =+-. 常见裂项公式: (1)111(1)1n n nn ++=-,1111()()n n k k nn k++=-;111111()n n n n a a d a a ++=-⋅({}n a 的公差为d );(2)1d =.(根式在分母上时可考虑利用分母有理化,因式相消求和);(3)1111(1)(1)2(1)(1)(2)[]n n n n n n n -++++=-;(4)1111()(21)(21)22121n a n n n n ==--+-+;)121121(211)12)(12()2(2+--+=+-=n n n n n a n ; (5)nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则; (6)n n n n tan )1tan()1cos(cos 1sin -+=+; (7)11(1)!!(1)!n n n n ++=-;(8)常见放缩公式:212=<=.例6 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111 (裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和) =)1()23()12(n n -++⋅⋅⋅+-+-=11-+n例7 求和1111133557(21)(21)n S n n =++++⨯⨯⨯-+.例8 在数列{}n a 中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{}n b 的前n 项的和.解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{}n b 的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和)=)111(8+-n= 18+n n例9 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2∴ 原等式成立变式 求11113153563n S =+++.解:1111315356311111335577911111111111(1)()()()2323525727911111111(1)()()()2335577911(1)2949+++=+++⨯⨯⨯⨯=-+-+-+-⎡⎤=-+-+-+-⎢⎥⎣⎦=-= 五.分段求和法:例10 在等差数列{}n a 中102523,22a a ==-,求:(1)数列{}n a 前多少项和最大;(2)数列{}n a 前n 项和.六.分组求和法: 有一类数列,既不是等差数列,也不是等比数列, 可把数列的每一项分成多个项或把数列的项重新组合,使其转化成常见的数列,然后分别求和,再将其合并即可.例11 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组)当1a =a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+---. 例12 求数列()(){}121n n n ++的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=nk n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得3211123nnnn k k k S k k k ====++∑∑∑ (分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n变式 求数列11111,2,3,,,2482n n ⎛⎫+ ⎪⎝⎭的前n 项和.解: 231111123()24821111(123)()222211(1)122n n n n S n n n n =+++++=+++++++++=++- 七.并项求和法:在数列求和过程中,将某些项分组合并后即可转化为具有某种特殊的性质的特殊数列,可将这些项放在一起先求和,最后再将它们求和,则称之为并项求和.形如()()1nn a f n =-类型,可采用两项合并求.利用该法时要特别注意有时要对所分项数是奇数还是偶数进行讨论. 例13 求cos1°+ cos2°+ cos3°+…+ cos178°+ cos179°的值. 解:设S n = cos1°+ cos2°+ cos3°+…..+ cos178°+ cos179°∵ )180cos(cos n n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)++(cos89°+ cos91°)+ cos90° (合并求和)= 0例14 数列{}n a :n n n a a a a a a -====++12321,2,3,1,求2002S . 解:设2002S =2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得 ,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴2002S =2002321a a a a +⋅⋅⋅+++ (合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a=5例15 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值. 解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和) =)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10变式 求和2222222212345699100n S =-+-+-++-.八.利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法. 例16 求11111111111n +++⋅⋅⋅+⋅⋅⋅个之和.解:由于111111119999(101)99k k k ⋅⋅⋅=⨯⋅⋅⋅=-个个 (找通项及特征)∴ 11111111111n +++⋅⋅⋅+⋅⋅⋅个=)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =()123111(10101010)111199n n +++⋅⋅⋅+-+++⋅⋅⋅+个 =9110)110(1091nn ---⋅=)91010(8111n n --+ 例17 已知数列{}n a :∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征) =])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组) =)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和) =418)4131(4⋅++⋅=313变式 求55555555555n +++⋅⋅⋅+⋅⋅⋅个的前n 项和.解:∵()51019n na =-()()()()12355551011011011019999n n S ∴=-+-+-++-()1235101010109n n ⎡⎤=++++-⎣⎦ ()151091081n n +=-- 以上8种方法虽然各有其特点,但总的原则是要善于改变原数列的形式结构,使其能使用等差数列或等比数列的求和公式以及其它已知的基本求和公式或进行消项处理来解决,只要很好地把握这一规律,就能使数列求和化难为易,迎刃而解.。