2020高考物理一轮复习 专题03牛顿运动定律(解析版)

合集下载

2020版高考物理(浙江选考)一轮复习讲义:必修1 第三章 专题课 牛顿运动定律的综合应用Word版含解析

2020版高考物理(浙江选考)一轮复习讲义:必修1 第三章 专题课 牛顿运动定律的综合应用Word版含解析

专题课牛顿运动定律的综合应用超重、失重问题1.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象。

(2)产生条件:物体具有向上的加速度。

2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象。

(2)产生条件:物体具有向下的加速度。

3.完全失重(1)定义:物体对支持物的压力(或对竖直悬挂物的拉力)等于0的现象称为完全失重现象。

(2)产生条件:物体的加速度a=g,方向竖直向下。

4.对超重和失重的“三点”深度理解(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变。

(2)在完全失重的状态下,一切由重力产生的物理现象都会完全消失。

(3)物体是否处于超重或失重状态,不在于物体向上运动还是向下运动,而在于物体的加速度方向,只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态。

命题角度1超重、失重现象的判断【例1】伦敦奥运会开幕式的弹跳高跷表演中,一名质量为m的演员穿着这种高跷从距地面H高处由静止落下,与水平地面撞击后反弹上升到距地面高h处。

假设弹跳高跷对演员的作用力类似于弹簧的弹力,演员和弹跳高跷始终在竖直方向运动,不考虑空气阻力的影响,则该演员()图1A.在向下运动的过程中始终处于失重状态B.在向上运动的过程中始终处于超重状态C.在向下运动的过程中先处于失重状态后处于超重状态D.在向上运动的过程中先处于失重状态后处于超重状态解析 演员在空中时,加速度为g ,方向向下,处于失重状态;当演员落地加速时,加速度a 向下,处于失重状态;落地后期减速,加速度a 向上,处于超重状态;所以演员在向下运动的过程中先处于失重状态后处于超重状态,选项C 正确;同理可知,演员在向上运动的过程中先处于超重状态后处于失重状态,选项D 错误。

答案 C 命题角度2 根据超重、失重现象判断物体的受力情况【例2】 某人在地面上最多可举起50 kg 的物体,当他在竖直向上运动的电梯中最多举起了60 kg 的物体时,电梯加速度的大小和方向为(g =10 m/s 2)( )A.2 m/s 2 竖直向上B.53 m/s 2 竖直向上C.2 m/s 2 竖直向下D.53 m/s 2 竖直向下解析 由题意可知,在地面上,人能承受的最大压力为F m =mg =500 N ,在电梯中人能举起60 kg 物体,物体一定处于失重状态,对60 kg 的物体:m ′g -F m =m ′a ,即a =600-50060 m/s 2=53m/s 2,所以选项D 正确。

2020年高考物理备考艺体生百日突围系列专题03牛顿运动规律含解析

2020年高考物理备考艺体生百日突围系列专题03牛顿运动规律含解析

专题03 牛顿运动规律第一部分牛顿运动规律特点描述综合分析近几年的高考物理试题发现,试题在考查主干知识的同时,注重考查必修中的基本概念和基本规律,且更加突出考查学生运用"力和运动的观点"分析解决问题的能力。

牛顿运动定律及其应用是每年高考考查的重点和热点,应用牛顿运动定律解题的关键是对研究对象进行受力分析和运动分析,特别是牛顿运动定律与曲线运动,万有引力定律以及电磁学等相结合的题目,牛顿定律中一般考查牛顿第二定律较多,一般涉及一下几个方面:一是牛顿第二定律的瞬时性,根据力求加速度或者根据加速度求力,二是动力学的两类问题,三是连接体问题,四是牛顿第二定律在生活生产和科技中的应用。

第一部分知识背一背1.牛顿第一定律(1)内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.(2)牛顿第一定律的意义①指出了一切物体都有惯性,因此牛顿第一定律又称惯性定律。

②指出力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因。

(3)惯性①定义:物体具有保持原来匀速直线运动状态或静止状态的性质.②量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.③普遍性:惯性是物体的固有属性,一切物体都有惯性。

2.牛顿第二定律(1)内容:物体的加速度与所受合外力成正比,跟物体的质量成反比。

(2)表达式:F=ma.(3)力的单位:当质量m的单位是kg、加速度a的单位是m/s2时,力F的单位就是N,即1 kg•m/s2=1 N.(4)物理意义:反映物体运动的加速度大小、方向与所受合外力的关系,且这种关系是瞬时的.(5)适用范围:①牛顿第二定律只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).②牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.3单位制(1)单位制:由基本单位和导出单位一起组成了单位制.①基本单位:基本物理量的单位.力学中的基本物理量有三个,它们是长度、质量、时间;它们的国际单位分别是米、千克、秒.②导出单位:由基本量根据物理关系推导出来的其他物理量的单位.(2)国际单位制中的基本物理量和基本单位4.(1)作用力和反作用力:两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,另一个物体一定同时对这个物体也施加了力.(2)内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上.(3)物理意义:建立了相互作用的物体之间的联系及作用力与反作用力的相互依赖关系.5.作用力与反作用力的“四同”和“三不同”四同: (1) 大小相同(2) 方向在同一直线上(3) 性质相同(4) 出现、存在、消失的时间相同三不同:(1) 方向不同(2) 作用对象不同(3) 作用效果不同6.超重与失重和完全失重(1)实重和视重①实重:物体实际所受的重力,它与物体的运动状态无关.②视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.(2)超重、失重和完全失重的比较第二部分技能+方法一、如何理解牛顿第一定律1.建立惯性的概念,即一切物体都具有保持原来的匀速直线运动状态或静止状态的性质,叫做惯性.是物体固有的一种属性,与物体是否受力及物体的运动状态无关.2.对力的概念更加明确.力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是物体产生加速度的原因.3.牛顿第一定律不是实验定律,即不能由实验直接加以验证,它是在可靠的实验事实基础上采用科学的抽象思维而推理和总结出来的.二、牛顿第一定律、惯性、牛顿第二定律的比较1.力不是维持物体运动的原因,牛顿第一定律指出“一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止”.因此物体在不受力时仍可以匀速运动,并不需要力来维持,力是改变这种状态的原因,也就是力是产生加速度的原因.2.惯性是一切物体保持原来运动状态的性质,而力是物体间的相互作用.因此惯性不是一种力,力是使物体运动状态发生改变的外部因素,惯性则是维持物体运动状态,阻碍物体运动状态发生改变的内部因素.3.惯性的表现:物体的惯性总是以保持“原状”或反抗“改变”两种形式表现出来,物体不受外力时,惯性表现在维持原运动状态不变,即反抗加速度产生,且在外力一定时,质量越大的物体运动状态越难改变,加速度越小.4.牛顿第一定律不是牛顿第二定律的特例,而是牛顿第二定律的基础,牛顿第一定律不是由实验直接总结出来的,是以伽利略的理想实验为基础,通过对大量实验现象的思维抽象、推理而总结出来的.牛顿第一定律定性地给出了物体在不受力的理想情况下的运动规律,在此基础上牛顿第二定律定量地指出了力和运动的关系:F=ma.【例1】某人用绳子将一桶水从井内加速向上提的过程中,下列说法正确的是:()A.这桶水处于超重状态,所以绳子对桶的拉力大于桶对绳子的拉力B.这桶水处于超重状态,绳子对桶的拉力大于桶的重力C.人对绳子的拉力与绳子对桶的拉力是一对作用力与反作用力D.这桶水能加速上升,是因为人对绳子的拉力大于桶对绳子的拉力【答案】B【解析】这桶水加速上升,说明加速度的方向是向上的,桶处于超重状态,所以桶受到的合外力的方向向上,即桶受到的向上的力大于桶的重力,所以选项B正确;A中绳子对桶的拉力等于桶对绳子的拉力,这是作用力与反作用力,大小相等,选项A错误;C中人对绳子的拉力与绳子对桶的拉力不是一对作用力与反作用力,选项C错误;D中这桶水能加速上升,不是因为人对绳子的拉力大于桶对绳子的拉力,而是桶受到的拉力大于重力,所以选项D错误。

2020年高考物理新课标第一轮总复习讲义:第三章 第三讲 牛顿运动定律的综合应用(一) 含答案

2020年高考物理新课标第一轮总复习讲义:第三章 第三讲 牛顿运动定律的综合应用(一) 含答案

能力提升课第三讲 牛顿运动定律的综合应用(一)热点一 牛顿运动定律与图象综合问题的求解方法 (师生共研)物理公式与物理图象的结合是一种重要题型,也是高考的重点及热点. 1.“两大类型”(1)已知物体在某一过程中所受的合力(或某个力)随时间的变化图线,要求分析物体的运动情况. (2)已知物体在某一过程中速度、加速度随时间的变化图线.要求分析物体的受力情况. 2.“一个桥梁”:加速度是联系v -t 图象与F -t 图象的桥梁. 3.解决图象问题的方法和关键(1)分清图象的类别:分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点.(2)注意图象中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点、图线的转折点和两图线的交点等表示的物理意义.(3)明确能从图象中获得哪些信息:把图象与物体的运动情况相结合,再结合斜率、特殊点、面积等的物理意义,确定从图象中得出的有用信息.这些信息往往是解题的突破口或关键点.[典例1] (多选)(2015·全国卷Ⅰ)如图(a),一物块在t =0时刻滑上一固定斜面,其运动的v -t 图线如图(b)所示.若重力加速度及图中的v 0、v 1、t 1均为已知量,则可求出( )A .斜面的倾角B .物块的质量C .物块与斜面间的动摩擦因数D .物块沿斜面向上滑行的最大高度解析:设物块的质量为m 、斜面的倾角为θ,物块与斜面间的动摩擦因数为μ,物块沿斜面上滑和下滑时的加速度大小分别为a 1和a 2,根据牛顿第二定律有:mg sin θ+μmg cos θ=ma 1,mg sin θ-μmg cos θ=ma 2.再结合v -t 图线斜率的物理意义有:a 1=v 0t 1,a 2=v 1t 1.由上述四式可见,无法求出m ,可以求出θ、μ,故B 错,A 、C 均正确.0~t 1时间内的v -t 图线与横轴包围的面积大小等于物块沿斜面上滑的最大距离,θ已求出,故可以求出物块上滑的最大高度,故D正确.答案:ACD[反思总结]分析图象问题时常见的误区1.没有看清横、纵坐标所表示的物理量及单位.2.没有注意坐标原点是否从零开始.3.不清楚图线的点、斜率、面积等的物理意义.4.忽视对物体的受力情况和运动情况的分析.1-1.[牛顿运动定律与v-t图象的综合]以不同初速度将两个物体同时竖直向上抛出并开始计时,一个物体所受空气阻力可忽略,另一物体所受空气阻力大小与物体速率成正比,下列用虚线和实线描述两物体运动的v-t图象可能正确的是()解析:不受空气阻力的物体,整个上抛过程中加速度恒为g,方向竖直向下,题图中的虚线表示该物体的速度—时间图象;受空气阻力的物体在上升过程中,mg+k v=ma,即a=g+k vm,随着物体速度的减小,物体的加速度不断减小,故A项错误;受空气阻力的物体上升到最高点时,速度为零,此时物体的加速度也是g,方向竖直向下,故图中实线与t轴交点处的切线的斜率应与虚线的斜率相同,故D项正确,B、C项错误.答案:D1-2.[牛顿运动定律与a-F图象的综合](多选)如图甲所示,物体原来静止在水平面上,用一水平力F拉物体,在F从0开始逐渐增大的过程中,物体先静止后做变加速运动.其加速度a随外力F变化的图象如图乙所示.根据图乙中所标出的数据可计算出(g取10 m/s2)()A.物体的质量为1 kgB.物体的质量为2 kgC.物体与水平面间的动摩擦因数为0.3D.物体与水平面间的动摩擦因数为0.5解析:物体的受力如图所示,在力F从0增大到7 N之前物体静止,在7 N时运动状态发生变化,由牛顿第二定律得F-F f=ma,代入图乙中F1=7 N和F2=14 N及对应的加速度a1=0.5 m/s2和a2=4 m/s2,解得m=2 kg,F f=6 N,A错误,B正确;F f=μF N=μmg,则μ=0.3,C正确,D错误.答案:BC1-3.[牛顿运动定律与F-x图象的综合]水平地面上有一轻质弹簧,下端固定,上端与物体A相连接,整个系统处于平衡状态.现用一竖直向下的力压物体A,使A竖直向下做匀加速直线运动一段距离,整个过程中弹簧一直处在弹性限度内.下列关于所加力F的大小和运动距离x之间的关系图象正确的是()解析:开始时,物体处于平衡状态,物体受重力和弹力,则有mg=kx1,物体向下匀加速过程,对物体受力分析,受重力、弹簧向上的弹力、推力F,根据牛顿第二定律,有F+mg-F弹=ma,根据胡克定律,有F弹=k(x1+x)=mg+kx,解得F=ma-mg+F弹=ma+kx,故弹力与x呈线性关系,且是增函数,故D正确.答案:D热点二连接体问题的分析方法(师生共研)1.绳(或杆)连接体[典例2](多选)如图所示,倾角为θ的斜面放在粗糙的水平地面上,现有一带固定支架的滑块m正沿斜面加速下滑.支架上用细线悬挂的小球达到稳定(与滑块相对静止)后,悬线的方向与竖直方向的夹角也为θ,斜面体始终保持静止,则下列说法正确的是()A.斜面光滑B.斜面粗糙C.达到稳定状态后,地面对斜面体的摩擦力水平向左D.达到稳定状态后,地面对斜面体的摩擦力水平向右解析:隔离小球,可知小球的加速度方向为沿斜面向下,大小为g sin θ,对支架系统整体进行受力分析,只有斜面光滑,支架系统的加速度才是g sin θ,所以A正确,B错误;对斜面体进行受力分析,如图,斜面体静止,由牛顿第三定律有地面对斜面体的摩擦力水平向左,故选A、C.答案:AC2.弹簧连接体[典例3]如图所示,A、B两球完全相同,质量均为m,用两根等长的细线悬挂在升降机内天花板的O点,两球之间连着一根劲度系数为k的轻质弹簧,当升降机以加速度a竖直向上匀加速运动时,两根细线之间的夹角为θ.则弹簧的被压缩的长度为()A.m (α+g )tan θkB .mg tan θkC.m (α+g )tan θ2kD .2m (α+g )tan θ2k解析:对球A 受力分析,受重力mg 、拉力T 、弹簧的弹力F 而向上做匀加速直线运动,则由牛顿第二定律可知Ftan θ2-mg =ma ,即F =m (g +a )tan θ2,根据胡克定律,有F =kx ,联立可得x =m (a +g )tan θ2k,C 正确. 答案:C [反思总结]求解弹簧连接体加速度的两种情况3.接触连接体[典例4] 如图所示,在倾角为θ的固定斜面上有两个靠在一起的物体A 、B ,两物体与斜面间的动摩擦因数μ相同,用平行于斜面的恒力F 向上推物体A 使两物体沿斜面向上做匀加速运动,且B 对A 的压力平行于斜面,则下列说法中正确的是( )A .只减小A 的质量,B 对A 的压力大小不变 B .只减小B 的质量,B 对A 的压力大小会增大C .只减小斜面间的倾角,B 对A 的压力大小不变D .只减小两物体与斜面间的动摩擦因数μ,B 对A 的压力会增大解析:将A 、B 看成一个整体,整体在沿斜面方向上受到沿斜面向下的重力的分力,沿斜面向下的滑动摩擦力,沿斜面向上的推力,根据牛顿第二定律可得a =F -(m A +m B )g sin θ-μ(m A +m B )g cos θm A +m B =F m A +m B -g sin θ-μg cos θ.隔离B 分析可得F N -m B g sin θ-μm B g cos θ=m B a ,解得F N =m B Fm A +m B,由牛顿第三定律可知,B对A的压力F N′=m B Fm A+m B,若只减小A的质量,压力变大,若只减小B的质量,压力变小,故A、B错误;A、B之间的压力与斜面的倾角、与斜面间的动摩擦因数无关,C正确,D 错误.答案:C2-1.[弹簧接触连接体](多选)如图所示,甲、乙、丙三个木块的质量分别为m1、m2和m3,甲、乙两木块用细线连在一起,中间有一被压缩竖直放置的轻弹簧,乙放在丙物体上,整个装置放在水平地面上.系统处于静止状态,此时绳的张力为F,在把细线烧断的瞬间,甲的加速度大小为a,对细线烧断后的瞬间,下列说法正确的是()A.甲受到的合力大小为FB.丙对乙的支持力大小为(m1+m2)gC.丙对地面的压力大小为(m1+m2+m3)g+FD.地面对丙的支持力大小为m1(a+g)+m2g+m3g解析:开始系统处于静止,对甲分析,有:F+m1g=F弹,剪断细线的瞬间,弹簧弹力不变,对甲,合力为F合甲=F弹-m1g=F,故A正确;对乙分析,根据共点力平衡得,F弹+m2g=F丙对乙,解得F丙对乙=F+m1g+m2g,故B错误;对乙丙整体分析,根据共点力平衡得,F弹+(m2+m3)g=F地,解得地面对丙的支持力F地=(m1+m2+m3)g+F,因为F合甲=F弹-m1g=m1a,则F地=m1(a+g)+m2g+m3g,故C、D正确.答案:ACD2-2. [绳连接体]如图所示,三个物体质量分别为m1=1.0 kg、m2=2.0 kg、m3=3.0 kg,已知斜面上表面光滑,斜面倾角θ=30°,m1和m2之间的动摩擦因数μ=0.8.不计绳和滑轮的质量和摩擦.初始时用外力使整个系统静止,当撤掉外力时,m2将(g取10 m/s2,最大静摩擦力等于滑动摩擦力)()A.和m1相对静止一起沿斜面下滑B.和m1相对静止一起沿斜面上滑C.相对于m1上滑D.相对于m1下滑解析:假设m1和m2之间保持相对静止,对整体分析,整体的加速度a=m3g-(m1+m2)g sin 30°m1+m2+m3=2.5 m/s2.隔离对m2分析,根据牛顿第二定律得F f-m2g sin 30°=m2a,解得F f=m2g sin 30°+m2a=15 N,最大静摩擦力F fm=μm2g cos 30°=8 3 N,可知F f>F fm,知m2的加速度小于m1的加速度,m2相对于m1下滑,故D正确.答案:D热点三临界问题的处理方法(师生共研)1.临界或极值条件的标志(1)有些题目中有“刚好”“恰好”“正好”等字眼,表明题述的过程存在临界点.(2)若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在“起止点”,而这些起止点往往就对应临界状态.(3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在极值,这个极值点往往是临界点.(4)若题目要求“最终加速度”“稳定速度”等,即是求收尾加速度或收尾速度.2.几种临界状态和其对应的临界条件如下表所示3.1.k 的轻弹簧相连,在外力F1、F2作用下运动,且满足F1>F2,当系统运动稳定后,弹簧的伸长量为()A.F1-F2k B.F1+F22kC.F1-F22k D.F1+F2k解析:本题利用牛顿第二定律,先选A、B为一整体,再隔离A物体,求出弹簧的弹力F,由F=kx,即可求得弹簧的伸长量.但是若用极限分析法,可快速得出结果:令F1=F2,则两物体静止,F=F1=F2=kx,能满足此条件的结果只有B选项.答案:B2.假设分析法[典例6]如图所示,一轻质弹簧的一端系一质量为m的小球,另一端固定在倾角为37°的光滑斜面体顶端,弹簧与斜面平行.在斜面体以大小为g的加速度水平向左做匀加速直线运动的过程中,小球始终相对于斜面静止.已知弹簧的劲度系数为k,则该过程中弹簧的形变量为(已知:sin 37°=0.6,cos 37°=0.8)()A.mg5k B.4mg5kC.mgk D.7mg5k解析:在斜面体以大小为g的加速度水平向左做匀加速直线运动时,弹簧是处于伸长状态还是压缩状态,无法直接判断,此时可采用假设法,假设弹簧处于压缩状态,若求得弹力F为正值,则假设正确;水平方向上由牛顿第二定律得:F N sin θ+F cos θ=mg;竖直方向上由受力平衡得:F N cos θ=mg+F sinθ,联立得:F=15mg.由胡克定律得F=kx,x=mg5k,F为正值,弹簧压缩,故选A.答案:A3.数学极值法[典例7]如图所示,一质量为m=0.4 kg的小物块,以v0=2 m/s的初速度,在与斜面成某一夹角的拉力F作用下,沿斜面向上做匀加速运动,经t=2 s的时间物块由A点运动到B点,A、B之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.(1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少? 解析:(1)设物块加速度的大小为a ,到达B 点时速度的大小为v B , 由运动学公式得L =v 0t +12at 2 v B =v 0+at解得 a =3 m/s 2,v B =8 m/s.(2)物块的受力分析如图所示,F N 、F f 为物块所受支持力、摩擦力,设拉力F 与斜面夹角为α, 由牛顿第二定律得垂直斜面方向有F sin α+F N =mg cos θ 沿斜面方向有F cos α-mg sin θ-F f =ma 又因为F f =μF N解得F cos α+33F sin α=5.2 N 则F =5.2 N cos α+33sin α=15.6 N23(32cos α+12sin α)= 7.8 N3sin (α+60°)当α=30°时,拉力F 有最小值,F min =135 3 N. 答案:(1)3 m/s 2 8 m/s (2)30° 135 3 N1.(多选)(2015·全国卷Ⅱ)在一东西向的水平直铁轨上,停放着一列已用挂钩连接好的车厢.当机车在东边拉着这列车厢以大小为a的加速度向东行驶时,连接某两相邻车厢的挂钩P和Q间的拉力大小为F;当机车在西边拉着车厢以大小为23a的加速度向西行驶时,P和Q间的拉力大小仍为F.不计车厢与铁轨间的摩擦,每节车厢质量相同,则这列车厢的节数可能为( BC )A.8B.10C.15D.182.(2019·广东肇庆高三统测)如图所示,质量为m的球置于斜面上,被一个竖直挡板挡住.现用一个力F 拉斜面,使斜面在水平面上做加速度为a的匀加速直线运动,忽略一切摩擦,下列说法正确的是( A )A.斜面对球不仅有弹力,而且该弹力是一个定值B.斜面和挡板对球的弹力的合力等于maC.若加速度足够小,则竖直挡板对球的弹力可能为零D.若加速度足够大,斜面对球的弹力可能为零解析:对小球受力分析,小球受重力mg、斜面的支持力F N2、竖直挡板的水平弹力F N1,设斜面的倾斜角为α,则竖直方向有:F N2cos α=mg.∵mg和α不变,∴无论加速度如何变化,F N2不变且不可能为零,故A正确,D错误;水平方向有:F N1-F N2sin α=ma.∵F N2sin α≠0,若加速度足够小,竖直挡板的水平弹力不可能为零,故C错误;斜面和挡板对球的弹力的合力即为竖直方向的F N2cos α与水平方向的力ma的合成,因此大于ma,故B错误.3.如图所示,光滑水平面上放置M、N、P、Q四个木块,其中M、P质量均为m,N、Q质量均为2m,M、P之间用一轻质弹簧相连,现用水平拉力F拉N,使四个木块以同一加速度a向右运动,则在突然撤去F的瞬间,下列说法正确的是( D )A.P、Q间的摩擦力改变B.M、P的加速度大小变为a 2C.M、N间的摩擦力不变D.N的加速度大小仍为a[A组·基础题]1. 如图所示,质量都为m的A、B两物体叠放在竖直弹簧上并保持静止,用大小等于mg的恒力F向上拉B,运动距离h时B与A分离.则下列说法中正确的是( C )A.B和A刚分离时,弹簧为原长B.B和A刚分离时,它们的加速度为gC.弹簧的劲度系数等于mg hD.在B与A分离之前,它们做匀加速运动2.如图甲所示,一个质量为3 kg的物体放在粗糙水平地面上,从零时刻起,物体在水平力F作用下由静止开始做直线运动.在0~3 s时间内物体的加速度a随时间t的变化规律如图乙所示.则( C )A.F的最大值为12 NB.0~1 s和2~3 s内物体加速度的方向相反C.3 s末物体的速度最大,最大速度为8 m/sD.在0~1 s内物体做匀加速运动,2~3 s内物体做匀减速运动3.如图所示,在倾角为30°的光滑斜面上端系有一劲度系数为20 N/m的轻质弹簧,弹簧下端连接一个质量为2 kg的小球,球被一垂直于斜面的挡板A挡住,此时弹簧没有形变.若挡板A以4 m/s2的加速度沿斜面向下做匀加速运动,g取10 m/s2,则( B )A.小球向下运动0.4 m时速度最大B.小球向下运动0.1 m时与挡板分离C.小球速度最大时与挡板分离D.小球从一开始就与挡板分离4.利用传感器和计算机可以研究快速变化的力的大小.实验时,把图甲中的小球举到绳子的悬点O处,然后将小球由静止释放,同时开始计时,利用传感器和计算机获得弹性绳的拉力随时间的变化如图乙所示.根据图象提供的信息,下列说法正确的是( B )A.t1、t2时刻小球的速度最大B.t2、t5时刻小球的动能最小C.t3、t4时刻小球的运动方向相同D.t4-t3<t7-t65.(多选)如图所示,质量均为m的两个木块P、Q叠放在水平地面上,P、Q接触面的倾角为θ,在Q上施加一水平推力F,使P、Q保持相对静止一起向左做匀加速直线运动.下列说法中正确的是( AC )A.木块Q对地面的压力一定为2mgB.若Q与地面间的动摩擦因数为μ,则μ=F 2mgC.若P、Q之间光滑,则加速度a=g tan θD.若运动中逐渐减小F,则地面与Q间的摩擦力也逐渐减小6.(多选)如图甲所示,水平地面上固定一足够长的光滑斜面,斜面顶端有一理想定滑轮,一轻绳跨过滑轮,绳两端分别连接小物块A和B.保持A的质量不变,改变B的质量m.当B的质量连续改变时,得到A的加速度a随B的质量m变化的图线如图乙所示.设加速度沿斜面向上的方向为正方向,空气阻力不计,重力加速度g取9.8 m/s2,斜面的倾角为θ,下列说法正确的是( BC )A.若θ已知,可求出A的质量B.若θ未知,可求出乙图中a1的值C.若θ已知,可求出乙图中a2的值D.若θ已知,可求出乙图中m0的值7.(多选)将一质量不计的光滑杆倾斜地固定在水平面上,如图甲所示,现在杆上套一光滑的小球,小球在一沿杆向上的拉力F的作用下沿杆向上运动.该过程中小球所受的拉力以及小球的速度随时间变化的规律如图乙、丙所示.g=10 m/s2.则下列说法正确的是( AC )A.在2~4 s内小球的加速度大小为0.5 m/s2B.小球质量为2 kgC.杆的倾角为30°D.小球在0~4 s内的位移为8 m8.从地面上以初速度v0竖直上抛一质量为m的小球,若运动过程中受到的阻力与其速率成正比,小球运动的速率随时间变化的规律如图所示,小球在t1时刻到达最高点后再落回地面,落地速率为v1,且落地前小球已经做匀速运动,已知重力加速度为g,下列关于小球运动的说法中错误的是( D )A.t1时刻小球的加速度为gB.在速度达到v1之前小球的加速度一直在减小C.小球抛出瞬间的加速度大小为(1+v0 v1)gD.小球加速下降过程中的平均速度小于v12[B组·能力题]9. 如图所示,质量为m1和m2的两个材料相同的物体用细线相连,在大小恒定的拉力F作用下,先沿水平面,再沿斜面(斜面与水平面成θ角),最后竖直向上做匀加速运动,不计空气阻力,在三个阶段的运动中,线上拉力的大小( C )A.由大变小B.由小变大C.始终不变且大小为m1m1+m2FD.由大变小再变大10.(多选)(2019·福建将乐县一中月考)如图甲所示,足够长的木板B静置于光滑水平面上,其上表面放置小滑块A.木板B在水平拉力F作用下,其加速度a随拉力F变化的关系图象如图乙所示,最大静摩擦力等于滑动摩擦力,g=10 m/s2,则( AD)A.木板B的质量为1 kgB.小滑块A的质量为3 kgC.AB间动摩擦因素为0.2D.AB间动摩擦因素为0.1解析:设A的质量为M,B的质量为m,当F等于3 N时,加速度为:a=1 m/s2,对整体分析,由牛顿第二定律有:F=(M+m)a,代入数据解得:M+m=3 kg,当F大于3 N时,对B,由牛顿第二定律得:F=Ma+μmg,由图示图象可知,图线的斜率:k=M=1,木板B的质量:M=1 kg,滑块A 的质量为:m=2 kg,故A正确,B错误;由图可知,当F=3 N时,a=1 m/s2,对木板由牛顿第二定律得:F=Ma+μmg,即3=1×1+μ×2×10,解得:μ=0.1,故C错误,D正确.11. 为了测定木板和斜面间的动摩擦因数μ,某同学设计了如图所示的实验,在木板上固定一个弹簧测力计(质量不计),弹簧测力计下端固定一个光滑小球,将木板连同小球一起放在斜面上,用手固定住木板时,弹簧测力计的示数为F1,放手后木板沿斜面下滑,稳定时弹簧测力计的示数为F2,测得斜面倾角为θ,由测得的数据可求出木板与斜面间的动摩擦因数是多少?解析:设小球的质量为m,木板的质量为M.静止时,以小球为研究对象,有F1=mg sin θ.下滑时,以小球为研究对象,有mg sin θ-F2=ma.下滑时,以整体为研究对象,有(M+m)g sin θ-μ(M+m)g cos θ=(M+m)a.联立解得μ=F2F1tan θ.答案:F2F1tan θ12.两物体A、B并排放在水平地面上,且两物体接触面为竖直面,现用一水平推力F作用在物体A 上,使A、B由静止开始一起向右做匀加速运动,如图(a)所示,在A、B的速度达到6 m/s时,撤去推力F.已知A、B质量分别为m A=1 kg、m B=3 kg,A与地面间的动摩擦因数μ=0.3,B与地面间没有摩擦,B物体运动的v-t图象如图(b)所示.取g=10 m/s2,求:(1)推力F的大小;(2)A物体停止运动的瞬间,物体A、B之间的距离.解析:(1)在水平推力F作用下,设物体A、B一起做匀加速运动的加速度为a,由B物体的v-t图象得a=3 m/s2.对于A、B整体,由牛顿第二定律得F-μm A g=(m A+m B)a,代入数据解得F=15 N. (2)设物体A匀减速运动的时间为t,撤去推力F后,A、B两物体分离,A在摩擦力作用下做匀减速直线运动,B做匀速运动,对于A物体有μm A g=m A a A,a A=μg=3 m/s2,v t=v0-a A t=0,解得t=2 s,物体A的位移为x A=v t=v0+02t=6 m,物体B的位移为x B=v0t=12 m,所以,A物体刚停止运动时,物体A、B之间的距离为Δx=x B-x A=6 m. 答案:(1)15 N(2)6 m。

2020高考物理一轮二轮三轮复习:专题三牛顿运动定律3-2含解析

2020高考物理一轮二轮三轮复习:专题三牛顿运动定律3-2含解析

1.(多选)如图(a),一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图(b)所示。

若重力加速度及图中的v0、v1、t1均为已知量,则可求出()点击观看解答视频A.斜面的倾角B.物块的质量C.物块与斜面间的动摩擦因数D.物块沿斜面向上滑行的最大高度答案ACD解析设物块的质量为m、斜面的倾角为θ,物块与斜面间的动摩擦因数μ,物块沿斜面上滑和下滑时的加速度大小分别为a1和a2,根据牛顿第二定律有:mg sinθ+μmg cosθ=ma1,mg sinθ-μmg cosθ=ma2。

再结合v-t图线斜率的物理意义有:a1=v0 t1,a2=v1t1。

由上述四式可见,无法求出m,可以求出θ、μ,故B错误,A、C均正确。

0~t1时间内的v-t图线与横轴包围的面积大小等于物块沿斜面上滑的最大距离,θ已求出,故可以求出物块上滑的最大高度,故D正确。

2.若货物随升降机运动的v-t图象如图所示(竖直向上为正),则货物受到升降机的支持力F与时间t关系的图象可能是()答案 B解析由v-t图象可知,升降机的运动过程为:向下加速(失重:F<mg)→向下匀速(F=mg)→向下减速(超重:F>mg)→向上加速(超重:F>mg)→向上匀速(F=mg)→向上减速(失重:F<mg),对照F-t图象可知,B正确。

3.(多选)如图,升降机内有一固定斜面,斜面上放一物块。

开始时,升降机做匀速运动,物块相对于斜面匀速下滑。

当升降机加速上升时,()A.物块与斜面间的摩擦力减小B.物块与斜面间的正压力增大C.物块相对于斜面减速下滑D.物块相对于斜面匀速下滑答案BD解析当升降机匀速运动,物块相对于斜面匀速下滑时有:mg sinθ=μmg cosθ,则μ=tanθ(θ为斜面倾角),当升降机加速上升时,设加速度为a;物块处于超重状态,超重ma。

物块“重力”变为G′=mg+ma,支持力变为N′=(mg+ma)cosθ>mg cosθ,B对。

“重力”沿斜面向下的分力G下′=(mg+ma)sinθ,沿斜面摩擦力变为f′=μN′=μ(mg+ma)cosθ>μmg cosθ,A错误。

2020年强基计划高三物理专题讲解第03讲--牛顿运动定律 (核心素养提升)(解析版)

2020年强基计划高三物理专题讲解第03讲--牛顿运动定律 (核心素养提升)(解析版)

2020年强基计划物理专题讲解(核心素养提升)第3讲 牛顿运动定律知识精讲1.牛顿第一定律任何物体都保持静止或匀速直线运动状态,直到其他物体所作用的力迫使它改变这种状态为止。

这是牛顿第一定律的内容。

牛顿第一定律是质点动力学的出发点。

物体保持静止状态或匀速直线运动状态的性质称为惯性。

牛顿第一定律又称为惯性定律,惯性定律是物体的固有属性,可用质量来量度。

无论是静止还是匀速直线运动状态,其速度都是不变的。

速度不变的运动也就是没有加速度的运动,所以物体如果不受到其他物体的作用,就作没有加速度的运动,牛顿第一定律指出了力是改变物体运动状态的原因。

牛顿第一定律只在一类特殊的参照系中成立,此参照系称为惯性参照系。

简称惯性系。

相对某一惯性系作匀速运动的参照系必定也是惯性系,牛顿第一定律不成立的参照系称为非惯性参照系,简称非惯性系,非2.牛顿第二定律(1)定律内容:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同(2)数学表达式:(3)理解要点ma F m F a ==∑∑或①牛顿第二定律不仅揭示了物体的加速度跟它所受的合外力之间的数量关系,而且揭示了加速度方向总与合外力的方向一致的矢量关系。

在应用该定律处理物体在二维平面或三维空间中运动的问题,往往需要选择适当的坐标系,把它写成分量形式①牛顿第二定律反映了力的瞬时作用规律。

物体的加速度与它所受的合外力是时刻对应的,即物体所受合外力不论在大小还是方向上一旦发生变化,其加速度也一定同时发生相应的变化。

①当物体受到几个力的作用时,每个力各自独立地使物体产生一个加速度,就如同其他力不存在—样;物体受几个力共同作用时,产生的加速度等于每个力单独作用时产生的加速度的矢量和,如图3-1-1示。

这个结论称为力的独立作用原理。

①牛顿第二定律阐述了物体的质量是惯性大小的量度,公式反映了对同—物体,其所受合外跟它的加速度之比值是个常数,而对不同物体其比值不同,这个比值的大小就是物体的质量,它是物体惯性大小量度,当合外力不变时,物体加速度跟其质量成反比,即质量越大,物体加速度越小,运动状态越难改变,惯性也就越大。

2020年高考物理4-5月模拟试题汇编专题03 牛顿运动定律(word档含答案解析)

2020年高考物理4-5月模拟试题汇编专题03 牛顿运动定律(word档含答案解析)

专题03牛顿运动定律1.(2020届东北三省四市高三一模)如图甲所示,水平地面上有足够长平板车M,车上放一物块m,开始时M、m均静止。

t=0时,车在外力作用下开始沿水平面向右运动,其v-t 图像如图乙所示,已知物块与平板车间的动摩擦因数为0.2,取g=10m/s2。

下列说法正确的是()A.0-6s内,m的加速度一直保持不变B.m相对M滑动的时间为3sC.0-6s内,m相对M滑动的位移的大小为4mD.0-6s内,m、M相对地面的位移大小之比为3:42.(2020届广东省广州、深圳市学调联盟高三第二次调研)质量为m的光滑圆柱体A放在质量也为m的光滑“ V”型槽B上,如图,α=60°,另有质量为M的物体C通过跨过定滑轮的不可伸长的细绳与B相连,现将C自由释放,则下列说法正确的是()A.当M= m时,A和B保持相对静止,共同加速度为0.5gB.当M=2m时,A和B保持相对静止,共同加速度为0.5gC.当M=6m时,A和B保持相对静止,共同加速度为0.75gD.当M=5m时,A和B之间的恰好发生相对滑动3.(2020届广东省广州、深圳市学调联盟高三第二次调研)如图所示,A、B、C三个物体分别用轻绳和轻弹簧连接,放置在倾角为θ的光滑斜面上,当用沿斜面向上的恒力F作用在物体A上时,三者恰好保持静止,已知A、B、C三者质量相等,重力加速度为g。

下列说法正确的是A .在轻绳被烧断的瞬间,A 的加速度大小为B .在轻绳被烧断的瞬间,B 的加速度大小为C .剪断弹簧的瞬间,A 的加速度大小为D .突然撤去外力F 的瞬间,A 的加速度大小为4.(2020届广东省广州市广大附中高三模拟)如图所示,某时刻将质量为10kg 的货物轻放在匀速运动的水平传送带最左端,当货物与传送带速度恰好相等时,传送带突然停止运动,货物最后停在传送带上。

货物与传送带间的动摩擦因数为0.5,货物在传送带上留下的划痕长为0.1m ,重力加速度取10m/s 2。

2020年高考物理一轮复习考点归纳:专题(03)牛顿运动定律(含答案)

2020年高考物理一轮复习考点归纳:专题(03)牛顿运动定律(含答案)

2020年高考一轮复习知识考点专题03 《牛顿运动定律》第一节牛顿第一、第三定律【基本概念、规律】一、牛顿第一定律1.内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.2.意义(1)揭示了物体的固有属性:一切物体都有惯性,因此牛顿第一定律又叫惯性定律.(2)揭示了力与运动的关系:力不是维持物体运动状态的原因,而是改变物体运动状态的原因,即产生加速度的原因.二、惯性1.定义:物体具有保持原来匀速直线运动状态或静止状态的性质.3.量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.3.普遍性:惯性是物体的本质属性,一切物体都有惯性.与物体的运动情况和受力情况无关.三、牛顿第三定律1.内容:两物体之间的作用力与反作用力总是大小相等、方向相反,而且在一条直线上.2.表达式:F=-F′.特别提示:(1)作用力和反作用力同时产生,同时消失,同种性质,作用在不同的物体上,各自产生的效果,不会相互抵消.(2)作用力和反作用力的关系与物体的运动状态无关.【重要考点归纳】考点一牛顿第一定律1.明确了惯性的概念.2.揭示了力的本质.3.揭示了不受力作用时物体的运动状态.4.(1)牛顿第一定律并非实验定律.它是以伽利略的“理想实验”为基础,经过科学抽象,归纳推理而总结出来的.(2)惯性是物体保持原有运动状态不变的一种固有属性,与物体是否受力、受力的大小无关,与物体是否运动、运动速度的大小也无关.考点二牛顿第三定律的理解与应用1.作用力与反作用力的“三同、三异、三无关”(1)“三同”:①大小相同;②性质相同;③变化情况相同.(2)“三异”:①方向不同;②受力物体不同;③产生效果不同.(3)“三无关”:①与物体的种类无关;②与物体的运动状态无关;③与物体是否和其他物体存在相互作用无关.2.相互作用力与平衡力的比较【思想方法与技巧】用牛顿第三定律转换研究对象作用力与反作用力,二者一定等大反向,分别作用在两个物体上.当待求的某个力不容易求时,可先求它的反作用力,再反过来求待求力.如求压力时,可先求支持力.在许多问题中,摩擦力的求解亦是如此.第二节牛顿第二定律两类动力学问题【基本概念、规律】一、牛顿第二定律1.内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同.2.表达式:F=ma.3.适用范围(1)牛顿第二定律只适用于惯性参考系,即相对于地面静止或匀速直线运动的参考系.(2)牛顿第二定律只适用于宏观物体(相对于分子、原子等)、低速运动(远小于光速)的情况.二、两类动力学问题1.已知物体的受力情况,求物体的运动情况.2.已知物体的运动情况,求物体的受力情况.特别提示:利用牛顿第二定律解决动力学问题的关键是利用加速度的“桥梁”作用,将运动学规律和牛顿第二定律相结合,寻找加速度和未知量的关系,是解决这类问题的思考方向.三、力学单位制1.单位制:由基本单位和导出单位一起组成了单位制.2.基本单位:基本物理量的单位,基本物理量共七个,其中力学有三个,它们是长度、质量、时间,它们的单位分别是米、千克、秒.3.导出单位:由基本物理量根据物理关系推导出来的其他物理量的单位.【重要考点归纳】考点一用牛顿第二定律求解瞬时加速度1.求解思路求解物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度.2.牛顿第二定律瞬时性的“两种”模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.3.在求解瞬时加速度时应注意的问题(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.4.解决瞬时加速度问题的关键是弄清哪些力发生了突变,哪些力瞬间不变,正确画出变化前后的受力图.考点二动力学两类基本问题1.求解两类问题的思路,可用下面的框图来表示:分析解决这两类问题的关键:应抓住受力情况和运动情况之间联系的桥梁——加速度.2.(1)解决两类动力学基本问题应把握的关键①一个桥梁——加速度是联系运动和力的桥梁.②两类分析——受力分析和运动过程分析.(2)解决动力学基本问题时对力的两种处理方法①合成法:物体受2个或3个力时,一般采用“合成法”.②正交分解法:物体受3个或3个以上的力时,则采用“正交分解法”.(3)解答动力学两类问题的基本程序①明确题目中给出的物理现象和物理过程的特点.②根据问题的要求和计算方法,确定研究对象,进行受力分析和运动过程分析,并画出示意图.③应用牛顿运动定律和运动学公式求解.考点三动力学图象问题1.图象类型(1)已知物体在一过程中所受的某个力随时间变化的图象,要求分析物体的运动情况.(2)已知物体在一运动过程中位移、速度、加速度随时间变化的图象,要求分析物体的受力情况.(3)已知物体在物理图景中的运动初始条件,分析物体位移、速度、加速度随时间的变化情况.2.问题的实质:是力与运动的关系问题,求解这类问题的关键是理解图象的物理意义,理解图象的轴、点、线、截、斜、面六大功能.3.数形结合解决动力学问题(1)物理公式与物理图象的结合是一种重要题型.对于已知图象求解相关物理量的问题,往往是结合物理过程从分析图象的横、纵坐标轴所对应的物理量的函数入手,分析图线的斜率、截距所代表的物理意义得出所求结果.(2)解决这类问题必须把物体的实际运动过程与图象结合,相互对应起来.【思想方法与技巧】传送带模型中的动力学问题1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图甲、乙、丙所示.2.建模指导传送带模型问题包括水平传送带问题和倾斜传送带问题.(1)水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.根据物体与传送带的相对速度方向判断摩擦力方向.两者速度相等是摩擦力突变的临界条件.(2)倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.3.解答传送带问题应注意的事项(1)水平传送带上物体的运动情况取决于物体的受力情况,即物体所受摩擦力的情况.(2)倾斜传送带问题,一定要比较斜面倾角与动摩擦因数的大小关系.(3)传送带上物体的运动情况可按下列思路判定:相对运动→摩擦力方向→加速度方向→速度变化情况→共速,并且明确摩擦力发生突变的时刻是v物=v传.第三节牛顿运动定律的综合应用【基本概念、规律】一、超重和失重1.超重(1)定义:物体对水平支持物的压力(或对竖直悬挂物的拉力)大于物体所受重力的情况称为超重现象.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对水平支持物的压力(或对竖直悬挂物的拉力)小于物体所受重力的情况称为失重现象.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)为零的情况称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.二、解答连接体问题的常用方法1.整体法当系统中各物体的加速度相同时,我们可以把系统内的所有物体看成一个整体,这个整体的质量等于各物体的质量之和,当整体受到的外力已知时,可用牛顿第二定律求出整体的加速度.2.隔离法当求解系统内物体间相互作用力时,常把物体从系统中“隔离”出来进行分析,依据牛顿第二定律列方程.3.外力和内力(1)外力:系统外的物体对研究对象的作用力;(2)内力:系统内物体之间的作用力.【重要考点归纳】考点一超重和失重现象1.超重并不是重力增加了,失重并不是重力减小了,完全失重也不是重力完全消失了.在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化(即“视重”发生变化).2.只要物体有向上或向下的加速度,物体就处于超重或失重状态,与物体向上运动还是向下运动无关.3.尽管物体的加速度不是在竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.4.物体超重或失重的多少是由物体的质量和竖直加速度共同决定的,其大小等于ma.5.超重和失重现象的判断方法(1)从受力的大小判断,当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时处于失重状态,等于零时处于完全失重状态.(2)从加速度的方向判断,当物体具有向上的加速度时处于超重状态,具有向下的加速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态.考点二整体法和隔离法解决连接体问题1.整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量).2.隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.3.整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.4.正确地选取研究对象是解题的首要环节,弄清各物体之间哪些属于连接体,哪些物体应该单独分析,并分别确定出它们的加速度,然后根据牛顿运动定律列方程求解.考点三分解加速度求解受力问题在应用牛顿第二定律解题时,通常不分解加速度而分解力,但有一些题目要分解加速度.最常见的情况是与斜面模型结合,物体所受的作用力是相互垂直的,而加速度的方向与任一方向的力不同向.此时,首先分析物体受力,然后建立直角坐标系,将加速度a分解为a x和a y,根据牛顿第二定律得F x=ma x,F y=ma y,使求解更加便捷、简单.【思想方法与技巧】“滑块——滑板”模型的分析1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.模型分析解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.3.(1)滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.(2)滑块是否会从滑板上掉下的临界条件是:滑块到达滑板一端时两者共速.(3)滑块不能从滑板上滑下的情况下,当两者共速时,两者受力、加速度发生突变.动力学中的临界条件及应用一、临界状态物体在运动状态变化的过程中,相关的一些物理量也随之发生变化.当物体的运动变化到某个特定状态时,相关的物理量将发生突变,该物理量的值叫临界值,这个特定状态称之为临界状态.二、临界状态的判断1.若题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点.2.若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态.3.临界状态的问题经常和最大值、最小值联系在一起,因此,若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点.4.若题目中有“最终”、“稳定”等文字,即是求收尾速度或加速度. 三、处理临界问题的思路 1.会分析出临界状态的存在.2.要抓住物体处于临界状态时的受力和运动特征,找出临界条件,这是解决问题的关键. 3.能判断物体在不满足临界条件时的受力和运动情况. 4.利用牛顿第二定律结合其他规律列方程求解. 四、力学中常见的几种临界条件 1.接触物体脱离的临界条件: 接触面间的弹力为零,即F N =0. 2.绳子松弛的临界条件: 绳中张力为0,即F T =0. 3.相对滑动的临界条件: 静摩擦力达到最大值,即f 静=f m . 4.滑块在滑板上不滑下的临界条件: 滑块滑到滑板一端时,两者速度相同.实验四 验证牛顿运动定律一、实验目的1.学会用控制变量法研究物理规律. 2.探究加速度与力、质量的关系. 3.掌握灵活运用图象处理问题的方法. 二、实验原理(见实验原理图)1.保持质量不变,探究加速度跟合外力的关系. 2.保持合外力不变,探究加速度与质量的关系. 3.作出a -F 图象和a -1m图象,确定其关系.三、实验器材小车、砝码、小盘、细绳、附有定滑轮的长木板、垫木、打点计时器、低压交流电源、导线两根、纸带、天平、米尺.四、实验步骤 1.测量:用天平测量小盘和砝码的质量m ′和小车的质量m . 2.安装:按照如实验原理图所示装置把实验器材安装好,只是不把悬挂小盘的细绳系在小车上(即不给小车牵引力)3.平衡摩擦力:在长木板的不带定滑轮的一端下面垫上一块薄木块,使小车能匀速下滑. 4.操作:(1)小盘通过细绳绕过定滑轮系于小车上,先接通电源后放开小车,取下纸带编号码. (2)保持小车的质量m 不变,改变砝码和小盘的质量m ′,重复步骤(1). (3)在每条纸带上选取一段比较理想的部分,测加速度a . (4)描点作图,作a -F 的图象.(5)保持砝码和小盘的质量m ′不变,改变小车质量m ,重复步骤(1)和(3),作a -1m图象.一、数据处理1.保持小车质量不变时,计算各次小盘和砝码的重力(作为小车的合力)及对应纸带的加速度,填入表(一)中.表(一)2.入表(二)中.表(二)3.4.以a为纵坐标,F为横坐标,根据各组数据描点,如果这些点在一条过原点的直线上,说明a与F成正比.5.以a为纵坐标,1m为横坐标,描点、连线,如果该线过原点,就能判定a与m成反比.二、注意事项1.平衡摩擦力:适当垫高木板的右端,使小车的重力沿斜面方向的分力正好平衡小车和纸带受到的阻力.在平衡摩擦力时,不要把悬挂小盘的细绳系在小车上,让小车拉着打点的纸带匀速运动.2.不重复平衡摩擦力.3.实验条件:m≫m′.4.一先一后一按:改变拉力和小车质量后,每次开始时小车应尽量靠近打点计时器,并应先接通电源,后释放小车,且应在小车到达定滑轮前按住小车.5.作图象时,要使尽可能多的点在所作直线上.不在直线上的点应尽可能对称分布在所作直线两侧.6.作图时两轴标度比例要选择适当.各量需采用国际单位.三、误差分析1.系统误差:本实验用小盘和砝码的总重力m′g代替小车的拉力,而实际上小车所受的拉力要小于小盘和砝码的总重力.2.偶然误差:摩擦力平衡不准确、质量测量不准确、计数点间距测量不准确、纸带和细绳不严格与木板平行都会引起误差.。

【高考复习】2020版高考物理 单元测试 牛顿运动定律(含答案解析)

【高考复习】2020版高考物理 单元测试 牛顿运动定律(含答案解析)

2020版高考物理单元测试牛顿运动定律1.下列关于牛顿运动定律说法正确的是( )A.力是维持物体运动的原因B.牛顿第一定律可以用实验直接验证C.作用力与反作用力只存在于相互接触的两个物体之间D.作用力与反作用力的性质一定相同2.如图所示,a、b两物体的质量分别为m1和m2,由轻质弹簧相连.当用恒力F竖直向上拉着a,使a、b一起向上做匀加速直线运动时,弹簧伸长量为x1,加速度大小为a1;当用大小仍为F的恒力沿水平方向拉着a,使a、b一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x2,加速度大小为a2.则有( )A.a1=a2,x1=x2 B.a1<a2,x1=x2 C.a1=a2,x1>x2 D.a1<a2,x1>x23.如图所示,足够长的传送带以恒定的速率v1逆时针运动,一质量为m的物块以大小为v2的初速度从左轮中心正上方的P点冲上传送带,从此时起到物块再次回到P点的过程中,下列说法正确的是( )A.合力对物块的冲量大小一定为2mv2B.合力对物块的冲量大小一定为2mv1C.合力对物块的冲量大小可能为零D.合力对物块做的功可能为零4.小刚同学站在电梯底板上,利用速度传感器和计算机研究一观光电梯升降过程中的情况,如图所示的vt图象是计算机显示的观光电梯在某一段时间内速度变化的情况(竖直向上为正方向).根据图象提供的信息,可以判断下列说法中正确的是( )A.在5~10 s内,该同学对电梯底板的压力等于他所受的重力B.在0~5 s内,观光电梯在加速上升,该同学处于失重状态C.在10~20 s内,该同学所受的支持力不变,该同学的机械能减少D.在20~25 s内,观光电梯在加速下降,该同学处于超重状态5.如图所示,在水平面上,有两个质量分别为m1和m2的物体A、B,两物体与水平面的动摩擦因数均为μ,m1>m2,A、B间水平连接着一轻质弹簧测力计。

若用大小为F的水平力向右拉B,稳定后B的加速度大小为a1,弹簧测力计示数为F1;如果改用大小为F的水平力向左拉A,稳定后A的加速度大小为a2,弹簧测力计示数为F2。

专题03 牛顿定律(解析版)

专题03 牛顿定律(解析版)

高考物理精选考点专项突破题集专题三 牛顿定律一、单项选择题:(在每小题给出的四个选项中,只有一项符合题目要求)1、将一只皮球竖直向上抛出,皮球运动时受到空气阻力的大小与速度的大小成正比。

下列描绘皮球在上升过程中加速度大小a 与时间t 关系的图象,可能正确的是( )【答案】C 。

【解析】皮球竖直向上抛出,由牛顿第二定律知mg+kv=ma ,因此a=g+mkv 。

上升过程速度一直减小,因此加速度一直减小,速度为零时到达最高点,加速度最小是g ,故BD 都错误。

A 和C 的主要区别是切线斜率不同,由a=g+m kv 知∆a=m v k ∆,变形知t v m k t a ∆∆=∆∆=a m k ,上升过程a 一直减小,a-t 图象的切线斜率t a ∆∆绝对值的大小一直变小,因此C 正确。

注意函数式法判图象形状,切忌凭感觉做题。

故本题选C 。

【考点】牛顿第二定律;图象问题【难度】较难2、如图所示,足够长的传送带与水平面间夹角为θ,以速度v 0逆时针匀速转动。

在传送带的上端轻轻放置一个质量为m 的小木块,小木块与传送带间的动摩擦因数μ<tanθ。

则图中能客观地反映小木块的速度随时间变化关系的是( )【答案】D 。

【解析】开始阶段滑动摩擦力沿传送带向下,由牛顿第二定律知mgsinθ+μmgcosθ=ma 1,因此a 1=gsinθ+μgcosθ。

小木块加速到和传送带速度相等时,由于μ<tanθ,即mgsinθ>μmgcosθ,小木块不会匀速运动,然后小木块会继续加速,滑动摩擦力变为沿传送带向上,由牛顿第二定律知mgsinθ-μmgcosθ=ma2,因此a2=gsinθ-μgcosθ。

由公式知a2<a1。

注意摩擦力是被动力,速度相等时摩擦力会突变。

故本题选D。

【考点】牛顿第二定律;图象问题【难度】较难3、在升降电梯内的地板上放一体重计,电梯静止时,晓敏同学站在体重计上,体重计示数为50kg。

电梯在运动过程中,某一段时间内晓敏同学发现体重计示数如图所示。

2020高考物理一轮复习专题03牛顿运动定律(解析版)

2020高考物理一轮复习专题03牛顿运动定律(解析版)

专题03 牛顿运动定律1 .(2020 届安徽省宣城市高三第二次调研)如图所示,在水平桌面上叠放着质量均为M 的A、B 两块木板,在木板 A 的上面放着一个质量为m 的物块C,木板和物块均处于静止状态。

A、B、C 之间以及 B 与地面之间的动摩擦因数都为。

若用水平恒力 F 向右拉动木板 A (已知最大静摩擦力的大小等于滑动摩擦力),要使 A 从 C 、B 之间抽出来,则对 C 有aC=mg=gm对 B 受力分析有:受到水平向右的滑动摩擦力力,有f= μ(2M+m )g因为μ(M+m )g<μ(2M+m )g 所以 B 没有运动,加速度为0 ;所以当a A>a C 时,能够拉出,则有F mg M m g M解得F> 2μ(m+M )g,故选C2 .(2020 届福建省漳州市高三第一次教学质量检测)如图,个可以看作质点,质量为m=1kg 的物块,以沿传动带向下的速度v0 4m/s 从M 点开始沿传送带运动。

物块运动过程的部分v-t 图像如图所示,取g=10m/s 2,则()F 大小应满足的条件是(A.F (m 2M )g B.F (2m 3M )gC .F 2 (m M )gD .F (2m M )g答案】C解析】要使 A 能从C、 B 之间抽出来,则,A要相对于B、C 都滑动,所以AC 间,AB 间都是滑动摩擦力,对 A 有a A=mg M m gμ(M+m )g,B 与地面的最大静摩擦力等于滑动摩擦MN 是一段倾角为=30 °的传送带A .物块最终从传送带N 点离开B .传送带的速度v=1m/s ,方向沿斜面向下C .物块沿传送带下滑时的加速度a=2m/s 2D .物块与传送带间的动摩擦因数32【答案】D【解析】从图象可知,物体速度减为零后反向向上运动,最终的速度大小为1m/s ,因此没从N 点离开,并且能推出传送带斜向上运动,速度大小为1m/s ,AB 错误;v—t 图象中斜率表示加速度,可知物块沿传送带下滑时的加速度a=2.5m/s 2,C 错误;根据牛顿第二定律mg cos30o mg sin 30o ma,可得3,D 正确。

2020高考物理一轮复习第三章第3讲牛顿运动定律综合应用学案(含解析)(2021-2022学年)

2020高考物理一轮复习第三章第3讲牛顿运动定律综合应用学案(含解析)(2021-2022学年)

第3讲牛顿运动定律综合应用主干梳理对点激活知识点连接体问题Ⅱ1.连接体多个相互关联的物体连接(叠放、并排或由绳子、细杆联系)在一起构成的错误!未定义书签。

物体系统称为连接体.2.外力与内力(1)外力:系统错误!之外的物体对系统的作用力。

(2)内力:系统错误!内各物体间的相互作用力。

3.整体法和隔离法(1)整体法:把错误!加速度相同的物体看做一个整体来研究的方法。

(2)隔离法:求错误!系统内物体间的相互作用时,把一个物体隔离出来单独研究的方法。

知识点临界极值问题Ⅱ1.临界或极值条件的标志(1)有些题目中有“刚好”“恰好”“正好”等字眼,即表明题述的过程存在着错误!临界点。

(2)若题目中有“取值范围”“多长时间"“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往对应错误!未定义书签。

临界状态。

(3)若题目中有“最大”“最小”“至多”“至少"等字眼,表明题述的过程存在着极值,这个极值点往往是临界点。

(4)若题目要求“最终加速度”“稳定速度”等,即是求收尾加速度或收尾速度。

2.四种典型的临界条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是错误!未定义书签。

弹力F N=0。

(2)相对滑动的临界条件:两物体相接触且相对静止时,常存在着静摩擦力,则相对滑动的临界条件是错误!静摩擦力达到最大值.ﻬ(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于错误!它所能承受的最大张力,绳子松弛的临界条件是错误!F T=0.(4)加速度变化时,速度达到最值的临界条件:速度达到最大的临界条件是错误!未定义书签。

a=0,速度为0的临界条件是a达到错误!未定义书签。

最大。

知识点多过程问题Ⅱ1.多过程问题很多动力学问题中涉及物体有两个或多个连续的运动过程,在物体不同的运动阶段,物体的错误!运动情况和错误!受力情况都发生了变化,这类问题称为牛顿运动定律中的多过程问题。

2024年高考物理一轮复习(新教材新高考):牛顿运动定律(讲义)(解析版)

2024年高考物理一轮复习(新教材新高考):牛顿运动定律(讲义)(解析版)

第12讲牛顿运动定律目录复习目标网络构建考点一牛顿第一定律【夯基·必备基础知识梳理】知识点1牛顿第一定律知识点2惯性与质量【提升·必考题型归纳】考向1伽利略理想斜面实验考向2对牛顿第一定律的理解考向3惯性与质量考点二牛顿第二定律【夯基·必备基础知识梳理】知识点1牛顿第二定律内容知识点2牛顿第二定律的瞬时加速度问题【提升·必考题型归纳】考向1对牛顿第二定律的理解考向2牛顿第二定律的瞬时加速度问题考点三牛顿第三定律【夯基·必备基础知识梳理】知识点1牛顿第三定律内容知识点2作用力和反作用力与一对平衡力的区别【提升·必考题型归纳】考向1牛顿第三定律应用考向2作用力和反作用力与一对平衡力的区别真题感悟1、掌握并会利用牛顿三大定律处理物理问题。

2、会利用牛顿第二定律解决瞬时加速度问题。

考点要求考题统计考情分析(1)牛顿第一定律惯性(2)牛顿第二定律(3)牛顿第三定律2023年6月浙江卷第2题2023年全国乙卷第1题2022年海南卷第1题高考对牛顿三定律基本规律的考查,多以选择题的形式出现,同时与实际生活的实例结论紧密,题目相对较为简单。

考点一牛顿第一定律知识点1牛顿第一定律1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。

(1)揭示了物体的惯性:不受力的作用时,一切物体总保持匀速直线运动状态或静止状态。

2.牛顿第一、第二定律的关系(1)牛顿第一定律是以理解实验为基础,经过科学抽象、归纳推理总结出来的,牛顿第二定律是实验定律。

(2)牛顿第一定律不是牛顿第二定律的特例,它揭示了物体运动的原因和力的作用对运动的影响;牛顿第二定律则定量指出了力和运动的联系。

(2)揭示了力的作用对运动的影响:力是改变物体运动状态的原因。

知识点2惯性与质量对惯性的理解:(1)保持“原状”:物体在不受力或所受合外力为零时,惯性表现为使物体保持原来的运动状态(静止或匀速直线运动)。

2020年高考物理精选专题(含答案详解)03牛顿运动定律

2020年高考物理精选专题(含答案详解)03牛顿运动定律

2020年高考物理精选专题(含答案详解)一、单选题(共14题;共28分)1.质量为M的人站在地面上,用轻绳通过定滑轮将质量为m的重物从地面向上拉动,如图所示,若重物以加速度a上升,则人对地面的压力为( )A. (M+m)g+maB. (M+m)g-maC. (M-m)g-maD. Mg-ma2.如图所示,吊篮A、物体B、物体C的质量均为m,两物体分别固定在竖直弹簧两端,弹簧的质量不计,整个系统在轻绳悬挂下处于静止状态,现将悬挂吊篮的轻绳剪断在轻绳刚被剪断的时间()A. 物体B的加速度大小为gB. 物体C的加速度大小为2gC. 吊篮A的加速度大小为gD. 吊篮A与物体C间的弹力大小为0.5mg3.用一质量不计的细线将质量为m的氢气球拴在车厢地板上A点,此时细线与水平面成θ=37°角,气球与固定在水平车顶上的压力传感器接触。

小车静止时,细线恰好伸直但无弹力,压力传感器的示数为小球重力的0.5倍。

重力加速度为g。

现要保持细线方向不变而传感器示数为零,下列方法中可行的是()A. 小车向右加速运动,加速度大小为0.5gB. 小车向左加速运动,加速度大小为0.5gC. 小车向右减速运动,加速度大小为23g D. 小车向左减速运动,加速度大小为23g4.乘坐“空中缆车”饱览大自然的美景是旅游者绝妙的选择若某一缆车沿着坡度为30°的山坡以加速度a上行,如图所示。

在缆车中放一个与山坡表面平行的斜面,斜面上放一个质量为m的小物块,小物块相对斜面静止(设缆车保持竖直状态)则()A. 小物块受到的支持力方向竖直向上B. 小物块受到的摩擦力方向平行斜面向下C. 小物块受到的静摩擦力为12mg+ma D. 小物块受到的滑动摩擦力为12mg+ma5.质量为m的光滑小球恰好放在质量也为m的圆弧槽内,它与槽左右两端的接触处分别为A点和B点,圆弧槽的半径为R,OA与水平线AB成60°角.槽放在光滑的水平桌面上,通过细线和滑轮与重物C相连,细线始终处于水平状态.通过实验知道,当槽的加速度很大时,小球将从槽中滚出,滑轮与绳质量都不计,要使小球不从槽中滚出,则重物C的最大质量为()A. 2√33m B. 2m C. (√3−1)m D. (√3+1)m6.如图所示,质量为m的物体A放置在质量为M的物体B上,B与弹簧相连,它们一起在光滑水平面上做简谐运动,振动过程中A、B之间无相对运动,设弹簧的劲度系数为k,当物体离开平衡位置的位移为x 时,A、B间摩擦力的大小等于()A. 0B. kxC. mM kx D. mm+Mkx7.2019年7月9日,在沈阳进行的全国田径锦标赛上,来自上海的王雪毅以1米86的成绩获得女子跳高冠军。

2020版高考物理(课标版)大一轮复习单元质检三牛顿运动定律 含解析

2020版高考物理(课标版)大一轮复习单元质检三牛顿运动定律 含解析

单元质检三牛顿运动定律(时间:45分钟满分:100分)一、选择题(本题共8小题,每小题6分,共48分。

在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分)1.牛顿在总结C.雷恩、J.沃利斯和C.惠更斯等人的研究结果后,提出了著名的牛顿第三定律,阐述了作用力和反作用力的关系,从而与牛顿第一定律和牛顿第二定律形成了完整的牛顿力学体系。

下列关于作用力和反作用力的说法正确的是()A.物体先对地面产生压力,然后地面才对物体产生支持力B.物体对地面的压力和地面对物体的支持力互相平衡C.人推车加速前进,人对车的作用力的大小等于车对人的作用力的大小D.物体在地面上滑行,物体对地面的摩擦力大于地面对物体的摩擦力,是同时产生的,所以选项A错误;物体对地面的压力和地面对物体的支持力分别作用在地面和物体上,是一对作用力与反作用力,不是平衡力,选项B错误;人对车的作用力与车对人的作用力是一对作用力与反作用力,大小相等,选项C正确;物体对地面的摩擦力与地面对物体的摩擦力是一对作用力与反作用力,大小相等,选项D错误。

2.(2018·山东烟台一模)如图所示,质量为M=3 kg的足够长的木板放在光滑水平地面上,质量为m=1 kg的物块放在木板上,物块与木板之间有摩擦,两者都以大小为4 m/s的初速度向相反方向运动。

当木板的速度为3 m/s时,物块处于()A.匀速运动阶段B.减速运动阶段C.加速运动阶段D.速度为零的时刻,物块和木板间有摩擦力F f,所以物块做加速度a=的匀减速运动;木板做加速度a'=a的匀减速运动;故当木板速度为3 m/s时,物块速度为1 m/s,两者的速度方向不变,之后木板继续做减速运动,物块速度先减到零后反向做匀加速运动,木板继续减速,当木板和物块速度相同后,两者一起做匀速运动。

故当木板的速度为3 m/s时,物块必处于匀减速运动阶段,所以B正确,ACD错误。

2020届高三物理一轮全程复习:第三单元牛顿运动定律

2020届高三物理一轮全程复习:第三单元牛顿运动定律

B 的作用力为
分析:整体: F –μmg = 3ma
a = ( F–μ mg ) / 3m
F
B
对 B: N – μmg = ma
N = F3/ +2μmg/3
例 5.(1990 上海 )如下图,三个物体质量分不 和 m3,带有滑轮的物体放在光滑水平面 所有接触面的摩擦及绳子的质量均不计,
m1
为 m1、 m2
系数μ =0.02,在木楔的倾角为 30o 的斜面上, 有一质量 m=1.0 千克的物块由静止
开始沿斜面下滑,如图,当滑行路程 s=1.4m 时,其速度 v=1.4m/s,在这过程中
木楔没有动,,求地面对木楔的摩擦力的大小和方向。 〔g=10m/s〕
分析:物块滑下 2as = v2 a∥=acosθ=0.61m/s2
例:在水平地面上有一质量为 5 千克的物体, 在与水平方向成 53°沿斜上方的 25
牛顿拉力时,恰好做匀速直线运动
( 1) 当拉力为 50 牛时,加速度多大? ( 2) 当拉力为 62.5 牛时,加速度多大?
53°
f F cos53 15 N
( mg F sin 53 ) 15N
0.5
F1 cos53 ( mg F1 sin 53 ) ma F2 cos53 ( mg F2 sin 53 ) ma
扶梯沿斜面向上作匀加速运动时,
人对梯面的压力是其重力的 6/5,那么
人与梯面的摩擦力是其重力的: 〔 3 /5〕 30o
4. 系统牛顿第二定律
对连接体,能够在几个物体加速度不同时,考虑合力与加速度的关系
∑F = m1a1+m2a2+ … 例 3〔1994 年全国〕质量 M=10 千克的木楔 ABC静置于粗糙水平面上,滑动摩擦

2020届高三一轮复习物理精品资料:第三章牛顿运动定律(共32页,精华版)

2020届高三一轮复习物理精品资料:第三章牛顿运动定律(共32页,精华版)

2020届高三一轮复习物理精品资料:第三章牛顿运动定律(共32页,精华版)第一单元牛顿运动定律第1课时牛顿第一定律牛顿第三定律---- 要点精析— -------------要点一牛顿第一定律1. 关于物体的惯性,以下讲法中正确的选项是()A. 运动速度大的物体,不能专门快停下来,是因为速度大时,惯性也大B. 静止的火车启动时,速度变化慢,是因为静止的火车惯性大C. 乒乓球能够快速抽杀,是因为乒乓球惯性小的缘故D. 物体受到的外力大,那么惯性小;受到的外力小,那么惯性大答案C要点二牛顿第三定律2. 一物体受绳的拉力作用由静止开始前进,先做加速运动,然后改为匀速运动;再改做减速运动,那么以下讲法中正确的是()A. 加速前进时,绳拉物体的力大于物体拉绳的力B. 减速前进时,绳拉物体的力小于物体拉绳的力C. 只有匀速前进时,绳拉物体的力与物体拉绳的力大小才相等D. 不管物体如何前进,绳拉物体的力与物体拉绳的力大小总相等答案D题型探究题型1 惯性的明白得与应用【例1】如下图在瓶内装满水,将乒乓球用细线拴住并按入水中,线的另一端固定在瓶盖上.盖上瓶盖并将瓶子翻转,乒乓球将浮在水中.用手托着瓶子在水平向右做加速直线运动,乒乓球在瓶中的位置会如何变化?讲明你所观看到的现象.(1)假设瓶中只有水,当瓶加速向右运动时,会发生什么现象?只有乒乓球呢?答只有水时,由于惯性,水相对瓶向左侧移动.只有乒乓球时,乒乓球也会相对瓶向左移动⑵和乒乓球体积相同体积的水与乒乓球相比,谁的惯性大?答因为水的质量大于乒乓球的质量,因此水的惯性大于乒乓球的惯性.(3)假设瓶中既有水又有球,当瓶向右加速会发生什么现象?答由于水惯性大,当水相对瓶向左移动时,将挤压球,使球相对瓶向右移动题型2 牛顿第三定律的明白得与应用【例2】在天花板上用悬绳吊一重为G的电风扇,电风扇静止时受几个力作用?如下图,这些力的反作用力是哪些力?这些力的平稳力是哪些力?假如电风扇在匀速转动呢?当电风扇转动与静止时相比较,对天花板的拉力是变大依旧变小?什么缘故?(1)画出电风扇静止和转动时的受力图.讲明分不是什么力.是悬绳,F的反作用力是电风扇对悬绳的拉力.电风扇受到的重力G和悬绳的拉力F正好是一对平稳力.⑶指出图乙中F i、F2、G的反作用力及它们的平稳力.答依照牛顿第三定律,重力的施力物体是地球,那么重力G的反作用力确实是电风扇对地球的吸引力;冃的施力物体是悬绳,因此F i的反作用力是电风扇对悬绳的拉力;F2的施力物体是空气,因此F2的反作用力是电风扇对空气向下的作用力.电风扇受到的重力G与绳的拉力F i和空气对电风扇向上的作用力F2的合力是一对平稳力.⑷当电风扇静止时悬绳的拉力为多大?当电风扇转动呢?答静止时F=G当转动时F i+F2=G,F i=G-F2.(5)电风扇静止和转动时,悬绳的拉力哪个大?答静止时大.题型3 生活物理【例3】魔盘是游乐场中的一种大型游乐设施,它转动时,坐在上面的人能够体会到做离心运动的乐趣.在半径R=5 m的魔盘上,离其中心r=3 m处坐着一儿童,儿童从身旁轻轻开释一个光滑的小球,咨询:小球经多长时刻可与盘边缘相碰?(魔盘转动角速度3 =4 rad/s)1答案s3跟踪训练1. 如下图,重球系于易断的线DC下端,重球下再系一根同样的线BA下面讲法中正确的选项是A在线的A端慢慢增加拉力,结果CD线被拉断B. 在线的A端慢慢增加拉力,结果AB线被拉断C. 在线的A端突然猛力一拉,结果AB线被拉断D. 在线的A端突然猛力一拉,结果CD线被拉断答案AC2. 用运算机辅助实验系统做验证牛顿第三定律的实验,点击实验菜单中”力的相互作用" .如图(a)所示,把两个力探头的挂钩钩在一起,向相反方向拉动,观看显示器屏幕上显现的结果如图(b)所示.观看分析两个力传感器的相互作用力随时刻变化的曲线,能够得到以下实验结论(a)A作用力与反作用力时刻相等B. 作用力与反作用力作用在同一物体上C作用力与反作用力大小相等D.作用力与反作用力方向相反答案ACD3. 有人设计了一种交通工具,在平板车内装了一个电风扇,风扇运转时吹岀的风全部打到竖直固定在小车中间的风帆上,靠风帆受力而向前运动,如下图.关于这种设计,以下分析中正确的选项是(A. 依照牛顿第二定律,这种设计能使小车运行B. 依照牛顿第三定律,这种设计能使小车运行C. 这种设计不能使小车运行,因为它违反了牛顿第二定律D. 这种设计不能使小车运行,因为它违反了牛顿第三定律答案D4. 请依照图中的情形,讲明车子所处的状态,并对这种情形作出讲明.(1)(2)答案从图(1)能够看出,乘客向前倾,讲明乘客相对车箱有向前运动的速度,因此汽车在减速.从图(2)可看出,乘客向后倾讲明乘客有相对车箱向右运动的速度,讲明列车在加速第2课时牛顿第二定律单位制---- 〜要点精析--------------要点一牛顿第二定律1. 以下对牛顿第二定律的表达式F=ma及其变形公式的明白得,正确的选项是A由F=ma可知,物体所受的合力与物体的质量成正比,与物体的加速度成正比B. 由匚可知,物体的质量与其所受合力成正比,与其运动的加速度成反比aC由a=匚可知,m—定时物体的加速度与其所受合力成正比,F 一定时与其质量成反比mD.由匚可知,物体的质量能够通过测量它的加速度和它所受的合力而求出a答案CD要点二单位制2. 请把以下物理量与单位一一对应起来(1) 力 A kg •m/s 3⑵压强 B. kg •m/s2⑶功 C. kg •m/s2(4)功率 D. kg/(s 2• n)(3) —C (4) —A答案⑴一B (2) — D---- 题型探究- ♦•-----------题型1 受力求动过情形【例1】如下图,传送带与地面夹角e =37°,从A到B长度为16 m,传送带以v°=10 m/s 的速率逆时针转动.在传送带上端A无初速地放一个质量为m=0.5 kg的物体,它与传送带间的动摩擦因数卩=0.5.求物体从A运动到B需要的时刻.(sin37 ° =0.6, cos 37=0.8,取g=10 m/s 2)答案2 s题型2由运动求受力情形擦因数卩=0.02.在木楔倾角0 =30°的斜面上,有一质量n=1.0 kg的物体由静止开始沿斜面下滑,至滑行路程s=1.4 m时,其速度v=1.4 m/s.在这一过程中木楔始终保持静止,求地面对^楔的摩擦力的大小和方向(g取10 m/s 2).答案0.61 N,方向水平向左.题型3 生活物理【例3】如下图,是建筑工地常用的一种”深穴打夯机" ,电动机带动两个滚轮匀速转动将夯杆从深坑提上来,当夯杆底端刚到达坑口时,两个滚轮彼此分开,将夯杆开释,夯杆只在重力作用下运动,落回深坑,夯实坑底,且不反弹.然后两个滚轮再次压紧,夯杆被提到坑口,如此周而复始.两个滚轮边缘的线速度恒为v=4 m/s,滚轮对夯杆的正压力N=2X 104 N,滚轮与夯杆间的动摩擦因数卩=0.3,夯杆质量n=i x 103 kg,坑深h=6.4 m,假定在打夯的过程中坑的深度变化不大能够忽略,g=10 m/s 2.求:(1) 夯杆被滚轮压紧,加速上升至与滚轮速度相同时离坑底的高度.(2) 打夯周期是多少?答案(1)4 m (2)4.2 s-----------------■ ♦跟训练■—1. 如下图,在光滑水平面上有两个质量分不为m和m的物体A、B, m>m,A BA B间水平连接着一轻质弹簧秤.假设用大小为F的水平力向右拉B,稳固后| ]耳三”] (■二B的加速度大小为a1,弹簧秤示数为F;假如改用大小为F的水平力向左拉A,稳固后A的加速度大小为日2,弹簧秤示数为F2.那么以下关系式正确的选项是()A. a1 =82, FQF2B. a 1 =a2, F1 <F2C. a-i <a2, F 1=F2D. a〔>a2, F1 >F2答案A2. 如下图,U形槽放在水平桌面上,物体M放于槽内静止,现在弹簧对物体的压力为 3 N,物体的质量为0.5 kg,与槽底之间无摩擦.使槽与物体M—起以6 m/s2的加速度向左水平运动时()A弹簧对物体的压力为零 B.物体对左侧槽壁的压力等于零C. 物体对左侧槽壁的压力等于 3 ND. 弹簧对物体的压力等于6 N答案B3. (2018 •资阳模拟)我国 ''神舟"5号飞船于2003年10月15日在酒泉航天发射场由长征一2F 运载火箭成功发射升空,假设长征一2F运载火箭和飞船起飞时的总质量为 1.0 X 105 kg,火箭起飞时推动力为3.0 x 106 N运载火箭发射塔高160 n(g取10 m/s 2).求:(1) 假如运载火箭起飞时推动力不变,忽略空气阻力和火箭质量的变化,运载火箭经多长时刻飞离发射塔?(2) 这段时刻内飞船中质量为65 kg的宇航员对座椅的压力多大?答案(1)4 s (2)1.95 x 103 N4. 京沪高速公路3月7日清晨,因雨雾天气导致一辆轿车和另一辆显现故障熄火停下来的卡车相撞.轿车刹车时产生的最大阻力为重力的0.8倍,当时的能见度(观看者与能看见的最远目标间的距离)约37 m交通部门规定此种天气状况下轿车的最大行车速度为60 km/h.设轿车司机的反应时刻为0.6 s,请你通过运算讲明轿车有没有违反规定超速行驶?( g取10 m/s2)答案轿车车速至少72 km/h是超速行驶单元检测1. 以下对运动的认识不正确的选项是()A亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动B. 伽利略认为力不是坚持物体速度的缘故C. 牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动D. 伽利略依照理想实验推论岀,假如没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持那个速度连续运动下去答案A2. 我国?道路交通安全法?中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带,这是因为()A. 系好完全带能够减小惯性B. 是否系好安全带对人和车的惯性没有阻碍C. 系好安全带能够防止因车的惯性而造成的损害D. 系好安全带能够防止因人的惯性而造成的损害答案D3. 物体静止在水平桌面上,那么()A桌面对物体的支持力的大小等于物体的重力,这两个力是一对平稳力B. 物体所受的重力和桌面对它的支持力是一对作用力与反作用力C物体对桌面的压力确实是物体的重力,这两个力是同一种性质的力D.物体对桌面的压力和桌面对物体的支持力是一对相互平稳的力答案A4. 在平直轨道上,匀速向右行驶的封闭车厢内,悬挂着一个带滴管的盛油容器,滴管口正对车厢地 板上的0点,如下图,当滴管依次滴下三滴油时,设这三滴油都落在车厢的地板上 ,那么以下讲法中正确的选项是()A.这三滴油依旧落在 OA 之间,而且后一滴比前一滴离 O 点远些B.这三滴油依旧落在 OA 之间,而且后一滴比前一滴离 O 点近些 C 这三滴油依旧落在 OA 之间同一位置上D.这三滴油依旧落在 O 点上答案 D5. 一汽车在路面情形相同的公路上直线行驶 ,下面关于车速、惯性、质量和滑行路程的讨论,正确的选项是 ()A 车速越大,它的惯性越大 B. 质量越大,它的惯性越大C. 车速越大,刹车后滑行的路程越长D. 车速越大,刹车后滑行的路程越长,因此惯性越大 答案 BC 6.如图甲所示,小车内固定着硬质支架,杆的端点固定着一个质量为 m 的小球.杆对小球的作用力的变化如图乙所示,那么关于小车的运动,以下讲法中正确的是(杆对小球的作用力由F i 变化至FJ ()B.小车由静止开始向右做变加速运动 C 小车的加速度越来越大 答案 CA 小车向右做匀加速运动 D.小车的加速度越来越小7. 一个重500 N 的木箱放在大磅秤上,木箱内有一个质量为示,假如人用力推木箱顶部,那么小磅秤和大磅秤上的示数A F i 增大、F 2减小 B. F i 增大、 50 kg 的人,站在小磅秤上.如图所F i 、F 2的变化情形为 ()F 2增大t AF 2不变答案 D 8.如下图,底板光滑的小车放在水平地面上,其上放有两个完全相同且量程均为20 N 的弹簧秤,甲、乙系住一个质量为 i kg 的物块.当小车做匀速直线运动时,两弹簧秤的示数均为J.甲乙IZzJA.2 m/sB.4 m/s 2C.6 m/s 2D.8 m/s 2乙io答案B9. 如下图,三个完全相同物块1、2、3放在水平桌面上,它们与桌面间的动摩擦因数都相同.现用大小相同的外力F沿图示方向分不作用在1和2上,用丄F23上,使三者都做加速运动.令a、◎、a3分不表示物块A a i=a2 =a3 B. a i=a2, a2 > a3 C. a i > a2, a2 v a3 D. a > a2, a2> a3答案C10.有一仪器中电路如右图所示,其中M是质量较大的金属块,将仪器固定在一辆汽车内,汽车启动时和急刹车时,发觉其中一盏灯亮了,试分析是哪一盏灯亮了.答案汽车启动时绿灯亮,急刹车时红灯亮11.如右图所示,长L=75 cm的质量为m=2 kg的平底玻璃管底部置有一玻璃小球,玻璃管从静止开始受到一竖直向下的恒力F=12 N的作用,使玻璃管竖直向下运动,经一段时刻t ,小球离开管口.空气阻力不计,取g=10答案0.5 s 8 m/s12.用如右图所示的装置能够测量汽车在水平路面上做匀加速直线运动的加速度.该装置是在矩形箱子的前、后壁上各安装一个由力敏电阻组成的压力传感器.用两根相同的轻弹簧夹着一个质量为2.0 kg的滑块,滑块可无摩擦滑动,两弹簧的另一端分不压在.传感器a、b上,其压力大小可直截了当从传感器的液晶显示屏上读岀.现将装置沿运动方向固定在汽车内,传感器b在前,传感器a在后.汽车静止时,传感器a、b的示数均为10 N(取g=10 m/s2)(1)假设传感器a的示数为14 N、b的示数为6.0 N求现在汽车的加速度大小和方向⑵当汽车以如何样的加速度运动时,传感器a的示数为零?答案(1)4 m/s2(2)10 m/s213.(2007 •上海• 19B)如右图所示,固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环小环在沿杆方向的推力F作用下向上运动,推力F与小环速度v随时刻变化规律如以下图所示取重力加速度g=10 m/s2.求:(1) 小环的质量m⑵细杆与地面间的倾角a的外力沿水平方向作用在1、2、3的加速度,那么()答案(1)1 kg (2)30第二单元牛顿运动定律应用〔一〕第3课时瞬时咨询题与动态分析超重与失重---- —要点精析一* ----------要点一瞬时咨询题1. 如下图,物体甲、乙质量均为m弹簧和悬线的质量可忽略不计.当悬线被烧断的瞬时,甲、乙的加匚二屮速度数值应为()A. 甲是0,乙是gB.甲是g,乙是g C甲是0,乙是0 D.甲是—,乙是g2 答案B要点二动态分析2. 如下图,一轻质弹簧一端系在墙上的O点,另一端连接小物体,弹簧自由伸长到B点,让小物体m把弹簧压缩到A点,然后开释,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判定以下讲法正确的选项是()A. 物体从A到B速度越来越大,从B到C速度越来越小B. 物体从A到B速度越来越小,从B到C加速度不变C. 物体从A到B先加速后减速,从B到C一直减速运动D. 物体在B点受合外力为零答案C要点三超重与失重3. 以下关于超重和失重现象的描述中正确的选项是A. 电梯正在减速上升,在电梯中的乘客处于超重状态B. 磁悬浮列车在水平轨道上加速行驶时,列车内的乘客处于超重状态C. 荡秋千时秋千摆到最低位置时,人处于失重状态D. 神舟"六号飞船在绕地球做圆轨道运行时,飞船内的宇宙员处于完全失重状态答案D—_■型探ft _—题型1 瞬时咨询题【例1】如图如图(a)所示,一质量为m 的物体系于长度分不为 L i 、L 2的两根细线上 丄i 的一端悬挂在天花板上,与竖直方向夹 角为0 , L 2水平拉直,物体处于平稳状态.(b)(1)现将图(a)中L 2线剪断,求剪断瞬时物体的加速度⑵假设将图(a)中的细线L i 改为质量不计的轻弹簧而其余情形不变 ,如图(b)所示,求剪断L 2瞬时物体的加速度答案(1) gsin 0(2) gtan 0题型2程序法分板牙动态咨询题【例2】一个小球(小球的密度小于水的密度)从较高的位置落下来,落入足够深的水池中,在小球从静止下落,直到在水中下落到最大深度的过程中,以下小球速度随时刻变化的图线可能正确的选项是答案 A题型3超重与失重观点解题答案 B题型4运动建模【例4】一科研火箭从某一无大气层的行星的一个极竖直向上发射,由火箭传来的无线电信息讲明:从火箭发射时的一段时刻t 内(火箭喷气过程),火箭上所有物体对支持物的压力或对其悬挂装置的拉力是火箭发射前的【例3】如下图,在台秤的托盘上,放着一个支架有一铁块B ,电磁铁不通电时,台秤的示数为 台秤的示数将 A 不变B.变大1.8倍,除此之外,在落回行星表面前的所有时刻内,火箭里的物体处于失重状态,咨询从火箭发射到落回行星表面通过多长时刻(行星引力大小随距行星表面高度的变化可忽略不计)答案3 t跟踪训练1. 如下图,物体P以一定的初速度v沿光滑水平面向右运动,与一个右端固定的轻质弹簧相撞,并被弹簧反向弹回.假设弹簧在被压缩过程中始终遵守胡克定律,那么在P与弹簧发生相互作用的整个过程中A. P的加速度大小不断变化,方向也不断变化B. P的加速度大小不断变化但方向只改变一次C. P的加速度大小不断改变当加速度数值最大时,速度最小D. 有一段过程,P的加速度逐步增大,速度也逐步增大答案C2. 某同学把一体重秤放在电梯的地板上,他站在体重秤上随电梯运动并观看体重秤示数的变化情形.下表记录了几个特定时刻体重秤的示数.(表内时刻不表示先后顺序)时刻t 0t1t 2t 3体重秤示数/kg45.050.040.045.0假设t o时刻电梯静止,那么以下讲法错误的选项是At!和t 2时刻该同学的质量并没有变化,但所受重力发生变化B. t i和t2时刻电梯的加速度方向一定相反C. t l和t2时刻电梯的加速度大小相等,运动方向不一定相反D. t3时刻电梯可能向上运动答案A3. (2018 •贵阳模拟)细绳拴一个质量为m的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连,平稳时细绳与竖直方向的夹角为53°,如下图.(cos 53 ° =0.6,sin 53 °=0.8)以下讲法正确的选项是A. 小球静止时弹簧的弹力大小为3mg5B. 小球静止时细绳的拉力大小为3mgC. 细线烧断瞬时小球的加速度赶忙为g5D. 细线烧断瞬时小球的加速度赶忙为3g5答案D4. 如图甲所示为学校操场上一质量不计的竖直滑杆,滑杆上端固定,下端悬空.为了研究学生沿杆的下滑情形,在杆顶部装有一拉力传感器,可显示杆顶端所受拉力的大小.现有一学生(可视为质点)从上端由静止开始畀滑下,5 s末滑到杆底时速度恰好为零.以学生开始下滑时刻为计时起点,传感器显示的拉力随时刻变化情形如图乙所示,g取10 m/s 2.求:(1) 该学生下滑过程中的最大速率.(2) 滑杆的长度.答案(1)2.4 m/s (2)6.0 m第4课时专题:二力合成法与正交分解法---- 要点精析- ---------------要点一二力合成法1. 一辆小车在水平面上行驶,悬挂的摆球相关于小车静止同时悬绳与竖直方向成e角,如下图,以下关于小车的运动情形正确的选项是A. 加速度方向向左,大小为gtan eB. 加速度方向向右,大小为gtan eC. 加速度方向向左,大小为gsin eD. 加速度方向向右,大小为gsin e答案A要点二正交分解法2. 如下图,质量为m的人站在自动扶梯上,扶梯正以加速度a向上减速运动,a与水平方向的夹角为e.求人受的支持力和摩擦力.请用两种建立坐标系的方法分不求解.答案mg-asin e ),方向竖直向上macos e ,方向水平向左题型探究设物体在传送带上做匀加速直线运动时刻t 1及位移S 1,因题型1 依照二力合成法确定物体的加速度【例1】如下图,小车在斜面上沿斜面向下运动,当小车以不同的加速度运动时,系在小车顶 部的小球分不如图中①②③所示三种状态.①中细线呈竖直方向,②中细线垂直斜面,③中细线水平.试分不求出上述三种状态中小车的加速度 .(斜面倾角为e )题型2 正交分解法的应用【例2】风洞实验室中可产生水平方向的、大小能够调剂的风力,现将一套有小球的细直杆放入风洞实验室中,小球孔径略大于细杆直径(如下图).(1)当杆在水平方向上固定时,调剂风力的大小,使小球在杆上做匀速运动,这时小球所受 的风力为小球所受重力的 0.5倍,求小球与杆之间的动摩擦因数 (2)保持小球所受风力不变,使杆与水平方向间夹角为37 °并固定,那么小球从静止动身在细杆上滑下距离 s 所需时刻为多少?(sin 37 ° =0.6,cos 37 ° =0.8) 答案(1)0.5 (2)8s \'3g题型3 传送带上的物理咨询题【例3】如下图,传送带与水平面的夹角为 e =37带的底端A 处无初速度地放一个质量为0.5 kgAB 间(B 为顶端)长度为25 m.试回答以下咨询题 (1) 讲明物体的运动性质(相对地球).(2) 物体从A 到B 的时刻为多少? (g=10 m/s 2)答案⑴ 由题设条件知tan 37° =0.75,卩=0.8,因此有tan 37 °<开始无初速度放在传送带上,起初时期:对物体受力分析如右图所示 依照牛顿第二定律可知: f 滑-mgsin 37 ° =ma ① f 滑=卩N ②N=mgcos 37 °③答案 ①a=0②a=gsin e ,方向沿斜面向下③a=—^,方向沿斜面向下sin卩,这讲明物体在斜面(传送带)上能处于静止状态,物体求解得a=g(卩cos 37 ° -sin 37 ° )=0.4 m/s 2④2a=0.4 m/s V t =4 m/s依照匀变速直线运动规律得 v t =at is-lat 2 2代入数据得: 11=10 s S i =20 m < 25 mU讲明物体将连续跟随传送带一起向上匀速运动,物体在第二时期匀速运动时刻 t 2:⑥ ⑦⑧⑨⑩ 25 204s 1.25 因此物体运动性质为:物体起初由静止起以a=0.4 m/s 2做匀加速直线运动,达到传送带速度后,便以传送带速度做匀 速运动. (2)11.25 s跟踪训练1.如下图,动力小车内有一竖杆,杆顶端用细绳拴一质量为m 的小球.当小车沿倾角为的斜面匀加速向上运动时,绳与杆的夹角为60° ,小车的加速度为B.gCV 3答案B2.如下图,倾斜索道与水平面夹角为 37° ,当载人车厢沿钢索匀加速向上运动时 人对厢底的压力为其重量的 1.25倍,那么车厢对人的摩擦力为其体重的A. 1倍4B. 1倍3C.-倍4答案B3.如下图,质量为m 的物体放在倾角为a 的斜面上,物体和斜面间的动摩擦因数为 卩,如沿水平方向加一个力F ,使物体沿斜面向上以加速度 a 做匀加速直线运动,那么F 为多少?答案m(a g singeos ) eossin,车厢里的D4. 如下图,传送带以恒定的速度 v=10 m/s 运动,传送带与水平面的夹角 °为37° , PQ=16 m, 将一小物块无初速地放在传送带上P 点,物块与此传送带间的动摩擦因数求当传送带顺时针转动时,小物块运动到Q 点的时刻为多少?(sin 37 ° 答案4 s单元检测1. 如下图,在光滑的水平面上,质量分不为m 和m 的木块A 和B 之间用轻弹簧相连,在拉 力F 作用下,以加速度a 做匀加速直线运动,某时刻突然撤去拉力F,此瞬时A 和B 的加速度为日!和日2,那么B. 81 =a, 82=0答案 D答案 BC 3.如下图,水平面绝缘且光滑,弹簧左端固定,右端连一轻质绝缘挡板,空间存在着水平方 ____________向的匀强电场,一带正电小球在电场力和挡板压力作用下静止 .假设突然将电场反向,那么小球•加速度的大小随位移 x 变化的关系图象可能是以下图中的4.如下图,在一个盛有水的容器内静止一木块 ,当容器由静止开始以加速度g 下降,那么在此过程中木块相关于水面CQ= --------- a, a2m i m 2m im 2 D. a i =a, 82m 2m i a m 2A. =82=02. 如下图,小球从高处下落到竖直放置的轻弹簧上以下表达中正确的选项是A小球的速度一直减小,从接触弹簧开始到将弹簧压缩到最短的过程中B.小球的加速度先减小后增大D.在该过程的位移中点上小球的速度最大答案 A2卩=0.5, g=10 m/s .=0.6,cos 37 ° =0.8)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题03 牛顿运动定律1.(2020届安徽省宣城市高三第二次调研)如图所示,在水平桌面上叠放着质量均为M 的A 、B 两块木板,在木板A 的上面放着一个质量为m 的物块C ,木板和物块均处于静止状态。

A 、B 、C 之间以及B 与地面之间的动摩擦因数都为μ。

若用水平恒力F 向右拉动木板A (已知最大静摩擦力的大小等于滑动摩擦力),要使A 从C 、B 之间抽出来,则F 大小应满足的条件是( )A .(2)F m M g μ>+B .(23)F m M g μ>+C .2()F m M g μ>+D .(2)F m M g μ>+【答案】C 【解析】要使A 能从C 、B 之间抽出来,则,A 要相对于B 、C 都滑动,所以AC 间,AB 间都是滑动摩擦力,对A 有()A F mg M m g a M μμ--+=对C 有C mga g m μμ==对B 受力分析有:受到水平向右的滑动摩擦力μ(M+m )g ,B 与地面的最大静摩擦力等于滑动摩擦力,有f=μ(2M+m )g因为μ(M+m )g <μ(2M+m )g所以B 没有运动,加速度为0;所以当a A >a C 时,能够拉出,则有()F mg M m g g Mμμμ--+> 解得F >2μ(m+M )g ,故选C 。

2.(2020届福建省漳州市高三第一次教学质量检测)如图,MN 是一段倾角为θ=30°的传送带,一个可以看作质点,质量为m=1kg 的物块,以沿传动带向下的速度04v =m/s 从M 点开始沿传送带运动。

物块运动过程的部分v-t 图像如图所示,取g=10m/s 2,则( )A.物块最终从传送带N点离开B.传送带的速度v=1m/s,方向沿斜面向下C.物块沿传送带下滑时的加速度a=2m/s2D.物块与传送带间的动摩擦因数3μ=2【答案】D【解析】从图象可知,物体速度减为零后反向向上运动,最终的速度大小为1m/s,因此没从N点离v t图象中斜率表示加速度,可开,并且能推出传送带斜向上运动,速度大小为1m/s,AB错误;—知物块沿传送带下滑时的加速度a=2.5m/s2,C错误;根据牛顿第二定律o oμ-=,mg mg macos30sin30可得3μ=,D正确。

故选D。

3.(2020届广东省模拟)如图,垂直电梯里有一个“轿厢”和一个“对重”,它们通过钢丝绳连接起来,驱动装置带动钢丝绳使“轿厢”和“对重”在竖直方向做上下运动。

当“轿厢”向上做匀减速直线运动时()A .电梯的“对重”处于失重状态B .电梯的“对重”向下匀加速运动C .钢丝绳的拉力等于“轿厢”的重力D .钢丝绳的拉力小于“轿厢”的重力【答案】D【解析】当“轿厢”向上做匀减速直线运动时,“轿厢”加速度向下,处于失重状态,钢丝绳拉力小于“轿厢”重力。

此时,“对重”向下做匀减速运动,加速度向上,处于超重状态,故ABC 错误,D 正确。

故选D 。

4.(2020届江西省吉安市高三一模)如图所示,物体A 和B 的质量分别为4kg 和1kg ,用跨过定滑轮的细线相连,叠放在倾角为θ=30°的光滑斜面上,A 与 B 间的动摩擦因数为0.2,现有一平行于斜面向下的力F 作用在物体B 上,物体A 、B 保持静止,设最大静摩擦力等于滑动摩擦力(g =10m/m 2)。

则拉力F 的值可能为( )A .10NB .20NC .30ND .40N【答案】AB 【解析】拉力最大时,对A 有A A sin cos T m g m g θμθ=+对B 有 B A sin cos m F m g T m g θμθ+=+解得28.9N m F =拉力最小时,对A 有A A cos sin T m g m g μθθ+=对B 有min A B cos sin F m g m g T μθθ++=解得min 1.1N F =拉力F 取值范围1.1N 28.9N F ≤≤;故选AB 。

5.(2020届陕西省西安中学高三第三次模拟)如图所示,传送带的水平部分长为L ,传动速率为v ,在其左端无初速释放一小木块,若木块与传送带间的动摩擦因数为μ,则木块从左端运动到右端的时间不可能是 ( )A .2L v v g μ+ B .L vC 2L gμD .2L v 【答案】B【解析】①当木块一直做匀加速直线运动。

若木块一直做匀加速直线运动到达右端时的速度还未达到v 。

根据牛顿第二定律得,a=μg。

根据212L at =解得2L t g μ= 若木块一直做匀加速直线运动到达右端时的速度刚好为v 。

根据2v L t =解得2L t v= ②当木块先做匀加速直线运动,再做匀速直线运动。

匀加速直线运动的时间1v v t a gμ==, 匀加速直线运动的位移212v x gμ= 则匀速直线运动的位移2212v x L x L gμ=-=- 则匀速直线运动的时间222x L v t v v g μ=-= 则总时间为122L v t t t v gμ=+=+。

2L v v g μ+,选项A 正确,不符合题意;L v ,选项B 2L gμC 正确,不符合题意; 2L v,选项D 正确,不符合题意; 6.(2020届陕西省西安中学高三第三次模拟)如图所示,长为L 的轻杆上端连着一质量为m 的小球,杆的下端用铰链固接于水平面上的O 点,轻杆处于竖直方向时置于同一水平面上质量为M 的立方体恰与小球接触。

对小球施加微小的扰动,使杆向右倾倒,当立方体和小球刚脱离接触的瞬间,杆与水平面的夹角恰好为π6,忽略一切摩擦( )A .此时立方体M 的速度达到最大B .此时小球m 的加速度为零C .此时杆对小球m 的拉力为零D .M 和m 的质量之比为4:1【答案】ACD 【解析】分离前,立方体在小球的弹力作用下,做加速运动,分离后合力为零,做匀速运动,故分离时立方体M 的速度最大,故A 正确;分离时刻,小球速度v 不为零,做圆周运动,故合力不可能为零,加速度不为零,故B 错误;分离时刻,由于小球此时仅受重力和杆子作用力,而重力是竖直向下的,所以杆对小球m 的拉力为零,故C 正确;设小球速度为v ,立方体速度为u ,根据牛顿第二定律,分离时刻 有2sin 30v mg m L ︒=,解得12v gL =分离时刻,小球的水平速度与长方体速度相同,即:sin 30v u ︒=,解得12u gL =在杆从竖直位置开始倒下到小球与长方体恰好分离的过程中,小球和长方体组成的系统机械能守恒,有()22111sin 3022mgL mv Mu ︒-=+ 把v 和u 的值代入,化简得:41M m =,故D 正确。

故选ACD. 7.(2020届四川省绵阳市高三第三次诊断)如图所示是旅游景区中常见的滑索。

研究游客某一小段时间沿钢索下滑,可将钢索简化为一直杆,滑轮简化为套在杆上的环,滑轮与滑索间的摩擦力及游客所受空气阻力不可忽略,滑轮和悬挂绳重力可忽略。

游客在某一小段时间匀速下滑,其状态可能是图中的()A.B.C.D.【答案】B【解析】设索道的倾角为α,若不考虑任何阻力,对滑轮和乘客组成的整体,由牛顿第二定律得(M+m)gsinα=(M+m)a对乘客由于满足Mgsinα=Ma可知绳子与索道垂直。

若索道与滑轮之间有摩擦,而乘客不受空气阻力,则当匀速运动时,绳子在竖直方向;若同时考虑滑轮与索道之间的摩擦以及人所受的空气阻力,则绳子应该在垂直于索道与竖直方向之间,则选项B正确,ACD错误;故选B。

8.(2020届四川省绵阳市高三第三次诊断)如图甲所示,轻弹簧下端固定在倾角37°的粗糙斜面底端A处,上端连接质量3kg的滑块(视为质点),斜面固定在水平面上,弹簧与斜面平行。

将滑块沿斜面拉动到弹簧处于原长位置的D点,由静止释放到第一次把弹簧压缩到最短的过程中,其加速度a 随位移x的变化关系如图乙所示,重力加速度取10m/s2,sin37°=0.6,cos37°=0.8。

下列说法正确的是()A.滑块先做匀加速后做匀减速运动B.滑块与斜面间的动摩擦因数为0.1C.弹簧的劲度系数为180N/mD .滑块在最低点时,弹簧的弹性势能为3.12J【答案】BD【解析】因滑块的加速度先减小后反向增加,可知滑块先做变加速后做变减速运动,A 错误; 弹簧处于原长时,加速度为a=5.2m/s 2,由牛顿第二定律sin 37cos37mg mg ma μ-=o o解得μ=0.1,B 正确;由图像可知,弹簧被压缩x=0.1m 时滑块的加速度减为零,则sin 37cos37mg mg kx μ-=o o ,解得k=156N/m ,C 错误;由能量关系可知,滑块在最低点时,弹簧的弹性势能为2sin 37cos372P E mg x mg x μ=⋅-⋅o o解得E P =3.12J ,选项D 正确。

故选BD 。

9.(2020届重庆市高三第二次调研)质量为m 的小球,用长为l 的线悬挂在O 点,在O 点正下方2l处有一光滑的钉子O′,把小球拉到与O′在同一竖直面内的某一位置,由静止释放,下摆过程中摆线将被钉子拦住,如图所示。

当球第一次通过最低点P 时( )A .小球的线速度突然增大B .小球的角速度突然减小C .摆线上的张力突然减小D .小球的向心加速度突然增大【答案】D【解析】当球第一次通过P 点时,线速度的大小不变,故A 错误;由于线速度大小不变,根据vrω=知,转动的半径变小,则角速度变大,故B 错误;根据牛顿第二定律得,2v T mg m r-=,线速度大小不变,转动半径变小,则摆线张力变大,故C 错误;根据2v a r=知,线速度大小不变,转动的半径变小,则向心加速度突然变大,故D 正确。

故选D 。

10.(2020届广东省茂名市高三第二次综合测试)如图所示,在倾角为θ的光滑斜面上,用轻弹簧连接质量为2m 的小球M 和质量为m 的小球N ,N 再用细线连接在斜面顶端,M 、N 都处于静止状态。

现用剪刀剪断细线,在用剪刀剪断细线的瞬间,两小球加速度大小为( )A .a M =gB .a M =gsin θC .a N =gsin θD .a N =3gsin θ【答案】D 【解析】在剪断细绳的瞬间,弹簧的伸长量还没有来得及改变,恢复原状需要一个过程,所以在剪断细绳瞬间,弹簧的弹力不变,则M 的受力情况不变,合力仍为0,加速度仍为0,故AB 错误;在剪断绳子之前,对M 分析知,弹簧的弹力大小F=2mgsin θ,剪断细绳瞬间,N 受到重力、弹簧对它斜向下的拉力、支持力,根据牛顿第二定律得sin 3sin N mg F a g m +==θθ,故D 正确,C 错误;故选D 。

11.(2020届河南省焦作市高三第三次模拟)如图所示,一木块静止在长木板的左端,长木板静止在水平面上,木块和长木板的质量相等均为M ,木块和长木板之间、长木板和地面之间的动摩擦因数都为μ。

相关文档
最新文档