(完整版)《一元一次方程》复习课教案

合集下载

《一元一次方程》的优秀教案(9篇)精选全文完整版

《一元一次方程》的优秀教案(9篇)精选全文完整版

可编辑修改精选全文完整版《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。

数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。

进一步发展符号意识。

2.通过一元一次方程的学习,体会方程模型思想和化归思想。

解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。

经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。

情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。

教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。

教学难点分析实际问题中的相等关系,列出方程。

教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。

出示问题(幻灯片)。

学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。

教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。

本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。

(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。

通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。

活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。

一元一次方程(复习课教案)

一元一次方程(复习课教案)

一元一次方程(单元复习课)【复习目标】1.系统了解一元一次方程的知识框架;2.知道解一元一次方程的步骤,熟练掌握一元一次方程的解法;3.知道列一元一次方程解应用题的步骤,会列方程解应用题;4.在小组合作交流的过程中培养学生学习数学的习惯和复习的方法.【复习重点】形成一元一次方程章节知识框架图.【活动设计】活动一、一元一次方程知识复习1.(1)已知关于x 的方程150k x -+=是一元一次方程,则k = .(2)已知关于x 的方程()250k x -+=是一元一次方程,则k .(3)已知关于x 的方程()1250k k x --+=是一元一次方程,则k = .说明:本题引导学生回忆一元一次方程的概念.2.已知3x =是关于x 的方程8203x a -=的解,则a = . 说明:本题引导学生回忆方程的解的概念.3.下列运用等式的性质进行的变形,不正确...的是( ) A.如果a b =,那么55a b +=+ B.如果a b =,那么ma mb =C.如果a b =,那么a b c c = D.如果a b c c=,那么a b = 说明:本题引导学生回忆等式的性质. 4.若2260x y --=,则2635y x --的值为 .说明:本题引导学生回忆方程的解的概念.5.解方程:211135x x ++-=. 说明:本题引导学生回忆解一元一次方程的步骤,及每一步骤的注意点. 6.如果方程()()322212x x ---=-也是关于x 的方程203m x --=的解,求m 的值. 说明:本题引导学生回忆方程的解的概念.【课堂小结】(1)一元一次方程、方程的解的概念?等式的基本性质?(2)解一元一次方程的步骤有哪些?每一步骤变形的依据是什么?活动二、利用一元一次方程知识解决实际问题思考:我们在这一章中重点学习了哪几种类型的应用题?(1)引导学生回忆类型:调配问题、行程问题、工程问题、数字问题、方案问题、盈亏问题; (2)引导学生回忆典型问题中的数量关系:如行程问题中:速度、时间、路程的关系;工程问题中:工作效率、工作时间、工作总量的关系;工作效率、工作时间、工作人数、工作总量之间的关系.盈亏问题中:利润=售价—进价=进价×利润率折数售价=标价×10……解决下列问题:1.某种长方体包装盒的表面展开图如图所示,如果该长方体包装盒的长比宽多4cm,求这种长方体包装盒的体积.2.小王逛超市看到如下两个超市的促销信息:(1)当一次性购物标价总额是300元时,甲乙超市实际付款分别是多少?(2)当标价总额是多少时,甲、乙超市实付款一样?(3)小王两次到乙超市分别购物付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?【课堂小结】列方程解应用题的步骤?教师总结:审.题,设.未知数,列.方程,解.方程,检验.,写出答.案.“审”是关键,“验”是保证,“设、列、解、答”是过程.附:板书设计:。

一元一次方程复习教案一

一元一次方程复习教案一

一元一次方程复习教案一一、教学目标:1. 回顾和巩固一元一次方程的基本概念、解法和应用。

2. 提高学生解一元一次方程的能力,培养学生的逻辑思维和运算能力。

3. 激发学生学习兴趣,培养学生的自主学习能力。

二、教学内容:1. 一元一次方程的概念和基本形式。

2. 一元一次方程的解法:加减消元法、乘除消元法、移项法等。

3. 一元一次方程的应用:实际问题、几何问题等。

三、教学重点与难点:1. 重点:一元一次方程的基本概念、解法和应用。

2. 难点:一元一次方程的解法及应用。

四、教学方法与手段:1. 采用讲授法、案例分析法、练习法、小组讨论法等教学方法。

2. 利用多媒体课件、黑板、教具等教学手段,辅助教学。

五、教学过程:1. 导入新课:通过复习一元一次方程的基本概念,引导学生回顾已学的知识。

2. 讲解与演示:讲解一元一次方程的基本形式,示范解法,并通过动画演示解题过程。

3. 案例分析:分析实际问题,引导学生运用一元一次方程解决问题。

4. 练习与讨论:布置练习题,组织学生进行小组讨论,分享解题心得。

6. 课后作业:布置课后作业,巩固所学知识。

日期:年月日六、教学评估:1. 课堂提问:通过提问了解学生对一元一次方程的理解程度和解题技巧。

2. 练习题:布置课堂练习题,评估学生对一元一次方程解法的掌握情况。

3. 课后作业:评估学生对课堂所学知识的巩固程度和应用能力。

七、教学反思:1. 针对学生的掌握情况,反思教学方法和内容的适用性,调整教学策略。

2. 思考如何更好地激发学生的学习兴趣,提高学生的自主学习能力。

3. 探索更多一元一次方程的应用场景,丰富教学案例。

八、教学拓展:1. 一元一次方程的拓展知识:一元二次方程、多元方程等。

2. 数学故事:介绍与一元一次方程相关的历史故事或趣味数学问题。

3. 科技应用:探讨一元一次方程在科学技术领域的应用。

九、课后作业:1. 复习一元一次方程的基本概念和解法。

2. 完成课后练习题,巩固所学知识。

一元一次方程复习课教案

一元一次方程复习课教案

一元一次方程复习课教案一、教学目标1. 知识与技能:(1)掌握一元一次方程的定义及解法。

(2)能够运用一元一次方程解决实际问题。

(3)熟练运用解方程的方法求解方程。

2. 过程与方法:(1)通过复习,巩固一元一次方程的基本概念和解法。

(2)培养学生的逻辑思维能力和解决问题的能力。

(3)学会检验解的方法,确保解的正确性。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心。

(2)培养学生积极主动探索问题的习惯。

二、教学重点与难点1. 教学重点:(1)一元一次方程的定义及解法。

(2)运用一元一次方程解决实际问题。

2. 教学难点:(1)解一元一次方程的步骤和技巧。

(2)检验解的方法。

三、教学准备1. 教师准备:(1)复习相关的一元一次方程资料。

(2)设计具有代表性的练习题和实际问题。

2. 学生准备:(1)回顾一元一次方程的基本概念和解法。

(2)准备笔记本,记录复习内容。

四、教学过程1. 导入新课(1)回顾一元一次方程的基本概念:未知数、系数、常数、方程等。

(2)引导学生回顾解一元一次方程的步骤:去分母、去括号、移项、合并同类项、化系数为1。

2. 知识梳理(1)讲解一元一次方程的定义及解法。

(2)通过例题,展示解一元一次方程的步骤和技巧。

3. 课堂练习(1)让学生独立完成练习题,检验解的方法。

(2)引导学生运用一元一次方程解决实际问题。

4. 课堂讨论(1)让学生分享解题心得和经验。

(2)讨论解一元一次方程时可能遇到的问题和解决方法。

5. 总结与反思(1)总结一元一次方程的基本概念和解法。

(2)强调检验解的方法和重要性。

五、课后作业1. 巩固练习:(1)完成课后练习题,巩固一元一次方程的解法。

(2)挑选几道实际问题,运用一元一次方程解决。

2. 拓展提高:(1)研究一元一次方程在实际生活中的应用。

(2)探索解一元一次方程的其它方法。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及合作交流的表现,评价学生的学习态度和合作精神。

一元一次方程复习课教案

一元一次方程复习课教案

一元一次方程复习课教案一、教学目标1. 知识与技能:(1)理解一元一次方程的概念及其基本性质。

(2)掌握一元一次方程的解法,包括代入法、加减法、乘除法等。

(3)能够应用一元一次方程解决实际问题。

2. 过程与方法:(1)通过复习,加深对一元一次方程的理解,提高解题能力。

(2)培养学生运用一元一次方程解决实际问题的能力。

3. 情感态度与价值观:(2)培养学生勇于探索、积极思考的精神。

二、教学内容1. 一元一次方程的概念及基本性质。

2. 一元一次方程的解法:代入法、加减法、乘除法。

3. 应用一元一次方程解决实际问题。

三、教学重点与难点1. 教学重点:(1)一元一次方程的概念及其基本性质。

(2)一元一次方程的解法。

(3)应用一元一次方程解决实际问题。

2. 教学难点:(1)一元一次方程的解法。

(2)运用一元一次方程解决实际问题。

四、教学过程1. 复习导入:(1)回顾一元一次方程的概念及其基本性质。

(2)引导学生回忆一元一次方程的解法。

2. 课堂讲解:(1)讲解一元一次方程的解法,包括代入法、加减法、乘除法。

(2)举例演示解题过程,引导学生跟随步骤进行解题。

3. 课堂练习:(1)布置练习题,让学生独立完成。

(2)选取部分学生的作业进行点评,纠正错误,解答疑问。

4. 应用拓展:(1)给出实际问题,引导学生运用一元一次方程进行解决。

(2)分小组讨论,分享解题思路和方法。

五、课后作业1. 复习一元一次方程的概念及其基本性质。

2. 巩固一元一次方程的解法,包括代入法、加减法、乘除法。

3. 运用一元一次方程解决实际问题。

4. 总结本节课的学习内容,思考还有什么问题需要进一步解决。

六、教学评估1. 课堂讲解评估:观察学生对一元一次方程解法的理解和掌握程度,以及能否熟练运用解法解决实际问题。

2. 课堂练习评估:检查学生的作业完成情况,评估其对一元一次方程解法的应用能力。

3. 应用拓展评估:通过小组讨论和分享,评估学生运用一元一次方程解决实际问题的能力和团队合作精神。

七年级数学《一元一次方程》教案【4篇】

七年级数学《一元一次方程》教案【4篇】

七年级数学《一元一次方程》教案【4篇】七年级数学《一元一次方程》教案篇一2.自主探索、合作交流:先由学生独立思考求解,再小组合作交流,师生共同评价分析。

方法1:解:方程两边都加上2,得5x-2+2=8+2也就是5x=8+2合并同类项,得5x=10所以,x=23.理性归纳、得出结论(让学生通过观察、归纳,独立发现移项法则。

)比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于5x-2=85x=8+2即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。

教学建议:关于移项法则,不应只强调记忆,更应强调理解。

学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性)。

方法2;解:移项,得5x=8+2合并同类项,得5x=10方程两边都除以5,得x=24.运用反思、拓展创新[例1]解下列方程:(1)2x+6=1(2)3x+3=2x+7教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流。

[例2]解方程:教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励。

②在移项时,学生常会犯一些错误,如移项忘记变号等。

这时,教士不要急于求成,而要引导学生反思自己的解题过程。

必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误。

5.小结回顾:学生谈本节课的收获与体会。

师强调:移项法则。

七年级数学《一元一次方程》教案篇二教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。

一元一次方程复习教案设计

一元一次方程复习教案设计

一元一次方程复习教案设计一、教学目标1. 知识与技能:(1)理解一元一次方程的概念及其一般形式;(2)掌握一元一次方程的解法,包括代入法、加减法、移项法等;(3)能够应用一元一次方程解决实际问题。

2. 过程与方法:(1)通过复习,巩固一元一次方程的基本概念和解法;(2)培养学生运用一元一次方程解决实际问题的能力;(3)提高学生的数学思维能力和解决问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生勇于探索、积极思考的学习态度;(3)培养学生合作交流、归纳总结的能力。

二、教学内容1. 一元一次方程的概念及一般形式;2. 一元一次方程的解法:代入法、加减法、移项法等;3. 实际问题中的一元一次方程应用。

三、教学重点与难点1. 教学重点:一元一次方程的概念、一般形式和解法;2. 教学难点:一元一次方程的解法在实际问题中的应用。

四、教学方法1. 采用讲解法、示范法、练习法、讨论法等相结合的教学方法;2. 通过案例分析、小组讨论、个人练习等形式,激发学生的学习兴趣和积极性;3. 注重引导学生主动思考、归纳总结,提高学生的数学思维能力。

五、教学过程1. 导入新课:(1)复习一元一次方程的概念及一般形式;(2)引导学生回顾一元一次方程的解法。

2. 案例分析:(1)给出一个实际问题,引导学生运用一元一次方程解决;(2)分析问题,找出未知数和已知数,列出方程;(3)讲解方程的解法,并引导学生进行讨论。

3. 个人练习:(1)让学生独立完成一些一元一次方程的练习题;(2)引导学生运用不同的解法解决方程,提高解题能力。

4. 小组讨论:(1)让学生分组讨论一元一次方程的解法,总结解题规律;(2)鼓励学生分享自己的解题心得和方法。

5. 归纳总结:(1)引导学生总结一元一次方程的概念、一般形式和解法;(2)强调一元一次方程在实际问题中的应用。

6. 课后作业:(1)布置一些一元一次方程的练习题,巩固所学知识;(2)鼓励学生运用一元一次方程解决实际问题,提高应用能力。

一元一次方程复习优秀教案.docx

一元一次方程复习优秀教案.docx

一元一次方程复习(一)-------- 解一元一次方程教学设计(平行班)【课题】:一元一次方程复习(一)——解一元一次方程【学情分析】:学生己经学习了一元一次方程的有关知识,在学习过程中大部分同学能掌握上述知识,但学生在学习过程屮缺少把知识点系统成知识网,因而知识的应用灵活性不够。

所以在单元复习过程中以引导学生学会白己归纳知识为主。

【教学目标】:1、在复习一元一次方程解法的过程中,查漏补缺,引导学生对知识进行自我归纳;2、通过复习一元一次方程解法,进一步渗透“转化”的思想方法;3、引导学牛对知识进行自我归纳的习惯,提高学牛的学习能力。

【教学重点】:解一元一次方程【教学难点】:去分母解一元一次方程【教学突破点】:在去分母的过程中,强调等式性质2的应用。

【教法、学法设计】:引导学生自我归纳知识,解决问题,老师进行点评。

【课前准备】:课本、【教学过程设计】:全章复习⑴ 测试与练习班级 __________ 姓名 ____________A 层1. 已知4x 2n -5+5=0是关于x 的一元一次方程,贝山= _______ ・2. 若x=-l 是方程2x-3a 二7的解,则a 二 _____ .1 3X -23. 当x 二 ___ 吋,代数式一x-1和一^的值互为相反数.2 44. 方程2m+x=l 和3x-l 二2x+1有相同的解,则m 的值为().1A. 0B. 1C. 一2D.--25. 方程| 3x |二18的解的情况是().A.有一个解是6B.有两个解,是±6C.无解D.有无数个解6. 在800米环形跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同 地、同时、同向起跑,t 分钟后第一次相遇,t 等于(). A. 10 分 B. 15 分 C. 20 分 D. 30 分7. 足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了 14场比 赛,负了 5场,共得19分,那么这个队胜了()场.32139-解方程•• 7 (x_1)(3x+2)冷710. —个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若 将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.A. 3B. 4C. 5D. 68.解方程:C 层11. 如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之 间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想 要配三张图片來填补空白,需要配多大尺寸的图片.12.某公园的门票价格规定如下表:购票人数 「50人 5广100人 100人以上 票价5元4. 5 7G4元某校初一甲、乙两班共103人(其屮甲班人数多于乙班人数)去游该公园,如果两班都 以班为单位分别购票,则一共需付486元.(1) 如果两班联合起来,作为一个团体购票,则可以节约多少钱? (2) 两班各有多少名学生?(提示:本题应分情况讨论)全章复习(1)解答 1. 3 2. -3 (点拨:将戸-1代入方程2x-3a=7,得-2-3沪7,得a=-3)(1Q OA3.— (点拨:解方程一xT 二- --------- ,得 x= — )4. D5. B6. C 5 2 4 5 8. 解:原方程变形为A400-600y-4. 5=l-100y9. 5 500y 二4049. 解:去分母,得15 (x-1) -8 (3x+2) =2-30 (x-l) A21x=63 /. x=310. 解:设十位上的数字为x,则个位上的数字为3X-2,百位上的数字为x+1,故100 (x+1) +10x+ (3x-2) +100 (3x-2) +10x+ (x+1)二1171 解得X 二3 答:原三位数是437.11. 解:设卡片的长度为x 厘米,根据图意和题意,得5x=3 (x+10),解得 x=15所以需配正方形图片的边长为15-10=5 (厘米) 答:需要配边长为5厘米的正方形图片. 12. 解:(1) V103>100・・・每张门票按4元收费的总票额为103X4二412 (元)7. C200 (2-3y) -4.5二3 —300y~3~-9.5••• y=101 125可节省486-412=74 (元)(2)・・・甲、乙两班共103人,甲班人数>乙班人数・••甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4・5 (103-x) =486解得x二45, A 103-45=58 (人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4. 5 (103-x) =486・・•此等式不成立,・••这种情况不存在.故甲班为58人,乙班为45人.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章《一元一次方程》专项复习(一)教案
授课人:朱兆玉
七年级数学备课组
教学目标
1.准确地理解方程、方程的解、解方程和一元一次方程等概念;
2.熟练地掌握一元一次方程的解法;
3.通过列方程解应用题,提高学生综合分析问题的能力;
4.使学生进一步理解在解方程时所体现出的化归思想方法;
5.使学生对本章所学知识有一个总体认识.
教学重点和难点
1、进一步复习巩固解一元一次方程的基本思想和解法步骤,
2、利用一元一次方程解决实际问题
教学手段
引导——活动——讨论
教学方法
启发式教学
教学过程
一、挑战记忆,复习有关概念
1、下列各式是否是一元一次方程?
(1) 5x=0 (2)1+3x (3)y ²=4+y
(4)x+y >5 (5) (6) 3m+2=1–m
2 、若关于x 的方程 是一元一次方程,则m=_____
3、若x =-3是方程x +a =4的解,则a 的值是 .
(通过习题唤起学生对已有知识的记忆)
1、方程:含有未知数的等式叫做方程。

2、一元一次方程:只含有一个未知数,未知数的指数是1的方程叫做一元一次方程。

3、方程的解:使方程左右两边相等的未知数的值叫做方程的解。

二、火眼金睛,
下面方程的解法对吗?若不对,请改正 。

解方程:
3141136x x --=-
解:去分母()132-x 去括号 14126--=-x x
移 项 1214x 6-+=+x
合 并 210=x
系数化为1 5
1=x 让学生通过观察发现其中的错误并进行改正,进一步熟悉解方程的步骤,为下面的环节做好铺垫。

X X 41=0232=+-m x m
三、解方程
1、解方程的步骤:去分母——去括号——移项——合并同类项——系数化为一
2、即学即练(1)2(x+3)-5(1-x)=3(x -1)
(2)3
7524123--=+y y (加强解方程准确率的训练,通过练习,同桌交流总结出有关每一步的注意事项。


3、归纳解一元一次方程的注意事项:
(1)分母是小数时,根据分数的基本性质,把分母转化为整数;
(2)去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,
分数线相当于括号,去分母后分子各项应加括号;
(3)去括号时,不要漏乘括号内的项,不要弄错符号;
(4)移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;
(5)系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;
(6)不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法。

四、勇往直前
1132231的差是与时,代数式、当+-=x x x
=+-x x x 是互为相反数,则与、若代数式2
23122 互为倒数的值与时,代数式、当3313x x x ++=
(设计意图:灵活应用方程解决实际问题)
五、实际应用
1、我能行
在日历中,一个竖列上的三个连续数字之和能不能是42?可以是52吗?
(设计意图:培养学生发现问题解决问题的能力)
2、列方程解应用题的一般步骤
(1)审题(2)设未数(3)找相等关系(4)列方程(5)解方程(6)检验(7)写出答案
3、一展身手
一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为多少?
(前后四人一小组合作交流解决问题)
六、感悟与收获
1.一元一次方程及其有关概念
2.解一元一次方程的一般步骤及简单应用
七、作业布置
作业:同位互相出题
1、一道解方程
2、一个填空题
3、一道应用题
课堂练习与作业
1、下列是一元一次方程的是( )
A 、2x+1
B 、x+2y=1
C 、x 2+2=0
D 、x=3
2、解为x=-3的方程是( )
A 、2x-6=0
B 、235+x =6
C 、3(x-2)-2(x-3)=5x
D 、4
562341--=-x x 3、下列说法错误的是( ) A 、若 x a =y a
,则x=y B 、若x 2=y 2,则-4ax 2=-4ay 2 C 、若- 14 x=-6,则x=32
D 、若1=x ,则x=1 5、下列方程由前一方程变到后一方程,正确的是( ) A 、9x=4,x=- 32
B 、5x=- 12 ,x=- 52
C 、0.2x=1,x=0.2
D 、-0.5x=- 12
,x=1 6、解方程2(x-2)-3(4x-1)=9,下列解答正确的是( )
A 、2x-4-12x+3=9,-10x=9+4-3=10,x=1;
B 、2x-4-12x+3=9,-10x=10,x=-1
C 、2x-4-12x-3=9,-10x=2,x=- 15
; D 、2x-4-12x-3=9,-10x=10,x=1
8、某书中一道方程题,
方程的解为x=-2.5,则处的数字为( )
A 、-2.5
B 、2.5
C 、5
D 、7
9、已知3x+1=7,则2x+2=_______
10、|3x-2|=4,则x=____________
11、已知2x m-1+4=0是一元一次方程,则m=________
12、解方程
(1)1+17x=8x+3 (2)2(x+3)-5(1-x)=3(x-1)
(3)x+45 -(x-5)= x+33 - x-22 (4)3x-1.50.2 +8x=0.2x-0.10.09
+4
5、今有鸡兔共50只同笼,共有180条腿,则笼子里鸡兔各有多少只?。

相关文档
最新文档