2019-2020年西城区高一上册期末数学试题(有答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区高一(上)期末数学试卷
A卷[必修模块4]本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.
1.(4分)如果θ是第三象限的角,那么()
A.sinθ>0 B.cosθ>0 C.tanθ>0 D.以上都不对
2.(4分)若向量=(1,﹣2),=(,4)满足⊥,则实数等于()
A.8 B.﹣8 C.2 D.﹣2
3.(4分)若角α的终边经过点(﹣4,3),则tanα=()
A.B. C.D.
4.(4分)函数是()
A.奇函数,且在区间上单调递增
B.奇函数,且在区间上单调递减
C.偶函数,且在区间上单调递增
D.偶函数,且在区间上单调递减
5.(4分)函数f()=sin﹣cos的图象()
A.关于直线对称 B.关于直线对称
C.关于直线对称 D.关于直线对称
6.(4分)如图,在△ABC中,点D在线段BC上,且BD=2DC,若,则=()
A.B.C.2 D.
7.(4分)定义在R上,且最小正周期为π的函数是()
A.y=sin|| B.y=cos|| C.y=|sin| D.y=|cos2|
8.(4分)设向量,的模分别为2和3,且夹角为60°,则|+|等于()
A.B.13 C.D.19
9.(4分)函数(其中ω>0,0<φ<π)的图象的一部分如图所示,则()
A.B.C.
D.
10.(4分)如图,半径为1的圆M,切直线AB于点O,射线OC从OA出发,绕O点顺时针方向旋转到OB,旋转过程中OC交⊙M于P,记∠PMO为,弓形PNO的面积S=f(),那么f ()的图象是()
A.B.C.D.
二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.
11.(4分)若向量=(﹣1,2)与向量=(,4)平行,则实数= .
12.(4分)若θ为第四象限的角,且,则cosθ=;sin2θ=.13.(4分)将函数y=cos2的图象向左平移个单位,所得图象对应的函数表达式为.14.(4分)若,均为单位向量,且与的夹角为120°,则﹣与的夹角等于.15.(4分)已知,则cos(﹣y)= .
16.(4分)已知函数f()=sin(ω+φ)(ω>0,φ∈(0,π))满足,给出以下四个结论:
①ω=3;②ω≠6,∈N*;③φ可能等于;④符合条件的ω有无数个,且均为整数.其中所有正确的结论序号是.
三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17.(12分)已知φ∈(0,π),且.
(Ⅰ)求tan2φ的值;
(Ⅱ)求的值.
18.(12分)已知函数.
(1)求函数f()的单调增区间;
(2)若直线y=a与函数f()的图象无公共点,求实数a的取值范围.
19.(12分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设,,则得到函数y=f().
(Ⅰ)求f(1)的值;
(Ⅱ)对于任意a∈(0,+∞),求函数f()的最大值.
B卷[学期综合]本卷满分:50分.一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.
20.(4分)设全集U=R,集合A={|<0},B={|||>1},则A∩(∁
B)= .
U
21.(4分)已知函数若f(a)=2,则实数a= .
22.(4分)定义在R上的函数f ()是奇函数,且f()在(0,+∞)是增函数,f(3)=0,
则不等式f()>0的解集为.
23.(4分)函数的值域为.(其中表示不大于的最大整数,例如[3.15]=3,[0.7]=0.)
24.(4分)在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长(单位:m)的取值范围是.
二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 25.(10分)已知函数.
(Ⅰ)若,求a的值;
(Ⅱ)判断函数f()的奇偶性,并证明你的结论.
26.(10分)已知函数f()=3,g()=|+a|﹣3,其中a∈R.
(Ⅰ)若函数h()=f[g()]的图象关于直线=2对称,求a的值;
(Ⅱ)给出函数y=g[f()]的零点个数,并说明理由.
27.(10分)设函数f()的定义域为R,如果存在函数g(),使得f()≥g()对于一切实数都成立,那么称g()为函数f()的一个承托函数.已知函数f()=a2+b+c的图象经过点(﹣1,0).
(1)若a=1,b=2.写出函数f()的一个承托函数(结论不要求证明);
(2)判断是否存在常数a,b,c,使得y=为函数f()的一个承托函数,且f()为函数
的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.
北京市西城区高一(上)期末数学试卷
参考答案与试题解析
A卷[必修模块4]本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.
1.(4分)如果θ是第三象限的角,那么()
A.sinθ>0 B.cosθ>0 C.ta nθ>0 D.以上都不对
【解答】解:如果θ是第三象限的角,则sinθ<0,cosθ<0,tanθ>0,
故选:C.
2.(4分)若向量=(1,﹣2),=(,4)满足⊥,则实数等于()
A.8 B.﹣8 C.2 D.﹣2
【解答】解:根据题意,若向量、满足⊥,必有•=0,
又由=(1,﹣2),=(,4),
则有•=1×+(﹣2)×4=0,解可得=8;
故选:A.
3.(4分)若角α的终边经过点(﹣4,3),则tanα=()
A.B. C.D.
【解答】解:由定义若角α的终边经过点(﹣4,3),∴tanα=﹣,
故选:D.