等腰直角三角形旋转(1对1辅导精品)
专题一对一九上册数学图形的旋转培优教案学案含练习答案

答案:B 例 2、如图,六角星可看作是由什么“基本图形”通过怎样的旋转而得到的?
答案:可以看成图形的六分之一绕着它的中心分别旋转 60 、120 、180 、240 、 0 300 前后图形共同组成的。 练习: 1、如图,五角星可看作是由什么“基本图形”通过怎样的旋转而得到的?
0
0
0
0
2、已知:如图,四边形 ABCD 及一点 P. 求作:四边形 A′B′C′D′,使得它是由四边形 ABCD 绕 P 点顺时针旋转 150°得到的.
4.如图,已知梯形 ABCD 中,AD∥BC,∠B=90°,AD=3,BC=5,AB=1,把线段 CD 绕点 D 逆时针旋转 90°到 DE 位置, 连结 AE,则 AE 的长为______.
5、如图,如果把钟表的指针看做三角形 OAB,它绕 O 点按顺时针方向旋转得到△OEF,在这个旋转过程中: (1)旋转中心是什么?旋转角是什么? (2)经过旋转,点 A、B 分别移动到什么位置?
7、已知:如图,若线段 CD 是由线段 AB 经过旋转变换得到的. 求作:旋转中心 O 点.
8、如图,△ABC 绕 C 点旋转后,顶点 A 的对应点为点 D,试确定顶点 B•对应点的位置,以及旋转后的三角形.
9、如图,四边形 ABCD 是边长为 1 的正方形,且 DE= (1)旋转中心是哪一点? (2)旋转了多少度? (3)AF 的长度是多少? (4)如果连结 EF,那么△AEF 是怎样的三角形?
1 ,△ABF 是△ADE 的旋转图形. 4
10、如图,K 是正方形 ABCD 内一点,以 AK 为一边作正方形 AKLM,使 L、M•在 AK 的同旁,连接 BK 和 DM,试 用旋转的思想说明线段 BK 与 DM 的关系.
考点二、根据需要设计美丽图案. 例 1、下图中,不是旋转对称图形的是( ).
等边三角形、等腰直角三角形之间的旋转问题(精华)

4、已知:如图1,点C为线段AB上一点,△ACM,△CBN都Байду номын сангаас等边三角形,AN交MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形;
(4)根据以上证明、说理、画图,归纳你的发现.
(3)此小题图形不惟一,如图第(1)中的结论仍成立.(4)根据以上证明、说理、画图,归纳如下:如图A,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE.
2、如图, 和 都是等边三角形, ,试说明: (综合全等和勾股定理)
(3)将△ACM绕点C按逆时针方向旋转90 O,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).
5、如图所示,已知△ABC和△BDE都是等边三角形。下列结论:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=600,⑤△BFG是等边三角形;⑥FG∥AD。其中正确的有()
(1)当直线MN绕点C旋转到图1位置时,求证:① ;② ;
(2)当直线MN绕点C旋转到图2位置时,试问:DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
(3)当直线MN绕点C旋转到图3位置时,试问:DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
2.(1)如图1,若点P为正方形ABCD边上一点,以PA为一边作正方形AEFP,连BE、DP,并延长DP交BE于点H.求证: .
A 3个B 4个C 5个D 6个
中考专题复习--等腰三角形中的旋转(课件)-2023-2024学年北师大版数学九年级下册+

综合与实践
问题情境:活动课上,同学们以等腰三角形为背景展开有关图形旋转 的探究活动,如图1,已知△ABC中,AB=AC,∠B=40°,将△ABC从图1 的位置开始绕点A逆时针旋转,得到△ADE(点D、E分别是点B、C的对 点),旋转角为α(0<α<100°),设线段AD与BC相交于点M,线段DE分别 交BC,AC于点O、N
J
谢谢!
探究规律:(2)如图3,在△ABC绕点A逆时针旋转的过程中,“求真” 小组的同学发现线段AM始终等于线段AN,请你证明这一结论;
综合与实践
问题情境:活动课上,同学们以等腰三角形为背景展开有关图形旋转 的探究活动,如图1,已知△ABC中,AB=AC,∠B=40°,将△ABC从图1 的位置开始绕点A逆时针旋转,得到△ADE(点D、E分别是点B、C的对 点),旋转角为α(0<α<100°),设线段AD与BC相交于点M,线段DE分别 交BC,AC于点O、N
等腰三角形中的旋转
旋转
旧知回顾:
1.旋转:在平面内,将一个图形绕一个定点按某个方向转动 一个角度,这样的图形运动称为旋转。定点称为旋转中心。
2.旋转角:转动的角度为旋转角。一般用对应边的夹角来表示。
3.旋转不改变图形的形状和大小,属于全等变换。
如图,点P在等边三角形ABC内,且∠APC=150°, PA=3,PC=4,求PB的长.
数.
C
P
A
B
已知:RtΔABC中,∠ACB=90°,AC=BC。
2.如图,点D是BC上的一点(不与B、C重合),连接AD,过点D做 BE⊥AD,交AD的延长线于点E,连接CE,若∠BAD=α,求∠DBE 的大小(用含α的式子表示)。
等腰直角三角形的旋转

(图1) (图2) (图3)等腰直角三角形的旋转1.如图,△ABC 中,AB=5,AC=3,以BC 为边作等腰Rt △BCD ,连接AD ,把△ACD 绕D 点,逆时针方向旋转900,得到△EBD 。
(1)画出△EBD ; (2)当BC=4时,连接AE ,求△ABE 的面积;(3)当BC 的长度发生变化时,请直接写出AD 长的取值范围。
(备用图)2.(1)如图1, △ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,求证:△ACD ≌△BCE.(2) 如图2,将图1中△DCE 绕点C 逆时针旋转n °(0<n <45),使∠BED=90°,又作△DCE 中DE 边上的高CM ,请完成图2,并判断线段CM ,AE ,BE 之间的数量关系,并说明理由.(3)如图3,在正方形ABCD 中,CD=5,若点P 满足PD=1,且∠BPD=90°,请直接写出点A 到BP 的距离.3.如图(1),在Rt △ABC 中,∠A =90°,AC =AB =4, D ,E 分别是AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt△AD 1E 1,如图(2),设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)求证:BD 1= CE 1; (2)当∠=1CPD 2∠1CAD 时,求1CE 的长;(3)连接PA,PAB ∆面积的最大值为 .(直接填写结果)4.在等腰Rt △ABC 和等腰Rt △A 1B 1C 1中,斜边B 1C 1中点O 也是BC 的中点。
(1)如图1,则AA 1与CC 1的数量关系是 ;位置关系是 。
(2)如图2,将△A 1B 1C 1绕点O 顺时针旋转一定角度,上述结论是否仍然成立,请证明你的结论。
(3)如图3,在(2)的基础上,直线AA 1、CC 1交于点P ,设AB=4,则PB 长的最小值是 。
等边三角形、等腰直角三角形之间的旋转问题(精华)

等边三⾓形、等腰直⾓三⾓形之间的旋转问题(精华)等边三⾓形、等腰直⾓三⾓形之间的旋转问题(精华)1、图(1)中,C点为线段AB上⼀点,△ACM,△CBN是等边三⾓形,AN与BM相等吗?说明理由;如图(2)C点为线段AB上⼀点,等边三⾓形ACM和等边三⾓形CBN在AB的异侧,此时AN与BM 相等吗?说明理由;如图(3)C点为线段AB外⼀点,△ACM,△CBN是等边三⾓形,AN与BM相等吗?说明理由.2、如图(1)所⽰,点C为线段AB上⼀点,△ACM、△CBN是等边三⾓形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针⽅向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成⽴,说明理由.3、如图,已知△ABC是等边三⾓形,E是AC延长线上⼀点,选择⼀点D,使得△CDE是等边三⾓形,如果M是线段AD的中点,N是线段BE的中点,求证:△CMN是等边三⾓形.(根据△ACD≌△BCE,得出AD=BE,AM=BN;⼜△AMC≌△BNC,可得CM=CN,∠ACM=∠BCN,证明∠NCM=∠ACB=60°即可证明△CMN是等边三⾓形;)1、(锦州)如图A,△ABC和△CEF是两个⼤⼩不等的等边三⾓形,且有⼀个公共顶点C,连接AF 和BE.(1)线段AF和BE 有怎样的⼤⼩关系?请证明你的结论;(2)将图A中的△CEF绕点C旋转⼀定的⾓度,得到图B,(1)中的结论还成⽴吗?作出判断并说明理由;(3)若将图A中的△ABC 绕点C旋转⼀定的⾓度,请你画⼭⼀个变换后的图形C(草图即可),(1)中的结论还成⽴吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现.(3)此⼩题图形不惟⼀,如图第(1)中的结论仍成⽴.(4)根据以上证明、说理、画图,归纳如下:如图A,⼤⼩不等的等边三⾓形ABC和等边三⾓形CEF有且仅有⼀个公共顶点C,则以点C 为旋转中⼼,任意旋转其中⼀个三⾓形,都有AF=BE.2、如图,ADC ?和BCE ?都是等边三⾓形,ο30=∠ABC ,试说明:222BC AB BD +=(综合全等和勾股定理)3、△DAC, △EBC 均是等边三⾓形,AE,BD 分别与CD,CE 交于点M,N, 求证:(1)AE=BD (2)CM=CN (3) △CMN 为等边三⾓形(4)MN ∥BC4、已知:如图1,点C 为线段AB 上⼀点,△ACM ,△CBN 都是等边三⾓形,AN 交MC 于点E ,BM 交CN 于点F . (1)求证:AN=BM ; (2)求证:△CEF 为等边三⾓形;(3)将△ACM 绕点C 按逆时针⽅向旋转90 O ,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两⼩题的结论是否仍然成⽴(不要求证明).5、如图所⽰,已知△ABC 和△BDE 都是等边三⾓形。
2020-2021九年级培优初中数学 旋转辅导专题训练及答案解析

2020-2021九年级培优初中数学旋转辅导专题训练及答案解析一、旋转1.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===,∴△DAB ≌△EAC ,∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE .∵DB=DE ,∠BDC=60°,∴△BDE 是等边三角形,∴∠BD=BE ,∠DBE=∠ABC=60°,∴∠ABD=∠CBE ,∵AB=BC ,∴△ABD ≌△CBE ,∴AD=EC ,∴BD=DE=DC+CE=DC+AD .∴AD+CD=BD .(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .由(1)可知△EAB ≌△GAC ,∴∠1=∠2,BE=CG ,∵BD=DC ,∠BDE=∠CDM ,DE=DM ,∴△EDB ≌△MDC ,∴EM=CM=CG ,∠EBC=∠MCD ,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.2.(操作发现)(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2【解析】试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE 中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE2+DB2=DE2,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE 中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF 中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.3.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示) (2)应用:点A为线段BC外一动点,且BC=4,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(6,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【答案】(1)CB的延长线上, a+b;(2)①CD=BE,理由见解析;②BE长的最大值为5;(3)满足条件的点P坐标(222)或(222),AM的最大值为2+4.【解析】【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据已知条件易证△CAD≌△EAB,根据全等三角形的性质即可得CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+4;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可求得点P的坐标.如图3中,根据对称性可知当点P在第四象限时也满足条件,由此求得符合条件的点P另一个的坐标.【详解】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,AD ABCAD EAB AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=5;(3)如图1,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(6,0),∴OA=2,OB=6,∴AB=4,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=2AP=22,∴最大值为22+4;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE2,∴OE=BO﹣AB﹣AE=6﹣42=22,∴P(222).如图3中,根据对称性可知当点P在第四象限时,P(2﹣2,﹣2)时,也满足条件.综上所述,满足条件的点P坐标(2﹣2,2)或(2﹣2,﹣2),AM的最大值为22+4.【点睛】本题综合考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.4.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立【解析】【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.【详解】(1)CG=EG.理由如下:∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理.在Rt△DEF中,EG=12FD,∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=12MC,∴EG=CG.(3)(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG【点睛】本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.5.(1)如图①,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,交AD 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .①求证:四边形BFDE 是菱形;②直接写出∠EBF 的度数;(2)把(1)中菱形BFDE 进行分离研究,如图②,点G 、I 分别在BF 、BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH 并延长,交ED 于点J ,连接IJ 、IH 、IF 、IG.试探究线段IH 与FH 之间满足的关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图③,当矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE 、EF 、DF ,使△DEF 是等腰直角三角形,DF 交AC 于点G.请直接写出线段AG 、GE 、EC 三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH =3FH ;(3)EG 2=AG 2+CE 2.【解析】【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题.(2)IH =3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== ,∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH=3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===, ∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF , ∴IH ⊥JF ,∵∠BFI +∠BIF =120°, ∴∠MIJ +∠BIF =120°, ∴∠JIF =60°, ∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°, ∴∠FIH =30°, ∴IH=3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°, ∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°, ∴∠ADF +∠EDC =45°, ∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG , 在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM , ∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM , ∴∠ECM =90° ∴EC 2+CM 2=EM 2, ∵EG =EM ,AG =CM , ∴GE 2=AG 2+CE 2. 【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.6.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.【解析】试题分析:(1)证AD=BE,根据三角形的中位线推出FH=12AD,FH∥AD,FG=12BE,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE∴AD=BE ,由(1)知:FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∴FH=FG ,FH ⊥FG ,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG ,FH ⊥FG . 连接AD ,BE ,两线交于Z ,AD 交BC 于X , 同(1)可证∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形, ∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°, ∴∠ACD=∠BCE , 在△ACD 和△BCE 中AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩=== , ∴△ACD ≌△BCE , ∴AD=BE ,∠EBC=∠DAC ,∵∠DAC+∠CXA=90°,∠CXA=∠DXB , ∴∠DXB+∠EBC=90°, ∴∠EZA=180°﹣90°=90°, 即AD ⊥BE , ∵FH ∥AD ,FG ∥BE , ∴FH ⊥FG , 即FH=FG ,FH ⊥FG , 结论是FH=FG ,FH ⊥FG.【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.7.如图所示,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC 的延长线交BD于点P.(1)把△ABC绕点A旋转到图1,BD,CE的关系是(选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD=,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为,最大值为.【答案】(1)BD,CE的关系是相等;(2)53417或203417;(3)1,7【解析】分析:(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;(2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到PD AE =CDCE,进而得到PD=53417;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到PB BEAB BD,进而得出PB=63434,PD=BD+PB=203417;(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值.详解:(1)BD,CE的关系是相等.理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;故答案为相等.(2)作出旋转后的图形,若点C在AD上,如图2所示:∵∠EAC=90°, ∴CE=2234AC AE +=,∵∠PDA=∠AEC ,∠PCD=∠ACE , ∴△PCD ∽△ACE , ∴PD CDAE CE=, ∴PD=53417; 若点B 在AE 上,如图2所示:∵∠BAD=90°, ∴Rt △ABD 中,BD=2234AD AB +=,BE=AE ﹣AB=2,∵∠ABD=∠PBE ,∠BAD=∠BPE=90°, ∴△BAD ∽△BPE ,∴PB BEAB BD=,即334PB =, 解得PB=63434, ∴PD=BD+PB=34+63434=203417, 故答案为53417或203417; (3)如图3所示,以A 为圆心,AC 长为半径画圆,当CE 在⊙A 下方与⊙A 相切时,PD 的值最小;当CE 在在⊙A 右上方与⊙A 相切时,PD 的值最大. 如图3所示,分两种情况讨论:在Rt △PED 中,PD=DE•sin ∠PED ,因此锐角∠PED 的大小直接决定了PD 的大小.①当小三角形旋转到图中△ACB的位置时,在Rt△ACE中,CE=2253-=4,在Rt△DAE中,DE=225552+=,∵四边形ACPB是正方形,∴PC=AB=3,∴PE=3+4=7,在Rt△PDE中,PD=2250491DE PE-=-=,即旋转过程中线段PD的最小值为1;②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,此时,DP'=4+3=7,即旋转过程中线段PD的最大值为7.故答案为1,7.点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.8.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.【答案】(1)△FGH是等边三角形;(261-;(3)△FGH的周长最大值为32(a+b),最小值为32(a﹣b).【解析】试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=32BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=12BD,GF∥BD,∵DF=EF,DH=HC,∴FH=12EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.(2)如图2中,连接AF、EC.易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF2221-3,在Rt△ABF中,BF22AB AF-6,∴BD=CE=BF﹣DF61,∴FH=12EC61-.(3)存在.理由如下.由(1)可知,△GFH是等边三角形,GF=12BD,∴△GFH的周长=3GF=32BD,在△ABD中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为3 2(a+b),最小值为32(a﹣b).点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.9.(10分)已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).【答案】(1)相等和垂直;(2)成立,理由见试题解析;(3).【解析】试题分析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可知DF=BF,根据∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF;(2)延长DF交BC于点G,先证明△DEF≌△GCF,得到DE=CG,DF=FG,根据AD=DE,AB=BC,得到BD=BG又因为∠ABC=90°,所以DF=CF且DF⊥BF;(3)延长DF交BA于点H,先证明△DEF≌△HBF,得到DE=BH,DF=FH,根据旋转条件可以△ADH为直角三角形,由△ABC和△ADE是等腰直角三角形,AC=,可以求出AB的值,进而可以根据勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.试题解析:(1)∵∠ACB=∠ADE=90°,点F为BE中点,∴DF=BE,CF=BE. ∴DF=CF.∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°.∵BF=DF,∴∠DBF=∠BDF.∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF.同理得:∠CFE=2∠CBF,∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°.∴DF=CF,且DF⊥CF.(2)(1)中的结论仍然成立.证明如下:如图,此时点D落在AC上,延长DF交BC于点G.∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.∵F为BE中点,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.∵AD=DE,∴AD=GB.∵AC=BC,∴AC-AD="BC-GB." ∴DC=GC.∵∠ACB=90°,∴△DCG是等腰直角三角形.∵DF=GF,∴DF=CF,DF⊥CF.(3)如图,延长DF交BA于点H,∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.∴∠AED=∠ABC=45°.∵由旋转可以得出,∠CAE=∠BAD=90°,∵AE∥BC,∴∠AEB=∠CBE. ∴∠DEF=∠HBF.∵F是BE的中点,∴EF="BF." ∴△DEF≌△HBF. ∴ED=HB.∵AC=,在Rt△ABC中,由勾股定理,得AB=4.∵AD=1,∴ED=BH=1.∴AH=3.在Rt△HAD中,由勾股定理,得DH=,∴DF=,∴CF=.∴线段CF的长为.考点:1.等腰直角三角形的性质;2.全等三角形的判定和性质;3.勾股定理.10.把两个直角边长均为6的等腰直角三角板ABC和EFG叠放在一起(如图①),使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).(1)探究:在上述旋转过程中,BH与CK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);(2)利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时BH的长度;若不存在,说明理由.【答案】(1) BH=CK;(2) 存在,使△GKH的面积恰好等于△ABC面积的的位置,此时BH 的长度为.【解析】(1)先由ASA证出△CGK≌△BGH,再根据全等三角形的性质得出BH=CK,根据全等得出四边形CKGH的面积等于三角形ACB面积一半;(2)根据面积公式得出S△GHK=S四边形CKGH-S△CKH=12x2-3x+9,根据△GKH的面积恰好等于△ABC面积的512,代入得出方程12x2-3x+9=512×12×6×6,求出即可.解:(1)BH与CK的数量关系:BH=CK,理由是:连接OC,由直角三角形斜边上中线性质得出OC=BG,∵AC=BC,O为AB中点,∠ACB=90°,∴∠B=∠ACG=45°,CO⊥AB,∴∠CGB=90°=∠KGH,∴都减去∠CGH得:∠BGH=∠CGK,在△CGK和△BGH中∵,∴△CGK≌△BGH(ASA),∴CK=BH,即BH=CK;四边形CHGK的面积的变化情况:四边形CHGK的面积不变,始终等于四边形CQGZ的面积,即等于△ACB面积的一半,等于9;(2)假设存在使△GKH的面积恰好等于△ABC面积的512的位置.设BH=x,由题意及(1)中结论可得,CK=BH=x,CH=CB﹣BH=6﹣x,∴S△CHK=12CH×CK=3x﹣12x2,∴S△GHK=S四边形CKGH﹣S△CKH=9﹣(3x﹣12x2)=12x2﹣3x+9,∵△GKH的面积恰好等于△ABC面积的512,∴12x2﹣3x+9=512×12×6×6,解得136x=236x=(经检验,均符合题意).∴存在使△GKH的面积恰好等于△ABC面积的512的位置,此时x的值为36±.“点睛”本题考查了旋转的性质,三角形的面积,全等三角形的性质和判定等知识点,此题有一定的难度,但是一道比较好的题目.11.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,O D=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.12.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.【答案】(1)证明见解析;(2)45°或135°;(3).【解析】试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.(3)根据和求解即可.试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.∴∠BAE=∠DAG..∴△ABE≌△ADG(SAS).∴BE=DG..(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.(3)如图3,连接GB、GE.由已知α=45°,可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵,∴GE =8.∴.过点B作BH⊥AE于点H.∵AB=2,∴. ∴..设点G到BE的距离为h.∴.∴.∴点G到BE的距离为.考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.13.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=15°,BP=4,请求出BQ的长.-.【答案】(1)BQ=CP;(2)成立:PC=BQ;(3)434【解析】试题分析:(1)结论:BQ=CP.如图1中,作PH∥AB交CO于H,可得△PCH是等边三角形,只要证明△POH≌△QPB即可;(2)成立:PC=BQ.作PH∥AB交CO的延长线于H.证明方法类似(1);(3)如图3中,作CE⊥OP于E,在PE上取一点F,使得FP=FC,连接CF.设CE=CO=a,则FC=FP=2a,EF3,在Rt△PCE中,表示出PC,根据PC+CB=4,可得方程62)24+=,求出a即可解决问题;a a试题解析:解:(1)结论:BQ=CP.理由:如图1中,作PH∥AB交CO于H.在Rt△ABC中,∵∠ACB=90°,∠A=30°,点O为AB中点,∴CO=AO=BO,∠CBO=60°,∴△CBO 是等边三角形,∴∠CHP =∠COB =60°,∠CPH =∠CBO =60°,∴∠CHP =∠CPH =60°,∴△CPH 是等边三角形,∴PC =PH =CH ,∴OH =PB ,∵∠OPB =∠OPQ +∠QPB =∠OCB +∠COP ,∵∠OPQ =∠OCP =60°,∴∠POH =∠QPB ,∵PO =PQ ,∴△POH ≌△QPB ,∴PH =QB ,∴PC =BQ . (2)成立:PC =BQ .理由:作PH ∥AB 交CO 的延长线于H .在Rt △ABC 中,∵∠ACB =90°,∠A =30°,点O 为AB 中点,∴CO =AO =BO ,∠CBO =60°,∴△CBO 是等边三角形,∴∠CHP =∠COB =60°,∠CPH =∠CBO =60°,∴∠CHP =∠CPH =60°,∴△CPH 是等边三角形,∴PC =PH =CH ,∴OH =PB ,∵∠POH =60°+∠CPO ,∠QPO =60°+∠CPQ ,∴∠POH =∠QPB ,∵PO =PQ ,∴△POH ≌△QPB ,∴PH =QB ,∴PC =BQ .(3)如图3中,作CE ⊥OP 于E ,在PE 上取一点F ,使得FP =FC ,连接CF . ∵∠OPC =15°,∠OCB =∠OCP +∠POC ,∴∠POC =45°,∴CE =EO ,设CE =CO =a ,则FC =FP =2a ,EF =3a ,在Rt △PCE 中,PC =22PE CE + =22(23)a a a ++ =(62)a +,∵PC +CB =4,∴(62)24a a ++=,解得a =4226-,∴PC =434-,由(2)可知BQ =PC ,∴BQ =434-.点睛:此题考查几何变换综合题、旋转变换、等边三角形的判定和性质全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.14.如图,是边长为的等边三角形,边在射线上,且,点从点出发,沿的方向以的速度运动,当不与点重合是,将绕点逆时针方向旋转得到,连接.(1)求证:是等边三角形; (2)当时,的周长是否存在最小值?若存在,求出的最小周长;若不存在,请说明理由.(3)当点在射线上运动时,是否存在以为顶点的三角形是直角三角形?若存在,求出此时的值;若不存在,请说明理由.【答案】(1)详见解析;(2)存在,2+4;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D与点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2,于是得到t=2÷1=2s;③当6<t<10s时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2cm,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,。
旋转一对一讲义(重庆书之香)

旋转相关知识点概述关于旋转定义:把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
性质:(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
关于中心对称定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
性质:(1)是全等形。
(2)对称点连线都经过对称中心,并且被对称中心平分。
(3)对应线段平行(或在同一直线上)且相等。
判定:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
关于中心对称图形把一个图形绕某一个点旋转180°,旋转后的图形能够和原来的图形互相重合关于坐标系中对称点的特征关于原点对称的点的特征P(x,y)P’(-x,-y)关于x轴对称的点的特征P(x,y)P’(x,-y)关于y轴对称的点的特征P(x,y)P’(-x,y)典型例题分析判断是否是旋转图形(中心对称图形)例1、下列图不是中心对称图形的是()A .①③B .②④C .②③D .①④同步练习一在下列图形中,既是轴对称图形,又是中心对称图形的是( )确定旋转角、旋转中心和旋转方向例2、如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能..与其自身重合的是( )A.72 B.108 C.144 D.216同步练习二如图,所示的各图中可看成由下方图形绕着一个顶点顺时针旋转90°而形成的图形的是( )A .B .C .D .A B C D A B C D画旋转图形、中心对称图形例3、将大写字母A 绕它上侧的顶点按逆时针方向旋转90°,作出旋转后的图案。
例4、 △DEF 是由△ABC 绕某点旋转得到,请画出这两个图形的旋转中心.同步练习四有钢板如图所示,请你用一条直线将其分为面积相等的两部分旋转后点的坐标变化例5、已知点P (-b,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .-1,3 B .1,-3 C .-1,-3 D . 1,3 同步练习五已知点A 的坐标为()a b ,,O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转90 得1OA ,则点1A 的坐标为( ) A .()a b -,B .()a b -,C .()b a -,D .()b a -,例6、画出△ABC 关于原点O 对称的△A 1B 1C 1,并求出点A 1,B 1,C 1的坐标。
(2021年整理)等腰直角三角形的旋转

等腰直角三角形的旋转编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(等腰直角三角形的旋转)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为等腰直角三角形的旋转的全部内容。
C E DC (图1) (图2) (图3)等腰直角三角形的旋转1。
如图,△ABC 中,AB=5,AC=3,以BC 为边作等腰Rt △BCD,连接AD ,把△ACD 绕D 点,逆时针方向旋转900,得到△EBD 。
(1)画出△EBD ; (2)当BC=4时,连接AE ,求△ABE 的面积;(3)当BC 的长度发生变化时,请直接写出AD 长的取值范围。
C A D(备用图)C A D2.(1)如图1, △ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,求证:△ACD ≌△BCE.(2) 如图2,将图1中△DCE 绕点C 逆时针旋转n °(0<n <45),使∠BED=90°,又作△DCE 中DE 边上的高CM ,请完成图2,并判断线段CM ,AE ,BE 之间的数量关系,并说明理由.(3)如图3,在正方形ABCD 中,CD=5,若点P 满足PD=1,且∠BPD=90°,请直接写出点A 到BP 的距离.3。
如图(1),在Rt △ABC 中,∠A =90°,AC =AB =4, D ,E 分别是AB ,AC 的中点.若等腰Rt △ADE绕点A 逆时针旋转,得到等腰Rt△AD 1E 1,如图(2),设旋转角为α(0〈α≤180°),记直线BD 1与CE 1的交点为P .(1)求证:BD 1= CE 1; (2)当∠=1CPD 2∠1CAD 时,求1CE 的长;(3)连接PA,PAB ∆面积的最大值为 .(直接填写结果)4。
2021年中考复习专题几何第04讲 旋转(解析版)A4

第04讲旋转知识图谱旋转知识精讲一.半角模型“半角”旋转模型,经常会出现在等腰直角三角形、正方形中,在一般的等腰三角形中也会有涉及.二.等腰三角形旋转模型等腰三角形的旋转模型比较多,此模型需要注意的是利用“全等三角形”的性质进行边与角的转化,证明的基本思想“SAS”.1.一般等腰三角形的旋转共顶点等腰三角形的旋转2.等边三角形的旋转共顶点等边三角形的旋转3.等腰直角三角形的旋转共顶点等腰直角三角形的旋转三.对角互补模型四边形对角互补模型多数题目给出的条件会以四边形或三角形等旋转为载体.四.旋转相似模型共顶点相似的一般三角形模型:如图,图中 ABD ACE ∆∆∽,得到AB AD BDAC AE CE==,ABD ACE ∠=∠,ADB AEC ∠=∠,BAD CAE ∠=∠,则有 ABC ADE ∆∆∽.一.考点:1.旋转全等模型; 2.旋转相似模型;3.旋转中的轨迹与最值问题;二.重难点:1.这类题的关键是找到题目中所给的特殊条件,结合问题所要证明或者求解的边长角度问题,再去选择是要构造旋转全等还是通过已经得到的旋转全等的性质进一步证明. 2.观察图形发现旋转得到的相似;3.通过添加辅助线构造旋转相似或者去挖掘隐含的相似图形. 三.易错点:1.在利用旋转构造全等的时候注意辅助线的做法问题; 2.构造旋转全等时候一定要有相等边长的条件.3.全等是相似的一个特例,旋转有时候也会出现全等,注意和旋转全等的区别和联系.题模一:旋转与全等例1.1.1 已知四边形ABCD 中,AB=BC ,∠ABC=120°,∠MBN=60°,∠MBN 绕B 点旋转,它的两边分别交AD ,DC (或它们的延长线)于E ,F .当∠MBN 绕B 点旋转到AE=CF 时(如图1),易证AE+CF=EF ;当∠MBN 绕B 点旋转到AE ≠CF 时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE ,CF ,EF 又有怎样的数量关系?请写出你的猜想,不需证明.三点剖析题模精讲例1.1.2(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD.求证:EF=BE+FD;(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF= 12∠BAD,(1)中的结论是否仍然成立?(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.例1.1.3如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.例1.1.4如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.(1)求证:四边形ABCD是正方形;(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若EG=4,GF=6,BM=32,求AG、MN的长.题模二:旋转与相似例1.2.1如图1,点P在正方形ABCD的对角线AC上,正方形的边长是a,Rt△PEF的两条直角边PE、PF分别交BC、DC于点M、N.(1)操作发现:如图2,固定点P,使△PEF绕点P旋转,当PM⊥BC时,四边形PMCN是正方形.填空:①当AP=2PC时,四边形PMCN的边长是________;②当AP=nPC时(n是正实数),四边形PMCN的面积是___________.(2)猜想论证如图3,改变四边形ABCD的形状为矩形,AB=a,BC=b,点P在矩形ABCD的对角线AC上,Rt△PEF的两条直角边PE、PF分别交BC、DC于点M、N,固定点P,使△PEF绕点P旋转,则PM PN=__________.(3)拓展探究如图4,当四边形ABCD满足条件:∠B+∠D=180°,∠EPF=∠BAD时,点P在AC上,PE、PF分别交BC,CD于M、N点,固定P点,使△PEF绕点P旋转,请探究PMPN的值,并说明理由.例1.2.2数学活动课上,小颖同学用两块完全一样的透明等腰直角三角板ABC、DEF进行探究活动.操作:使点D落在线段AB的中点处并使DF过点C(如图1),然后将其绕点D顺时针旋转,直至点E落在AC的延长线上时结束操作,在此过程中,线段DE与AC或其延长线交于点K,线段BC与DF相交于点G(如图2,3).探究1:在图2中,求证:△ADK∽△BGD.探究2:在图2中,求证:KD平分∠AKG.探究3:①在图3中,KD仍平分∠AKG吗?若平分,请加以证明;若不平分,请说明理由.②在以上操作过程中,若设AC=BC=8,KG=x,△DKG的面积为y,请求出y与x的函数关系式,并直接写出x的取值范围.题模三:旋转中的轨迹与最值问题例1.3.1如图,点P是平行四边形ABCD对角线BD上的动点,点M为AD的中点,已知AD=8,AB=10,∠ABD=45°,把平行四边形ABCD绕着点A按逆时针方向旋转,点P的对应点是点Q,则线段MQ的长度的最大值与最小值的差为.例 1.3.2如图,菱形ABCD中,AB=2,∠C=60°,我们把菱形ABCD的对称中心O称作菱形的中心.菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O所经过的路径长为______;经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长为______.(结果都保留π)例1.3.3如图1,点O为正方形ABCD的中心.(1)将线段OE绕点O逆时针方向旋转90︒,点E的对应点为点F,连结EF,AE,BF,请依题意补全图1;(2)根据图1中补全的图形,猜想并证明AE与BF的关系;(3)如图2,点G是OA 中点,△EGF是等腰直角三角形,H是EF的中点,90EGF∠=︒,22AB=,2GE=,△EGF绕G点逆时针方向旋转α角度,请直接写出旋转过程中BH的最大值.O BD CAE图1CBHEF GODA图2随堂练习随练1.1 在ABC ∆中,2AB BC ==,90ABC ∠=︒,BD 为斜边AC 上的中线,将ABD ∆绕点D 顺时针旋转α(0180α︒<<︒)得到EFD ∆,其中点A 的对应点为点E ,点B 的对应点为点F ,BE 与FC 相交于点H .(1)如图1,直接写出BE 与FC 的数量关系:____________;(2)如图2,M 、N 分别为EF 、BC 的中点.求证:MN =__________;(3)连接BF ,CE ,如图3,直接写出在此旋转过程中,线段BF 、CE 与AC 之间的数量关系:____________________________.随练1.2 在菱形ABCD 中,120BAD ∠=︒,4AB =,把一个含60°角的三角板与这个菱形叠合,使三角板的60°角的顶点与点A 重合,两边分别落在AB 、AC 上.将三角板绕点A 按逆时针旋转,设旋转角为α.(1)如图①,当060α︒<<︒时,三角板的两边分别与菱形的两边BC 、CD 相交于点E 、F ,请你通过观察或测量写出图中现有的两组相等线段(菱形的边和对角线除外).(2)如图②,当60120α︒<<︒时,三角板的两边分别与BC 、CD 的延长线相交于点E 、F ,你在(1)中得到的结论还成立吗?若成立,请你选择一组加以证明;若不成立,请你说明理由.(3)当060α︒<<︒时,三角板的两边分别与菱形的两边BC 、CD 相交于点E 、F ,请你求出这个三角板与这个菱形重合部分的面积.随练1.3 如图1所示,在正方形ABCD 和正方形CGEF 中,点B 、C 、G 在同一条直线上,M 是线段AE 的中点,DM 的延长线交EF 于点N ,连接FM ,易证:DM=FM ,DM ⊥FM (无需写证明过程)(1)如图2,当点B 、C 、F 在同一条直线上,DM 的延长线交EG 于点N ,其余条件不变,试探究线段DM 与FM 有怎样的关系?请写出猜想,并给予证明;(2)如图3,当点E 、B 、C 在同一条直线上,DM 的延长线交CE 的延长线于点N ,其余条件不变,探究线段DM 与FM 有怎样的关系?请直接写出猜想.图1aH FEDA BC图2a H FE MNDA BCa HFEDAB C图3随练 1.4 已知:在ABC △中,AB AC =,点D 为BC 边的中点,点F 在AB 上,连结DF 并延长到点E ,使BAE BDF ∠=∠,点M 在线段DF 上,且ABE DBM ∠=∠. (1)如图,当45ABC ∠=°时, 求证:2AE MD =;(2)如图,当60ABC ∠=°时,则线段AE MD 、之间的数量关系为____________;(3)在(2)的条件下,延长BM 到P ,使MP BM =,连接CP ,若727AB AE ==,,求tan EAB ∠的值.随练 1.5 在等边ABC ∆的两边AB ,AC 所在直线上分别有两点M N D ,,为ABC ∆外一点,且60MDN ∠=︒,120BDC ∠=︒,BD CD =,探究:当点M N ,分别在直线AB AC ,上移动时,BM NC MN ,,之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系. (1)如图①,当点M N ,在边AB AC ,上,且DM DN =时,BM NC MN ,,之间的数量关系式_________;此时QL=__________(2)如图②,当点M N ,在边AB AC ,上,且DM DN ≠时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明; (3)如图③,当点M N ,分别在边AB CA ,的延长线上时,若AN x =,则Q =_________(用x L ,表示)CBD AEF MCBD AF EM随练1.6 (1)正方形ABCD 中,对角线AC 与BD 相交于点O ,如图1,请直接猜想并写出AO 与CD 之间的数量关系:;(2)如图2,将(1)中的△BOC 绕点B 逆时针旋转得到△BO 1C 1,连接AO 1,DC 1,请猜想线段AO 1与DC 1的数量关系,并证明你的猜想;(3)如图3,矩形ABCD 和Rt △BEF 有公共顶点,且∠BEF=90°,∠EBF=∠ABD=30°,则AEDF =______.随练1.7 如图,正方形OABC 的边长为2,以O 为圆心,EF 为直径的半圆经过点A ,连接AE ,CF 相交于点P ,将正方形OABC 从OA 与OF 重合的位置开始,绕着点O 逆时针旋转90°,交点P 运动的路径长是______.随练1.8 已知△ABC 是等腰直角三角形,AC=BC=2,D 是边AB 上一动点(A 、B 两点除外),将△CAD 绕点C 按逆时针方向旋转角α得到△CEF ,其中点E 是点A 的对应点,点F 是点D 的对应点.图①M ND CBA图②MND CBAN图③MD CBA(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.随练1.9如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.能力拓展拓展1如图1,在△ABC中,∠BAC=90°,AB=AC.(1)若点M为AC上的任意一点,过M作MN⊥BC于点N,取BM的中点D,连接AD、DM,求证:AD=DN.(2)如图2,若M为BC上的任意一点,以线段CM为底边作等腰Rt△MCN,此时,取BM的中点D,连接AD、DN,则AD与DN有怎样的数量关系?说明理由.(3)如图3,在(2)的条件下将Rt△MNC绕C点旋转任意角度,连接BM,取BM的中点D,再连接AD、DN,则(2)中的结论仍然成立吗,它们之间又有怎样的位置关系?请说明理由.拓展2已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).拓展3在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.(1)如图1,当∠A=30°时,求证:MC2=AM2+BC2;(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;(3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC相交于点N,连接MN,则MN2=AM2+BN2成立吗?答:____(填“成立”或“不成立”)拓展4在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.请直接写出AC1与BD1的数量关系和位置关系.(2)如图2,若四边形ABCD 是菱形,AC=6,BD=8,判断AC 1与BD 1的数量关系和位置关系,并给出证明;(3)如图3,若四边形ABCD 是平行四边形,AC=6,BD=12,连接DD 1,设AC 1=kBD 1,请直接写出k的值和AC 12+(kDD 1)2的值.拓展5 在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.(一)尝试探究如图1,在四边形ABCD 中,AB=AD ,∠BAD=60°,∠ABC=∠ADC=90°,点E 、F 分别在线段BC 、CD 上,∠EAF=30°,连接EF .(1)如图2,将△ABE 绕点A 逆时针旋转60°后得到△A ′B ′E ′(A ′B ′与AD 重合),请直接写出∠E ′AF=________度,线段BE 、EF 、FD 之间的数量关系为________.(2)如图3,当但点E 、F 分别在线段BC 、CD 的延长线上时,其他条件不变,请探究线段BE 、EF 、FD 之间的数量关系,并说明理由.(二)拓展延伸如图4,在等边△ABC 中,E 、F 是边BC 上的两点,∠EAF=30°,BE=1,将△ABE 绕点A 逆时针旋转60°得到△A ′B ′E ′(A ′B ′与AC 重合),连接EE ′,AF 与EE ′交于点N ,过点A 作AM ⊥BC 于点M ,连接MN ,求线段MN 的长度.拓展6 探索绕公用顶点的相似多边形的旋转:(1)如图1,已知:等边ABC ∆和ADE ∆,根据__________(指出三角形的全等或相似),可得到CE 与BD 的大小关系为:__________.(2)如图2,正方形ABCD 和正方形AEFG ,求:FC EB 的值;(3)如图3,矩形ABCD 和矩形AEFG ,AB kBC =,AE kEF =,求:FCEB 的值.拓展7如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC 绕点C逆时针转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是()A.6B.3C.2D. 1.5拓展8已知等边△ABC边长为2,放置在如图的水平桌面上,将△ABC水平向右作无滑动翻滚,使△ABC首次落回开始的位置,则等边△ABC的中心O经过的路径长为_________.拓展9已知,点O是等边△ABC内的任一点,连接OA,OB,OC.(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的度数是;②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.拓展10 如图1,已知线段2BC =,点B 关于直线AC 的对称点是点D ,点E 为射线CA 上一点,且ED BD =,连接DE ,BE .(1)依题意补全图1,并证明:△BDE 为等边三角形;(2)若45ACB ∠=︒,点C 关于直线BD 的对称点为点F ,连接FD 、FB .将△CDE 绕点D 顺时针旋转α度(0360α︒<<︒)得到△''C DE ,点E 的对应点为'E ,点C 的对应点为点'C .①如图2,当30α=︒时,连接'BC .证明:'EF BC =;②如图3,点M 为DC 中点,点P 为线段''C E 上的任意一点,试探究:在此旋转过程中,线段PM 长度的取值范围?拓展11 在矩形ABCD 中,点P 在AD 上,2AB =,1AP =,将三角板的直角顶点放在点P 处,三角板的两直角边分别能与AB 、BC 边相交于点E 、F ,连接EF .(1)如图,当点E 与点B 重合时,点F 恰好与点C 重合,求此时PC 的长;(2)将三角板从(1)中的位置开始,绕点P 顺时针旋转,当点E 与点A 重合时停止,在这个过程中,请你观察、探究并解答:①PEF ∠的大小是否发生变化?请说明理由;②直接写出从开始到停止,线段EF 的中点所经过的路线长.E D M C'E'B CFAP。
中考数学二轮复习全等三角形双等腰旋转知识点总结附解析

中考数学二轮复习全等三角形双等腰旋转知识点总结附解析一、全等三角形双等腰旋转1.在△ABC中,∠BAC=90°,点E为AC上一点,AB=AE,AG⊥BE,交BE于点H,交BC 于点G,点M是BC边上的点.(1)如图1,若点M与点G重合,AH=2,BC=26,求CE的长;(2)如图2,若AB=BM,连接MH,∠HMG=∠MAH,求证:AM=22HM;(3)如图3,若点M为BC的中点,作点B关于AM的对称点N,连接AN、MN、EN,请直接写出∠AMH、∠NAE、∠MNE之间的角度关系.答案:(1);(2)见解析;(3)∠NAE+2∠MNE=2∠AMH【分析】(1)根据等腰直角三角形的性质以及勾股定理解答即可;(2)根据等腰直角三角形的判定和性质以及全等三角形的判定和性质解答即可;解析:(122)见解析;(3)∠NAE+2∠MNE=2∠AMH【分析】(1)根据等腰直角三角形的性质以及勾股定理解答即可;(2)根据等腰直角三角形的判定和性质以及全等三角形的判定和性质解答即可;(3)根据对称的性质和三角形内角和解答即可.【详解】解:(1)∵∠BAC=90°,AB=AE,∴△BAE为等腰直角三角形,∵AG⊥BE,∴AH是△BAE的中线,∴BE=2AH=4,∵∠BEA=45°,∴∠BEC=135°,在△BCE中,过点C作CD⊥BE交BE的延长线于点D,如图1,∵∠DEC =45°,∴△DEC 是等腰直角三角形, 设ED =x ,则DC =x ,CE =2x , 在Rt △BCD 中,BC 2=BD 2+DC 2, 即222(26)(4)x x =++ , ∴x 1=1或x 2=﹣5(舍去), ∴CE =2;(2)如图2,过H 作HD ⊥HM 交AM 于点D ,连接BD ,∵AB =AE ,∠BAC =90°, ∴△ABE 是等腰直角三角形, ∵AG ⊥BE ,∴△ABH 为等腰直角三角形, ∴BH =AH ,∠BAH =45°,∠BHA =90°, ∵AB =BM , ∴∠BAM =∠BMA , ∵∠HMG =∠MAH ,∴∠BAM ﹣∠MAH =∠BMA ﹣∠HMG , 即∠BAH =∠AMH =45°, ∵HD ⊥HM ,∴△DHM 为等腰直角三角形, ∴DH =HM ,∠DHM =90°,∵∠BHD =∠BHA +∠AHD ,∠AHM =∠DHM +∠AHD , ∴∠BHD =∠AHM , 在△BHD 与△AHM 中,BH AH BHD AHM DH MH =⎧⎪∠=∠⎨⎪=⎩,∴△BHD≌△AHM(SAS),∴∠DBH=∠MAH,BD=AM,∴∠BHA=∠BDA=90°,∵BA=BM,∴D是AM的中点,∴AM=2DM=HM,即AM=HM;(3)∵H是BE的中点,M是BC的中点,∴MH是△BCE的中位线,∴MH∥CE,∴∠AMH=∠MAC,∵∠BAC=90°,∴AM=BM,∴∠MAB=∠ABM,∵点B与点N关于线段AM对称,∴∠ABM=∠ANM,AB=AN,∴AE=AN,∴∠AEN=∠ANE,在△AEN中,∠NAE+2∠ANE=180°①,∵∠ANE=∠ANM+∠MNE,∠ABM=∠ANM=∠MAB=90°﹣∠MAC,∴∠ANE=90°﹣∠MAC+∠MNE,∴∠ANE=90°﹣∠AMH+∠MNE②,将②代入①,得:∠NAE+2×(90°﹣∠AMH+∠MNE)=180°,∴∠NAE+180°﹣2∠AMH+2∠MNE=180°,∴∠NAE+2∠MNE=2∠AMH.【点睛】此题考查等腰直角三角形的判定及性质,勾股定理的运用,全等三角形的判定及性质,轴对称的性质,三角形中位线的判定及性质,解一元二次方程,熟练掌握各知识点是解题的关键.的外接圆,AC是O的直径,点B是半圆ABC的中点,点D 2.如图,O是ABC是ADC上一动点(不与点A、C重合),连接BD交AC于点G.图1 图2(1)如图1,过点B 作//BF AC ,交DA 延长线于点F ,求证:BF 与O 相切;(2)若10AC =,6AD =,求CG 的长;(3)如图2,把DBC ∆沿直线BC 翻折得到EBC ∆,连接AE ,当点D 在ADC 运动时,探究线段AE 、BD 、CD 之间的数量关系,并说明理由.答案:(1)详见解析;(2);(3),详见解析. 【分析】(1)连接,求出,根据得到,问题得证; (2)作交于点,证明,求出CD=8,根据,在中,设,则,,求出,,根据勾股定理即可求出CG ; (3)作解析:(1)详见解析;(2)407;(3)2222AE DB CD =+,详见解析. 【分析】(1)连接OB ,求出OB AC ⊥,根据//BF AC 得到90FBO ∠=︒,问题得证; (2)作GH CD ⊥交CD 于点H ,证明DH GH =,求出CD=8,根据3tan 4ACD ∠=, 在Rt CGH ∆中,设3GH a =,则3DH a =,4CH a =,求出327CH =,247GH =,根据勾股定理即可求出CG ;(3)作BM BE ⊥,使得BM BE =,连接EM ,CM .证明ABE CBM ≅△△,得到AE CM =,证明90CEM ∠=︒,得到222CM EM EC =+,根据数量关系进行代换即可得到2222AE DB CD =+. 【详解】证明:(1)连接OB ,O 是ABC 的外接圆,AC 是O 的直径,点B 是半圆ABC 的中点,45BAC ACB ∠∴∠==︒,OB AC ⊥45ABO ∴∠=︒//BF AC 45ABF ∴∠=︒90FBO ∴∠=︒BF ∴与O 相切;解:(2)作GH CD ⊥交CD 于点H , 点B 是半圆周ABC 的中点, ADB CDB ∴∠=∠ AC 是O 的直径90ADC ∴∠=︒45CDB ∴∠=︒DH GH ∴=在Rt ACD ∆中,10AC =,6AD =,8CD ∴=3tan 4ACD ∴∠=在Rt CGH ∆中,设3GH a =,则3DH a =,4CH a =348a a ∴+=,87a =, 在Rt CGH ∆中,设3GH a =,则3DH a =,4CH a =∴,327CH =,247GH =在Rt CGH ∆中,22243240777CG ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭图1(3)结论:2222AE DB CD =+作BM BE ⊥,使得BM BE =,连接EM ,CM .90ABC EBM ∠=∠=︒,ABE CBM ∴∠=∠,BA BC =,BE BM =, ABE CBM ∴≅△△(SAS),AE CM ∴=,45BEC BDC BEM ∠=∠=∠=︒ 90CEM ∴∠=︒,222CM EM EC ∴=+,22222EM BE BD ∴==,EC CD =,2222AE DB CD ∴=+图2【点睛】本题为圆的综合题目,考查了圆的性质,切线的判定,利用三角函数求线段的长,勾股定理等知识,综合性较强.解第(2)步关键是添加适当辅助线GH,构造了等腰直角三角形DHG 和三边比为3:4:5的直角三角形CGH ;解(3)步关键是构造旋转全等,将三条线段转化在同一直角三角形CEM 中,得出数量关系后再进行线段的代换.3.已知,ABC 中,AB AC =,2BAC α∠=︒,点D 为BC 边中点,连接AD ,点E 为AD 的中点,线段CE 绕点E 顺时针旋转2α︒得到线段EF ,连接FC ,FD . (1)如图1,当60BAC ∠=︒时,请直接写出DFDC的值; (2)如图2,当90BAC ∠=︒时,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请写出正确的结论,并说明理由; (3)如图3,当2BAC α∠=︒时,请直接写出DFDC的值(用含α的三角函数表示).答案:(1);(2)不成立,,理由见解析;(3).【分析】(1)如图1(见解析),先根据中位线定理得出,再根据旋转的性质、等边三角形的性质得出,,,然后根据三角形全等的判定定理与性质可得,由此即可得出解析:(1)12;(2)不成立,2DF DC =3)sin DF DC α=︒. 【分析】(1)如图1(见解析),先根据中位线定理得出12EG DC =,再根据旋转的性质、等边三角形的性质得出EC FC =,CD CG =,DCF GCE ∠=∠,然后根据三角形全等的判定定理与性质可得DF EG =,由此即可得出答案;(2)如图2(见解析),先根据中位线定理、等腰三角形的三线合一得出90AEM ∠=︒,再根据等腰直角三角形的性质得出ACE BCF ∠=∠,2AC CE BC CF ==,然后根据相似三角形的判定与性质可得CBF CAE ∠=∠,2AE BF =,从而可得AE AM BF BD =,最后根据相似三角形的判定与性质可得90BFD AEM ∠=∠=︒,据此利用正弦三角函数值即可得;(3)如图3(见解析),参照题(2)的思路,先根据相似三角形的判定与性质得出,90CBF CAE BFD AEN α∠=∠=︒∠=∠=︒,再在Rt BFD 中,利用正弦三角函数值即可得. 【详解】(1)如图1,取AC 的中点G ,连接EG ,则12CG AC = 点E 为AD 的中点EG ∴是ACD 的中位线12EG DC ∴=,即12EG DC = 由旋转的性质可知,EC EF =,60FEC ∠=︒CEF ∴是等边三角形60ECF ∴∠=︒,EC FC = AB AC =,60BAC ∠=︒ ABC ∴是等边三角形60,ACB AC BC ∴∠=︒=点D 为BC 边中点1122CD BC AC CG ∴=== 60ECF ECD DCF ∠=∠+∠=︒,60ACB ECD GCE ∠=∠+∠=︒DCF GCE ∴∠=∠在DCF 和GCE 中,CD CG DCF GCE FC EC =⎧⎪∠=∠⎨⎪=⎩()DCF GCE SAS ∴≅DF EG ∴=12DF EG DC DC ∴==; (2)不成立,2DF DC =,理由如下: 如图2,连接BF ,取AC 的中点M ,连接EM ∵E 是AD 的中点 ∴//EM BC ∴AEM ADC ∠=∠ ∵AB AC =ABC ∴是等腰三角形∵D 是BC 中点, 2BAC α∠=︒∴AD BC ⊥,12CAD BAC α∠=∠=︒,BD DC =∴90ADC ∠=︒ ∴90AEM ∠=︒当90BAC ∠=︒时,则90CEF ∠=︒ ABC ∴和CEF △为等腰直角三角形∴45ACB ECF ∠=∠=︒,即45ECD ACE ECD BCF ∠+∠=∠+∠=︒∴ACE BCF ∠=∠,cos 452AC CE BC CF ==︒=∴ACE BCF ~∴90452CBF CAE α︒∠=∠=︒==︒,2AE AC BF BC ==∵12122ACAM BD BC == ∴AE AMBF BD= ∴BDF AME ~∴90BFD AEM ∠=∠=︒在Rt BFD 中,sin DF DF CBF BD DC ∠==,即sin 45DFDC︒=则2DF DC =; (3)sin DFDCα=︒,求解过程如下: 如图3,连接BF ,取AC 的中点N ,连接EN 参照(2),同理可得:12CAD BAC α∠=∠=︒,BD DC =,90AEN ADC ∠=∠=︒ 当2BAC α∠=︒时,则2CEF α∠=︒AB AC =,EC EF =(旋转的性质) ABC ∴和EFC 为等腰三角形∴1(180)902ACB ABC BAC α∠=∠=︒-∠=︒-︒1(180)902ECF EFC CEF α∠=∠=︒-∠=︒-︒90ACB ECF α∴∠=∠=︒-︒ ABC EFC ∴~AC CEBC CF∴= 又,ACB ECD ACE ECF ECD BCF ∠=∠+∠∠=∠+∠∴ACE BCF ∠=∠ ∴ACE BCF ~∴CBF CAE α∠=∠=︒,AE ACBF BC= ∵1212ACAN ACBD BCBC == ∴AE ANBF BD= ∴BDF ANE ~∴90BFD AEN ∠=∠=︒在Rt BFD 中,sin DF DFCBF BD DC∠== 即sin DFDCα=︒.【点睛】本题考查了等腰三角形的性质、旋转的性质、三角形全等的判定定理与性质、相似三角形的判定与性质等知识点,通过作辅助线,构造全等三角形和相似三角形是解题关键. 4.感知:如图①,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连结AE 、CG ,易证AED CGD ≌△△.(不需要证明)探究:将图①中正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图②.连结AE 、CG ,证明:AE=CG .应用:如图③,正方形ABCD 中,AD =3,点E 在CB 的延长线上,BE =1,DE=DF ,∠EDF =90°.直接写出点F 与点C 的距离.答案:探究:证明见解析;应用:点F 与点C 的距离为. 【分析】探究:结合旋转模型,利用“边角边”证明即可得出结论;应用:连接FC ,根据前序问题中的方法证明△AED ≌△CFD ,从而得到CF=AE ,即在Rt解析:探究:证明见解析;应用:点F 与点C 10. 【分析】探究:结合旋转模型,利用“边角边”证明AED CGD ≌△△即可得出结论; 应用:连接FC ,根据前序问题中的方法证明△AED ≌△CFD ,从而得到CF =AE ,即在Rt △AED 中求解AE 即可. 【详解】探究:证明:在正方形ABCD 和正方形DEFG 中, AD =CD ,DE =DG ,90ADC EDG ∠=∠=︒,∠=∠,∴ADE CDG∴AED CGD△△,≌=;∴AE CG应用:连接FC,∵∠EDF=∠ADC=90°,∴∠ADE=∠CDF,又∵AD=CD,DE=DF,∴△AED≌△CFD,∴CF=AE,在Rt△AED中,2210=+=,AE AB BE∴点F与点C的距离为10.【点睛】本题考查全等三角形的判定与性质,掌握基本的旋转模型,根据全等三角形的性质求解问题是解题关键.5.如图,将两块含45°角的大小不同的直角三角板△COD和△AOB如图①摆放,连结AC,BD.(1)如图①,猜想线段AC与BD存在怎样的数量关系和位置关系,请写出结论并证明;(2)将图①中的△COD绕点O顺时针旋转一定的角度(如图②),连结AC,BD,其他条件不变,线段AC与BD还存在(1)中的关系吗?请写出结论并说明理由.(3)将图①中的△COD绕点O逆时针旋转一定的角度(如图③),连结AC,BD,其他条件不变,线段AC与BD存在怎样的关系?请直接写出结论.答案:(1)AC=BD,AC⊥BD,证明见解析;(2)存在,AC=BD,AC⊥BD,证明见解析;(3)AC=BD,AC⊥BD【分析】(1)延长BD交AC于点E.易证△AOC≌△BOD(SAS),可得A解析:(1)AC=BD,AC⊥BD,证明见解析;(2)存在,AC=BD,AC⊥BD,证明见解析;(3)AC=BD,AC⊥BD【分析】(1)延长BD交AC于点E.易证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠ADE=∠BDO,可证∠AED=∠BOD=90º即可;(2)延长BD交AC于点F,交AO于点G.易证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠AGF=∠BGO,可得∠AFG=∠BOG=90º即可;(3)BD交AC于点H,AO于M,可证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠AMH=∠BMO,可得∠AHM=∠BOH=90º即可.【详解】(1)AC=BD,AC⊥BD,证明:延长BD交AC于点E.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠COA=∠BOD=90º,∴△AOC≌△BOD(SAS),∴AC=BD,∴∠OAC=∠OBD,∵∠ADE=∠BDO,∴∠AED=∠BOD=90º,∴AC⊥BD;(2)存在,证明:延长BD交AC于点F,交AO于点G.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC-∠DOA,∠BOD=∠BOA-∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AGF=∠BGO,∴∠AFG=∠BOG=90º,∴AC⊥BD;(3)AC=BD,AC⊥BD.证明:BD交AC于点H,AO于M,∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC+∠DOA,∠BOD=∠BOA+∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AMH=∠BMO,∴∠AHM=∠BOH=90º,∴AC⊥BD.【点睛】本题考查三角形旋转变换中对应相等的位置与数量关系,掌握三角形全等的证明方法,及其角度计算是解题关键.6.如图,锐角ABC 中,分别以AB 、AC 为边向外作等腰直角ABE △和等腰直角ACD △,使AE AB =,AD AC =,90BAE CAD ∠=∠=︒,连接BD 、CE ,可以通过全等三角形的知识证得BD 与CE 相等.(1)如图,锐角ABC 中分别以AB 、AC 为边向外作等腰ABE △和等腰ACD △,AE AB =,AD AC =,90BAE CAD ∠=∠=︒,连接BD 、CE ,试猜想BD 与CE 的数量关系,并说明理由.(2)如图,在中ABC ,45ACB ∠=︒,以AB 为直角边,A 为直角顶点向外作等腰直角ABD △,连接CD ,若2,3AC BC ==,求CD 的长.(3)如图,在四边形中ABCD ,60,15,8,ADC BC AB AD CD ∠=︒===,求BD 的最大值.答案:(1),证明见解析;(2);(3)23.【分析】(1)由等腰三角形的性质解得,继而可证及,再由全等三角形对应边相等解题;(2)过A 作交于点,连接,先证明是等腰直角三角形,得到 ,,再证明,由全解析:(1)BD CE =,证明见解析;(2133)23.【分析】(1)由等腰三角形的性质解得,,AE AB AD AC BAE CAD ==∠=∠,继而可证EAC BAD ∠=∠及(SAS)EAC BAD ≌,再由全等三角形对应边相等解题;(2)过A 作AE AC ⊥交BC 于点E ,连接DE ,先证明EAC 是等腰直角三角形,得到 AE AC =,DAE BAC ∠=∠,再证明(SAS)DAE BAC ≌,由全等三角形的性质得到3,45DE BC DEA BCA ==∠=∠=︒,接着在等腰直角三角形EAC 中,由勾股定理解得22222EC AC AE AC =+=,最后在Rt DEC △中,由勾股定理即可解得CD 的长; (3)先证明ACD △为等边三角形,再由等边三角形的性质可得,,60AC CD ACD =∠=︒将BCA 绕点C 顺时针旋转60°得到ECD ,连接BE ,由旋转的性质得815DE AB BC EC ====,,继而证明BCE 是等边三角形,由等边三角形的性质得到75BE BC ==,最后根据三角形三边关系解题即可.【详解】解:(1)∵ABE △和ACD △是等腰三角形,,,AE AB AD AC BAE CAD ∴==∠=∠,BAE BAC CAD BAC ∴∠+∠=∠+∠,即:EAC BAD ∠=∠,在EAC 中BAD 中AE AB EAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩,(SAS)EAC BAD ∴≌,CE BD ∴=;(2)如图(1)所示,过A 作AE AC ⊥交BC 于点E ,连接DE ,45,ACB AE AC ∠=︒⊥,90EAC ∴∠=︒,EAC ∴△是等腰直角三角形,AE AC ∴=, 又ABD 是等腰直角三角形,,90AB AD BAD ∴=∠=︒,90BAD EAC ∴∠=∠=︒,BAD BAE EAC BAE ∴∠+∠=∠+∠,即:DAE BAC ∠=∠,在DAE △和BAC 中,AD AB DAE BAC AE AC =⎧⎪∠=∠⎨⎪=⎩(SAS)DAE BAC ∴≌,3,45DE BC DEA BCA ∴==∠=∠=︒,在等腰直角三角形EAC 中,45AEC ∠=︒,90DEC DEA AEC ∴∠=∠+∠=︒,由勾股定理得:22222EC AC AE AC =+=.在Rt DEC △中,由勾股定理得:229413CD DE EC =+=+=;(3),60AD CD ADC =∠=︒,∴ACD △为等边三角形,,60AC CD ACD ∴=∠=︒,如图(2)所示,将BCA 绕点C 顺时针旋转60°得到ECD ,连接BE ,由旋转性质可得∶815DE AB BC EC ====,60BCE ∠=︒,∴BCE 是等边三角形,∴75BE BC ==,又∴BE DE BD +≥, 即158BD BE DE ≤+=+,即23BD ≤,∴BD 的最大值为 23.【点睛】本题考查全等三角形的判定与性质、旋转、勾股定理、等边三角形的判定与性质、三角形三边关系等知识,是重要考点,难度一般,掌握相关知识是解题关键.7.△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 右侧作正方形ADEF ,连接CF .(1)观察猜想:如图1,当点D 在线段BC 上时,AC ,CD ,CF 之间的数量关系为____________;(将结论直接写在横线上)(2)如图2,当点D 在线段CB 的延长线上时,(1)中的结论是否仍然成立?若成立,不需证明;若不成立,请你写出正确结论,并说明理由.答案:(1)CD+CF=AC ;(2)不成立,CD-CF=AC ;理由见解析.【分析】(1)根据正方形的性质可得∠DAF=90°,AD=AF ,利用同角的余角相等可得∠BAD=∠CAF,利用SAS可证明△B解析:(1)AC;(2)不成立,AC;理由见解析.【分析】(1)根据正方形的性质可得∠DAF=90°,AD=AF,利用同角的余角相等可得∠BAD=∠CAF,利用SAS可证明△BAD≌△CAF,可得CF=BD,即可得出BC=CD+CF,根据等腰直角三角形的性质可得AC,进而可得答案;(2)同(1)可证明△BAD≌△CAF,可得BD=CF,即可得出CD=BC+CF,根据等腰直角三角形的性质可得AC,可得AC,即可得答案.【详解】(1)∵四边形ADEF是正方形,∴∠DAF=90°,AD=AF,∴∠CAF+∠DAC=90°,∵∠BAC=90°,∴∠BAD+∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,AB ACBAD CAF AD AF=⎧⎪∠=∠⎨⎪=⎩,∴△BAD≌△CAF,∴CF=BD,∴CD+CF=CD+BD=BC,∵∠BAC=90°,AB=AC,∴AC,∴AC.故答案为:AC(2)不成立,AC.理由如下:同(1)可证△BAD≌△CAF,∴CF=BD,∴CD=BC+BD=BC+CF,∵AC,∴AC.【点睛】本题考查正方形的性质、全等三角形的判定与性质及等腰直角三角形的性质,熟练掌握相关性质及判定定理是解题关键.8.在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明你的结论;(2)连接DE ,如图②,求证:BD 2+CD 2=2AD 2(3)如图③,在四边形ABCD 中,∠ABC=∠ACB=∠ADC=45°,若BD=13,CD=1,则AD 的长为 ▲ .(直接写出答案)答案:(1)BC=DC+EC ,理由见解析;(2)见解析;(3)【分析】(1)根据本题中的条件证出△BAD ≌△CAE (SAS ), 得到BD=CE,再根据条件即可证出结果.(2)由(1)中的条件可得∠ 解析:(1)BC=DC+EC ,理由见解析;(2)见解析;(36【分析】(1)根据本题中的条件证出△BAD ≌△CAE (SAS ), 得到BD=CE,再根据条件即可证出结果. (2)由(1)中的条件可得∠DCE=∠ACE+∠ACB=90°, 所以CE 2+CD 2=ED 2,可推出BD 2+CD 2=2ED ,再根据勾股定理可得出结果.(3)作AE ⊥AD,使AE=AD ,连接CE,DE,可推出△BAD ≌△CAE (SAS ),所以13再根据勾股定理求得DE.【详解】解:(1)结论:BC=DC+EC理由:如图①中,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CAE (SAS );∴BD=CE,∴BC=BD+CD=EC+CD,即:BC=DC+EC.(2)BD 2+CD 2=2AD 2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=∠ACE+∠ACB=90°,∴CE2+CD2=ED2,即:BD2+CD2=ED2;在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴ED2=2AD2;∴BD2+CD2=2AD2;(3)AD的长为6(学生直接写出答案).作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,AB=AC,∠BAD=∠CAE,AD=AE.∴△BAD≌△CAE(SAS),∴13∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE2=CE2-CD2=132-12=12,∴3∵∠DAE=90°,AD2+AE2=DE2,∴6.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.9.如图,已知Rt △ABC 中,AB=AC=2,点D 为直线BC 上的动点(不与B 、C 重合),以A 为直角顶点作等腰直角三角形ADE (点A ,D ,E 按逆时针顺序排列),连结CE . (1)当点D 在线段BC 上运动时,①求证:BD=CE ;②请探讨四边形ADCE 的面积是否有变化;(2)当点D 在直线BC 上运动时,直接写出CD ,CB 与CE 之间的数量关系.答案:(1)①见解析;②四边形ADCE 的面积不变;(2)当点D 在线段BC 上时,CB=CE +CD ;当点D 在点C 右侧时,CB = CE -CD ;当点D 在点B 左侧时,CB= CD -CE【分析】(1)①根据等腰解析:(1)①见解析;②四边形ADCE 的面积不变;(2)当点D 在线段BC 上时,CB=CE +CD ;当点D 在点C 右侧时,CB = CE -CD ;当点D 在点B 左侧时,CB= CD -CE【分析】(1)①根据等腰直角三角形的性质可得AB=AC ,AD=AE ,∠BAC=∠DAE=90°,从而得出∠BAD=∠CAE ,然后利用SAS 即可证出△BAD ≌△CAE ,从而得出BD=CE ;②根据直角三角形的面积公式即可求出S △ABC ,然后根据全等三角形的性质可得S △BAD =S △CAE ,然后根据S 四边形ADCE =S △CAE +S △ADC 和等量代换即可得出结论;(2)根据点D 的位置分类讨论,分别画出对应的图形,根据(1)①中证全等的方法和全等三角形的性质即可推出结论.【详解】解:(1)①∵△ABC 和△ADE 都是等腰直角三角形∴AB=AC ,AD=AE ,∠BAC=∠DAE=90°∴∠BAD +∠DAC=90°,∠CAE +∠DAC=90°∴∠BAD=∠CAE在△BAD 和△CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAE∴BD=CE ;②∵已知Rt △ABC 中,AB=AC=2,∴S △ABC =12AB·AC=2 ∵△BAD ≌△CAE∴S △BAD =S △CAE ∴S四边形ADCE =S △CAE +S △ADC =S △BAD +S △ADC = S △ABC =2∴四边形ADCE 的面积不变;(2)当点D 在线段BC 上时,如下图所示由(1)①的结论知BD=CE∴CB=BD +CD= CE +CD ;当点D 在点C 右侧时,如下图所示∵△ABC 和△ADE 都是等腰直角三角形∴AB=AC ,AD=AE ,∠BAC=∠DAE=90°∴∠BAD -∠DAC=90°,∠CAE -∠DAC=90°∴∠BAD=∠CAE在△BAD 和△CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAE∴BD=CE∴CB=BD -CD= CE -CD ;当点D 在点B 左侧时,如下图所示∵△ABC 和△ADE 都是等腰直角三角形∴AB=AC ,AD=AE ,∠BAC=∠DAE=90°∴∠BAD=∠DAC -90°,∠CAE=∠DAC - 90°∴∠BAD=∠CAE在△BAD 和△CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAE∴BD=CE∴CB= CD -BD = CD -CE .综上所述:当点D 在线段BC 上时,CB=CE +CD ;当点D 在点C 右侧时,CB = CE -CD ;当点D 在点B 左侧时,CB= CD -CE .【点睛】此题考查的是等腰直角三角形的性质、全等三角形的判定及性质和三角形的面积公式,掌握等腰直角三角形的性质、全等三角形的判定及性质、分类讨论的数学思想和三角形的面积公式是解决此题的关键.10.ABD ∆和BEP ∆都是等腰直角三角形,90BAD BEP ∠=∠=︒,O 为BD 中点 (1)若P 、E 分别在AB 、BD 上,如图所示,求证:2AP OE =; (2)将如图所示中BEP ∆绕B 点顺时针旋转45︒,如图所示,问(1)中的结论是否仍然成立?请说明理由;(3)将如图所示中BEP ∆绕B 点顺时针旋转到如图所示,问(1)中的结论是否仍然成立?请说明理由.答案:(1)见解析;(2)仍然成立,理由见解析.【解析】【分析】(1)根据等腰三角形的两直角边相等,和勾股定理求得BP 、OB 的值.则易证AP 与OE 的数量关系;(2)将图1中的△BPE 绕B 点顺时针旋解析:(1)见解析;(2)仍然成立,理由见解析.【解析】【分析】(1)根据等腰三角形的两直角边相等,和勾股定理求得BP、OB的值.则易证AP与OE的数量关系;(2)将图1中的△BPE绕B点顺时针旋转45゜,问(1)中的结论成立,通过证明△BOA∽△BEP,即可得到问题答案.【详解】(1)证明:∵△ABD为等腰直角三角形,∠BAD=∠BEP=90゜,∴设AB=AD=a,则.又∵点O为BD的中点,∴OB=12BD=2a.同理,设EP=BE=b,则b.∴b,OE=OB-BE=2a-b,则2APOE==,∴;(2)∵△BEP是等腰直角三角形,∴∠B=∠BPE=45°,∵△ABD是等腰直角三角形,O是BD的中点,∴AO⊥BD,∴∠BOA=∠BEP=90°,∠BAO=180°-∠BOA-∠B=45°,∴△BOA∽△BEP,∵BP BABE BO==∴BP BABE BO==∴.方法二(1)连结AO,过P作PC AO⊥,垂足为CABD∆是等腰直角三角形,90BAD∠=︒,O为BD中点ABO∴∆是等腰直角三角形PC AO⊥APC∴∆是等腰直角三角形四边形PCOE为矩形OE PC∴=AP=AP∴=(2)在AB上取点F,使AF BE=,连结FO,FE,AO 由条件知四边形AFEP为平行四边形AP FE∴=AO BO=OAF OBE∠=∠FAO EBO∴∆≅∆FO EO ∴=,AOF BOE ∠=∠ 90FOE ∴∠=︒ 2FE OE ∴= 2AP OE = (3)作MO EO ⊥,且使MO EO =,连结AM ,ME ,AOMOE ∴∆为等腰直角三角形,又AOB ∆为等腰直角三角形AMO BEO ∴∆≅∆ AM BE ∴= 易证AM BE ⊥,AM PE ∥又BE PE =,AM PE ∴= ∴四边形AMEP 为平行四边形AP ME ∴= 在等腰直角三角形MOE 中,2ME OE =2AP OE ∴=【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质以及相似三角形的判定和性质,题目的综合性很强难度不小.二、全等三角形手拉手模型11.已知:在△ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,请直接写出线段BD 与CF 的数量关系: ; (2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,若AC=2,CD=1,则CF= ;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:①请直接写出CF 、BC 、CD 三条线段之间的关系: ;②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究△AOC 的形状,并说明理由.解析:(1)BD=CF ;(2)221;(3)①CD=CF+BC ,②等腰三角形,见解析【分析】(1)△ABC 是等腰直角三角形,利用SAS 即可证明△BAD ≌△CAF ;(2)同(1)相同,利用SAS 即可证得△BAD ≌△CAF ,从而证得BD=CF ,即可得到CF=CD+BC ,然后求出答案;(3)中的①与(1)相同,可证明BD=CF ,又点D 、B 、C 共线,故:CD=BC+CF ; ②由(1)猜想并证明BD ⊥CF ,从而可知△FCD 为直角三角形,再由正方形的对角线的性质判定△AOC 三边的特点,再进一步判定其形状.【详解】解:(1)证明:∵∠BAC=90°,AB=AC ,∴∠ABC=∠ACB=45°,∵四边形ADEF 是正方形,∴AD=AF ,∠DAF=90°,∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,∴∠BAD=∠CAF ,在△BAD 和△CAF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAF (SAS ),∴BD=CF ,(2)与(1)同理,证△BAD ≌△CAF ;∴BD=CF ,∴CF=BC+CD ,∵AC=AB=2,CD=1,∴BC ==∴CF=1;(3)①BC 、CD 与CF 的关系:CD=BC+CF理由:与(1)同法可证△BAD ≌△CAF ,从而可得:BD=CF ,即:CD=BC+CF②△AOC 是等腰三角形理由:与(1)同法可证△BAD ≌△CAF ,可得:∠DBA=∠FCA ,又∵∠BAC=90°,AB=AC ,∴∠ABC=∠ACB=45°,则∠ABD=180°-45°=135°,∴∠ABD=∠FCA=135°∴∠DCF=135°-45°=90°∴△FCD 为直角三角形.又∵四边形ADEF 是正方形,对角线AE 与DF 相交于点O ,∴OC=12DF ,∴OC=OA∴△AOC 是等腰三角形.【点睛】本题考查了等腰三角形、正方形的性质及全等三角形的判定与性质等知识点,一般情况下,要证明两条线段相等,就得证明这两条线段所在的两个三角形全等,关键是掌握图形特点挖掘题目所隐含的条件.12.(1)如图①,ABC 和CDE △都是等边三角形,且点B ,C ,E 在一条直线上,连结BD 和AE ,直线BD ,AE 相交于点P .则线段BD 与AE 的数量关系为_____________.BD 与AE 相交构成的锐角的度数为___________.(2)如图②,点B ,C ,E 不在同一条直线上,其它条件不变,上述的结论是否还成立.(3)应用:如图③,点B ,C ,E 不在同一条直线上,其它条件依然不变,此时恰好有30AEC ∠=.设直线AE 交CD 于点Q ,请把图形补全.若2PQ =,则DP =___________.解析:(1)相等,60;(2)成立,证明见解析;(3)见解析,4.【分析】(1)证明△BCD ≌△ACE ,并运用三角形外角和定理和等边三角形的性质求解即可; (2)是第(1)问的变式,只是位置变化,结论保持不变;(3)根据∠AEC=30°,判定AE 是等边三角形CDE 的高,运用前面的结论,把条件集中到一个含有30°角的直角三角形中求解即可.【详解】(1)相等; 60.理由如下:∵ABC 和CDE △都是等边三角形,∴60ACB DCE ︒∠=∠=,BC AC =,DC CE =,∴BCD ACE ∠=∠,在ACE △和BCD △中CB CA BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴ACE BCD △≌△.∴BD AE =,BDC AEC ∠=∠.又∵DNA ENC ∠=∠,∴60DPE DCE ︒∠=∠=.(2)成立;理由如下:证明:∵ABC 和CDE △都是等边三角形,∴60ACB DCE ︒∠=∠=,BC AC =,DC CE =,∴BCD ACE ∠=∠,在ACE △和BCD △中CB CA BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴ACE BCD △≌△.∴BD AE =,BDC AEC ∠=∠.又∵DNA ENC ∠=∠,∴60DPE DCE ︒∠=∠=.(3)补全图形(如图),∵△CDE 是等边三角形,∴∠DEC=60°,∵∠AEC=30°,∴∠AEC=∠AED ,∴EQ ⊥DQ ,∴∠DQP=90°,根据(1)知,∠BDC=∠AEC=30°,∵PQ=2,∴DP=4.故答案为:4.【点睛】本题是一道猜想证明题,以两线段之间的大小关系为基础,考查了等边三角形的性质,三角形的全等,直角三角形的性质,证明两个手拉手模型三角形全等是解题的关键. 13.如图,已知等边ABC ,点D 为ABC 内的一点,连接,150DA DB DC ADB ∠=︒、、,以CD 为边向CD 上方作等边CDE △,连接AE (060ACE ︒<∠<︒).(1)求证:BDC AEC △≌△.(2)请判断ADE 的形状,并证明你的结论.(3)若,2AD AE CD a ==,求ACD ∠的度数及ABD △的面积(用含a 的代数式表示).解析:(1)见解析;(2)△ADE 为直角三角形,理由见解析;(3)2ADB 12Sa =. 【分析】(1)利用“SAS”即可证明△BDC ≅△AEC ;(2)设∠ABD =x ,求得∠EAC=∠DBC =60x ︒-,∠DAB=30x ︒-,∠DAC 30x =︒+,从而推出△ADE 为直角三角形;(3)可证明△EDA 为等腰直角三角形,求得2a ,过点B 作AD 的垂线交AD 的延长线于点F ,再推出DB=DA 2a =,求得BF=12DB=22a ,即可求得2ADB 12S a =. 【详解】(1)∵△ABC 为等边三角形,∴∠ACB=60︒,CB=CA ,∵△EDC 为等边三角形,∴∠ECD=60︒,CD=CE ,∴∠ACB-∠ACD =∠ECD-∠ACD ,∴∠DCB =∠ECA ,在△BCD 和△ACE 中,CD CE DCB ECA CB CA =⎧⎪∠=∠⎨⎪=⎩,∴△BDC ≅△AEC(SAS);(2)△ADE 为直角三角形,理由如下, 设∠ABD =x ,则∠DBC=60x ︒-,由(1)可知:∠EAC=∠DBC =60x ︒-, ∵∠ABD =150︒,∴∠DAB=18015030x x ︒-︒-=︒-, ∴∠DAC=∠CAB-∠DAB =60()3030x x ︒-︒-=︒+, ∴∠DAE=∠EAC+∠DAC=60()3090x x ︒-+︒+=︒, ∴△ADE 为直角三角形;(3)∵△EDC 为等边三角形, ∴∠ECD=60︒,CD=CE=DE=2a , 在△ADC 和△AEC 中,AD AE DC EC CA CA =⎧⎪=⎨⎪=⎩,∴△ADC ≅△AEC(SSS);∴∠EAC=∠DAC=45︒,又∵AE=AD ,∠EAD=90︒,DE=2a , ∴△EDA 为等腰直角三角形, ∴∠DAB=∠BAC-∠DAC =60︒-4515︒=︒, 根据勾股定理求得2a ,过点B 作AD 的垂线交AD 的延长线于点F ,∵∠ADB =150︒,∴∠BDF=18015030︒-︒=︒,∴∠DAB=∠DBA 15=︒,∴DB=DA 2a =, ∴BF=12DB=22a , ∴2ADB 112122222S AD BF a a a =⋅=⋅⋅=. 【点睛】本题主要考查了等边三角形的性质,全等三角形的判定和性质,三角形的面积公式,含30度角的直角三角形的性质,勾股定理的应用,判断出△EDA 为直角三角形是解本题的关键.14.如图1,ABC ∆是以ACB ∠为直角的直角三角形,分别以AB ,BC 为边向外作正方形ABFG ,BCED ,连结AD ,CF ,AD 与CF 交于点M ,AB 与CF 交于点N .(1)求证:ABD FBC ∆≅∆;(2)如图2,在图1基础上连接AF 和FD ,若6AD =,求四边形ACDF 的面积. 解析:(1)详见解析;(2)18【分析】(1)根据正方形的性质得出BC=BD ,AB=BF ,∠CBD=∠ABF=90°,求出∠ABD=∠CBF ,根据全等三角形的判定得出即可;(2)根据全等三角形的性质得出∠BAD=∠BFC ,AD=FC=6,求出AD ⊥CF ,根据三角形的面积求出即可.【详解】解:(1)四边形ABFG 、BCED 是正方形,AB FB ∴=,CB DB =,90ABF CBD ∠=∠=︒,ABF ABC CBD ABC ∴∠+∠=∠+∠,即ABD CBF ∠=∠在ABD ∆和FBC ∆中,AB FB ABD CBF DB CB =⎧⎪∠=∠⎨⎪=⎩()ABD FBC SAS ∴∆≅∆;图1 图2(2)ABD FBC ∆≅∆,BAD BFC ∴∠=∠,6AD FC ==, 180AMF BAD CNA ∴∠=︒-∠-∠180()BFC BNF =︒-∠+∠1809090=︒-︒=︒AD CF ∴⊥-ACD ACF DFM ACM ACDF S S S S S ∆∆∆∆∴=++四边形11112222AD CM CF AM DM FM AM CM =⋅+⋅+⋅-⋅ 1133(6)(6)1822CM AM AM CM AM CM =++---⋅= 【点睛】本题考查了正方形的性质,全等三角形的性质和判定,三角形的面积等知识点,能求出△ABD ≌△FBC 是解此题的关键.15.背景:一次小组合作探究课上,小明将两个正方形按背景图位置摆放(点E ,A ,D 在同一条直线上),发现BE =DG 且BE ⊥DG .小组讨论后,提出了三个问题,请你帮助解答:(1)将正方形AEFG 绕点A 按逆时针方向旋转,(如图1)还能得到BE =DG 吗?如果能,请给出证明.如若不能,请说明理由:(2)把背景中的正方形分别改为菱形AEFG 和菱形ABCD ,将菱形AEFG 绕点A 按顺时针方向旋转,(如图2)试问当∠EAG 与∠BAD 的大小满足怎样的关系时,背景中的结论BE =DG 仍成立?请说明理由;(3)把背景中的正方形改成矩形AEFG 和矩形ABCD ,且23AE AB AG AD ==,AE =4,AB =8,将矩形AEFG 绕点A 按顺时针方向旋转(如图3),连接DE ,BG .小组发现:在旋转过程中, BG 2+DE 2是定值,请求出这个定值.解析:(1)见解析;(2)当∠EAG =∠BAD 时,BE =DG 成立;理由见解析;(3)22260BG DE +=.【分析】(1)根据四边形ABCD 和AEFG 是正方形的性质证明△EAB ≌△GAD 即可;(2)根据菱形AEFG 和菱形ABCD 的性质以及角的和差证明△EAB ≌△GAD 即可说明当∠EAG =∠BAD 时,BE =DG 成立;(3)如图:连接EB ,BD ,设BE 和GD 相交于点H ,先根据四边形AEFG 和ABCD 为矩形的性质说明△EAB ∽△GAD ,再根据相似的性质得到90GHE EAC ︒∠=∠=,最后运用勾股定理解答即可.【详解】(1)证明:∵四边形ABCD 为正方形∴AB =AD ,90DAB ︒∠=∵四边形AEFG 为正方形∴AE =AG ,90EAG ︒∠=∴EAB GAD ∠=∠在△EAB 和△GAD 中有:AE AG EAB GAD AB AD =⎧⎪∠=∠⎨⎪=⎩∴△EAB ≌△GAD∴BE =DG ;(2)当∠EAG =∠BAD 时,BE =DG 成立。
中考数学全等三角形双等腰旋转(讲义及答案)及解析

中考数学全等三角形双等腰旋转(讲义及答案)及解析一、全等三角形双等腰旋转1.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由. 答案:(1)AE=BD 且AE ⊥BD ;(2)6;(3)PQ 为定值6,图形见解析【分析】(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC=45°,可得AE ⊥BD ;(2)由等腰解析:(1)AE=BD 且AE ⊥BD ;(2)6;(3)PQ 为定值6,图形见解析【分析】(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC=45°,可得AE ⊥BD ; (2)由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长; (3)分两种情况讨论,由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC ,可得AE ⊥BD ,由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长.【详解】解:(1)AE=BD ,AE ⊥BD ,理由如下:∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE ⊥BD ;(2)∵PE=EQ ,AE ⊥BD ,∴PA=AQ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3--,EQ AE∴PQ=2AQ=6;(3)如图3,若点D在AB的延长线上,∵△ABC,△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS)∴AE=BD,∠CBD=∠CAE=135°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ,AE⊥BD,∴PA=AQ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE--,∴PQ=2AQ=6;如图4,若点D在BA的延长线上,∵△ABC,△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS)∴AE=BD,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ,AE⊥BD,∴PA=AQ,∵EP=EQ=5,AE=BD=4,∴22=2516=3--,EQ AE∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE⊥BD是本题的关键.2.已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD)(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DE、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.答案:(1)①详见解析;②DG+DF=DP;(2)不成立,数量关系式应为:DG-DF=DP【解析】【分析】(1)①根据矩形性质证△HPG≌△DPF(ASA),得PG=PF;②由①知,△HPD为等腰直解析:(1)①详见解析;2;(2)不成立,数量关系式应为:DG-2【解析】【分析】(1)①根据矩形性质证△HPG≌△DPF(ASA),得PG=PF;②由①知,△HPD为等腰直角三角形,△HPG≌△DPF,根据直角三角形性质可得HD=2DP;(2)过点P作PH⊥PD 交射线DA于点H,得到△HPD为等腰直角三角形,证△HPG≌△DPF,得HG=DF,DH=DG-HG=DG-DF,DG-DF=2DP.【详解】(1)①∵由矩形性质得∠GPF=∠HPD=90°,∠ADC=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,∴∠PDF=∠ADP=45°,∴△HPD为等腰直角三角形,∴∠DHP=∠PDF=45°,在△HPG和△DPF中,∵PHG PDF PH PDGPH FPD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△HPG≌△DPF(ASA),∴PG=PF;②结论:DG+DF=2DP,由①知,△HPD为等腰直角三角形,△HPG≌△DPF,∴HD=2DP,HG=DF,∴HD=HG+DG=DF+DG,∴DG+DF=2DP;(2)不成立,数量关系式应为:DG-DF=2DP,如图,过点P作PH⊥PD交射线DA于点H,∵PF⊥PG,∠GPF=∠HPD=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,∴∠DHP=∠EDC=45°,且PH=PD ,HD=2DP ,∴∠GHP=∠FDP=180°-45°=135°,在△HPG 和△DPF 中,∵GPH FPD GHP FDP PH PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△HPG ≌△DPF ,∴HG=DF ,∴DH=DG-HG=DG-DF ,∴DG-DF=2DP .【点睛】考核知识点:矩形性质的运用,等腰直角三角形.综合运用全等三角形判定和等腰直角三角形性质是关键.3.感知:如图①,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连结AE 、CG ,易证AED CGD ≌△△.(不需要证明)探究:将图①中正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图②.连结AE 、CG ,证明:AE=CG .应用:如图③,正方形ABCD 中,AD =3,点E 在CB 的延长线上,BE =1,DE=DF ,∠EDF =90°.直接写出点F 与点C 的距离.答案:探究:证明见解析;应用:点F 与点C 的距离为.【分析】探究:结合旋转模型,利用“边角边”证明即可得出结论;应用:连接FC ,根据前序问题中的方法证明△AED ≌△CFD ,从而得到CF=AE ,即在Rt解析:探究:证明见解析;应用:点F 与点C 10.【分析】探究:结合旋转模型,利用“边角边”证明AED CGD ≌△△即可得出结论; 应用:连接FC ,根据前序问题中的方法证明△AED ≌△CFD ,从而得到CF =AE ,即在Rt △AED 中求解AE 即可.【详解】探究:证明:在正方形ABCD 和正方形DEFG 中,AD =CD ,DE =DG ,90ADC EDG ∠=∠=︒,∴ADE CDG ∠=∠,∴AED CGD ≌△△,∴AE CG =;应用:连接FC ,∵∠EDF =∠ADC =90°,∴∠ADE =∠CDF ,又∵AD =CD ,DE=DF ,∴△AED ≌△CFD ,∴CF =AE ,在Rt △AED 中,2210AE AB BE =+=,∴点F 与点C 的距离为10.【点睛】本题考查全等三角形的判定与性质,掌握基本的旋转模型,根据全等三角形的性质求解问题是解题关键.4.已知:如图1,AOB 和COD 都是等边三角形.(1)求证:①AC =BD ;②∠APB =60°;(2)如图2,在AOB 和COD 中,OA =OB ,OC =OD ,∠AOB =∠COD =α,则AC 与BD 间的等量关系为 ,∠APB 的大小为答案:(1)①见解析,②见解析;(2)AC =BD ,α【分析】(1)①根据△AOB 和△COD 都是等边三角形,求出∠AOC=∠BOD ,根据SAS 推出△AOC ≌△BOD ,根据全等三角形的性质得出AC=BD ;解析:(1)①见解析,②见解析;(2)AC =BD ,α【分析】(1)①根据△AOB 和△COD 都是等边三角形,求出∠AOC=∠BOD ,根据SAS 推出△AOC ≌△BOD ,根据全等三角形的性质得出AC=BD ;②由△AOC ≌△BOD ,可得∠CAO=∠DBO ,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB ,推出∠APB=∠AOB 即可;(2)根据∠AOB=∠COD=α,求出∠AOC=∠BOD ,根据SAS 推出△AOC ≌△BOD ,根据全等三角形的性质得出AC=BD ,∠CAO=∠DBO ,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB ,推出∠APB=∠AOB 即可.【详解】证明:(1)①∵△AOB 和△COD 都是等边三角形,∴OA=OB ,OC=OD ,∠AOB =∠COD =60°,∴∠AOC =∠BOD ,在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ),∴AC =BD ,∠CAO =∠DBO ,②设AC 与BO 交于E ,∵△AOC ≌△BOD ,∴∠CAO =∠DBO ,∵∠AEO=∠BEP ,∴∠CAO+∠AOB =∠DBO+∠APB ,∴∠APB =∠AOB =60°.(2)AC=BD ,∠APB=α,理由如下:∵∠AOB=∠COD=α,∴∠AOC=∠BOD ,在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,设AC与BO交于E,∵∠AEO=∠BEP,∴∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=α,故答案为AC=BD,α.【点睛】本题考查三角形旋转,三角形全等判定与性质,三角形内角和,掌握三角形旋转,三角形全等判定与性质,三角形内角和是解题关键.5.如图,将两块含45°角的大小不同的直角三角板△COD和△AOB如图①摆放,连结AC,BD.(1)如图①,猜想线段AC与BD存在怎样的数量关系和位置关系,请写出结论并证明;(2)将图①中的△COD绕点O顺时针旋转一定的角度(如图②),连结AC,BD,其他条件不变,线段AC与BD还存在(1)中的关系吗?请写出结论并说明理由.(3)将图①中的△COD绕点O逆时针旋转一定的角度(如图③),连结AC,BD,其他条件不变,线段AC与BD存在怎样的关系?请直接写出结论.答案:(1)AC=BD,AC⊥BD,证明见解析;(2)存在,AC=BD,AC⊥BD,证明见解析;(3)AC=BD,AC⊥BD【分析】(1)延长BD交AC于点E.易证△AOC≌△BOD(SAS),可得A解析:(1)AC=BD,AC⊥BD,证明见解析;(2)存在,AC=BD,AC⊥BD,证明见解析;(3)AC=BD,AC⊥BD【分析】(1)延长BD交AC于点E.易证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠ADE=∠BDO,可证∠AED=∠BOD=90º即可;(2)延长BD交AC于点F,交AO于点G.易证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠AGF=∠BGO,可得∠AFG=∠BOG=90º即可;(3)BD交AC于点H,AO于M,可证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠AMH=∠BMO,可得∠AHM=∠BOH=90º即可.【详解】(1)AC=BD,AC⊥BD,证明:延长BD交AC于点E.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠COA=∠BOD=90º,∴△AOC≌△BOD(SAS),∴AC=BD,∴∠OAC=∠OBD,∵∠ADE=∠BDO,∴∠AED=∠BOD=90º,∴AC⊥BD;(2)存在,证明:延长BD交AC于点F,交AO于点G.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC-∠DOA,∠BOD=∠BOA-∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AGF=∠BGO,∴∠AFG=∠BOG=90º,∴AC⊥BD;(3)AC=BD,AC⊥BD.证明:BD交AC于点H,AO于M,∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC+∠DOA,∠BOD=∠BOA+∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AMH=∠BMO,∴∠AHM=∠BOH=90º,∴AC⊥BD.【点睛】本题考查三角形旋转变换中对应相等的位置与数量关系,掌握三角形全等的证明方法,及其角度计算是解题关键.6.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想:如图1,当点D在线段BC上时,AC,CD,CF之间的数量关系为____________;(将结论直接写在横线上)(2)如图2,当点D在线段CB的延长线上时,(1)中的结论是否仍然成立?若成立,不需证明;若不成立,请你写出正确结论,并说明理由.答案:(1)CD+CF=AC;(2)不成立,CD-CF=AC;理由见解析.【分析】(1)根据正方形的性质可得∠DAF=90°,AD=AF,利用同角的余角相等可得∠BAD=∠CAF,利用SAS可证明△B解析:(1)AC;(2)不成立,AC;理由见解析.【分析】(1)根据正方形的性质可得∠DAF=90°,AD=AF,利用同角的余角相等可得∠BAD=∠CAF,利用SAS可证明△BAD≌△CAF,可得CF=BD,即可得出BC=CD+CF,根据等腰直角三角形的性质可得AC,进而可得答案;(2)同(1)可证明△BAD≌△CAF,可得BD=CF,即可得出CD=BC+CF,根据等腰直角三角形的性质可得AC,可得AC,即可得答案.【详解】(1)∵四边形ADEF是正方形,∴∠DAF=90°,AD=AF,∴∠CAF+∠DAC=90°,∵∠BAC=90°,∴∠BAD+∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,AB ACBAD CAF AD AF=⎧⎪∠=∠⎨⎪=⎩,∴△BAD≌△CAF,∴CF=BD,∴CD+CF=CD+BD=BC,∵∠BAC=90°,AB=AC,∴AC,∴AC.故答案为:AC(2)不成立,AC.理由如下:同(1)可证△BAD≌△CAF,∴CF=BD,∴CD=BC+BD=BC+CF,∵AC,∴AC.【点睛】本题考查正方形的性质、全等三角形的判定与性质及等腰直角三角形的性质,熟练掌握相关性质及判定定理是解题关键.7.(1)问题发现:如图①,ABC与ADE是等边三角形,且点B,D,E在同一直线上,连接CE,求BEC∠的度数,并确定线段BD与CE的数量关系.(2)拓展探究:如图②,ABC 与ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,且点B ,D ,E 在同一直线上,AF BE ⊥于点F ,连接CE ,求BEC ∠的度数,并确定线段AF ,BF ,CE 之间的数量关系.答案:(1)的度数为,线段与之间的数量关系是;(2).【分析】(1)首先根据和均为等边三角形,可得,,,,据此判断出.然后根据全等三角形的判定方法,判断出≌,即可判断出,.进而判断出∠BEC 的度数为6 解析:(1)BEC ∠的度数为60︒,线段BD 与CD 之间的数量关系是BD CE =;(2)BF CE AF =+.【分析】(1)首先根据ABC 和ADE 均为等边三角形,可得AB AC =,AD AE =,60BAC DAE ∠=∠=︒,60ADE AED ∠=∠=︒,据此判断出BAD CAE ∠=∠.然后根据全等三角形的判定方法,判断出ABD △≌ACE △,即可判断出BD CE =,DBA CEA ∠=∠.进而判断出∠BEC 的度数为60°即可;(2)首先根据ABC 和ADE 均为等腰直角三角形,可得AB AC =,AD AE =,90BAC DAE ∠=∠=︒,45ADE AED ∠=∠=︒,据此判断出BAD CAE ∠=∠.然后根据全等三角形的判定方法,判断出ABD △≌ACE △,即可判断出,BD CE =ADB AEC ∠=∠.进而判断出∠BEC 的度数为90°即可;最后根据90DAE ∠=︒,AD AE =,AF DE ⊥,得到AF DF EF ==于是得到结论.【详解】解:(1)因为ABC 和ADE 均为等边三角形,所以AB AC =,AD AE =,60BAC DAE ∠=∠=︒,60ADE AED ∠=∠=︒, 所以BAC DAC DAE DAC ∠-∠=∠-∠,即BAD CAE ∠=∠.在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,所以ABD △≌ACE △,所以BD CE =,DBA CEA ∠=∠.因为点B ,D ,E 在同一直线上,所以18060120ADB ∠=︒-︒=︒,所以120AEC ∠=︒,所以1206060BEC AEC AED ∠=∠-∠=︒-︒=︒.综上可得,BEC ∠的度数为60︒,线段BD 与CD 之间的数量关系是BD CE =. (2)因为ABC 和ADE 均为等腰直角三角形,所以AB AC =,AD AE =,90BAC DAE ∠=∠=︒,45ADE AED ∠=∠=︒, 所以BAC DAC DAE DAC ∠-∠=∠-∠,即BAD CAE ∠=∠.在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,所以ABD △≌ACE △,所以BD CE =,ADB AEC ∠=∠.因为点B ,D ,E 在同一直线上,所以18045135ADB ∠=︒-︒=︒,所以135AEC ∠=︒,所以1354590BEC AEC AED ∠=∠-∠=︒-︒=︒.因为90DAE ∠=︒,AD AE =,AF DE ⊥,易证AF DF EF ==,所以BF BD DF CE AF =+=+.8.在Rt △ABC 中,AB=AC,D 为BC 边上一点(不与点B,C 重合),将线段AD 绕点A 逆时针旋转90°得到AE.(1)连接EC ,如图①,试探索线段BC ,CD ,CE 之间满足的等量关系,并证明你的结论;(2)连接DE ,如图②,求证:BD 2+CD 2=2AD 2(3)如图③,在四边形ABCD 中,∠ABC=∠ACB=∠ADC=45°,若BD=13,CD=1,则AD 的长为 ▲ .(直接写出答案)答案:(1)BC=DC+EC ,理由见解析;(2)见解析;(3)【分析】(1)根据本题中的条件证出△BAD ≌△CAE (SAS ), 得到BD=CE,再根据条件即可证出结果.(2)由(1)中的条件可得∠解析:(1)BC=DC+EC ,理由见解析;(2)见解析;(3)6【分析】(1)根据本题中的条件证出△BAD ≌△CAE (SAS ), 得到BD=CE,再根据条件即可证出结果. (2)由(1)中的条件可得∠DCE=∠ACE+∠ACB=90°, 所以CE 2+CD 2=ED 2,可推出BD 2+CD 2=2ED ,再根据勾股定理可得出结果.(3)作AE ⊥AD,使AE=AD ,连接CE,DE,可推出△BAD ≌△CAE (SAS ),所以BD=CE=13,再根据勾股定理求得DE.【详解】解:(1)结论:BC=DC+EC理由:如图①中,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CAE (SAS );∴BD=CE,∴BC=BD+CD=EC+CD,即:BC=DC+EC.(2)BD 2+CD 2=2AD 2,理由如下:连接CE,由(1)得,△BAD ≌△CAE,∴BD=CE ,∠ACE=∠B,∴∠DCE=∠ACE+∠ACB=90°,∴CE 2+CD 2=ED 2,即:BD 2+CD 2=ED 2;在Rt △ADE 中,AD 2+AE 2=ED 2,又AD=AE,∴ED 2=2AD 2;∴BD 2+CD 2=2AD 2;(3)AD 6(学生直接写出答案).作AE ⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,AB=AC,∠BAD=∠CAE,AD=AE.∴△BAD≌△CAE(SAS),∴13∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE2=CE2-CD2=132-12=12,∴3∵∠DAE=90°,AD2+AE2=DE2,∴6.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.9.探究:(1)如图①,在等腰直角三角形ABC中,∠ACB=90,作CM平分∠ACB交AB于点M,点D 为射线CM上一点,以点C为旋转中心将线段CD逆时针旋转90°得到线段CE,连接DE交射线CB于点F,连接BD、BE填空:①线段BD、BE的数量关系为______.②线段BC、DE的位置关系为______.推广:(2)如图②,在等腰三角形ABC中,顶角∠ACB=a,作CM平分∠ACB交AB于点M,点D 为△ABC外部射线CM上一点,以点C为旋转中心将线段CD逆时针旋转α度得到线段CE,连接DE、BD、BE请判断(1)中的结论是否成立,并说明理由.应用:(3)如图③,在等边三角形ABC中,AB=4.作BM平分∠ABC交AC于点M,点D为射线BM上一点,以点B为旋转中心将线段BD逆时针旋转60°得到线段BE,连接DE交射线BA 于点F,连接AD、AE.当以A、D、M为顶点的三角形与△AEF全等时,请直接写出DE的值.答案:(1)①BD=CE;②BD⊥CE;(2)结论:(1)中的结论仍然成立,理由见解析;(3)满足条件的DE的值为或4.【解析】【分析】①由CA=CB,∠ACB=90°,CM平分∠ACB,得出∠EC解析:(1)①BD=CE;②BD⊥CE;(2)结论:(1)中的结论仍然成立,理由见解析;(3)满足条件的DE的值为433或43.【解析】【分析】①由CA=CB,∠ACB=90°,CM平分∠ACB,得出∠ECF=∠DCF=45°,易证△CBD≌△CBE,即可得出BD=BE;②由CD=CE即可得出BC⊥DE.(2)由CA=CB,∠ACB=α,CM平分∠ACB,得出∠ECF=∠DCF=12α,易证△CBD≌△CBF,即可得出BD=BE,再由等腰三角形的性质得出BC⊥DE.(3)分两种情况,根据三角形全等的性质及三角函数即可得出.【详解】(1)如图①中,∵CA=CB,∠ACB=90°,CM平分∠ACB,∴∠ACM=∠BCM=45°,∵∠ECD=90°,∴∠ECF=∠DCF=45°,∵CD=CE,CB=CB,∴△CBD≌△CBE(SAS),∴BD=BE,∵CD=CE,∴BC垂直平分线段DE,∴BC⊥DE.故答案为BD=CE,BD⊥CE.(2)结论:(1)中的结论仍然成立.理由:如图②中,∵CA=CB,∠ACB=α,CM平分∠ACB,∴∠ACM=∠BCM=1α,2∵∠ECD=α,∴∠ECF=∠DCF=1α,2∵CD=CE,CB=CB,∴△CBD≌△CBF(SAS),∴BD=BE,∵CD=CE,∴BC垂直平分线段DE,∴BC⊥DE.(3)如图③中,当△AFE≌△AMD时,AF=AM,∵∠AFD=∠AMD=90°,∵AD=AD,∴Rt△ADF≌Rt△ADM(HL),∴∠DAF=∠DAM=30°,∴∠DBA=∠DAB=30°,∴DA=DB,∵DF⊥AB,∴∠BDF=60°,BF=AF=2,∵BD=BE,∴△BDE是等边三角形,∴DF=EF=BF•tan30°=233,∴DE=2EF=433.如图③-1中,当点D在AM的延长线时,易证AF=AM=2,DE=2DF=43.综上所述,满足条件的DE 43或3.【点睛】本题考查了等腰三角形,全等三角形的判定与性质,解直角三角形,解题的关键是熟练掌握性质定理.10.如图所示,点A 是线段BC 上一点,ABD ∆和ACE ∆都是等边三角形.(1)连结BE ,CD ,求证:BE CD =;(2)如图所示,将ABD ∆绕点A 顺时针旋转得到AB D ''∆.①当旋转角为______度时,边AD '落在AE 上;②在①的条件下,延长DD '交CE 于点P ,连结BD ',CD '.当线段AB 、AC 满足什么数量关系时,BDD '∆与CPD '∆全等?并给予证明.答案:(1)详见解析;(2)①;②当时,与全等.【分析】根据等边三角形的性质可得,,,然后求出,再利用“边角边”证明和全等,根据全等三角形对应边相等即可得证;求出,即可得到旋转角度数;当时,与全等解析:(1)详见解析;(2)①60︒;②当2AC AB =时,BDD '∆与CPD '∆全等.【分析】()1根据等边三角形的性质可得AB AD =,AE AC =,60BAD CAE ∠∠==,然后求出BAE DAC ∠∠=,再利用“边角边”证明BAE 和DAC 全等,根据全等三角形对应边相等即可得证; ()2①求出DAE ∠,即可得到旋转角度数;②当2AC AB =时,'BDD 与'CPD 全等.根据旋转的性质可得''AB BD DD AD ===,然后得到四边形'ABDD 是菱形,根据菱形的对角线平分一组对角可得''30ABD DBD ∠∠==,菱形的对边平行可得//DP BC ,根据等边三角形的性质求出AC AE =,60ACE ∠=,然后根据等腰三角形三线合一的性质求出''30PCD ACD ∠∠==,从而得到'''''30ABD DBD BDD ACD PDC ∠∠∠∠∠=====,然后利用“角边角”证明'BDD 与'CPD 全等.【详解】()1证明:ABD 和ACE 都是等边三角形.AB AD ∴=,AE AC =,60BAD CAE ∠∠==,BAD DAE CAE DAE ∠∠∠∠∴+=+,即BAE DAC ∠∠=,在BAE 和DAC 中,AB AD BAE DAC AE AC ∠∠=⎧⎪=⎨⎪=⎩,BAE ∴≌()DAC SAS ,BE CD ∴=;()2①当旋转角为60°时,边AD '落在AE 上.理由如下:60BAD CAE ∠∠==,18060260DAE ∠∴=-⨯=,边'AD 落在AE 上,∴旋转角60DAE ∠==.故答案为60.②当2AC AB =时,'BDD 与'CPD 全等.理由如下:由旋转可知,'AB 与AD 重合,''AB BD DD AD ∴===,∴四边形'ABDD 是菱形,11''603022ABD DBD ABD ∠∠∠∴===⨯=,//DP BC , ACE 是等边三角形,AC AE ∴=,60ACE ∠=,2AC AB =,2'AE AD ∴=,11''603022PCD ACD ACE ∠∠∠∴===⨯=, 又//DP BC ,''''''30ABD DBD BDD ACD PCD PDC ∠∠∠∠∠∠∴======,在'BDD 与'CPD 中,DBD PCD BD CD BD D PD C ∠=∠⎧⎪=⎨⎪∠='∠''''⎩', 'BDD ∴≌()'CPD ASA .【点睛】 本题考查了全等三角形的判定与性质,等边三角形的性质,以及旋转的性质,综合性较强,但难度不大,熟练掌握等边三角形的性质与全等三角形的判定时提到过.二、全等三角形手拉手模型11.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究: 如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由;(3)解决问题:如图③,90ACB AED ∠∠︒==,25AC =,AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.解析:(1)60BD CE ,=;(2)452CEB BD CE ∠︒=,=,理由见解析;(3)CE 的长为2或2【分析】(1)证明ACE ABD ≌,得出CE =BD ,AEC ADB ∠=∠,即可得出结论; (2)证明ACE ABD ∽,得出AEC ADB ∠=∠,2BD CE =,即可得出结论; (3)先判断出2BD CE =,再求出210AB =:①当点E 在点D 上方时,先判断出四边形APDE 是矩形,求出AP =DP =AE =2,再根据勾股定理求出,BP =6,得出BD =4;②当点E 在点D 下方时,同①的方法得,AP =DP =AE =1,BP =6,进而得出BD =BP +DP =8,即可得出结论.【详解】解:(1)ABC 为等腰三角形,60AC BC ACB ∠︒=,=,∴ABC 是等边三角形,同理可得ADE 是等边三角形6018012060BAD DAC DAC CAE BAD CAEAD AE AB ACEAC DAB ACE ABD SAS BD CEAEC ADB ADE AEC AED CEBCEB ∠+∠=∠+∠=︒∴∠=∠=⎧⎪=⎨⎪∠∠⎩∴∴=∠=∠=︒-∠=︒∠=∠+∠∴∠=︒=≌()故答案为:60CEB BD CE ∠=︒=;.(2)45CEB BD ∠︒=,,理由如下:在等腰三角形ABC 中,AC =BC ,90ACB ∠︒=,45AB CAB ∴∠︒,= ,同理,45AD ADE DAE ∠∠︒,==, ∴AE AC AD AB =,DAE CAB ∠∠=, EAC DAB ∴∠∠=,ACE ABD ∴∽ ,∴BD AD CE AE==∴AEC ADB BD ∠∠=,,点B 、D 、E 在同一条直线上:180135ADB ADE ∴∠︒-∠︒==135AEC ∴∠︒=45CEB AEC AED ∴∠∠-∠︒==;(3)由(2)知,ACE ABD ∽,BD ∴,在Rt ABC中,AC =AB ∴=,①当点E 在点D 上方时,如图③,过点A 作AP BD ⊥交BD 的延长线于P ,DE BD ⊥,PDE AED APD ∴∠∠∠==,∴四边形APDE 是矩形,AE DE = ,∴矩形APDE 是正方形,2AP DP AE ∴===,在Rt APB △中,根据勾股定理得,226BP AB AP -==,4BD BP AP ∴-==,1222CE BD ∴==; ②当点E 在点D 下方时,如图④同①的方法得,AP =DP =AE =2,BP =6,∴BD =BP +DP =8,122CE BD ∴==4, 综上CE 的长为22或42.【点睛】本题是几何变换的综合题,主要考查了旋转的性质,全等三角形的判定和定理,相似三角形的判定和性质,勾股定理,等边三角形的性质,判断出三角形ACE 和三角形ABD 相似是关键.12.已知:在△ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,请直接写出线段BD 与CF 的数量关系: ; (2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,若AC=2,CD=1,则CF= ;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:①请直接写出CF 、BC 、CD 三条线段之间的关系: ;②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究△AOC 的形状,并说明理由.解析:(1)BD=CF ;(2)221;(3)①CD=CF+BC ,②等腰三角形,见解析【分析】(1)△ABC 是等腰直角三角形,利用SAS 即可证明△BAD ≌△CAF ;(2)同(1)相同,利用SAS 即可证得△BAD ≌△CAF ,从而证得BD=CF ,即可得到CF=CD+BC ,然后求出答案;(3)中的①与(1)相同,可证明BD=CF ,又点D 、B 、C 共线,故:CD=BC+CF ; ②由(1)猜想并证明BD ⊥CF ,从而可知△FCD 为直角三角形,再由正方形的对角线的性质判定△AOC 三边的特点,再进一步判定其形状.【详解】解:(1)证明:∵∠BAC=90°,AB=AC ,∴∠ABC=∠ACB=45°,∵四边形ADEF 是正方形,∴AD=AF ,∠DAF=90°,∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,∴∠BAD=∠CAF ,在△BAD 和△CAF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAF (SAS ),∴BD=CF ,(2)与(1)同理,证△BAD ≌△CAF ;∴BD=CF ,∴CF=BC+CD ,∵AC=AB=2,CD=1, ∴22222BC =+=∴CF=221;(3)①BC 、CD 与CF 的关系:CD=BC+CF理由:与(1)同法可证△BAD ≌△CAF ,从而可得:BD=CF ,即:CD=BC+CF②△AOC 是等腰三角形理由:与(1)同法可证△BAD ≌△CAF ,可得:∠DBA=∠FCA ,又∵∠BAC=90°,AB=AC ,∴∠ABC=∠ACB=45°,则∠ABD=180°-45°=135°,∴∠ABD=∠FCA=135°∴∠DCF=135°-45°=90°∴△FCD 为直角三角形.又∵四边形ADEF 是正方形,对角线AE 与DF 相交于点O ,∴OC=12DF , ∴OC=OA ∴△AOC 是等腰三角形.【点睛】本题考查了等腰三角形、正方形的性质及全等三角形的判定与性质等知识点,一般情况下,要证明两条线段相等,就得证明这两条线段所在的两个三角形全等,关键是掌握图形特点挖掘题目所隐含的条件.13.如图,B ,C ,E 三点在一条直线上,△ABC 和△DCE 均为等边三角形,BD 与AC 交于点M ,AE 与CD 交于点N .(1)求证:AE =BD ;(2)连接MN ,求证:MN ∥BE ;(3)若把△DCE 绕点C 顺时针旋转一个角度,(1)中的结论还成立吗?说明理由.解析:(1)见解析;(2)见解析;(3)成立,理由见解析【分析】(1)根据等边三角形边长相等的性质和各内角为60︒的性质可求得BCD ACE ∆≅∆,根据全等三角形对应边相等的性质即可求得AE BD =.(2)CMN ∆是等边三角形,由BCD ACE ∆≅∆可知CBM CAN ∠=∠,根据ASA 可证明BCM ACN ∆≅∆,得到CM CN =,又60MCN ∠=︒,可知CMN ∆是等边三角形,得到60CMN ∠=︒,由60ACB ∠=︒,得到CMN ACB ∠=∠,所以//BC MN . (3)根据题意画出图形,证明方法与(1)相同.【详解】解:(1)证明:如图1中,ABC ∆与DCE ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,180ACB ACD DCE ∠+∠++∠=,60ACD ∴∠=︒,ACB ACD ACD DCE ∠+∠=∠+∠,即BCD ACE ∠=∠.在BCD ∆和ACE ∆中,BC AC BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩,BCD ACE ∴∆≅∆.BD AE ∴=.(2)证明:如图1中,连接MN ,BCD ACE ∆≅∆,CBM CAN ∴∠=∠.在BCM ∆和ACN ∆中CBM CAN BC ACACB ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩, BCM ACN ∴∆≅∆,CM CN ∴=,60ACB DCE ∠=∠=︒,60MCN ∴∠=︒,CMN ∴∆是等边三角形,60CMN ∴∠=︒,60ACB ∠=︒,CMN ACB ∴∠=∠,//MN BC ∴.(3)成立AE BD =;理由如下:如图2中,ABC ∆、DCE ∆均为等边三角形,BC AC ∴=,CD CE =,60BCA DCE ∠=∠=︒,BCA ACD DCE ACD ∴∠+∠=∠+∠,即BCD ACE ∠=∠,在ACE ∆和BCD ∆中,AC BC BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACE BCD SAS ∴∆≅∆,AE BD ∴=.【点睛】本题考查了等边三角形的性质的运用及全等三角形的判定和性质的运用.解决本题的关键是证明三角形全等,属于中考常考题型.14.如图,已知四边形ABCD 和四边形CEFG 都是正方形,且AB CE >,连接,BG DE .(1)求证:BG DE =;(2)连接BD ,若CG //BD ,BG BD =,求BDE ∠的度数.解析:(1)见解析;(2)60BDE ∠=︒.【分析】(1)结合正方形的性质利用SAS 证明BCG DCE ∆≅∆,进而可证明结论; (2)连接BE ,通过证明BCG BCE ∆≅∆可得BDE ∆为等边三角形,进而求解.【详解】(1)证明:∵四边形ABCD 和四边形CEFG 是正方形,∴,,90BC DC CG CE BCD GCE ==∠=∠=︒,∴BCD DCG GCE DCG ∠+∠=∠+∠,∴BCG DCE ∠=∠,在BCG ∆和DCE ∆中,BC DC BCG DCE CG CE =⎧⎪∠=∠⎨⎪=⎩∴()BCG DCE SAS ∆≅∆,∴BG DE =;(2)连接BE ,∵//CG BD ,∴45DCG BDC ∠=∠=︒,∴9045135BCG BCD DCG ∠=∠+∠=︒+︒=︒,∵90GCE ∠=︒,∴36036013590135BCE BCG GCE ∠=︒-∠-∠=︒-︒-︒=︒∴BCG BCE ∠=∠.在BCG ∆和BCE ∆中BC BC BCG BCE CG CE =⎧⎪∠=∠⎨⎪=⎩∴()ΔΔBCG BCE SAS ≅,∴BG BE =,∵由(1)可知BG DE =,∴BD BE DE ==,∴BDE ∆为等边三角形,∴60BDE ∠=︒.【点睛】本题主要考查正方形的性质,全等三角形的性质与判定,等边三角形的判定与性质,能证明相关三角形全等是解题的关键.15.如图1,在Rt ABC 中,,A 90AB AC ∠==,点,D E 分别在边,AB AC 上,AD AE =,连接DC ,点,,M P N 分别为,,DE DC BC 的中点.(1)图1中线段PM 与PN 的数量关系是 ,位置关系是 ;(2)把ADE 绕点A 逆时针旋转到图2的位置,连接,,MN BD CE .请判断ABD ∠与ACE ∠是否相等,请说明理由;(3)试判断PMN 的形状,并说明理由.解析:(1)PM PN =,PM PN ⊥;(2)ABD ACE ∠=∠,理由见解析;(3)PMN ∆是等腰直角三角形,理由见解析.【分析】(1)利用三角形的中位线得出11,22PM CE PN BD ==,进而判断出BD=CE ,即可得出结论,再利用三角形的中位线得出PM ∥CE 得出∠DPM=∠DCA ,最后用互余即可得出结论;(2)先判断出△ABD ≌△ACE 可得结论.(3)先判断出△ABD ≌△ACE ,得出BD=CE ,同(1)的方法得出11,22PM CE PN BD ==,即可得出PM=PN ,同(1)的方法即可得出结论; 【详解】解:(1)如图1中,∵点P ,N 是BC ,CD 的中点,1//,2PN BD PN BD ∴= ∵点P ,M 是CD ,DE 的中点,1//,2PM CE PM CE ∴= ∵AB=AC ,AD=AE ,∴BD=CE ,∴PM=PN ,∵PN ∥BD ,∴∠DPN=∠ADC ,∵PM ∥CE ,∴∠DPM=∠DCA ,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM ⊥PN ,故答案为:PM=PN ,PM ⊥PN .(2)ABD ACE ∠=∠理由如下AB AC =,AD AE =由旋转得BAD CAE ∠=∠∴()ABD ACE SAS ∆≅∆∴ABD ACE ∠=∠(3)PMN ∆是等腰直角三角形ABD ACE ∆≅∆∴BD CE =点M P N 、、分别为DE DC BC 、、的中点 ∴12PM EC =,12PN BD = ∴PN PM =点M P N 、、分别为DE DC BC 、、的中点∴//PM CE ,//PN BD∴DPM DCE ∠=∠,PNC DBC ∠=∠∴MPN DPM DPN ∠=∠+∠DCE DCB DBC =∠+∠+∠DCA ACE DCB DBC =∠+∠+∠+∠DCA ABD DCB DBC =∠+∠+∠+∠ACB ABC =∠+∠90BAC ∠=∴90ACB ABC ∠+∠=∴90MPN ∠=∴PMN ∆是等腰直角三角形.【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;16.背景:一次小组合作探究课上,小明将两个正方形按背景图位置摆放(点E ,A ,D 在同一条直线上),发现BE =DG 且BE ⊥DG .小组讨论后,提出了三个问题,请你帮助解答:(1)将正方形AEFG 绕点A 按逆时针方向旋转,(如图1)还能得到BE =DG 吗?如果能,请给出证明.如若不能,请说明理由:(2)把背景中的正方形分别改为菱形AEFG 和菱形ABCD ,将菱形AEFG 绕点A 按顺时针方向旋转,(如图2)试问当∠EAG 与∠BAD 的大小满足怎样的关系时,背景中的结论BE =DG 仍成立?请说明理由;(3)把背景中的正方形改成矩形AEFG 和矩形ABCD ,且23AE AB AG AD ==,AE =4,AB =8,将矩形AEFG 绕点A 按顺时针方向旋转(如图3),连接DE ,BG .小组发现:在旋转过程中, BG 2+DE 2是定值,请求出这个定值.解析:(1)见解析;(2)当∠EAG =∠BAD 时,BE =DG 成立;理由见解析;(3)22260BG DE +=.【分析】(1)根据四边形ABCD 和AEFG 是正方形的性质证明△EAB ≌△GAD 即可;(2)根据菱形AEFG 和菱形ABCD 的性质以及角的和差证明△EAB ≌△GAD 即可说明当∠EAG =∠BAD 时,BE =DG 成立;(3)如图:连接EB ,BD ,设BE 和GD 相交于点H ,先根据四边形AEFG 和ABCD 为矩形的性质说明△EAB ∽△GAD ,再根据相似的性质得到90GHE EAC ︒∠=∠=,最后运用勾股定理解答即可.【详解】(1)证明:∵四边形ABCD 为正方形∴AB =AD ,90DAB ︒∠=∵四边形AEFG 为正方形∴AE =AG ,90EAG ︒∠=∴EAB GAD ∠=∠在△EAB 和△GAD 中有:AE AG EAB GAD AB AD =⎧⎪∠=∠⎨⎪=⎩∴△EAB ≌△GAD∴BE =DG ;(2)当∠EAG =∠BAD 时,BE =DG 成立。
中考数学教学指导:等腰直角三角形旋转问题的分类探析

等腰直角三角形旋转问题的分类探析等腰直角三角形在旋转变换下的探究性问题,是近几年中考数学命题的热点,其探究过程常与三角形的全等和相似、勾股定理、正方形的性质以及函数方程等知识有关,是一类对能力要求较高的问题。
现以中考试题为例,具体归纳为以下几种类型进行分析. 一、90°角绕直角顶点旋转例1 .在Rt ABC ∆中,90,4,,A AC AB D E ∠=︒==分别是边,AB AC 的中点.若等腰Rt ADE ∆绕点A 逆时针旋转,得到等腰11Rt AD E ∆,设旋转角为(0180)αα<≤︒,记直线1BD 与1CE 的交点为P .(1)如图1,当90α=︒时,线段1BD 的长等于 ,线段1CE 的长等于 ;图1 图2(2)如图2,当135α=︒时,求证:11BD CE =,且11BD CE ⊥;(3)求点P 到AB 所在直线的距离的最大值(直接写出结果).解(1)(2)当135α=︒时,Rt ADE ∆ 旋转135°到11Rt AD E ∆, 1111,135AD AE D AB E AC ∴=∠=∠=︒.1,A B A C D A B =∴∆ ≌1E AC ∆,又‘:L1=L2,1111,BD CE D BA E CA ∴=∠=∠.又12∠=∠ ,90CPB CAB ∴∠=∠=︒,即11BD CE ⊥;(3)最大值二、90°角绕斜边中点旋转例2 将一副三角尺如图3摆放(在Rt ABC ∆中,90,60ACB B ∠=︒∠=︒;在Rt DEF ∆中,90,45EDF E ∠=︒∠=︒,点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C .)(1)求ADE ∠的度数;(2)如图3,将DEF ∆绕点D 顺时针方向旋转角(060)αα︒<<︒,此时的等腰直角三角尺记为DE F ''∆, DE '交AC 于点M ,DF '交BC 于点N ,试判断PM CN 的值是否随着α的变化而变化?如果不变,请求出PM CN 的值;反之,请说明理由.图3解 (1)由题意,知CD 是Rt ABC ∆中斜边AB 上的中线,AD BD CD ∴==.在BCD ∆中,BD CD =且60B ∠=︒, BCD ∴∆为等边三角形,60BCD BDC ∴∠=∠=︒,180180609030ADE BDC EDF ∴∠=︒-∠-∠=︒-︒-︒=︒. (2)PM CN的值不会随着α的变化而变化,理由如下: APD ∆ 的外角MPD ∠303060A ADE =∠+∠=︒+︒=︒,60MPD BCD ∴∠=∠=︒.在MPD ∆和NCD ∆中,60,MPD BCD PDM CDN α∴∠=∠=︒∠=∠=,MPD ∴∆∽NCD ∆,PM PD CN CD∴=. 又由(1)知AD CD =,PM PD PD CN CD AD∴==. 在APD ∆中,30A ADE ∠=∠=︒, ∴在等腰APD ∆中,3PD AD ==, PM PD PD CN CD AD ∴===三、45°角绕直角顶点旋转例3 在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且45EAF CEF ∠=∠=︒.(1)将ADF ∆绕着点A 顺时针旋转90°,得到ABG ∆(如图4).求证: AEG ∆≌AEF ∆;(2)若直线EF 与AB 、AD 的延长线分别交于点M 、N (如图5),求证:222EF ME NF =+;图4 图5(3)将正方形改为长与宽不等的长方形,若其余条件不变(如图6),请你直接写出线段EF 、BE 、DF 之间的数量关系.图6解 (1)ADF ∆ 绕着点A 旋转90°到ABG ∆,,90,AF AG FAG ∴=∠=︒ 45GAE FAG EAF EAF ∴∠=∠-∠=︒=∠,AE AE AGE =∴∆ ≌AFE ∆.(2) ADF ∆绕着点A 旋转90°到ABG ∆,如图7,得DF BG =.图7ABCD 是正方形,,90,BC DC C ABC ADC ∴=∠=∠=∠=︒9045,90CFE CEF CEF BEM MBE NDF ∴∠=︒-∠=︒=∠=∠∠=∠=︒,45,CE CF DFN CFE BEM ∴=∠=∠=︒=∠,BE DF BG ∴==BEM ∴∆≌,,,45,DFN MG ME FN ME MG MGE BEM ∆=∴==∠=∠=︒180454590,GME ∴∠=︒-︒-︒=︒222GE MG ME ∴=+.AGE ∆ ≌,,AFE EF GE ∆∴=222EF FN ME ∴=+.四、45°角绕斜边中点旋转例 4 如图8 ,ABC ∆和DEF ∆是两个全等的等腰直角三角形,L 90BAC EDF ∠=∠=︒,DEF ∆的顶点E 与ABC ∆的斜边BC 的中点重合.将DEF ∆绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1)如图8,当点Q 在线段AC 上,且AP AQ =时,求证: BPE ∆≌CQE ∆.(2)如图9,当点Q 在线段CA 的延长线上时,求证:BPE ∆∽CEQ ∆;并求当9,2B P a C Q a ==时,P 、Q 两点间的距离(用含a 的代数式表示).图8 图9解 (1)略.(2)连结PQ (如图10).ABC ∆ 和DEF ∆是两个全等的等腰直角三角形,45B C DEF ∴∠=∠=∠=︒ .图10 ,B E Q E Q CC ∠=∠+∠ 即,BEP DEF EQC C ∠+∠=∠+∠4545,BEP EQC ∴∠+︒=∠+︒BEP EQC ∴∠=∠,BPE ∴∆∽CEQ ∆,BP BE CE CQ∴=. 9,,,2BP a CQ a BE CE === 92a BE BE a ∴=,即BE CE ==,BC ∴=,sin 453,AB AC BC a ∴==⋅︒=32AQ CQ AC a ∴=-=,2PA AB BP a =-=. ∴在Rt APQ ∆中,52PQ a ===.。
初中数学全等三角形双等腰旋转(讲义及答案)及解析

初中数学全等三角形双等腰旋转(讲义及答案)及解析一、全等三角形双等腰旋转1.如图,△ABC 和△CEF 中,∠BAC =∠CEF =90°,AB =AC ,EC =EF ,点E 在AC 边上. (1)如图1,连接BE ,若AE =3,BE =58,求FC 的长度;(2)如图2,将△CEF 绕点C 逆时针旋转,旋转角为α(0°<α<180°),旋转过程中,直线EF 分别与直线AC ,BC 交于点M ,N ,当△CMN 是等腰三角形时,求旋转角α的度数; (3)如图3,将△CEF 绕点C 顺时针旋转,使得点B ,E ,F 在同一条直线上,点P 为BF 的中点,连接AE ,猜想AE ,CF 和BP 之间的数量关系并说明理由.答案:(1);(2)22.5°或45°或112.5°;(3)CF +AE =BP ,见解析【分析】 (1)利用勾股定理求出AB =AC =7,求出EC =EF =4即可解决问题; (2)分三种情形分别画出图形,利用等解析:(1)42;(2)22.5°或45°或112.5°;(3)CF +AE =2BP ,见解析【分析】(1)利用勾股定理求出AB =AC =7,求出EC =EF =4即可解决问题;(2)分三种情形分别画出图形,利用等腰三角形的性质求解即可;(3)结论:CF +AE =2BP .如图3中,过点A 作AD ⊥AE ,利用全等三角形的性质以及等腰直角三角形的性质求解即可.【详解】解:(1)如图1中,在Rt △ABE 中,AB ()2222583497-=-==BF AE ,∴AC =AB =7,∴EF =EC =AC ﹣AE =7﹣3=4,∵∠CEF =90°,EC =EF =3, ∴CF 22224442+=+=EF CE(2)①如图2﹣1中,当CM=CN时,α=∠MCE=∠ECN=12∠ACB=22.5°.如图2﹣2中,当NM=NC时,α=∠MCN=45°.如图2﹣3中,当CN=CM时,∠NCE=12∠BCM=67.5°,α=∠ACE=45°+67.5°=112.5°.综上所述,满足条件的α的值为22.5°或45°或112.5°.(3)结论:CF+AE=2BP.理由:如图3中,过点A作AD⊥AE,∴∠DAE=∠BAC=90°,∴∠BAD=∠CAE,∵∠BAC=∠BEC=90°,∴∠ABP=∠ACE,∵AB=AC,∴△ABD≌△ACE(ASA),∴BD=EC=EF,AD=AE,∴△ADE是等腰直角三角形,∴DE=2AE,∵P是BF的中点,∴BP=12BF,∵BP=12BF=12(2EF+DE),CF=2EF,DE=2AE,∴BP=12(2CF+2AE),∴CF+AE=2BP.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.已知:平面直角坐标系中,点A在y轴的正半轴上,点B在第二象限,将OB绕O点顺时针转60°至OA.(1)如图1,试判定△ABO的形状,并说明理由.(2)如图1,若点E为y轴的正半轴上一动点,以BE为边作等边△BEG,延长GA交x轴于点P,问:AP与AO之间有何数量关系,试证明你的结论.(3)如图2,若BC⊥BO,BC=BO,作BD⊥CO ,AC、DB交于E,补全图形,并证明:AE =BE+CE.答案:(1)等边三角形,理由见解析;(2)AP=2AO,证明见解析;(3)见解析【分析】(1)在三角形AOB 中,AB=BO ,∠AOB=60°,含60°的等腰三角形一定为等边三角形;(2)可通过证明△解析:(1)等边三角形,理由见解析;(2)AP =2AO ,证明见解析;(3)见解析【分析】(1)在三角形AOB 中,AB=BO ,∠AOB=60°,含60°的等腰三角形一定为等边三角形; (2)可通过证明△ABG 与△OBE 全等,得到∠APO =30°,再通过含30°的直角三角形的性质可以推导AP =2AO ;(3)做辅助线在AC 上截取AM =EC ,连接BM ,可得AM+EM =CE+EM ,即AE =CM , 再通过边角转换证明△ABE 与△CBM 全等,即可得到△BEM 为等边三角形,从而可证AE =AM+EM =CE+BE.【详解】解:(1)如图1,△AOB 为等边三角形,理由是:∵将绕OB 绕O 点旋转至OA∴∠AOB=60°,∵AO =AB∴△AOB 为等边三角形;(2)AP =2AO ,理由为:证明:∵△AOB 与△BGE 都为等边三角形,∴BE =BG ,AB =OB ,∠EBG =∠OBA =60°,∴∠EBG+∠EBA =∠OBA+∠EBA ,即∠ABG =∠OBE ,在△ABG 和△OBE 中,BE BG ABG OBE AB OB =⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△OBE (SAS ),∴∠BAG =∠BOE =60°,∴∠GAO =∠GAB+∠BAO =120°,∵∠GAO 为△AOP 的外角,且∠AOP =90°,∴∠APO =30°在Rt △AOP 中,∠APO =30°,则AP =2AO .(3)补全图形,在AC 上截取AM =EC ,连接BM ,可得AM+EM =CE+EM ,即AE =CM ,∵△AOB 为等边三角形,△BOC 为等腰直角三角形,∴∠OBC =90°,∠ABO =60°,∵D 为CO 的中点,∴BD 平分∠OBC ,即∠CBD =∠OBD =45°,∴∠ABD =105°,∠ABC =150°,∴∠BAC =∠BCA =15°,∴∠AEB =15°+45°=60°,在△ABE 和△CBM 中,∵AB CB BAE BCM AE CM =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CBM (SAS ),∴BM =BE ,∴△BEM 为等边三角形,∴BE =EM ,∴AE =AM+EM =CE+BE ;【点睛】本题主要考查等腰三角形的性质,以及做辅助线证明全等的方法,解题的关键是熟练地掌握等腰三角形的性质以及做辅助线证明全等的技巧和方法.3.如图,ABC 是等腰直角三角形,90,ACB ∠=︒分别以,AB AC 为直角边向外作等腰直角ABD △和等腰直角,ACE G 为BD 的中点,连接,,CG BE ,CD BE 与CD 交于点F .(1)证明:四边形ACGD是平行四边形;(2)线段BE和线段CD有什么数量关系,请说明理由;(3)已知2,BC=求EF的长度(结果用含根号的式子表示).答案:(1)见解析;(2)BE=CD,理由见解析;(3)EF= .【分析】(1)利用等腰直角三角形的性质易得BD=2BC,因为G为BD的中点,可得BG=BC,由∠CGB=45°,∠ADB=45得AD∥解析:(1)见解析;(2)BE=CD,理由见解析;(3)EF 310 5【分析】(1)利用等腰直角三角形的性质易得BD=2BC,因为G为BD的中点,可得BG=BC,由∠CGB=45°,∠ADB=45得AD∥CG,由∠CBD+∠ACB=180°,得AC∥BD,得出四边形ACGD 为平行四边形;(2)利用全等三角形的判定证得△DAC≌△BAE,由全等三角形的性质得BE=CD;首先证得四边形ABCE为平行四边形,再利用全等三角形的判定定理得△BCE≌△CAD,易得∠CBE=∠ACD,由∠ACB=90°,易得∠CFB=90°,得出结论.(3)先证明△DBF是直角三角形,再利用勾股定理进行计算,即可求出答案.【详解】解:(1)∵△ABC和△ABD都是等腰直角三角形∴∠CAB=∠ABD= 45°,BD2AB22BC=2BC=2AC∴AC∥BD又∵G为BD的中点,∴BD=2DG,∴AC=DG,AC∥DG∴四边形ACGD为平行四边形;(2)BE=CD,理由如下∵△AEC和△ABD都是等腰直角三角形AE=AC,AB=AD∠EAB=∠EAC+∠CAB=90°+45°=135°,∠CAD=∠DAB+∠BAC=90°+45°=135°,∴∠EAB=∠CAD,在△DAC与△BAE中,AD AB CAD EAB AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△DAC ≌△BAE ,∴BE =CD ;(3) ∵△DAC ≌△BAE∴∠AEB=∠ACD又∵∠EAC=90°∴∠EFC=∠DFB=90°∴ △DBF 是直角三角形∵BC,∴BD根据勾股定理得CD, ∴11••22CD BF BC BD = ∴12=12•∴BF∴EF =BE -BF =CD -BF【点睛】本题主要考查了等腰直角三角形的性质,平行四边形和全等三角形的判定及性质定理,综合运用各种定理是解答此题的关键.4.已知在矩形ABCD 中,∠ADC 的平分线DE 与BC 边所在的直线交于点E ,点P 是线段DE 上一定点(其中EP<PD )(1)如图1,若点F 在CD 边上(不与D 重合),将∠DPF 绕点P 逆时针旋转90°后,角的两边PD 、PF 分别交射线DA 于点H 、G .①求证:PG=PF ;②探究:DF 、DG 、DP 之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F 在CD 的延长线上(不与D 重合),过点P 作PG ⊥PF ,交射线DA 于点G ,你认为(1)中DE 、DG 、DP 之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.答案:(1)①详见解析;②DG+DF=DP;(2)不成立,数量关系式应为:DG-DF=DP【解析】【分析】(1)①根据矩形性质证△HPG≌△DPF(ASA),得PG=PF;②由①知,△HPD为等腰直解析:(1)①详见解析;2;(2)不成立,数量关系式应为:DG-2【解析】【分析】(1)①根据矩形性质证△HPG≌△DPF(ASA),得PG=PF;②由①知,△HPD为等腰直角三角形,△HPG≌△DPF,根据直角三角形性质可得2DP;(2)过点P作PH⊥PD 交射线DA于点H,得到△HPD为等腰直角三角形,证△HPG≌△DPF,得HG=DF,DH=DG-HG=DG-DF,2DP.【详解】(1)①∵由矩形性质得∠GPF=∠HPD=90°,∠ADC=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,∴∠PDF=∠ADP=45°,∴△HPD为等腰直角三角形,∴∠DHP=∠PDF=45°,在△HPG和△DPF中,∵PHG PDF PH PDGPH FPD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△HPG≌△DPF(ASA),∴PG=PF;②结论:2DP,由①知,△HPD为等腰直角三角形,△HPG≌△DPF,∴2DP,HG=DF,∴HD=HG+DG=DF+DG,∴DG+DF=2DP;(2)不成立,数量关系式应为:DG-DF=2DP,如图,过点P作PH⊥PD交射线DA于点H,∵PF⊥PG,∠GPF=∠HPD=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,∴∠DHP=∠EDC=45°,且PH=PD,2DP,∴∠GHP=∠FDP=180°-45°=135°,在△HPG和△DPF中,∵GPH FPDGHP FDP PH PD∠=∠⎧⎪∠=∠⎨⎪=⎩∴△HPG≌△DPF,∴HG=DF,∴DH=DG-HG=DG-DF ,∴2DP.【点睛】考核知识点:矩形性质的运用,等腰直角三角形.综合运用全等三角形判定和等腰直角三角形性质是关键.5.已知:如图1,AOB和COD都是等边三角形.(1)求证:①AC=BD;②∠APB=60°;(2)如图2,在AOB和COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD 间的等量关系为,∠APB的大小为答案:(1)①见解析,②见解析;(2)AC =BD ,α【分析】(1)①根据△AOB 和△COD 都是等边三角形,求出∠AOC=∠BOD ,根据SAS 推出△AOC ≌△BOD ,根据全等三角形的性质得出AC=BD ;解析:(1)①见解析,②见解析;(2)AC =BD ,α【分析】(1)①根据△AOB 和△COD 都是等边三角形,求出∠AOC=∠BOD ,根据SAS 推出△AOC ≌△BOD ,根据全等三角形的性质得出AC=BD ;②由△AOC ≌△BOD ,可得∠CAO=∠DBO ,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB ,推出∠APB=∠AOB 即可;(2)根据∠AOB=∠COD=α,求出∠AOC=∠BOD ,根据SAS 推出△AOC ≌△BOD ,根据全等三角形的性质得出AC=BD ,∠CAO=∠DBO ,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB ,推出∠APB=∠AOB 即可.【详解】证明:(1)①∵△AOB 和△COD 都是等边三角形,∴OA=OB ,OC=OD ,∠AOB =∠COD =60°,∴∠AOC =∠BOD ,在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ),∴AC =BD ,∠CAO =∠DBO ,②设AC 与BO 交于E ,∵△AOC ≌△BOD ,∴∠CAO =∠DBO ,∵∠AEO=∠BEP ,∴∠CAO+∠AOB =∠DBO+∠APB ,∴∠APB =∠AOB =60°.(2)AC=BD ,∠APB=α,理由如下:∵∠AOB=∠COD=α,∴∠AOC=∠BOD ,在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD ,∴AC=BD ,∠CAO=∠DBO ,设AC 与BO 交于E ,∵∠AEO=∠BEP ,∴∠CAO+∠AOB=∠DBO+∠APB ,∴∠APB=∠AOB=α,故答案为AC=BD ,α.【点睛】本题考查三角形旋转,三角形全等判定与性质,三角形内角和,掌握三角形旋转,三角形全等判定与性质,三角形内角和是解题关键.6.如图,将两块含45°角的大小不同的直角三角板△COD 和△AOB 如图①摆放,连结AC ,BD .(1)如图①,猜想线段AC与BD存在怎样的数量关系和位置关系,请写出结论并证明;(2)将图①中的△COD绕点O顺时针旋转一定的角度(如图②),连结AC,BD,其他条件不变,线段AC与BD还存在(1)中的关系吗?请写出结论并说明理由.(3)将图①中的△COD绕点O逆时针旋转一定的角度(如图③),连结AC,BD,其他条件不变,线段AC与BD存在怎样的关系?请直接写出结论.答案:(1)AC=BD,AC⊥BD,证明见解析;(2)存在,AC=BD,AC⊥BD,证明见解析;(3)AC=BD,AC⊥BD【分析】(1)延长BD交AC于点E.易证△AOC≌△BOD(SAS),可得A解析:(1)AC=BD,AC⊥BD,证明见解析;(2)存在,AC=BD,AC⊥BD,证明见解析;(3)AC=BD,AC⊥BD【分析】(1)延长BD交AC于点E.易证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠ADE=∠BDO,可证∠AED=∠BOD=90º即可;(2)延长BD交AC于点F,交AO于点G.易证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠AGF=∠BGO,可得∠AFG=∠BOG=90º即可;(3)BD交AC于点H,AO于M,可证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠AMH=∠BMO,可得∠AHM=∠BOH=90º即可.【详解】(1)AC=BD,AC⊥BD,证明:延长BD交AC于点E.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠COA=∠BOD=90º,∴△AOC≌△BOD(SAS),∴AC=BD,∴∠OAC=∠OBD,∵∠ADE=∠BDO,∴∠AED=∠BOD=90º,∴AC⊥BD;(2)存在,证明:延长BD交AC于点F,交AO于点G.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC-∠DOA,∠BOD=∠BOA-∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AGF=∠BGO ,∴∠AFG=∠BOG=90º,∴AC ⊥BD ;(3)AC=BD ,AC ⊥BD .证明:BD 交AC 于点H ,AO 于M ,∵△COD 和△AOB 均为等腰直角三角形,∴OC=OD ,OA=OB ,∠DOC=BOA=90º,∵∠AOC=∠DOC+∠DOA ,∠BOD=∠BOA+∠DOA ,∴∠AOC=∠BOD ,∴△AOC ≌△BOD (SAS ),∴AC=BD ,∠OAC=∠OBD ,∵∠AMH=∠BMO ,∴∠AHM=∠BOH=90º,∴AC ⊥BD .【点睛】本题考查三角形旋转变换中对应相等的位置与数量关系,掌握三角形全等的证明方法,及其角度计算是解题关键.7.在ABC 中,AB AC =,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧作ADE ,使AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当点D 在线段BC 上,如果90BAC ∠=︒,则BCE ∠=______度.(2)设BAC α∠=,BCE β∠=.①如图,当点D 在线段BC 上移动时,α、β之间有怎样的数量关系?请直接写出你的结论.②如图,当点D 在线段BC 的反向延长线上移动时,α、β之间有怎样的数量关系?请说明理由.答案:(1)90;(2)①,理由见解析;②,理由见解析【分析】(1)由等腰直角三角形的性质可得∠ABC=∠ACB=45°,由“SAS”可证△BAD ≌△CAE ,可得∠ABC=∠ACE=45°,可求∠BC解析:(1)90;(2)①180αβ+=︒,理由见解析;②αβ=,理由见解析【分析】(1)由等腰直角三角形的性质可得∠ABC=∠ACB=45°,由“SAS”可证△BAD ≌△CAE ,可得∠ABC=∠ACE=45°,可求∠BCE 的度数;(2)①由“SAS”可证△ABD ≌△ACE 得出∠ABD=∠ACE ,再用三角形的内角和即可得出结论;②由“SAS”可证△ADB ≌△AEC 得出∠ABD=∠ACE ,再用三角形外角的性质即可得出结论.【详解】(1)∵AB=AC ,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DAE=∠BAC ,∴∠BAD=∠CAE ,在△BAD 和△CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS )∴∠ABC=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;(2)①180αβ+=︒.理由:∵∠BAC=∠DAE ,∴∠BAC-∠DAC=∠DAE-∠DAC .即∠BAD=∠CAE .在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠B=∠ACE .∴∠B+∠ACB=∠ACE+∠ACB .∵∠ACE+∠ACB=β,∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;② 当点D 在射线BC 的反向延长线上时,αβ=.理由如下:∵DAE BAC ∠=∠,∴DAB EAC ∠=∠,在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△≌△ADB AEC(SAS), ∴ABD ACE ∠=∠,∵ABD BAC ACB ∠=∠+∠,ACE BCE ACB ∠=∠+∠,∴BAC ABD ACB ∠=∠-∠,BCE ACE ACB ∠=∠-∠,∴BAC BCE ∠=∠,即αβ=.【点睛】此题考查了全等三角形的判定和性质,等腰直角三角形的性质,三角形的内角和定理,以及三角形外交的性质,证明△ABD≌△ACE是解本题的关键.8.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想:如图1,当点D在线段BC上时,AC,CD,CF之间的数量关系为____________;(将结论直接写在横线上)(2)如图2,当点D在线段CB的延长线上时,(1)中的结论是否仍然成立?若成立,不需证明;若不成立,请你写出正确结论,并说明理由.答案:(1)CD+CF=AC;(2)不成立,CD-CF=AC;理由见解析.【分析】(1)根据正方形的性质可得∠DAF=90°,AD=AF,利用同角的余角相等可得∠BAD=∠CAF,利用SAS可证明△B解析:(1)2AC;(2)不成立,2AC;理由见解析.【分析】(1)根据正方形的性质可得∠DAF=90°,AD=AF,利用同角的余角相等可得∠BAD=∠CAF,利用SAS可证明△BAD≌△CAF,可得CF=BD,即可得出BC=CD+CF,根据等腰直角三角形的性质可得2AC,进而可得答案;(2)同(1)可证明△BAD≌△CAF,可得BD=CF,即可得出CD=BC+CF,根据等腰直角三角形的性质可得2AC,可得2AC,即可得答案.【详解】(1)∵四边形ADEF是正方形,∴∠DAF=90°,AD=AF,∴∠CAF+∠DAC=90°,∵∠BAC=90°,∴∠BAD+∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,AB ACBAD CAF AD AF=⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAF ,∴CF=BD ,∴CD+CF=CD+BD=BC ,∵∠BAC=90°,AB=AC ,∴BC=2AC , ∴CD+CF=2AC .故答案为:CD+CF=2AC(2)不成立,CD-CF=2AC .理由如下:同(1)可证△BAD ≌△CAF ,∴CF=BD ,∴CD=BC+BD=BC+CF ,∵BC=2AC ,∴CD-CF=2AC .【点睛】本题考查正方形的性质、全等三角形的判定与性质及等腰直角三角形的性质,熟练掌握相关性质及判定定理是解题关键.9.在直线上次取A ,B ,C 三点,分别以AB ,BC 为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D ,E .(1)如图①,连结CD ,AE ,求证:CD AE =;(2)如图②,若1AB =,2BC =,求DE 的长;(3)如图③,将图②中的正三角形BEC 绕B 点作适当的旋转,连结AE ,若有222DE BE AE +=,试求∠DEB 的度数.答案:(1)见解析;(2);(3)∠DEB =30°.【分析】(1)欲证明CD =AE ,只要证明△ABE ≌△DBC 即可;(2)如图②,取BE 中点F ,连接DF ,首先证明△DBF 是等边三角形,然后证明△BD解析:(1)见解析;(2)3DE =3)∠DEB =30°.【分析】(1)欲证明CD =AE ,只要证明△ABE ≌△DBC 即可;(2)如图②,取BE 中点F ,连接DF ,首先证明△DBF 是等边三角形,然后证明△BDE 是直角三角形,再利用勾股定理计算即可;(3)如图③,连接DC,先证明△ABE≌△DBC,再利用勾股定理的逆定理证明△DEC是直角三角形,得到∠DEC=90°即可解决问题.【详解】解:(1)∵△ABD和△ECB都是等边三角形,∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中,AB BDABE DBC BE BC=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△DBC(SAS),∴CD=AE;(2)如图②,取BE中点F,连接DF,∵BD=AB=1,BE=BC=2,∠ABD=∠EBC=60°,∴BF=EF=1=BD,∠DBF=60°,∴△DBF是等边三角形,∴DF=BF=EF,∠DFB=60°,∵∠BFD=∠FED+∠FDE,∴∠FDE=∠FED=30°∴∠EDB=180°−∠DBE−∠DEB=90°,∴DE =2222213BE BD;(3)如图③,连接DC,∵△ABD和△ECB都是等边三角形,∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中,AB BDABE DBC BE BC=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△DBC(SAS),∴AE=DC,∵DE2+BE2=AE2,BE=CE,∴DE2+CE2=CD2,∴∠DEC =90°,∵∠BEC =60°,∴∠DEB =∠DEC−∠BEC =30°.【点睛】本题考查了全等三角形的判定和性质、勾股定理以及勾股定理逆定理、等边三角形的性质等知识,寻找全等三角形是解决问题的关键,要学会添加辅助线的方法,属于中考常考题型.10.ABD ∆和BEP ∆都是等腰直角三角形,90BAD BEP ∠=∠=︒,O 为BD 中点 (1)若P 、E 分别在AB 、BD 上,如图所示,求证:2AP OE =; (2)将如图所示中BEP ∆绕B 点顺时针旋转45︒,如图所示,问(1)中的结论是否仍然成立?请说明理由;(3)将如图所示中BEP ∆绕B 点顺时针旋转到如图所示,问(1)中的结论是否仍然成立?请说明理由.答案:(1)见解析;(2)仍然成立,理由见解析.【解析】【分析】(1)根据等腰三角形的两直角边相等,和勾股定理求得BP 、OB 的值.则易证AP 与OE 的数量关系;(2)将图1中的△BPE 绕B 点顺时针旋解析:(1)见解析;(2)仍然成立,理由见解析.【解析】【分析】(1)根据等腰三角形的两直角边相等,和勾股定理求得BP 、OB 的值.则易证AP 与OE 的数量关系;(2)将图1中的△BPE 绕B 点顺时针旋转45゜,问(1)中的结论成立,通过证明△BOA ∽△BEP ,即可得到问题答案.【详解】(1)证明:∵△ABD为等腰直角三角形,∠BAD=∠BEP=90゜,∴设AB=AD=a,则.又∵点O为BD的中点,∴OB=12BD=2a.同理,设EP=BE=b,则b.∴b,OE=OB-BE=2a-b,则APOE==,∴;(2)∵△BEP是等腰直角三角形,∴∠B=∠BPE=45°,∵△ABD是等腰直角三角形,O是BD的中点,∴AO⊥BD,∴∠BOA=∠BEP=90°,∠BAO=180°-∠BOA-∠B=45°,∴△BOA∽△BEP,∵BP BABE BO==∴BP BABE BO==∴.方法二(1)连结AO,过P作PC AO⊥,垂足为CABD∆是等腰直角三角形,90BAD∠=︒,O为BD中点ABO∴∆是等腰直角三角形PC AO⊥APC∴∆是等腰直角三角形四边形PCOE为矩形OE PC∴=AP=AP∴=(2)在AB上取点F,使AF BE=,连结FO,FE,AO由条件知四边形AFEP为平行四边形AP FE∴=AO BO=OAF OBE∠=∠FAO EBO∴∆≅∆FO EO∴=,AOF BOE∠=∠90FOE∴∠=︒FE∴=AP=(3)作MO EO⊥,且使MO EO=,连结AM,ME,AO MOE∴∆为等腰直角三角形,又AOB∆为等腰直角三角形AMO BEO∴∆≅∆AM BE∴=易证AM BE⊥,AM PE∥又BE PE =,AM PE ∴= ∴四边形AMEP 为平行四边形AP ME ∴= 在等腰直角三角形MOE 中,2ME OE =2AP OE ∴=【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质以及相似三角形的判定和性质,题目的综合性很强难度不小.二、全等三角形手拉手模型11.已知在ABC 中,AB AC =,过点B 引一条射线BM ,D 是BM 上一点. (问题解决)(1)如图1,若60ABC ︒∠=,射线BM 在ABC ∠内部,60ADB ︒∠=,求证:60BDC ︒∠=.小明同学展示的做法是:在BM 上取一点E 使得AE AD =,通过已知的条件,从而求得BDC ∠的度数,请你帮助小明写出证明过程;(类比探究)(2)如图2,已知30ABC ADB ∠=∠=︒.①当射线BM 在ABC ∠内,求BDC ∠的度数;②当射线BM 在BC 下方,如图3所示,请问BDC ∠的度数会变化吗?若不变,请说明理由,若改变,请求出BDC ∠的度数解析:(1)见解析;(2)①120°;②会变,60°【分析】(1)在BM 上取一点E 使得AE AD =,可证BAE ∆≌CAD ∆,求出∠ADC 的度数,减去∠ADB 的度数即可;(2)在BD 上取一点E ,使得AE AD =,可证BAE ∆≌CAD ∆,求出∠ADC 的度数,减去∠ADB 的度数即可;(3)在DB 延长线上取一点E ,使得AE AD =,按照(2)的方法可求.【详解】证明:(1)在BM 上取一点E 使得AE AD =,∵60ADB ∠=︒,∴ADE ∆为等边三角形,∵,60,AB AC ABC =∠=︒∴ABC ∆为等边三角形,∴60BAE EAC CAD ∠=︒-∠=∠,∴BAE ∆≌CAD ∆(SAS ),∴120ADC AEB ∠=∠=︒,∴1206060BDC ∠=︒-︒=︒;(2)①如图2,在BD 上取一点E ,使得AE AD =,∵30ABC ADB ∠=∠=︒,且AB AC =,∴30,30ABC ACB AED ADE ∠=∠=︒∠=∠=︒,∴120BAC EAD ∠=∠=︒,∴BAE CAD ∠=∠∴BAE ∆≌CAD ∆(SAS ),∴18030150ADC AEB ∠=∠=︒-︒=︒,∴15030120BDC ∠=︒-︒=︒,②会变,如图3,在DB 延长线上取一点E ,使得AE AD =同理可得:BAE ∆≌CAD ∆(SAS ),∴30ADC E ∠=∠=︒,∴303060BDC ADE ADC ∠=∠+∠=︒+︒=︒.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,解题关键是恰当的作辅助线,构造“手拉手”手拉手全等模型,利用全等三角形的性质求角.12.如图,ABC ∆和BDE ∆都是等边三角形,点,E F 分别在,AB BC 边上,60DAF ︒∠=,(1)求证:.ABD ACF ∆≅∆(2)判断四边形DFCE 的形状.解析:(1)见解析;(2)平行四边形【分析】(1)由ABC ∆和BDE ∆都是等边三角形得到,60AB AC ABD ACB BAC ︒=∠=∠=∠=,根据60DAF ︒∠=推出DAB CAF ∠=∠,即可证得结论;(2)根据△ABD ≌△ACF 得到BD=CF ,再根据等边三角形的性质得到,3560BD DE ︒=∠=∠=,推出,//DE FC DE FC =即可得到结论.【详解】证明:(1)ABC ∆和BDE ∆是等边三角形,,60AB AC ABD ACB BAC ︒∴=∠=∠=∠=,∵60DAF ︒∠=,∴DAB CAF ∠=∠,∴△ABD ≌△ACF (ASA );(2)四边形DFCE 是平行四边形.理由如下:∵△ABD ≌△ACF ,∴.BD CF =又BDE ABC ∆∆,是等边三角形,,3560BD DE ︒∴=∠=∠=.,//.DE FC DE FC ∴=∴四边形DFCE 是平行四边形.【点睛】此题考查等边三角形的性质,三角形全等的判定及性质,内错角相等两直线平行的判定定理,证明四边形是平行四边形.13.如图,已知四边形ABCD 和四边形CEFG 都是正方形,且AB CE >,连接,BG DE .(1)求证:BG DE =;(2)连接BD ,若CG //BD ,BG BD =,求BDE ∠的度数.解析:(1)见解析;(2)60BDE ∠=︒.【分析】(1)结合正方形的性质利用SAS 证明BCG DCE ∆≅∆,进而可证明结论;(2)连接BE ,通过证明BCG BCE ∆≅∆可得BDE ∆为等边三角形,进而求解.【详解】(1)证明:∵四边形ABCD 和四边形CEFG 是正方形,∴,,90BC DC CG CE BCD GCE ==∠=∠=︒,∴BCD DCG GCE DCG ∠+∠=∠+∠,∴BCG DCE ∠=∠,在BCG ∆和DCE ∆中,BC DC BCG DCE CG CE =⎧⎪∠=∠⎨⎪=⎩∴()BCG DCE SAS ∆≅∆,∴BG DE =;(2)连接BE ,∵//CG BD ,∴45DCG BDC ∠=∠=︒,∴9045135BCG BCD DCG ∠=∠+∠=︒+︒=︒,∵90GCE ∠=︒,∴36036013590135BCE BCG GCE ∠=︒-∠-∠=︒-︒-︒=︒∴BCG BCE ∠=∠.在BCG ∆和BCE ∆中BC BC BCG BCE CG CE =⎧⎪∠=∠⎨⎪=⎩∴()ΔΔBCG BCE SAS ≅,∴BG BE =,∵由(1)可知BG DE =,∴BD BE DE ==,∴BDE ∆为等边三角形,∴60BDE ∠=︒.【点睛】本题主要考查正方形的性质,全等三角形的性质与判定,等边三角形的判定与性质,能证明相关三角形全等是解题的关键.14.已知,在ABC ∆中,90BAC ︒∠=,45ABC ︒∠=,点D 为直线BC 上一动点(点D 不与点B C ,重合),以AD 为边作正方形ADEF ,连接CF .(1)如图①,当点D 在线段BC 上时,求证CF CD BC +=.(2)如图②,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出CF BC CD ,,三条线段之间的关系.(3)如图③,当点D 在线段BC 的反向延长线上,且点A ,F 分别在直线BC 的两侧时,其他条件不变,请直接写出CF BC CD ,,三条线段之间的关系.解析:(1)见解析;(2)CF CD BC -=,见解析;(3)CD CF BC -=,见解析.【分析】(1)△ABC 是等腰直角三角形,利用SAS 即可证明△BAD ≌△CAF ,从而证得CF=BD ,据此即可证得;(2)同(1)相同,利用SAS 即可证得△BAD ≌△CAF ,从而证得BD=CF ,即可得到CF-CD=BC ;(3)同理,证明△BAD ≌△CAF 即可得出结论.【详解】(1)证明:如图1,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC ,∵四边形ADEF 是正方形,∴AD=AF ,∠DAF=90°,∵∠BAD=90°-∠DAC ,∠CAF=90°-∠DAC ,∴∠BAD=∠CAF ,在△BAD 和△CAF 中,AB AC BAD CAF AD AF ⎧⎪∠∠⎨⎪⎩===,∴△BAD ≌△CAF (SAS ),∴BD=CF ,∵BD+CD=BC ,∴CF+CD=BC ;(2)解:CF-CD=BC .理由如下:如图2,∵∠BAD=90°+∠CAD ,∠CAF=90°+∠CAD ,∴∠BAD=∠CAF ,在△BAD 和△CAF 中,AB AC BAD CAF AD AF ⎧⎪∠∠⎨⎪⎩===,∴△BAD ≌△CAF (SAS ),∴BD=CF ,∵BD=BC+CD ,∴CF-CD=BC .(3)CD-CF=BC理由:∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC ,∵四边形ADEF 是正方形,∴AD=AF ,∠DAF=90°,∵∠BAD=90°-∠BAF ,∠CAF=90°-∠BAF ,∵在△BAD 和△CAF 中,AB AC BAD CAF AD AF ⎧⎪∠∠⎨⎪⎩=== ∴△BAD ≌△CAF (SAS ),∴BD=CF ,∴CD-BC=CF ,∴CD-CF=BC.【点睛】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.15.如图,P 为等边ABC 的边BC 延长线上的一动点,以AP 为边向上作等边APD △,连接CD .(1)求证:ABP ACD ≌△△;(2)当PC AC =时,求PDC ∠的度数;(3)PDC ∠与PAC ∠有怎样的数量关系?随着点P 位置的变化,PDC ∠与PAC ∠的数量关系是否会发生变化?请说明理由.解析:1)证明见解析;(2)30PDC ∠=︒;(3)PDC PAC ∠=∠;数量关系不变;理由见解析【分析】(1)先根据等边三角形的性质得出∠BAC =∠PAQ =60°,AB =AC ,AP =AQ ,再由SAS 定理即可得出结论;(2)由∠APC=∠CAP ,∠B=∠BAC ,∠B+∠BAC+∠APC+∠CAP=180°,得∠BAP=90°,再结合ABP ACD ≌△△,进而即可求解;(3)设CD 与AP 交于点O ,由ABP ACD ≌△△,得∠ACD=∠APD ,结合∠AOC=∠DOP ,三角形内角和定理,即可得到结论.【详解】(1)证明:∵△ABC 与△APD 是等边三角形,∴∠BAC =∠PAD =60°,AB =AC ,AP =AD ,在△ABP 与△ACD 中,AB AC BAP CAD AP AD ⎧⎪∠∠⎨⎪⎩===,∴ABP ACD ≌△△(SAS );(2)∵PC AC =,∴∠APC=∠CAP ,∵△ABC 是等边三角形,∴∠B=∠BAC=60°,又∵∠B+∠BAC+∠APC+∠CAP=180°,∴∠BAC+∠CAP=12×180°=90°,即:∠BAP=90°, ∴∠APB=90°-60°=30°, ∴∠ADC=∠APB=30°,∵△APD 是等边三角形,∴PDC ∠=60°-∠ADC=60°-30°=30°;(3)PDC ∠=PAC ∠,随着点P 位置的变化,PDC ∠与PAC ∠的数量关系不会发生变化,理由如下:设CD 与AP 交于点O ,∵ABP ACD ≌△△,∴∠ACD=∠ABP=60°,∵∠APD=60°,∴∠ACD=∠APD ,又∵∠AOC=∠DOP ,∠AOC+∠ACD+∠PAC=180°,∠DOP+∠APD+∠PDC=180°, ∴PDC ∠=PAC ∠.【点睛】本题主要考查全等三角形的判定和性质,等边三角形的性质,直角三角形的判定,熟练掌握全等三角形的判定和性质,是解题的关键.16.在直线AB 的同一侧作两个等边三角形ABD △和BCE ,连接AE 与CD ,试解决下列问题:(1)求证:AE DC =;(2)求DHA ∠的度数;(3)连接GF ,试判断BGF 形状.解析:(1)见解析;(2)60DHA ∠=︒;(3)BGF 是等边三角形.【分析】(1)从ABD △和BCE ∆是等边三角形中寻找条件证明(SAS)ABE DBC ≌,然后利用全等三角形的性质即可证明;(2)由ABE DBC ≌可得BAE BDC ∠=∠,再由外角的性质可得DHA BAE DCB ∠=∠+∠,然后根据等量代换即可证明;(3)先证明(ASA)ABG DBF ≅得到BG BF =,然后结合60DBE ∠=︒即可说明BGF 是等边三角形.【详解】(1)证明:ABD 和BCE 都是等边三角形,BA BD ∴=,BE BC =,60ABD CBE ∠=∠=︒.180606060DBE ∠=︒-︒-︒=︒,120ABE DBC ∴∠=∠=︒.在ABE △和DBC △中,120AB DB ABE DBC BE BC =⎧⎪∠=∠=︒⎨⎪=⎩,(SAS)ABE DBC ∴≌,AE DC ∴=;(2)解:ABE DBC ≌,BAE BDC ∴∠=∠.又DHA BAE DCB ∠=∠+∠,∴DHA BDC DCB ∠=∠+∠180DBC =︒-∠60=︒;(3)解:由(1)知ABE DBC ≌,BAE BDC ∴∠=∠.在ABG 和DBF 中,60ABD DBE AB DBEAB CDB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, (ASA)ABG DBF ∴≅,BG BF ∴=.60DBE ∠=︒, ∴BGF 是等边三角形.【点睛】本题主要考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质等知识点,灵活应用相关知识点成为解答本题的关键.17.如图,点O 是等边ABC 内一点,110AOB ∠=,BOC α∠=.以OC 为一边作等边三角形OCD ,连接AD .(1)若BAO CAO ∠=∠,求α的值;(2)当150α=时,试判断AOD △的形状,并说明理由;(3)探究:当α为多少度时,AOD △是等腰三角形?解析:(1) 140α= ;(2)AOD △是直角三角形,理由见解析;(3)当α为125、110、140时,AOD △是等腰三角形.【分析】(1) 延长AO 交BC 于点E ,由ABC 是等边三角形,BAO CAO ∠=∠,可知AE 垂直平分BC ,得到OB OC =,进而求出70BOE COE ∠=∠=,由此即可得到α的度数;(2)首先根据已知条件可以证明BOC ≌ADC ,得出BOC ADC ∠=∠,然后利用全等三角形的性质可以求出ADO ∠的度数,由此即可判断AOD △的形状;(3)要使AOD △是等腰三角形时,需要分三种情况讨论Ⅰ:AO AD =,Ⅱ:OA OD =,Ⅲ:OD AD =进行讨论,分别求出α的度数.【详解】解:(1)如图,延长AO交BC于点E.ABC是等边三角形,BAO CAO∠=∠,∴AE是底边BC上的中线,AE是BC上的高,即AE垂直平分BC,∴OB OC=,∴18011070BOE COE∠=∠=-=,∴=140α.(2)OCD、ABC都是等边三角形,∴OC CD=,BC AC=,60ACB OCD∠=∠=,∴ACB ACO OCD ACO∠-∠=∠-∠,即:BCO ACD∠=∠,在BOC与ADC中OC CDBCO ACDBC AC=⎧⎪∠=∠⎨⎪=⎩,∴BOC≌ADC()SAS,∴BOC ADC∠=∠,150BOCα∠==,60ODC∠=,∴1506090ADO∠=-=,∴AOD△是直角三角形.(3)如图,设1CBO CAD∠=∠=∠,2ABO∠=∠,3BAO∠=∠,4CAO∠=∠,则1260∠+∠=①,2318011070∠+∠=-=②,3460∠+∠=③,①-②+③,得:1450∠+∠=,即50DAO ∠=,Ⅰ:要使AO AD =,需AOD ADO ∠=∠,∴3601106060αα---=-,∴125α=;Ⅱ:要使OA OD =,需OAD ADO ∠=∠,∴6050α-=,∴110α=;Ⅲ:要使OD AD =,需OAD AOD ∠=∠,∴3601106050α---=,∴140α=∴当α为125、110、140时,AOD △是等腰三角形.【点睛】本题属于综合题,考查了等边三角形的性质,全等三角形的性质和判定,直角三角形的判定,等腰三角形的判定,利用分类讨论思想是解题的关键.18.(1)如图1,锐角ABC 中分别以AB AC 、为边向外作等腰ABE △和等腰ACD △,使,,AE AB AD AC BAE CAD ==∠=∠,连接BD CE 、,试猜想BD 与CE 的大小关系,并说明理由.(2)如图2,四边形ABCD 中,6cm,4cm AB BC ==,45ABC ACD ADC ︒∠=∠=∠=,求BD 的长.(3)如图3,四边形ABCD 中,,60,30,4AB BC ABC ADC AD ︒︒=∠=∠==,6BD =,求CD 的长度.解析:(1)BD CE =;证明见解析.(2)2223)5【分析】(1)首先根据角的和差、等式的性质证明∠EAC=∠BAD ,然后根据SAS 即可证明△EAC ≌△BAD ,根据全等三角形的性质即可证明;(2)在△ABC 的外部,以A 为直角顶点作等腰直角△BAE ,使∠BAE=90°,AE=AB ,连接EA 、EB 、EC ,证明△EAC ≌△BAD ,证明BD=CE ,然后在直角三角形BCE 中利用勾股定理即可求解;(3)先证明△ABC 是等边三角形,再把△ACD 绕点C 逆时针旋转60°得到△BCE ,连接DE ,则可得△CDE 是等边三角形,再证△BDE 是直角三角形,运用勾股定理求出DE 的长,从而可得CD 的长.【详解】(1)BAE CAD ∠=∠,BAE BAC CAD BAC ∴∠+∠=∠+∠,即EAC BAD ∠=∠,在EAC 与BAD 中, AE AB EAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩,(SAS)EAC BAD ∴≌,BD CE ∴=.(2)如图2,在ABC 的外部,以A 为直角顶点作等腰直角BAE △,使90,BAE AE AB ︒∠==,连接EA EB BC 、、,45ACD ADC ︒∠=∠=,,90AC AD CAD ︒∴=∠=,BAE BAC CAD BAC ∴∠+∠=∠+∠,即EAC BAD ∠=∠,在EAC 与BAD 中,AE AB EAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩,(SAS)EAC BAD ∴≌,BD CE ∴=,6AE AB ∴==,BE ∴===∠ABE =∠AEB =45°.又45ABC ︒∴∠=,454590ABC ABE ︒︒︒∴∠+∠=+=,在Rt △BCE 中,EC ∴===BD CE ∴==。
初二数学 全等三角形双等腰旋转(讲义及答案)及解析(1)

初二数学 全等三角形双等腰旋转(讲义及答案)及解析(1)一、全等三角形双等腰旋转1.如图1,在等腰ABC 中,AB AC =,BAC a ∠=,点P 是线段AB 的中点,将线段PC 绕点P 顺时针旋转α得到PD ,连接BD .(1)如图2,若60α=︒,其他条件不变,先补全图形,然后探究线段BD 和BC 之间的数量关系______(直接写结论,不必说明理由)(2)如图3,若90α=︒,其他条件不变,探究线段BP 、BD 和BC 之间的等量关系,并说明理由.(3)如图4,若120α=︒,其他条件不变,探究线段BP 、BD 和BC 之间的等量关系为______.答案:(1)图形见详解,BC=AB=2BD ;(2)BC=BD+BP ,理由见详解;(3)BC =BD+BP【分析】(1)先补全图形,再连接CD ,可得是等边三角形,从而推出BC 是PD 的垂直平分线,进而即可解析:(1)图形见详解,BC =AB =2BD ;(2)BC =BD 2BP ,理由见详解;(3)BC =BD 3BP【分析】(1)先补全图形,再连接CD ,可得CPD △是等边三角形,从而推出BC 是PD 的垂直平分线,进而即可得到结论;(2)取BC 的中点F ,连接PF ,推出BPF △是等腰直角三角形,从而得BF 2BP ,再证≌,进而即可求解;明BDP FCP≌,可得BD=CF,从而得3PF=3BP=BF,进而即可得到结论.(3)由BDP FCP【详解】解:(1)补全图形如下:BC=2BD,理由如下:连接CD,∵线段PC绕点P顺时针旋转 =60°得到PD,∴CP=DP,∠CPD=60°,∴CPD△是等边三角形,∴∠CDP=∠DCP=60°,∵点P是线段AB的中点,∠A=60°,AB=AC,∠ACB=30°,∴ABC是等边三角形,CP⊥AB,∠BCP=12∴∠BCD=60°-30°=30°,∴BC平分∠PCD,∴BC是PD的垂直平分线,∴BD=PB,即:BC=AB=2BD;(2)取BC的中点F,连接PF,∵∠A=90°,AB=AC,∴ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,△是等腰直角三角形,∴BPF∴BF2BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴BDP FCP≌,∴BD=CF,∵BC=BF+FC,∴BC=BD+2BP;(3)由第(2)题可知:BDP FCP≌,∴BD=CF,∵∠BAC=∠DPC=120°,PF∥AC,PF=12AC,又∵BP=12AB,AB=AC,∴3PF=3BP=BF,∴BC=BF+CF=BD+3BP.【点睛】本题主要考查等腰三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,添加合适的辅助线,构造全等三角形,是解题的关键.2.在等腰Rt△ABC中,AB=AC,∠BAC=90°(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF①求证:△AED≌△AFD;②当BE=3,CE=7时,求DE的长;(2)如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.答案:(1)①见解析;②DE=;(2)DE的值为3或3【分析】(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2解析:(1)①见解析;②DE=297;(2)DE的值为517【分析】(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=153.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如图1中,设DE=x,则CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=29,7∴DE=29;7(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.3.已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD)(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DE、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.答案:(1)①详见解析;②DG+DF=DP;(2)不成立,数量关系式应为:DG-DF=DP【解析】【分析】(1)①根据矩形性质证△HPG≌△DPF(ASA),得PG=PF;②由①知,△HPD为等腰直解析:(1)①详见解析;2;(2)不成立,数量关系式应为:DG-2【解析】【分析】(1)①根据矩形性质证△HPG≌△DPF(ASA),得PG=PF;②由①知,△HPD为等腰直角三角形,△HPG≌△DPF,根据直角三角形性质可得2DP;(2)过点P作PH⊥PD 交射线DA于点H,得到△HPD为等腰直角三角形,证△HPG≌△DPF,得HG=DF,DH=DG-HG=DG-DF,2DP.【详解】(1)①∵由矩形性质得∠GPF=∠HPD=90°,∠ADC=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,∴∠PDF=∠ADP=45°,∴△HPD为等腰直角三角形,∴∠DHP=∠PDF=45°,在△HPG和△DPF中,∵PHG PDF PH PDGPH FPD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△HPG≌△DPF(ASA),∴PG=PF;②结论:DG+DF=2DP ,由①知,△HPD为等腰直角三角形,△HPG≌△DPF,∴HD=2DP,HG=DF,∴HD=HG+DG=DF+DG,∴DG+DF=2DP;(2)不成立,数量关系式应为:DG-DF=2DP,如图,过点P作PH⊥PD交射线DA于点H,∵PF⊥PG,∠GPF=∠HPD=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,∴∠DHP=∠EDC=45°,且PH=PD,2DP,∴∠GHP=∠FDP=180°-45°=135°,在△HPG和△DPF中,∵GPH FPDGHP FDP PH PD∠=∠⎧⎪∠=∠⎨⎪=⎩∴△HPG≌△DPF,∴HG=DF,∴DH=DG-HG=DG-DF,∴2DP.【点睛】考核知识点:矩形性质的运用,等腰直角三角形.综合运用全等三角形判定和等腰直角三角形性质是关键.4.感知:如图①,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连结AE 、CG ,易证AED CGD ≌△△.(不需要证明)探究:将图①中正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图②.连结AE 、CG ,证明:AE=CG .应用:如图③,正方形ABCD 中,AD =3,点E 在CB 的延长线上,BE =1,DE=DF ,∠EDF =90°.直接写出点F 与点C 的距离.答案:探究:证明见解析;应用:点F 与点C 的距离为.【分析】探究:结合旋转模型,利用“边角边”证明即可得出结论;应用:连接FC ,根据前序问题中的方法证明△AED ≌△CFD ,从而得到CF=AE ,即在Rt解析:探究:证明见解析;应用:点F 与点C 10.【分析】探究:结合旋转模型,利用“边角边”证明AED CGD ≌△△即可得出结论; 应用:连接FC ,根据前序问题中的方法证明△AED ≌△CFD ,从而得到CF =AE ,即在Rt △AED 中求解AE 即可.【详解】探究:证明:在正方形ABCD 和正方形DEFG 中,AD =CD ,DE =DG ,90ADC EDG ∠=∠=︒,∴ADE CDG ∠=∠,∴AED CGD ≌△△,∴AE CG =;应用:连接FC ,∵∠EDF =∠ADC =90°,∴∠ADE =∠CDF ,又∵AD =CD ,DE=DF ,∴△AED ≌△CFD ,∴CF =AE ,在Rt △AED 中,2210AE AB BE =+=∴点F 与点C 10.【点睛】本题考查全等三角形的判定与性质,掌握基本的旋转模型,根据全等三角形的性质求解问题是解题关键.5.如图,将两块含45°角的大小不同的直角三角板△COD和△AOB如图①摆放,连结AC,BD.(1)如图①,猜想线段AC与BD存在怎样的数量关系和位置关系,请写出结论并证明;(2)将图①中的△COD绕点O顺时针旋转一定的角度(如图②),连结AC,BD,其他条件不变,线段AC与BD还存在(1)中的关系吗?请写出结论并说明理由.(3)将图①中的△COD绕点O逆时针旋转一定的角度(如图③),连结AC,BD,其他条件不变,线段AC与BD存在怎样的关系?请直接写出结论.答案:(1)AC=BD,AC⊥BD,证明见解析;(2)存在,AC=BD,AC⊥BD,证明见解析;(3)AC=BD,AC⊥BD【分析】(1)延长BD交AC于点E.易证△AOC≌△BOD(SAS),可得A解析:(1)AC=BD,AC⊥BD,证明见解析;(2)存在,AC=BD,AC⊥BD,证明见解析;(3)AC=BD,AC⊥BD【分析】(1)延长BD交AC于点E.易证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠ADE=∠BDO,可证∠AED=∠BOD=90º即可;(2)延长BD交AC于点F,交AO于点G.易证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠AGF=∠BGO,可得∠AFG=∠BOG=90º即可;(3)BD交AC于点H,AO于M,可证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠AMH=∠BMO,可得∠AHM=∠BOH=90º即可.【详解】(1)AC=BD,AC⊥BD,证明:延长BD交AC于点E.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠COA=∠BOD=90º,∴△AOC≌△BOD(SAS),∴AC=BD,∴∠OAC=∠OBD,∵∠ADE=∠BDO,∴∠AED=∠BOD=90º,∴AC⊥BD;(2)存在,证明:延长BD交AC于点F,交AO于点G.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC-∠DOA,∠BOD=∠BOA-∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AGF=∠BGO,∴∠AFG=∠BOG=90º,∴AC⊥BD;(3)AC=BD,AC⊥BD.证明:BD交AC于点H,AO于M,∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC+∠DOA,∠BOD=∠BOA+∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AMH=∠BMO,∴∠AHM=∠BOH=90º,∴AC⊥BD.【点睛】本题考查三角形旋转变换中对应相等的位置与数量关系,掌握三角形全等的证明方法,及其角度计算是解题关键.6.[发现]:(1)如图1.在△ABC中,AB=AC,∠BAC=90°,过点A作AH⊥BC于点H,求证:AH=12 BC.[拓展]:(2)如图2.在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=90°,点D、B、C在同一条直线上,AH为△ABC中BC边上的高,连接CE.则∠DCE的度数为________,同时猜想线段AH、CD、CE之间的数量关系,并说明理由.[应用]:(3)在图3、图4中.在△ABC中,AB=AC,且∠BAC=90°,在同一平面内有一点P,满足PC=1,PB=6,且∠BPC=90°,请求出点A到BP的距离.答案:(1)证明见解析;(2)∠DCE的度数为90°,CE+2AH=CD,理由见解析;(3)或.【分析】发现:根据同角的余角相等可得∠CAH=∠B,根据AAS证明三角形全等,再根据全等三角形的对应边相解析:(1)证明见解析;(2)∠DCE的度数为90°,CE+2AH=CD,理由见解析;(3)5 2或72.【分析】发现:根据同角的余角相等可得∠CAH=∠B,根据AAS证明三角形全等,再根据全等三角形的对应边相等即可得结论;拓展:证明△ADB≌△AEC,即可得∠DCE的度数为90°,线段AH、CD、CE之间的数量关系;应用:如图3,过点A作AH⊥BP于点H,连接AP,过A作AD垂直于AP,交PB于点D,可得△APC≌△ADB,得BD=CP=1,根据DP=BP-BD=6-1=5,AH⊥DP,即可得点A到BP的距离;同理如图4,过点A作AH⊥BP于点H,连接AP ,将△APC 绕点A 顺时针旋转90度到△ADB ,可得DP=BP+BD=6+1=7,进而可得点A 到BP 的距离.【详解】解:发现:(1)证明:∵AH ⊥BC ,∠BAC=90°,∴∠AHC=90°=∠BAC .∴∠BAH+∠CAH=90°,∠BAH+∠B=90°.∴∠CAH=∠B ,在△ABH 和△CAH 中,CAH B AHC BHA AB CA ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△ABH ≌△CAH .(AAS ).∴BH=AH ,AH=CH .∴AH=12BC . 拓展:∠DCE 的度数为90°,线段AH 、CD 、CE 之间的数量关系为:CE+2AH=CD ,理由如下:∵∠DAB+∠BAE=90°,∠EAC+∠BAE=90°,∴∠DAB=∠EAC ,∵AD=AE ,AB=AC ,∴△ADB ≌△AEC (SAS ),∴∠ABD=∠ACE ,∵AB =AC ,∠BAC =90°∴∠ABC=∠ACB=45°,∴∠ABD=135°,∴∠DCE=90°;∵D 、B 、C 三点共线,∴DB+BC=CD ,∵DB=CE ,AH=12BC , ∴CE+2AH=CD .应用:点A 到BP 的距离为:52或72. 理由如下:如图3,过点A 作AH ⊥BP 于点H ,连接AP ,作∠PAD=90°,交BP 于点D ,∴∠BAC=∠DAP=90°,∴∠BAD=∠CAP,∵∠BDA=∠APC=90°+∠APD,∴△APC≌△ADB(AAS),∴BD=CP=1,∴DP=BP-BD=6-1=5,∵AH⊥DP,∴AH=12DP=52;如图4,过点A作AH⊥BP于点H,作∠PAD=90°,交PB的延长线于点D,∴∠BAC=∠DAP=90°,∴∠BAD=∠CAP,∵∠BAC=90°,∠BPC=90°,∴∠ACP+∠ABP=180°,∴∠ACP=∠ABD,∵AB=AC,∴△APC≌△ADB(AAS),∴BD=CP=1∴DP=BP+BD=6+1=7.∵AH⊥DP,∴AH=12DP=72.综上所述:点A到BP的距离为:52或72.【点睛】本题考查了三角形综合题,解决本题的关键是掌握全等三角形的判定与性质.7.在ABC 中,AB AC =,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧作ADE ,使AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当点D 在线段BC 上,如果90BAC ∠=︒,则BCE ∠=______度.(2)设BAC α∠=,BCE β∠=.①如图,当点D 在线段BC 上移动时,α、β之间有怎样的数量关系?请直接写出你的结论.②如图,当点D 在线段BC 的反向延长线上移动时,α、β之间有怎样的数量关系?请说明理由.答案:(1)90;(2)①,理由见解析;②,理由见解析【分析】(1)由等腰直角三角形的性质可得∠ABC=∠ACB=45°,由“SAS”可证△BAD ≌△CAE ,可得∠ABC=∠ACE=45°,可求∠BC解析:(1)90;(2)①180αβ+=︒,理由见解析;②αβ=,理由见解析【分析】(1)由等腰直角三角形的性质可得∠ABC=∠ACB=45°,由“SAS”可证△BAD ≌△CAE ,可得∠ABC=∠ACE=45°,可求∠BCE 的度数;(2)①由“SAS”可证△ABD ≌△ACE 得出∠ABD=∠ACE ,再用三角形的内角和即可得出结论;②由“SAS”可证△ADB ≌△AEC 得出∠ABD=∠ACE ,再用三角形外角的性质即可得出结论.【详解】(1)∵AB=AC ,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DAE=∠BAC ,∴∠BAD=∠CAE ,在△BAD 和△CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS )∴∠ABC=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;(2)①180αβ+=︒.理由:∵∠BAC=∠DAE ,∴∠BAC-∠DAC=∠DAE-∠DAC .即∠BAD=∠CAE .在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠B=∠ACE .∴∠B+∠ACB=∠ACE+∠ACB .∵∠ACE+∠ACB=β,∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;② 当点D 在射线BC 的反向延长线上时,αβ=.理由如下:∵DAE BAC ∠=∠,∴DAB EAC ∠=∠,在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△≌△ADB AEC(SAS), ∴ABD ACE ∠=∠,∵ABD BAC ACB ∠=∠+∠,ACE BCE ACB ∠=∠+∠,∴BAC ABD ACB ∠=∠-∠,BCE ACE ACB ∠=∠-∠,∴BAC BCE ∠=∠,即αβ=.【点睛】此题考查了全等三角形的判定和性质,等腰直角三角形的性质,三角形的内角和定理,以及三角形外交的性质,证明△ABD ≌△ACE 是解本题的关键.8.在Rt △ABC 中,AB=AC,D 为BC 边上一点(不与点B,C 重合),将线段AD 绕点A 逆时针旋转90°得到AE.(1)连接EC ,如图①,试探索线段BC ,CD ,CE 之间满足的等量关系,并证明你的结论;(2)连接DE ,如图②,求证:BD 2+CD 2=2AD 2(3)如图③,在四边形ABCD 中,∠ABC=∠ACB=∠ADC=45°,若BD=13,CD=1,则AD 的长为 ▲ .(直接写出答案)答案:(1)BC=DC+EC ,理由见解析;(2)见解析;(3)【分析】(1)根据本题中的条件证出△BAD ≌△CAE (SAS ), 得到BD=CE,再根据条件即可证出结果.(2)由(1)中的条件可得∠ 解析:(1)BC=DC+EC ,理由见解析;(2)见解析;(36【分析】(1)根据本题中的条件证出△BAD ≌△CAE (SAS ), 得到BD=CE,再根据条件即可证出结果. (2)由(1)中的条件可得∠DCE=∠ACE+∠ACB=90°, 所以CE 2+CD 2=ED 2,可推出BD 2+CD 2=2ED ,再根据勾股定理可得出结果.(3)作AE ⊥AD,使AE=AD ,连接CE,DE,可推出△BAD ≌△CAE (SAS ),所以13再根据勾股定理求得DE.【详解】解:(1)结论:BC=DC+EC理由:如图①中,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CAE (SAS );∴BD=CE,∴BC=BD+CD=EC+CD,即:BC=DC+EC.(2)BD 2+CD 2=2AD 2,理由如下:连接CE,由(1)得,△BAD ≌△CAE,∴BD=CE ,∠ACE=∠B,∴∠DCE=∠ACE+∠ACB=90°,∴CE 2+CD 2=ED 2,即:BD 2+CD 2=ED 2;在Rt △ADE 中,AD 2+AE 2=ED 2,又AD=AE,∴ED 2=2AD 2;∴BD 2+CD 2=2AD 2; (3)AD 的长为6(学生直接写出答案).作AE ⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD 与△CAE 中,AB=AC ,∠BAD=∠CAE ,AD=AE.∴△BAD ≌△CAE (SAS ),∴BD=CE=13, ∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE 2=CE 2-CD 2=(13)2-12=12,∴DE=23,∵∠DAE=90°,AD 2+AE 2=DE 2,∴AD=6.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.9.在直线上次取A ,B ,C 三点,分别以AB ,BC 为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D ,E .(1)如图①,连结CD ,AE ,求证:CD AE =;(2)如图②,若1AB =,2BC =,求DE 的长;(3)如图③,将图②中的正三角形BEC 绕B 点作适当的旋转,连结AE ,若有222DE BE AE +=,试求∠DEB 的度数.答案:(1)见解析;(2);(3)∠DEB =30°.【分析】(1)欲证明CD =AE ,只要证明△ABE ≌△DBC 即可;(2)如图②,取BE 中点F ,连接DF ,首先证明△DBF 是等边三角形,然后证明△BD解析:(1)见解析;(2)3DE =3)∠DEB =30°.【分析】(1)欲证明CD =AE ,只要证明△ABE ≌△DBC 即可;(2)如图②,取BE 中点F ,连接DF ,首先证明△DBF 是等边三角形,然后证明△BDE 是直角三角形,再利用勾股定理计算即可;(3)如图③,连接DC ,先证明△ABE ≌△DBC ,再利用勾股定理的逆定理证明△DEC 是直角三角形,得到∠DEC =90°即可解决问题.【详解】解:(1)∵△ABD 和△ECB 都是等边三角形,∴AD =AB =BD ,BC =BE =EC ,∠ABD =∠EBC =60°,∴∠ABE=∠DBC,在△ABE和△DBC中,AB BDABE DBC BE BC=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△DBC(SAS),∴CD=AE;(2)如图②,取BE中点F,连接DF,∵BD=AB=1,BE=BC=2,∠ABD=∠EBC=60°,∴BF=EF=1=BD,∠DBF=60°,∴△DBF是等边三角形,∴DF=BF=EF,∠DFB=60°,∵∠BFD=∠FED+∠FDE,∴∠FDE=∠FED=30°∴∠EDB=180°−∠DBE−∠DEB=90°,∴DE =2222213BE BD;(3)如图③,连接DC,∵△ABD和△ECB都是等边三角形,∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中,AB BDABE DBC BE BC=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△DBC(SAS),∴AE=DC,∵DE2+BE2=AE2,BE=CE,∴DE2+CE2=CD2,∴∠DEC=90°,∵∠BEC=60°,∴∠DEB=∠DEC−∠BEC=30°.【点睛】本题考查了全等三角形的判定和性质、勾股定理以及勾股定理逆定理、等边三角形的性质等知识,寻找全等三角形是解决问题的关键,要学会添加辅助线的方法,属于中考常考题型.10.ABD ∆和BEP ∆都是等腰直角三角形,90BAD BEP ∠=∠=︒,O 为BD 中点 (1)若P 、E 分别在AB 、BD 上,如图所示,求证:2AP OE =; (2)将如图所示中BEP ∆绕B 点顺时针旋转45︒,如图所示,问(1)中的结论是否仍然成立?请说明理由;(3)将如图所示中BEP ∆绕B 点顺时针旋转到如图所示,问(1)中的结论是否仍然成立?请说明理由.答案:(1)见解析;(2)仍然成立,理由见解析.【解析】【分析】(1)根据等腰三角形的两直角边相等,和勾股定理求得BP 、OB 的值.则易证AP 与OE 的数量关系;(2)将图1中的△BPE 绕B 点顺时针旋解析:(1)见解析;(2)仍然成立,理由见解析.【解析】【分析】(1)根据等腰三角形的两直角边相等,和勾股定理求得BP 、OB 的值.则易证AP 与OE 的数量关系;(2)将图1中的△BPE 绕B 点顺时针旋转45゜,问(1)中的结论成立,通过证明△BOA ∽△BEP ,即可得到问题答案.【详解】(1)证明:∵△ABD 为等腰直角三角形,∠BAD=∠BEP=90゜,∴设AB=AD=a ,则2.又∵点O 为BD 的中点,∴OB=12a .同理,设EP=BE=b ,则b .∴b ,OE=OB-BE=2a-b ,则AP OE ==,∴;(2)∵△BEP 是等腰直角三角形,∴∠B=∠BPE=45°,∵△ABD 是等腰直角三角形,O 是BD 的中点,∴AO ⊥BD ,∴∠BOA=∠BEP=90°,∠BAO=180°-∠BOA-∠B=45°,∴△BOA ∽△BEP ,∵BP BABE BO ==∴BPBABE BO ==∴.方法二(1)连结AO ,过P 作PC AO ⊥,垂足为CABD ∆是等腰直角三角形,90BAD ∠=︒,O 为BD 中点ABO ∴∆是等腰直角三角形 PC AO ⊥APC ∴∆是等腰直角三角形 四边形PCOE 为矩形OE PC ∴=AP =AP ∴=(2)在AB 上取点F ,使AF BE =,连结FO ,FE ,AO由条件知四边形AFEP 为平行四边形 AP FE ∴=AO BO = OAF OBE ∠=∠ FAO EBO ∴∆≅∆FO EO ∴=,AOF BOE ∠=∠ 90FOE ∴∠=︒FE ∴=AP =(3)作MO EO ⊥,且使MO EO =,连结AM ,ME ,AOMOE ∴∆为等腰直角三角形,又AOB ∆为等腰直角三角形AMO BEO ∴∆≅∆ AM BE ∴= 易证AM BE ⊥,AM PE ∥又BE PE =,AM PE ∴= ∴四边形AMEP 为平行四边形AP ME ∴= 在等腰直角三角形MOE中,ME =AP ∴=【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质以及相似三角形的判定和性质,题目的综合性很强难度不小.二、全等三角形手拉手模型11.如图,AOB 和COD △都是以O 为直角顶点的等腰直角三角形,连接AC ,BD . (1)如图1,试判断AC 与BD 的数量关系和位置关系,并说明理由.(2)如图2,若点D 哈好在AC 上,且D 为AC 的中点,5AB =,求BOD 的面积.(3)如图3,设AC 与BD 的交点为E ,若AE CE =,60AOD ∠=︒,4AB =,求CD 的长.解析:(1)AC BD =,AC BD ⊥,见解析;(2)12BOD S =△;(3)252CD =-.【分析】(1) 结论: AC=BD ,AC ⊥BD .如图1中,设AC 交BD 于K ,OA 交BD 于 E .证明△AOC ≌△BOD (SAS )即可解决问题.(2)如图2中,作OH ⊥CD 于H .首先证明OH=DH=CH ,设OH=DH=CH=m ,构建方程求出m 即可解决问题.(3)如图3中,连接BC ,作BH ⊥CO 交CO 的延长线于H .依次求出OB ,OH ,BH ,CH ,再求出 OC 即可解决问题.【详解】(1)如图,设AC 交BD 于点K ,OA 交BD 于点E ,图1所以90DOC AOB ∠=∠=︒,∴AOC BOD ∠=∠,∴OA OB =,OC OD =,∴AOC △≌BOD (SAS ),∴AC BD =,OAC OBD ∠=∠,∴90OBD BEO ∠+∠=°,BEO AEK ∠=∠,∴90OAC AEK ∠+∠=°,∴90AKB ∠=︒,∴AC BD ⊥.(2)如图,作OH CD ⊥于点H ,图2∵OD OC =,90COD ∠=︒,OH CD ⊥,∴OH DH CH ==,设OH DH CH m ===,则2CD AD m ==, ∵5AB =,OA OB =,90AOB ∠=︒,∴102OA =, 在Rt AOH 中,∵222OA OH AH =+,∴()2221032m m ⎛⎫+= ⎪ ⎪⎝⎭, 解得12m =或12m =-(舍), ∴12OH =,2AC =, ∵AOC △≌BOD ,111122222BOD AOC S S AC OH ==⋅⋅=⨯⨯=△△. (3)如图,连接BC ,图3作BH OC ⊥交CO 的延长线于点H ,∵OA OB =,90AOB ∠=︒,4AB =, ∴22OA OB ==, ∵AC BD ⊥,AE EC =,∴4AB BC ==,∵60AOD ∠=︒,90AOB COD ∠=∠=︒,∴120COB ∠=︒,∴18060BOH BOC ∠=-∠=°°,∴122OH OB ==,6BH =, 在Rt BCH 中,()22224610CH BC BH =-=-=,∴102OC CH OH =-=-,∵2=CD OC ,∴252CD =-.【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质,勾股定理,30°角的直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.12.如图,ABC ∆和BDE ∆都是等边三角形,点,E F 分别在,AB BC 边上,60DAF ︒∠=,(1)求证:.ABD ACF ∆≅∆(2)判断四边形DFCE 的形状.解析:(1)见解析;(2)平行四边形【分析】(1)由ABC ∆和BDE ∆都是等边三角形得到,60AB AC ABD ACB BAC ︒=∠=∠=∠=,根据60DAF ︒∠=推出DAB CAF ∠=∠,即可证得结论;(2)根据△ABD ≌△ACF 得到BD=CF ,再根据等边三角形的性质得到,3560BD DE ︒=∠=∠=,推出,//DE FC DE FC =即可得到结论.【详解】证明:(1)ABC ∆和BDE ∆是等边三角形,,60AB AC ABD ACB BAC ︒∴=∠=∠=∠=,∵60DAF ︒∠=,∴DAB CAF ∠=∠,∴△ABD ≌△ACF (ASA );(2)四边形DFCE 是平行四边形.理由如下:∵△ABD ≌△ACF ,∴.BD CF =又BDE ABC ∆∆,是等边三角形,,3560BD DE ︒∴=∠=∠=.,//.DE FC DE FC ∴=∴四边形DFCE 是平行四边形.【点睛】此题考查等边三角形的性质,三角形全等的判定及性质,内错角相等两直线平行的判定定理,证明四边形是平行四边形.13.如图,已知四边形ABCD 和四边形CEFG 都是正方形,且AB CE >,连接,BG DE .(1)求证:BG DE =;(2)连接BD ,若CG //BD ,BG BD =,求BDE ∠的度数.解析:(1)见解析;(2)60BDE ∠=︒.【分析】(1)结合正方形的性质利用SAS 证明BCG DCE ∆≅∆,进而可证明结论;(2)连接BE ,通过证明BCG BCE ∆≅∆可得BDE ∆为等边三角形,进而求解.【详解】(1)证明:∵四边形ABCD 和四边形CEFG 是正方形,∴,,90BC DC CG CE BCD GCE ==∠=∠=︒,∴BCD DCG GCE DCG ∠+∠=∠+∠,∴BCG DCE ∠=∠,在BCG ∆和DCE ∆中,BC DC BCG DCE CG CE =⎧⎪∠=∠⎨⎪=⎩∴()BCG DCE SAS ∆≅∆,∴BG DE =;(2)连接BE ,∵//CG BD ,∴45DCG BDC ∠=∠=︒,∴9045135BCG BCD DCG ∠=∠+∠=︒+︒=︒,∵90GCE ∠=︒,∴36036013590135BCE BCG GCE ∠=︒-∠-∠=︒-︒-︒=︒∴BCG BCE ∠=∠.在BCG ∆和BCE ∆中BC BC BCG BCE CG CE =⎧⎪∠=∠⎨⎪=⎩∴()ΔΔBCG BCE SAS ≅,∴BG BE =,∵由(1)可知BG DE =,∴BD BE DE ==,∴BDE ∆为等边三角形,∴60BDE ∠=︒.【点睛】本题主要考查正方形的性质,全等三角形的性质与判定,等边三角形的判定与性质,能证明相关三角形全等是解题的关键.14.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD 中,,AB AD CB CD ==,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD 的对角线,AC BD 交于点O ,AC BD ⊥. 试证明:2222AB CD AD BC +=+;(3)解决问题:如图3,分别以Rt ACB △的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连结,,CE BG GE .已知30,1CAB CB ∠=︒=,求GE 的长.解析:(1)是,理由见解析; (2)见解析;(313【分析】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.【详解】解:(1)是理由:=AD AB ,∴A 在BD 的垂直平分线上.∵CD CB =, ∴C 在BD 的垂直平分线上.∴AC 垂直平分BD .∴四边形ABCD 为垂美四边形.(2)如图2,连接AC 和BD ,AC BD ,222AH AO BO ∴=+,222DC CO CO =+,222AD AO DO =+,222BC BO CO =+.222222AB DC AO BO CO DO ∴+=+++.222222BC AD BO CO AO DO +=+++.2222AB DC BC AD ∴+=+;(3)连接CG 、BE ,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC ,即∠GAB=∠CAE ,在△GAB 和△CAE 中,AG AC GAB CAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴△GAB ≌△CAE (SAS ),∴∠ABG=∠AEC ,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE ⊥BG ,∴四边形CGEB 是垂美四边形,由(2)得,CG 2+BE 2=CB 2+GE 2,∵30,1CAB CB ∠=︒=,∴AC=3,AB=2,CG=6,BE=22,∴GE 2=CG 2+BE 2-CB 2=13,∴GE=13.【点睛】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.15.已知:点O 是平行四边形ABCD 两条对角线的交点,点P 是AC 所在直线上的一个动点(点P 不与点A 、C 重合),分别过点A 、C 向直线BP 作垂线,垂足分别为E 、F(1)如图1,当点P 与点O 重合时,求证:OE=OF(2)直线BP 绕点B 逆时针方向旋转,当∠OFE=30︒时,有OE=OF ,如图2,线段CF 、AE 、OE 之间有怎样的数量关系?给出证明.(3)当点P 在图3位置,且∠OFE=30︒时,线段CF 、AE 、OE 之间有怎样的数量关系?(直接写出结论,无需证明.解析:(1)证明见解析;(2)证明见解析;(3)CF=OE-AE.【解析】【分析】(1)由△AOE ≌△COF 即可得出结论.(2)图2中的结论为:CF=OE+AE ,延长EO 交CF 于点G ,只要证明△EOA ≌△GOC ,△OFG 是等边三角形,即可解决问题.(3)图3中的结论为:CF=OE-AE ,延长EO 交FC 的延长线于点G ,证明方法类似.【详解】(1)∵AE PB CF BP P O ⊥⊥,,与重合∴AEO CFO 90∠∠==︒∵四边形ABCD 是平行四边形,O 为对角线交点∴AO=CO ,在△AEO 和△CFO 中,AEO CFO EOA FOC AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEO ≅△CFO (AAS )∴OE=OF(2)延长EO 交CF 于点G ,如图所示,则可得EOA GOC ∠∠=∵AE PB CF BP ⊥⊥,∴AE ∥CF∴EAO GCO ∠∠=又∵O 为对角线交点∴AO=CO在△AEO 和△CGO 中,EOA GOC AO COEAO GCO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEO ≅△CGO (ASA )∴OE=OG ,AE=CG在Rt △EFG 中,OE=OG ,∴点O 为Rt △EFG 斜边EG 的中点,故OF=OE=OG=12EG ∴∠OFE=∠OEF=30° ∴∠OFG=∠EFG -∠OFE=90°-30°=60°又∵OF=OG∴△OFG 为等边三角形故GF=OF=OE∵CF=CG+GF∴CF=CG+GF =AE+OE(3)延长EO 、FC 交于点G ,如图所示,∵AE PB CF BP ⊥⊥,∴AE ∥CF∴AEO G ∠∠=又∵O 为对角线交点∴AO=CO在△AEO 和△CGO 中,EOA GOC AEO G AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEO ≅△CGO (AAS )∴OE=OG ,AE=CG在Rt △EFG 中,OE=OG ,故点O为Rt三角形EFG斜边EG的中点,∴OF=OE=OG=1EG2∵∠OEF=30°∴∠OFE=∠OEF=30°即∠OFG=∠EFG-∠EFO=90°-30°=60°又∵OF=OG∴△OFG为等边三角形∴GF=OF=OG=OE∵CF=GF-CG∴CF=OE-AE【点睛】本题考查四边形综合题、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.16.小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若△ABC和△ADE均是顶角为40°的等腰三角形,BC、DE分别是底边,求证:BD=CE;(2)拓展探究:如图2,若△ACB和△DCE均为等边三角形,点A、D、E在同一条直线上,连接BE,则∠AEB的度数为;线段BE与AD之间的数量关系是;(3)解决问题:如图3,若△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系并说明理由.解析:(1)见解析;(2)60°,BE=AD;(3)∠AEB=90°,AE=BE+2CM,理由见解析【分析】(1)先判断出∠BAD=∠CAE,进而利用SAS判断出△BAD≌△CAE,即可得出结论;(2)同(1)的方法判断出△BAD≌△CAE,得出AD=BE,∠ADC=∠BEC,最后用角的差,即可得出结论;(3)同(2)的方法,即可得出结论.【详解】解:(1)∵△ABC和△ADE均是顶角为40°的等腰三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=CE;(2)∵△ABC和△ADE均是等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=∠CDE=∠CED=60°,∴∠ACB﹣∠BCD=∠DCE﹣∠BCD,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,∵∠CDE=60°,∴∠BEC=∠ADC=180°﹣∠CDE=120°,∵∠CED=60°,∴∠AEB=∠BEC﹣∠CED=60°,故答案为:60°,BE=AD;(3)AE=BE+2CM,理由:同(1)(2)的方法得,△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,∵△CDE是等腰直角三角形,∴∠CDE=∠CED=45°,∴∠ADC=180°﹣∠CDE=45°,∴∠BEC=∠ADC=135°,∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°,∵CD=CE,CM⊥DE,∴DM=ME,∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD≌△BCE是解本题的关键.△和BCE,连接AE与CD,试解决17.在直线AB的同一侧作两个等边三角形ABD下列问题:(1)求证:AE DC =;(2)求DHA ∠的度数;(3)连接GF ,试判断BGF 形状.解析:(1)见解析;(2)60DHA ∠=︒;(3)BGF 是等边三角形.【分析】(1)从ABD △和BCE ∆是等边三角形中寻找条件证明(SAS)ABE DBC ≌,然后利用全等三角形的性质即可证明;(2)由ABE DBC ≌可得BAE BDC ∠=∠,再由外角的性质可得DHA BAE DCB ∠=∠+∠,然后根据等量代换即可证明;(3)先证明(ASA)ABG DBF ≅得到BG BF =,然后结合60DBE ∠=︒即可说明BGF 是等边三角形.【详解】(1)证明:ABD 和BCE 都是等边三角形,BA BD ∴=,BE BC =,60ABD CBE ∠=∠=︒.180606060DBE ∠=︒-︒-︒=︒,120ABE DBC ∴∠=∠=︒.在ABE △和DBC △中,120AB DB ABE DBC BE BC =⎧⎪∠=∠=︒⎨⎪=⎩,(SAS)ABE DBC ∴≌,AE DC ∴=;(2)解:ABE DBC ≌,BAE BDC ∴∠=∠.又DHA BAE DCB ∠=∠+∠,∴DHA BDC DCB ∠=∠+∠180DBC =︒-∠60=︒;(3)解:由(1)知ABE DBC ≌,BAE BDC ∴∠=∠.在ABG 和DBF 中,60ABD DBE AB DBEAB CDB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, (ASA)ABG DBF ∴≅,BG BF ∴=.60DBE ∠=︒, ∴BGF 是等边三角形.【点睛】本题主要考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质等知识点,灵活应用相关知识点成为解答本题的关键.18.如图,AC BC ⊥,DC EC ⊥,AC BC =,DC EC =,AE 与BD 交于点F .(1)请问AE BD =吗?请说明理由;(2)请判断AE 与BD 的位置关系,并说明理由.解析:(1)AE BD =,证明见解析;(2)AE BD ⊥,证明见解析.【分析】(1)根据旋转模型,利用SAS 证明ACE BCD ≅即可得出结论;(2)由全等三角形性质可得E D ∠=∠,利用三角形内角和证明90ECD EFD ∠=∠=︒即可得出结论.【详解】解:(1)AE BD =,证明如下:∵AC BC ⊥,DC EC ⊥,∴90ACB ECD ∠=∠=︒,∴ACB BCE ECD BCE ∠+∠=∠+∠,∴ACE BCD ∠=∠,在ACE △和BCD △中,AC BC ACE BCD EC DC =⎧⎪∠=∠⎨⎪=⎩,∴ACE BCD ≅(SAS ),∴AE BD =;(2)AE BD ⊥,理由如下:。
初中数学破题致胜微方法(等腰直角三角形中的手拉手模型)等腰直角三角形手拉手的旋转

等腰直角三角形手拉手的旋转例:已知,在△ABC 中,∠BAC=90°,AB=AC,点D 在直线BC 上一动点(点D 不与B 、C 重合),以AD 为边作正方形ADEF ,连接CF ,如图,当点D 在线段BC 上时,求证:(1)CF=BD;(2)CF ⊥BD;分析:根据等腰直角三角形的性质求出∠ABC=∠ACB=45°,正方形的性质可得AD=AF, ∠DAF=90°,然后利用同角的余角相等求出∠BAD=∠CAF ,再利用“边角边”证明△ABD 和△ACF 全等,根据全等三角形对应边相等可得CF=BD ,全等三角形的对应角相等可得∠ACF=∠ABD ,然后求出∠BCF==90°,再根据垂直的定义证明即可.证明:(1)∵∠BAC=90°,AB=AC ,∴∠ABC=∠ACB=45°,∵四边形ADEF 是正方形,∴AD=AF,∠DAF==90°,∵∠BAD+∠CAD=∠BAC=90°,∠CAF+∠CAD=∠DAF=90°,∴∠BAD=∠CAF,在△ABD 和△ACF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACF ,所以CF=BD.(2)∠ACF=∠ABD,∴∠BCF=∠ACB+∠ACF=45°+45°=90°,∴CF ⊥BD;总结:(1)两个相似的共直角顶点的等腰直角三角形,旋转所形成的全等三角形相对孤立的边的关系是垂直且相等,如图,△BCD ≌△ECA ,则AE=BD.AE ⊥BD,(2)延伸:两个共顶点的全等三角形旋转90°时,对应的孤立边的位置关系是垂直且相等,如图,BC=DE.BC⊥DE.练习:1.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD 分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由2.如图,已知F是正方形ABCD中BC边上一点,延长AB到E,使得BE=BF,试用旋转的性质说明:AF=CE且AF⊥CE.3.(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.①当点D在AC上时,如下面图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;②将下面图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如下面图2,线段BD、CE 有怎样的数量关系和位置关系?请说明理由.(2)当△ABC和△ADE满足下面甲、乙丙中的哪个条件时,使线段BD、CE在(1)中的位置关系仍然成立?不必说明理由.甲:AB︰AC=AD︰AE=1,∠BAC=∠DAE≠90°;乙:AB︰AC=AD︰AE≠1,∠BAC=∠DAE=90°;丙:AB︰AC=AD︰AE≠1,∠BAC=∠DAE≠90°.1.2100027377分析:由于条件可知CD=AC,BC=CE,且可求得∠ACE=∠DCB,所以△ACE≌△DCB,即AE=BD,∠CAE=∠CDB;又因为对顶角相等即∠AFC=∠DFH,所以∠DHF=∠ACD=90°,即AE⊥BD.解:猜测AE=BD,AE⊥BD;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,又∵△ACD和△BCE都是等腰直角三角形,∴AC=CD,CE=CB,在△ACE 与△DCB 中,AC DC ACE DCB EC BC =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△DCB(SAS),∴AE=BD ,∠CAE=∠CDB ;∵∠AFC=∠DFH ,∠FAC+∠AFC=90°,∴∠DHF=∠ACD=90°,∴AE ⊥BD . 2.3. 分析:(1)①BD=CE ,BD ⊥CE .根据全等三角形的判定定理SAS 推知△ABD ≌△ACE ,然后由全等三角形的对应边相等证得BD=CE 、对应角相等∠ABF=∠ECA ;然后在△ABD 和△CDF 中,由三角形内角和定理可以求得∠CFD=90°,即BD ⊥CF ;②BD=CE ,BD ⊥CE .根据全等三角形的判定定理SAS 推知△ABD ≌△ACE ,然后由全等三角形的对应边相等证得BD=CE 、对应角相等∠ABF=∠ECA ;作辅助线(延长BD 交AC 于F ,交CE 于H )BH 构建对顶角∠ABF=∠HCF ,再根据三角形内角和定理证得∠BHC=90°;(2)根据结论①、②的证明过程知,∠BAC=∠DFC (或∠FHC=90°)时,该结论成立了,所以本条件中的∠BAC=∠DAE≠90°不合适.解:(1)①结论:BD=CE ,BD ⊥CE ;②结论:BD=CE ,BD ⊥CE…1分理由如下:∵∠BAC=∠DAE=90°∴∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE∵AB=AC ,AD=AE ,∴△ABD ≌△ACE (SAS ).∴BD=CE ,延长BD交AC于F,交CE于H.在△ABF与△HCF中,∵∠ABF=∠HCF,∠AFB=∠HFC∴∠CHF=∠BAF=90°∴BD⊥CE.(2)结论:乙.AB:AC=AD:AE,∠BAC=∠DAE=90°。
2023暑假初三A第4讲旋转

模块2 半角模型
“半角”旋转模型
“半角”旋转模型,经常会出现在等腰直角三角形、正方形中,在
一般的等腰三角形中也会有涉及.
例8
如图所示,在等腰直角 ABC 的斜边 AB 上取两点 M 、 N ,使
A
C'
B'
例3
如图, P 是正三角形 ABC 内的一点,且 PA 6 , PB 8 ,
PC 10 .若将 PAC 绕点 A 顺时针旋转后,得到 P ' AB ,则点 P
与点 P ' 之间的距离为______, APB ________.
A
P'
P
B
C
例4
如图, P 是等边 ABC 内一点,若 AP 3 ,PB=4, PC 5 ,求:
分别交 AC,AB 于点 E,F.
(1)试判断直线 BC 与⊙O 的位置关系,并说明理由;
作业3
(2)若 BD=2 3,BF=2,求阴影部分的面积(结果保留 π)
.
作业4
如图,在矩形 ABCD 中,E 是 AD 上一点,PQ 垂直平分 BE,分
别交 AD、BE、BC 于点 P、O、Q,连接 BP、EQ.
线段 PM 与 PN 的数量关系是
位置关系是
;
,
附加题
(2)探究证明:
把△ADE 绕点 A 逆时针方向旋转到图 2 的位置,连接 MN,
BD,CE,判断△PMN 的形状,并说明理由;
附加题
(3)拓展延伸:
把△ADE 绕点 A 在平面内自由旋转,若 AD=4,AB=10,请直
接写出△PMN 面积的最大值.
专题19 等腰旋转问题(原卷版)-2021年中考数学二轮复习经典问题专题训练

专题19 等腰旋转问题【规律总结】等腰直角三角形在旋转变换下的探究性问题,是近几年中考数学命题的热点,其探究过程常与三角形的全等和相似、勾股定理、正方形的性质以及函数方程等知识有关,是一类对能力要求较高的问题。
具体归纳为以下几种类型进行分析.一、90°角绕直角顶点旋转二、90°角绕斜边中点旋转三、45°角绕直角顶点旋转四、45°角绕斜边中点旋转【典例分析】例1.(2021·上海九年级专题练习)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,当A,D,M为同一直角三角形的顶点时,AM的长为____;(2)若摆动臂AD顺时针旋转90°,点D的位置由ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,BD2的长为_____.【答案】【分析】(1)由题意DM不是最长边,所以∠MAD不能为直角.当∠AMD为直角时,根据222AM AD DM =-,计算即可,当∠ADM=90°时,根据222AM AD DM =+,计算即可. (2)连接1CD .首先利用勾股定理求出1CD ,再利用全等三角形的性质证明21BD CD =即可.【详解】解:(1)由题意DM 不是最长边,所以∠MAD 不能为直角.当∠AMD 为直角时,222223010800AM AD DM ==--=,∠AM =-舍弃).当∠ADM=90°时,2222230101000AM AD DM =+=+=,∠AM=或(-.综上所述,满足条件的AM 的值为.(2)如图2中,连接1CD ,由题意:1290D AD ∠=︒,1230AD AD ==,∠211245AD D D D ∠=︒=,∠2135AD C ∠=︒,∠2190CD D ∠=︒,∠1CD == ∠∠BAC=1290D AD ∠=︒,∠2212BAC CAD D AD CAD ∠-∠=∠-∠,∠21BAD CAD ∠=∠,∠AB=AC ,21AD AD =,∠21BAD CAD ≌(SAS ),∠21BD CD ==.故答案为:(1),(2)【点睛】本题属于四边形综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.例2.(2021·沙坪坝区·重庆一中八年级期末)如图,在直角ABC 中,90BAC ∠=︒,点D 是BC 上一点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接DE 交AC 于点M .(1)如图1,若2,30,AB C AD BC =∠=︒⊥,求CD 的长;(2)如图2,若45ADB ∠=︒,点N 为ME 上一点,12MN BC =,求证:AN EN CD =+; (3)如图3,若30C ∠=︒,点D 为直线BC 上一动点,直线DE 与直线AC 交于点M ,当ADM △为等腰三角形时,请直接写出此时CDM ∠的度数.【答案】(1)3;(2)见解析;(3)60︒或15︒或37.5︒【分析】(1)根据含30°角的直角三角形的性质可得BC=2AB=4,BD=12AB=1,即可得出CD 的长; (2)在BD 上截取DF=EN ,可证出AEN ADF △≌△,由全等三角形的性质得AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠,可得出,MAN BAF ANM AFB ∠=∠∠=∠,则AMN ABF △≌△,可得12BF MN BC ==,即F 是BC 的中点,可得出AN=AF=FC=DF+CD=EN+CD ;(3)由题意可得AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,分三种情况:①AM=MD ,②AM=AD ,③AD=MD ,根据等腰三角形的性质求出AMD ∠的度数,再根据三角形外角的性质即可求解.【详解】解:(1)∠90BAC ∠=︒,2,30AB C =∠=︒,∠BC=2AB=4,60B ∠=︒,∠AD BC ⊥∠90,30ADB BAD ∠=︒∠=︒, ∠BD=12AB=1, ∠CD =BC -BD=4-1=3;(2)证明:如图2,在BD 上截取DF=EN ,∠把AD 绕点A 逆时针旋转90°,得到AE ,∠AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,∠45ADB ∠=︒,∠45ADF AEN ∠=∠=︒,∠AEN ADF △≌△,∠AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠,∠90EAD ∠=︒,EAN DAF ∠=∠,∠90NAF ∠=︒,∠90BAC ∠=︒,ANE AFD ∠=∠,∠,MAN BAF ANM AFB ∠=∠∠=∠,∠AN=AF ,∠AMN ABF △≌△, ∠12BF MN BC ==,即F 是BC 的中点, ∠AF=FC=DF+CD=EN+CD ,∠AN=AF ,∠AN EN CD =+;(3)解:由题意可得AD=AE ,90EAD ∠=︒,∠45EDA AED ∠=∠=︒,分三种情况:①AM=MD 时,∠AM=MD ,∠45EDA MAD ∠=∠=︒,∠90AMD ∠=︒,∠30C ∠=︒,∠CDM AMD C ∠=∠-∠=60︒;②AM=AD 时,∠AM=AD ,∠45EDA AMD ∠=∠=︒,∠30C ∠=︒,∠CDM AMD C ∠=∠-∠=15︒;③AD=MD 时,∠AD=MD ,∠AMD MAD ∠=∠,∠45EDA ∠=︒, ∠1804567.52AMD MAD ︒-︒∠=∠==︒, ∠30C ∠=︒,∠CDM AMD C ∠=∠-∠=37.5︒.∠当ADM △为等腰三角形时,CDM ∠的度数为60︒或15︒或37.5︒.【点睛】本题主要考查了几何变换综合题,需要熟练掌握旋转的性质,直角三角形的性质,直角三角形斜边上中线的性质以及全等三角形的判定与性质,等腰三角形的性质,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题.【好题演练】一、单选题1.(2021·上海九年级专题练习)如图,正方形ABCD 的边长是2,对角线AC 、BD 相交于点O ,点E 、F 分别在边AD 、AB 上,且OE ∠OF ,则四边形AFOE 的面积是( )A .4B .2C .1D .12二、填空题 2.(2020·江苏苏州市·九年级一模)如图,折线AB BC -中,3AB =,5BC =,将折线AB BC -绕点A 按逆时针方向旋转,得到折线AD DE -,点B 的对应点落在线段BC 上的点D 处,点C 的对应点落在点E 处,连接CE ,若CE BC ⊥,则tan EDC ∠=_____°.3.(2019·江苏南京市·八年级期末)如图,在平面直角坐标系xOy 中,A,B 两点分别在x 轴,y 轴的正半轴上,且OA=OB ,点C 在第一象限,OC=3,连接BC ,AC ,若∠BCA=90°,则BC+AC 的值为_________.三、解答题4.(2020·湖北孝感市·九年级期中)正方形ABCD 的四个顶点都在∠O 上,E 是∠O 上的一点. (1)如图1,若点E 在AB 上,F 是DE 上的一点,DF =BE .①求证:ADF ∠ABE ;②求证:DE ﹣BE AE .(2)如图2,若点E 在AD 上,直接写出线段DE 、BE 、AE 之间的等量关系.5.(2021·上海九年级专题练习)如图1,等腰Rt ABC 中,90A ∠=︒,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是______,位置关系是______.(2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若8AD =,20AB =,请直接写出PMN 面积的最大值.5.(2020·湖北武汉市·九年级期中)(问题背景)(1)如图1,Р是正三角形ABC 外一点,30APB ∠=,则222PA PB PC +=?小明为了证明这个结论,将PAB ∆绕点A 逆时针旋转60,请帮助小明完成他的作图;(迁移应用)(2)如图2,在等腰Rt ABC ∆中,,90BA BC ABC =∠=,点P 在ABC ∆外部,使得45BPC ∠=,若 4.5PAC S =,求PC ;(拓展创新)(3)如图3,在四边形ABCD 中,//,AD BC 点E 在四边形ABCD 内部.且,DE EC =90,DEC ∠=135AEB ∠=︒,3,4,AD BC ==直接写出AB 的长.。
04 专题四、旋转与等腰直角三角形

专题四、旋转与等腰直角三角形【专题导入】1.如图所示,△ACB是等腰直角三角形,∠ACB=90°,D为AB上一点,△ACE是通过旋转△BCD 得到的所以△ACE≌_________,于是有CD=_____,BD=_____,∠BCD=_____,∠CBD=_____,则∠DCE=_____°,∠EAD=_____°,若连结DE则∠CED=_____°,若CG⊥AB,BD=3,DG=2,则DE=_____。
【方法技巧】等腰直角三角形在旋转变换下的探究性问题,是近几年中考数学命题的热点,其探究过程常与三角形的全等和相似、勾股定理、正方形的性质以及函数方程等知识有关,是一类对能力要求较高的问题。
如上图,借助等腰直角三角形两边旋转,会出现一个新的等腰直角三角形三角形,从而借助旋转构造全等进行几何证明计算。
【典例剖析】2.如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且P A=3,PC=2,PB=1.(1)作出△ACP绕点C逆时针旋转90°所得的图形.(2)求∠BPC的度数.3.已知等腰直角△ABC,∠C=90°,点D是斜边AB的中点,E是AC上的动点、∠EDF=90°,DF交BC 于点F.(1)当DE⊥AC,DF⊥BC时,(如图1),我们很容易得出:S△DEF+S△CEF=12S△ABC(2)如图2,DE与AC不垂直,且点E在线段AC上时,(1)中的结论是否成立,如果不成立,请说明理由;如果成立,请证明.(3)当点E运动到AC延长线上,其他条件不变,请把图3补充完整,直接写出S△DEF,S△CEF,S△ABC 的关系.【举一反三】4.如图,在△ABC中,∠ACB=90°,AC=BC.D是AB的中点,且∠EDF=90°,点E在AC上,点F在BC上.(1)求证:DE=DF;(2)若AC=BC=2,求四边形ECFD的面积.5.(1)在一次数学探究活动中,陈老师给出了一道题.如图1,已知△ABC 中,∠ACB =90°,AC =BC ,P 是△ABC 内的一点,且P A =3,PB =1,PC =2,求∠BPC 的度数.小强在解决此题时,是将△APC 绕C 旋转到△CBE 的位置(即过C 作CE ⊥CP ,且使CE =CP ,连接EP 、EB ).你知道小强是怎么解决的吗?(2)请根据(1)的思想解决以下问题:如图2所示,设P 是等边△ABC 内一点,P A =3,PB =4,PC =5,求∠APB 的度数.【强化训练】6.如图,将等腰直角三角形ABC 绕点A 逆时针旋转15°后得到△AB 1C 1,若AC =2,则图中阴影部分的面积为( )A .2√33B .√36C .√3D .3√37.如图,在Rt 直角△ABC 中,∠B =45°,AB =AC ,点D 为BC 中点,直角∠MDN 绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:①△DEF 是等腰直角三角形;②AE =CF ;③BE +CF =EF ;④△BDE ≌△ADF ,其中正确结论是( )A.①②③B.②③④C.①②④D.①②③④8.已知等腰Rt△ABC与等腰Rt△CDE,∠ACB=∠DCE=90°,把Rt△ABC绕点C旋转.(1)如图1,当点A旋转到ED的延长线时,若BC=13√22,BE=5,求CD的长;(2)当Rt△ABC旋转到如图2所示的位置时,过点C作BD的垂线交BD于点F,交AE于点G,求证:BD=2CG.9.已知:如图1,△ABC和△CDE都是等腰直角三角形,且∠ACB=∠DCE=90°,O,M,N分别为AB,AD,BE的中点,连接OM,ON,MN.(1)求证:OM=ON,OM⊥ON.(2)将图1中△CDE绕点C逆时针旋转得图2,记旋转角为α(0°<α<180°).已知BC=2CD=6,求在旋转过程中线段MN的最小值.10.如图,在矩形ABCD中,AD=2AB,点F是AD的中点,△AEF是等腰直角三角形,∠AEF=90°,连接BE,DE,AC.(1)求证:△EAB≌△EFD;(2)求ACDE的值.【参考答案】1.△BCD,CE,AE,∠ACE,∠CAE,90,90,45,√70。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法:数形结合,转化思想,方程思想
难点 全等三角形的判断与应用掌握两种证明线段 2 倍关系的方法:(1)倍长中线;(2)30°直角 重点 三角形性质,熟练掌握截长补短的辅助线做法
课前 作 业 完 成 情 况 : 优 □ 良 □ 检查 __________________________________________
(1)的结论是否成立?若成立,请给出证明;若不成立,请说明C理由.
B
D C
PH F
图1 A E B
F PH
E
D
图2 A
个性化教学辅导教案
Beijing XueDa Century Education Technology Ltd.
3.在 ABC中,AD 是中线,O 为 AD 的中点,直线 l 过 O 点,过 A、B、C 三点分别作直
学习管理师:
O (G)
Fl
C
E
O
O E
B
D
C
图1
B
D
图2
B
D
C
图3
F
l
思考题:把两个全等的等腰直角三角板 ABC 和 EFG(其直角边长均为 4)叠放在一起(如 图 1),且使三角板 EFG 的直角顶点 G 与三角形 ABC 的斜边中点 O 重合.现将三角板 EFG
绕 O 点按顺时针方向旋转(旋转角 满足条件:0 90 ),四边形 CHGK 是旋转过
检测 测试题(累计不超过 20 分钟)_______道;成绩_______;教学需:加快□;保持□;放慢□;
增加内容□
课后 巩固
作业_____题;
巩固复习____________________ ;
预习布置_____________________
签字 教学组长签字:
老师 老师最欣赏的地方: 课后 老师想知道的事情: 赏识 评价 老师的建议:
中□
差□
建议
几何方法大全(四)
旋转的等腰直角三角形
【变式典型题】 原题:如图所示,△ABC 和△ADE 都是等腰直角三角形,点 M 为 EC 的中点,求证:
MBD MDB.
B
E M
课
A D
C
堂
变式 1 如图所示,将等腰直角三角形 ADE 绕 A 点按逆时针方向旋转 45,其余条件不变,
结论 MBD MDB还成立吗?
B
D
C
E
AM
变式 4 如图所示,将等腰直角三角形 ADE 绕点 A 按逆时针方向旋转180 ,其余条件不变, 结论 MBD MDB还成立吗?
B
D
A
C
M E
变式 5 如图所示,将等腰直角三角形 ADE 绕点 A 按逆时外方向旋转 270 ,其余条件不 变,结论 MBD MDB还成立吗?
·
2、现有如图所示的方角铁片,工人师傅想用一条直线将其分割成面积相等的两部分,请 你帮助工人师傅设计三种不同的分割方案.
3、如图所示,请将一直角梯形形状的地块,分成面积相等的两地,问如何分.
A
D
B
C
4、如图所示的一块空地, A B 90,AE∥BC,AB∥CD,现要在这一空地上砌一
堵墙(要求墙长最短),将这块地分成面积相等的两块.
个性化教学辅导教案
学科 数学
Beijing XueDa Century Education Technology Ltd.
个性化教学辅导教案
任课教师:
授课时间:年 1 月 27 日星期三 )
姓名
年级 初二 性别 女
总课时____第_1__课
知识点:全等三角形的判定与应用
教学 考点:全等三角形的应用与识别 目标 能力:会证明有关线段相等,角相等
线 l 的垂线,垂足分别为 G、E、F,当直线 l 绕 O 点旋转到与 AD 垂直时(如图 1)易证:
BE+CF=2AG.
当直线 l 绕 O 点旋转到与 AD 不垂直时,在图 2、图 3 两种情况下,线段 BE、CF、AG
又是怎样的数量关系?请写出你的猜想,并以图 3 的猜想给予证明.
A
A
A
G
Fl
E
于 E.
(1)当直线 MN 绕点 C 旋转到图 1 位置时,求证:① ADC CEB;② DE AD BE ;
(2)当直线 MN 绕点 C 旋转到图 2 位置时,试问:DE、AD、BE 具有怎样的等量关系?请 写出这个等量关系,并加以证明.
(3)当直线 MN 绕点 C 旋转到图 3 位置时,试问:DE、AD、BE 具有怎样的等量关系?请
思考题:如何把任意四边形面积两等分?
个性化教学辅导教案
Beijing XueDa Century Education Technology Ltd.
————教学具体内容要有
识
掌
握
情
况
反
馈
课堂 _________________________________________________________。
GKH
的面积恰好等于
AABC面积的
5 16
?
若存在,求出此时 x 的值;若不存在,说明理由.
G(O)
C E A
B
F 图1
K
GE(O)
C
B
H
图2
F
个性化教学辅导教案
Beijing XueDa Century Education Technology Ltd.
作业 完成时间:30 分钟
1、如图所示,在密度均匀的铁片中挖去一圆形铁片,现要将这一铁片分成重量相等的两 块,请问你有怎样的分法?并说明作图的道理.
教
B
学过
E
过程
DM
程
A
C
变式 2 如图所示,将等腰直角三角形 ADE 绕点 A 按逆时针方向旋转 90 ,其余条件不变, 结论 MBD MDB还成立吗?
B
E
D
M
A
C
个性化教学辅导教案
Beijing XueDa Century Education Technology Ltd.
变式 3 如图所示,将等腰直角三角形 ADE 绕点 A 按逆时针方向旋转135 ,其余条件不变, 结论 MBD MDB还成立吗?
写出这个等量关系,并加以证明.
MD
C
E N
M C
D
M C
E
A
B
图1
A 图2 E N
BA
B
D
N
图3
2.(1)如图 1,若点 P 为正方形 ABCD 边上一点,以 PA 为一边作正方形 AEFP,连 BE、
DP,并延长 DP 交 BE 于点 H.求证: DH BE .
(2)如图 2,将正方形 AEFP 逆时针旋转,使点 P 落在正方形 ABCD 内,其余条件不变,
B
A
D
E
C M
个性化教学辅导教案
Beijing XueDa Century Education Technology Ltd.
变式 6 如图所示,将等腰直角三角形 ADE 绕点 A 按逆时外方向旋转 315 ,其余条件不 变,结论 MBD MDB还成立吗?
B
A
E
D
M
C
【练习】
1.在 ABC中,ACB 90 ,AC=BC.直线 MN 经过点 C,且 AD MN 于 D,BE MN
程中两三角板的重叠部分(如图 2). (1)在上述旋转过程中,BH 与 CK 有怎样的数量关系?四边形 CHGK 的面积有何变化? 证明你发现的结论;
(2)连接 HK,在上述旋转过程中,设 BH x , GKH 的面积为 y ,求 y 与 x 之间的
函数关系式,并写出自变量 x 的取值范围;
(3)在(2)的前提下,是否存在某一位置,使