无锡市辅仁中学数学轴对称填空选择达标检测(Word版 含解析)
无锡市民办辅仁八年级数学上册第三单元《轴对称》测试题(含答案解析)
一、选择题1.如图,在边长为9的等边△ABC 中,CD ⊥AB 于点D ,点E 、F 分别是边AB 、AC 上的两个点,且AE=CF=4cm ,在CD 上有一动点P ,则PE +PF 的最小值是( )A .4B .4.5C .5D .82.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,E 为AB 上一点,连接DE ,则下列四个结论正确的有( ).①∠CAD =30° ②AD =BD ③BD =2CD ④CD =EDA .1个B .2个C .3个D .4个 3.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A 关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A .1个B .2个C .3个D .4个5.如图,在ABC 中,AB AC =,D 为BC 的中点,AD AE =,若40BAD ∠=︒,则CDE ∠的度数为( )A .10︒B .20︒C .30D .40︒6.如图,长方形纸片ABCD (长方形的对边平行且相等,每个角都为直角),将纸片沿EF 折叠,使点C 与点A 重合,下列结论:①AF AE =,②ABE AGF ≌,③AF CE =,④60AEF ∠=︒,其中正确的( )A .①②B .②③C .①②③D .①②③④ 7.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH .其中正确的是( )A .①②③④B .①②③C .②④D .①③ 8.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,且点E 在ABC 内部,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①EBD DAE ∠=∠;②ADE BCE ≌△△;③BD AF =;④BDE ACE S S =△△,其中正确的结论有( )A .1个B .2个C .3个D .4个 9.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度A .25或60B .40或60C .25或40D .40 10.已知一个等腰三角形ABC 的两边长为5,7,另一个等腰三角形ABC 的两边为23x -,35x -,若两个三角形全等,则x 的值为( )A .5B .4C .4或5D .10311.等腰三角形腰上的高与另一腰的夹角为30,则底角度数是( ) A .30 B .60︒ C .40︒或50︒ D .30或60︒ 12.已知等边△ABC 的边长为6,D 是AB 上的动点,过D 作DE ⊥AC 于点E ,过E 作EF ⊥BC 于点F ,过F 作FG ⊥AB 于点G .当G 与D 重合时,AD 的长是( )A .1B .2C .3D .4二、填空题13.如图,△ABC ≌△ADE ,点D 落在BC 上,且∠BAD =70°,则∠EDC =_____°.14.若等腰三角形的顶角为30°,腰长为10,则此等腰三角形的面积为_________. 15.如图,在ABC 中,BD 平分ABC ∠交AC 于点D ,//EF BC 交BD 于点G ,若130BEG ∠=︒,则DGF ∠=______.16.如图,在ABC ∆中,90,BAC ∠=︒点D 在BC 上,BD BA =,点E 在BC 的延长线上,CA CE =,连接AE ,则DAE ∠的度数为_____________.17.如图在钝角△ABC 中,已知∠BAC=135°,边AB 、AC 的垂直平分线分别交BC 于点D 、E ,连接AD 、AE ,则∠DAE=_____18.如图,∠AOB =45°,OC 平分∠AOB ,点M 为OB 上一定点,P 为OC 上的一动点,N 为OB 上一动点,当PM +PN 最小时,则∠PMO 的度数为___________.19.已知,点()1,3A a -与点()2,21B b --关于x 轴对称,则2a b +___________. 20.如图,网格纸上每个小正方形的边长为1,点A ,点C 均在格点上,点P 为x 轴上任意一点,则PAC △周长的最小值为________.三、解答题21.如图,在ABC ∆中,点,D E 分别是AB AC 、边上的点,BE 与CD 相交于点F ,且 BD CE =.(1)在下列给出的条件中,只需添加一个条件即可证明ABC ∆是等腰三角形,这个条件可以是 (多选);A .DF EF =B . BF CF =C .ABE ACD ∠=∠D .BCD CBE ∠=∠E . ADC AEB ∠=∠(2)利用你选的其中一个条件,证明ABC ∆是等腰三角形.22.如图,,A B AE BE ∠=∠=,点D 在AC 边上,12,AE ∠=∠和BD 相交于点O . (1)求证:AEC BED ∆≅∆(2)若70BDE ︒∠=,求1∠的度数.23.已知,在四边形ABCD 中,AB AD =,CB CD =,连接,AC BD ,判断,AC BD 的位置关系,并加以证明.24.已知ABC 是等边三角形,点D 是AC 的中点,点P 在射线BC 上,点Q 在线段AB 上,120PDQ ∠=︒.(1)如图1,若点Q 与点B 重合,求证:DB DP =;(2)如图2,若点P 在线段BC 上,8AC =,求AQ PC +的值.25.已知:90,A D AB DC ︒∠=∠==,点,E F 在直线BC 上,位置如图所示,且BE CF =.=;(1)求证:AF DE∠,求证:PO垂直平分线段BC.(2)若PO平分EPF26.如图,在12×10的正方形网格中,△ABC是格点三角形,点B的坐标为(﹣5,1),点C的坐标为(﹣4,5).(1)请在方格纸中画出x轴、y轴,并标出原点O;(2)画出△ABC关于直线l对称的△A1B1C1;C1的坐标为(3)若点P(a,b)在△ABC内,其关于直线l的对称点是P1,则P1的坐标是.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】作点E关于AD的对称点G,所以连接FG,与CD的交点即为P点.此时PF+PE=FG最小,通过计算证明△AFG是等边三角形,从而得出结果.【详解】作点E关于AD的对称点G,连接FG与CD的交点即为P点,如图:∴PG=PE,此时PF+PE=PF+ PG有最小值,最小值为FG,∵△ABC是边长为9等边三角形,且CD⊥AB,AE=CF=4,∴AD=BD=1AB=4.5,AF=AC-CF=9-4=5,∠A=60 ,2∴ED=GD= AD- AE=4.5-4=0.5,∴AG=AE+ED+GD=5= AF,∴△AFG是等边三角形,∴FG= AF=5,∴PF+PE的最小值是5,故选:C.【点睛】本题主要考查了轴对称-最短路径问题,等边三角形的判定和性质,掌握轴对称-最短路径的确定方法是解题的关键.2.C解析:C【分析】根据三角形内角和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可.【详解】解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,①正确;∴∠CAD=∠BAD=∠B,∴AD=BD,AD=2CD,②正确;∴BD=2CD,③正确;根据已知不能推出CD=DE,故④错误;故选:C.【点睛】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.3.A解析:A【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数,以及循环的规律就可以得到.【详解】解:A1与A2关于x轴对称,A2与A3关于y轴对称,A3与A4关于x轴对称,A4与A5关于y 轴对称,A1与A5是同一个点,四次一循环,100÷4=25,A100与A4重合,即第一象限,故选:A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.D解析:D【分析】首先根据等边三角形性质得出BC=AC,CD=CE,∠ACB=∠ECD=60°,即可证明△BCD与△ACE全等、△BCF与△ACG全等以及△DFC与△EGC全等,最后利用全等三角形性质以及等边三角形性质证明即可.【详解】∵△ABC与△CDE为等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,即:∠ACE=∠BCD,在△BCD与△ACE中,∵BC=AC,∠ACE=∠BCD,CD=CE,∴△BCD≌△ACE(SAS),∴AE=BD,即①正确;在△BCF 与△ACG 中,由①可知∠CBF=∠CAG ,又∵AC=BC ,∠BCF=∠ACG=60°,∴△BCF ≌△ACG(ASA),∴AG=BF ,即②正确;在△DFC 与△EGC 中,∵△BCF ≌△ACG ,∴CF=CG .即④正确;∵∠GCF =60°,∴△CFG 为等边三角形,∴∠CFG=∠FCB=60°,∴FG ∥BE ,即③正确;综上,①②③④都正确.故选:D .【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及平行线的判定,解题的关键是正确寻找全等三角形来解决问题,.5.B解析:B【分析】根据AB AC =,D 为BC 的中点,∠CAD=40BAD ∠=︒,∠C=50︒,由AD AE =,得到∠AED =70︒,再根据∠AED=∠C+∠CDE 求得答案.【详解】∵AB AC =,D 为BC 的中点,∴∠CAD=40BAD ∠=︒,∠BAC=802BAD ∠=︒,∴∠B=∠C=50︒,∵AD AE =,∴∠AED=∠ADE=70︒,∵∠AED=∠C+∠CDE ,∴CDE ∠=20︒,故选:B .【点睛】此题考查等腰三角形的性质:等边对等角求角的度数以及三线合一,三角形的内角和定理,三角形外角的性质,熟记并熟练运用等腰三角形的性质是解题的关键.6.C解析:C【分析】根据翻折的性质可得∠AEF =∠CEF ,根据两直线平行,内错角相等可得∠AFE =∠CEF ,然后求出∠AEF =∠AFE ,根据等角对等边可得AE =AF ;根据HL 即可得到△ABE ≌AGF .根据等量代换即可得到AF =CE ;根据△AEF 是等腰三角形,不一定是等边三角形,即可得到∠AEF 不一定为60°.【详解】解:由翻折的性质得,∠AEF =∠CEF ,∵矩形ABCD 的对边AD ∥BC ,∴∠AFE =∠CEF ,∴∠AEF =∠AFE ,∴AE =AF ,故①正确,在Rt △ABE 和Rt △AGF 中,AE AF AB AG =⎧⎨=⎩, ∴Rt △ABE ≌Rt △AGF (HL ),故②正确,∵CE =AE ,AE =AF ,∴CE =AF ,故③正确;∵AE =AF ,∴△AEF 是等腰三角形,不一定是等边三角形,∴∠AEF 不一定为60°,故④错误;故选C .【点睛】本题考查了翻折变换的性质,等腰三角形的判定与性质,解题时注意:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.B解析:B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC =∠CAD ,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG =∠ACD ,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】∵BE 是中线,∴AE =CE ,∴△ABE 的面积=△BCE 的面积(等底等高的三角形的面积相等),故①正确; ∵CF 是角平分线,∴∠ACF =∠BCF ,∵AD 为高,∴∠ADC =90°,∵∠BAC =90°,∴∠ABC +∠ACB =90°,∠ACB +∠CAD =90°,∴∠ABC =∠CAD ,∵∠AFG =∠ABC +∠BCF ,∠AGF =∠CAD +∠ACF ,∴∠AFG =∠AGF ,故②正确;∵AD 为高,∴∠ADB =90°,∵∠BAC =90°,∴∠ABC +∠ACB =90°,∠ABC +∠BAD =90°,∴∠ACB =∠BAD ,∵CF 是∠ACB 的平分线,∴∠ACB =2∠ACF ,∴∠BAD =2∠ACF ,即∠FAG =2∠ACF ,故③正确;根据已知条件不能推出∠HBC =∠HCB ,即不能推出BH =CH ,故④错误;故选:B .【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键,题目比较好,属于中考题型.8.D解析:D【分析】由AD 为△ABC 的高线,可得∠CBE+∠ABE+∠BAD=90°,Rt △ABE 是等腰直角三角形, 可得90ABE BAD DAE ∠+∠+∠=︒,从而可判断①;由等腰Rt ABE △可得AE BE =,结合AD BC =,∠DAE=∠CBE ,可判断②;由△ADE ≌△BCE ,可得,ADE BCE ∠=∠ 再证明∠BDE=∠AFE ,结合EBD DAE ∠=∠,AE BE =, 证明△AEF ≌△BED ,可判断③;由△ADE ≌△BCE ,可得,DE CE = 由△AEF ≌△BED ,,EF DE = 证明,EF CE =从而可判断④.【详解】解:∵AD 为△ABC 的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt △ABE 是等腰直角三角形,∴90ABE BAD DAE ∠+∠+∠=︒,∴∠DAE=∠CBE ,即EBD DAE ∠=∠,故①正确;∵Rt △ABE 是以AB 为底等腰直角三角形,∴AE=BE ,在△ADE 和△BCE 中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BCE (SAS ); 故②正确;△ADE ≌△BCE ,,ADE BCE ∴∠=∠∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,90ADB ADC ∠=∠=︒,∴∠BDE=∠AFE ,在△AEF 和△BED 中,FAE DBE AFE BDE AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BED (AAS ),∴AF BD =; 故③正确;∵△ADE ≌△BCE ,∴,DE CE =△AEF ≌△BED ,,,AEF BED EF DE SS ∴== ,EF CE ∴=∴,AEF ACE SS = ∴ ,BDE ACES S =故④正确; 综上:正确的有①②③④.故选:D .【点睛】本题考查的是三角形的内角和定理,三角形的中线与高的性质,三角形全等的判定与性质,等腰直角三角形的性质,掌握以上知识是解题的关键.9.C解析:C【分析】当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C .【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想. 10.B解析:B【分析】根据等腰ABC 的两边长为5,7,得到ABC 的三边长为5,7,7;或5,5,7;之后根据全等分2x-3=5,2x-3=7,3x-5=5,3x-5=7四种情况分类讨论,舍去不合题意的即可求解.【详解】解:∵等腰ABC 的两边长为5,7,∴ABC 的三边长为5,7,7;或5,5,7;由题意得另一个等腰三角形的两边为23x -,35x -,且与等腰ABC 全等(1)当2x-3=5时,解得x=4,则3x-5=7,符合题意;(2)当2x-3=7时,解得x=5,则3x-5=10,不合题意;(3)当3x-5=5时,解得103x =,则2x-3=113,不合题意; (4)当3x-5=7时,解得x=4,则2x-3=5,符合题意;综上所述:x 的值为4.故答案为:B【点睛】 本题考查了等腰三角形的定义,全等三角形的性质,根据题意分类讨论是解题关键. 11.D解析:D【分析】由三角形的高可在三角形的内部,也可在三角形的外部,所以分锐角三角形和钝角三角形两种情况作出符合题意的图形,再结合等腰三角形的性质与三角形的内角和定理求解即可.【详解】解:如图,分两种情况:①如图,当三角形的高在三角形的内部时,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=1802A ︒-∠ =60°; ②如图,当三角形的高在三角形的外部时,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC= 180302BAC ︒-∠=︒. 故选:D .【点睛】本题考查了等腰三角形的性质和直角三角形的两锐角互余,三角形的内角和定理的应用,三角形的高的含义,分类讨论的数学思想,掌握分类讨论解决问题是解题的关键. 12.D解析:D【分析】设BD=x ,根据等边三角形的性质得到∠A=∠B=∠C=60°,由垂直的定义得到∠BDF=∠DEA=∠EFC=90°,依次表示出BF 、CF 、CD 、AE 、AD ,然后根据AD+BD=AB 列方程即可求出x 的值.【详解】解:如图,设BD=x ,∵△ABC 是等边三角形,∴∠A=∠B=∠C=60°,∵DE ⊥AC 于点E ,EF ⊥BC 于点F ,FG ⊥AB ,∴∠BDF=∠DEA=∠EFC=90°,∴∠BFD=∠ADE=∠CEF=30°,∴BF=2x ,∴CF=6-2x ,∴CE=2CF=12-4x ,∴AE=6-CE=4x-6,∴AD=2AE=8x-12,∵AD+BD=AB ,∴8x-12+x=6,∴x=2,∴AD=8x-12=16-12=4.故选:D.【点睛】本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.二、填空题13.70【分析】根据全等三角形的性质可得对应角和对应边相等再根据等腰三角形的性质即可解答【详解】解:∵△ABC≌△ADE∴AB=AD∠B=∠ADE∴∠ADB=∠B∵∠BAD=70°∴∠B=∠ADB=(1解析:70【分析】根据全等三角形的性质可得对应角和对应边相等,再根据等腰三角形的性质,即可解答.【详解】解:∵△ABC≌△ADE,∴AB=AD,∠B=∠ADE,∴∠ADB=∠B,∵∠BAD=70°,∴∠B=∠ADB =(180°-70°)÷2=55°,∴∠EDC=180°-2×55°=70°.故答案是:70.【点睛】本题考查了全等三角形的性质,等腰三角形的性质以及平角的定义,熟记性质并准确识图是解题的关键.14.25【分析】依据含30°角的直角三角形的性质即可得到该等腰三角形腰上的高再根据三角形面积计算公式进行计算即可【详解】解:如图所示AB=AC=10∠A=30°过B作BD⊥AC于D∵∠A=30°AB=1解析:25【分析】依据含30°角的直角三角形的性质,即可得到该等腰三角形腰上的高,再根据三角形面积计算公式进行计算即可.【详解】解:如图所示,AB=AC=10,∠A=30°,过B作BD⊥AC于D,∵∠A=30°,AB=10,∴BD=1AB=5,2∴S △ABC =12AC ×BD =12×10×5=25, 故答案为:25.【点睛】本题主要考查了等腰三角形的性质以及含30°角的直角三角形的性质,作出腰上的高并根据30°角求出高是解题关键.15.25°【分析】由角平分线和平行线的性质证明则是等腰三角形由顶角的度数算出底角的度数即可得出结果【详解】解:∵BD 平分∴∵∴∴∴是等腰三角形∵∴∴故答案是:【点睛】本题考查等腰三角形的性质和判定解题的 解析:25°【分析】由角平分线和平行线的性质证明EBG EGB ∠=∠,则BEG 是等腰三角形,由顶角的度数算出底角EGB ∠的度数,即可得出结果.【详解】解:∵BD 平分ABC ∠,∴EBG CBG ∠=∠,∵//EF BC ,∴CBG EGB ∠=∠,∴EBG EGB ∠=∠,∴BEG 是等腰三角形,∵130BEG ∠=︒, ∴180130252EGB ︒-︒∠==︒, ∴25DGF EGB ∠=∠=︒. 故答案是:25︒.【点睛】本题考查等腰三角形的性质和判定,解题的关键是掌握等腰三角形的性质和判定定理. 16.【分析】利用余角等腰三角形和三角形外角的性质即可求出【详解】∵∴∵∴根据题意可知∴∴故答案为:45【点睛】本题考查等腰三角形和三角形外角的性质以及余角找出图形中角的等量关系是解答本题的关键解析:45【分析】利用余角、等腰三角形和三角形外角的性质即可求出.【详解】∵BDA DAE AEC ∠=∠+∠,DAE DAC EAC ∠=∠+∠,∴BDA DAC EAC AEC ∠=∠+∠+∠.∵90DAC BAC BAD BAD ∠=∠-∠=︒-∠,∴90BDA BAD EAC AEC ∠=︒-∠+∠+∠.根据题意可知=BDA BAD EAC AEC ∠=∠∠∠,.∴45BDA AEC ∠-∠=︒,∴=45DAE ∠︒.故答案为:45.【点睛】本题考查等腰三角形和三角形外角的性质以及余角.找出图形中角的等量关系是解答本题的关键.17.90°【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论【详解】解:连接DAEA 如图∵∠BAC=135°∴∠B+∠C=180°-135°=45°∵DF 是AB 的垂直平分线EG 是AC 的垂直平解析:90°【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论.【详解】解:连接DA 、EA ,如图,∵∠BAC=135°,∴∠B+∠C=180°-135°=45°,∵DF 是AB 的垂直平分线,EG 是AC 的垂直平分线,∴DA=DB ,EA=EC ,∴∠B=∠DAB ,∠C=∠EAC ,∴∠DAB +∠EAC =∠B+∠C=45°,∴∠DAE=∠BAC –(∠DAB +∠EAC)=135°-45°=90°.故答案为:90°.【点睛】本题考查线段的垂直平分线的性质,解题的关键是熟练掌握线段的垂直平分线的性质.18.45°【分析】找到点M关于OC对称点M′过点M′作M′N⊥OB于点N交OC 于点P则此时PM+PN的值最小再根据角平分线的性质及三角形内角和即可得出答案【详解】解:如图找到点M关于OC对称点M′过点M解析:45°【分析】找到点M关于OC对称点M′,过点M′作M′N⊥OB于点N,交OC于点P,则此时PM+PN 的值最小,再根据角平分线的性质及三角形内角和即可得出答案.【详解】解:如图,找到点M关于OC对称点M′,过点M′作M′N⊥OB于点N,交OC于点P,则此时PM+PN 的值最小.∵PM=PM′,∴此时PM+PN=PM′+PN′=M′N′,∵点M与点M′关于OC对称,OC平分∠AOB,∴OM=OM′,∵∠AOB=45°,∴∠PM'O=∠AOB=45°,∴∠PMO=∠PM'O=45°,故答案为:45°.【点睛】本题考查了利用轴对称的知识寻找最短路径的知识,涉及到两点之间线段最短、垂线段最短的知识,有一定难度,正确确定点P及点N的位置是关键.19.7【分析】根据关于x轴对称的点横坐标相同纵坐标互为相反数列方程求解即可【详解】解:∵点A(a-13)与点B(2-2b-1)关于x轴对称∴a-1=2-2b-1=-3解得a=3b=1∴=2×3+1=7故解析:7【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程求解即可.【详解】解:∵点A(a-1,3)与点B(2,-2b-1)关于x轴对称,∴a-1=2,-2b-1=-3,解得a=3,b=1,∴2a b =2×3+1=7.故答案为:7.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.20.【分析】根据勾股定理可得AC的长度作点C关于x轴的对称点C′连接AC′与x轴交于点P利用勾股定理求出AP+PC的最小值从而得出答案【详解】AC=如图作点C关于x轴的对称点C′连接AC′与x轴交于点P解析:21022+【分析】根据勾股定理可得AC的长度,作点C关于x轴的对称点C′,连接AC′,与x轴交于点P,利用勾股定理求出AP+PC的最小值,从而得出答案.【详解】AC=22+=,2222如图,作点C关于x轴的对称点C′,连接AC′,与x轴交于点P,则AP+PC=AP+PC′=AC′,此时AP+PC22+=26210所以△PAC周长的最小值为21022故答案为:21022.【点睛】本题主要考查了轴对称-最短路线问题,解题的关键是掌握轴对称变换的性质.三、解答题21.(1),C E;(2)见解析【分析】(1)选C的话,可以利用AAS定理证得△BDF≌△CEF,从而可得BF=CF,然后结合等腰三角形的性质及判定方法可以求解;选E的话,可以求得∠BDF=∠CEF,然后可以利用AAS 定理证得△BDF≌△CEF,从而可得BF=CF,然后结合等腰三角形的性质及判定方法可以求解;(2)选C 的话,可以利用AAS 定理证得△BDF ≌△CEF ,从而可得BF=CF ,然后结合等腰三角形的性质及判定方法可以求解;选E 的话,可以求得∠BDF=∠CEF ,然后可以利用AAS 定理证得△BDF ≌△CEF ,从而可得BF=CF ,然后结合等腰三角形的性质及判定方法可以求解.【详解】解:(1)①选择C 选项中的ABE ACD ∠=∠在ABE ∆与CEF ∆中,ABE ACD BFD CFE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△CEF∴BF CF =FBC FCB ∴∠=∠ABE FBC FCB ACD ∴∠+∠=∠+∠即A ABC CB =∠∠AB AC ∴=ABC ∆∴是等腰三角形②选择E 选项中的ADC AEB ∠=∠,∴∠BDC=∠CEB :在ABE ∆与CEF ∆中,BDF CEF BFD CFE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()BDF CEF AAS ∴∆≅∆BF CF ∴=FBC FCB ∴∠=∠ABE FBC FCB ACD ∴∠+∠=∠+∠即A ABC CB =∠∠AB AC ∴=ABC ∆∴是等腰三角形而其余选项均无法证明△ABC 为等腰三角形故答案为:C ;E(2)①选择C 选项中的ABE ACD ∠=∠在ABE ∆与CEF ∆中,ABE ACD BFD CFE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△CEF∴BF CF =FBC FCB ∴∠=∠ABE FBC FCB ACD ∴∠+∠=∠+∠即A ABC CB =∠∠AB AC ∴=ABC ∆∴是等腰三角形②选择E 选项中的ADC AEB ∠=∠,∴∠BDC=∠CEB :在ABE ∆与CEF ∆中,BDF CEF BFD CFE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()BDF CEF AAS ∴∆≅∆BF CF ∴=FBC FCB ∴∠=∠ABE FBC FCB ACD ∴∠+∠=∠+∠即A ABC CB =∠∠AB AC ∴=ABC ∆∴是等腰三角形【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质和判定,掌握AAS 定理证明三角形全等是解题关键.22.(1)见解析;(2)40°【分析】(1)由12∠=∠得到BED AEC ∠=∠,然后根据ASA 即可证明AEC BED ∆≅∆; (2)由(1)得DE=CE ,70C BDE ∠=∠=︒,由三角形内角和即可求出1∠的度数.【详解】解:()11=2∠∠,BED AEC ∠=∠∴又,A B AE BE ∠=∠=()AEC BED ASA ∴∆≅∆;()2AEC BED ∆≅∆70,BDE C DE CE ∴∠=∠=︒=70C EDC ︒∴∠=∠=118027040︒︒︒∴∠=-⨯=;【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形的内角和定理,解题的关键是掌握全等三角形的判定和性质进行解题.23.AC BD ⊥,见解析【分析】根据垂直平分线的判定证明即可.【详解】解:AC BD ⊥;证明:∵AB AD =,∴点A 在BD 的垂直平分线上,∵CB CD =,∴点C 在BD 的垂直平分线上,∴AC 垂直平分BD ,即AC BD ⊥.【点睛】本题考查了线段的垂直平分线的性质,根据与一条线段两个端点距离相等的点,在这条线段的垂直平分线上和两点确定一条直线证明是解题关键.24.(1)证明见解析;(2)4.【分析】(1)由等边三角形的性质证明30DBC ∠=︒,再利用三角形的内角和定理求解30DPB ∠=︒,从而可得结论; (2)过点D 作//DE BC 交AB 于点E ,先证明ADE 为等边三角形,再证明QDE PDC ≌,可得QE PC =, 从而可得答案.【详解】证明:(1)∵ABC 为等边三角形,∴,60BA BC ABC =∠=︒∵D 为AC 的中点,∴DB 平分ABC ∠, ∴30DBC ∠=︒.∵120PDB ∠=︒,∴1801203030DPB ∠=︒-︒-︒=︒,∴DBC DPB ∠=∠,∴DB DP =.(2)过点D 作//DE BC 交AB 于点E .∵ABC 为等边三角形,8AC =,点D 是AC 的中点,∴4,60AD CD ABC ACB A ==∠=∠=∠=︒.∵//DE BC ,∴60AED B ∠=∠=︒.60ADE C ∠=∠=︒,∴ADE 为等边三角形,120EDC ∠=︒,∴4AD ED AE ===,∴ED CD 4==. ∵120QDP EDC ∠=∠=︒,,QDE EDP EDP PDC ∴∠+∠=∠+∠∴QDE PDC ∠=∠.∵,60ED CD AED C =∠=∠=︒,∴QDE PDC ≌,∴EQ PC =,∴4AQ PC AQ QE AE +=+==.【点睛】本题考查的是等腰三角形的判定,等边三角形的性质与判定,三角形的全等的判定与性质,掌握以上知识是解题的关键.25.(1)证明见解析;(2)证明见解析.【分析】(1)根据已知条件证明Rt △ABF ≌Rt △DCE(HL)即可得出结论;(2)根据Rt △ABF ≌Rt △DCE 可得出∠E=∠F ,即△PEF 为等腰三角形,又因为PO 平分∠EPF ,根据三线合一可知PO 垂直平分EF ,从而得出PO 垂直平分BC .【详解】(1)证明:∵BE=CF ,BC=CB∴BF=CE ,在Rt △ABF 与Rt △DCE 中,BF CE AB DC=⎧⎨=⎩ ∴Rt △ABF ≌Rt △DCE(HL),∴AF=DE ;(2)∵Rt △ABF ≌Rt △DCE ,∴∠E=∠F∴△PEF 为等腰三角形,又∵PO 平分∠EPF∴PO ⊥BC(三线合一),EO=FO(三线合一)又∵EB=FC∴BO=CO ,∴PO 垂直平分线段BC.【点睛】本题考查的知识点是全等三角形的判定及性质、垂直平分线的判定、等腰三角形的性质,角平分线的性质,难度不大,但综合性较强,考验了学生综合分析问题的能力. 26.(1)见解析;(2)见解析;(0,5);(3)(﹣a ﹣4,b )【分析】(1)利用A、C点的坐标画出直角坐标系;(2)利用网格点和对称的性质画出A、B、C关于直线l的对称点A1、B1、C1即可;(3)先把P点向右平移2个单位(a+2,b)(相当于把直线l右平移2个单位),点(a+2,b)关于y轴的对称点为(-a-2,b),然后把(-a-2,b)向左平移2个单位,相当于把直线l向左平移2个单位回到原来位置,于是得到P1的坐标为(-a-2-2,b).【详解】解:(1)如图,就是所求作的坐标轴与原点;(2)如图,△A1B1C1为所作的三角形;C1的坐标为:(0,5);(3)先把P点向右平移2个单位(a+2,b)(相当于把直线l右平移2个单位),点(a+2,b)关于y轴的对称点为(-a-2,b),然后把(-a-2,b)向左平移2个单位,相当于把直线l向左平移2个单位回到原来位置,于是得到P1的坐标为(-a-2-2,b).∴P1的坐标是(﹣a﹣4,b).【点睛】本题考查了作图——轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,。
无锡市辅仁高级中学2023-2024学年高二上学期期中考试数学试卷(解析版)
【解析】
【分析】根据圆的方程求出圆心与半径 r ,利用两点间的距离公式求得 PC , 从而切线长为 PC 2 r2 ,计
算求解即可.
【详解】圆 C : x2 y2 2x 0,即 x 12 y2 1,圆心 C 1, 0, 半径 r 1,
PC 112 0 22 2 2,
切线长为 PC 2 r2 8 1 7.
=
22-
0= 1
2 ,故 D, A,C 三点共线,如图所示,
第 5 页/共 22 页
当 PC 与圆相切时, PCA为锐角且最大, tan PCA最大, PCA即 PCD ,
由 DC
2
1 2
2
2 12
35 2
,此时
PC
DC 2 DP 2
29 , 2
DP 则 tan PCA PC
2 4 29 29 29 .
a b , c 不共面,则能构成基底;
D 中, c
abc
ab
rrr ,所以 a b , a b c , c 共面,不能构成基底.
故选:ABD
第 6 页/共 22 页
10. (多选)已知双曲线 C1 :
x2 a2
y2 b2
1(a
0,b
0) 的离心率为 2.若抛物线 C2:x2=2py(p>0)的焦点到双曲线
故选:D.
7. 已知椭圆 x2 y2 1 ( a b 0 )的面积为 πab ,求满足 x2 2 y2 2 2x2 y2 1 0的点 a2 b2
P x, y 所构成的平面图形的面积为( )
A. 3 2 π 2
【答案】C 【解析】
B. 2π
C. 2π 2
D. 2π
【分析】由题意点
无锡市八年级数学上册第三单元《轴对称》检测(答案解析)
一、选择题1.如图,在△ABD 中,分别以点A 和点D 为圆心,大于12AD 的长为半径画弧,两弧相交于点M 、N ,作直线MN 分别交BD 、AD 于点C 、E .若AE=5cm ,△ABC 的周长=15cm ,则△ABD 的周长是( )A .35cmB .30cmC .25cmD .20cm 2.已知锐角AOB ∠,如图(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧MN ,交射线OB 于点D ,连接CD ;(2)分别以点,C D 为圆心,CD 长为半径作弧,两弧交于点P ,连接,CP DP ; (3)作射线OP 交CD 于点Q .根据以上作图过程及所作图形,有如下结论:①//CP OB ;②2CP QC =;③AOP BOP ∠=∠;④CD OP ⊥.其中正确的有( )A .①②③④B .②③④C .③④D .③3.已知点A 是直线l 外的一个点,点B ,C ,D ,E 是直线l 上不重合的四个点,再添加①AB AC =;②AD AE =;③BD CE =中的两个作为题设,余下的一个作为结论组成一个命题,组成真命题的个数为( ).A .0B .1C .2D .3 4.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A 关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.如图,在ABC 中,90C ∠=︒,30B ∠=︒,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D .则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的中垂线上;④:2:5DAC ABC S S =△△A .1B .2C .3D .46.如图,在ABC ∆中,90,30C B ︒︒∠=∠= ,以A 为圆心,任意长为半径画弧分别交AB AC 、于点M 和N ,再分别以M N 、为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP ,并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ︒∠=;③点D 在AB 的垂直平分线上﹔④若2AD =,则点D 到AB 的距离是1,:1:2DAC ABC S S ∆∆=A .2B .3C .4D .57.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D 处,若130∠=︒,则2∠的度数为( )A .30°B .60°C .50°D .55°8.如图,在ABC 中,90C =∠,30B ∠=,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则:DAC ABC S S 等于( )A .1:2B .2:3C .1:3D .1:39.如图,ABC 中,AC AD BD ==,80CAD ︒∠=,则B 等于( )A .25︒B .30︒C .35︒D .40︒10.如图所示,在△ABC 中,内角∠BAC 与外角∠CBE 的平分线相交于点P ,BE =BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,连接CP .下列结论:①∠ACB =2∠APB ;②BP 垂直平分CE ;③PG =AG ;④CP 平分∠DCB ;其中,其中说法正确的有( )A .1个B .2个C .3个D .4个 11.如果等腰三角形两边长分别是8cm 和4cm ,那么它的周长( )A .8cmB .20cmC .16cm 或20cmD .16cm 12.在直角坐标系中,已知A (2,-2),在y 轴上确定一点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .2个B .3个C .4个D .5个二、填空题13.在平面直角坐标系中,将点(3,2)P -向右平移4个单位得到点P ',则点P '关于x 轴的对称点的坐标为________.14.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.15.若一条长为24cm 的细线能围成一边长等于6cm 的等腰三角形,则该等腰三角形的腰长为__________cm .16.如图,ABC 中,45ABC ∠=︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E 交CD 于点F ,H 是BC 边的中点,连接DH 交BE 于点G ,考察下列结论:①AC BF =;②2BF CE =;③ADGE GHCE S S =四四边形边形;④DGF △为等腰三角形.其中正确的有___.17.如图,在ABC 中,AB AC =,40B ∠=︒,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于点E ,在点D 从B 向C 运动过程中,如果ADE 是等腰三角形,则BDA ∠的度数是____________18.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为___________.19.如图,ABC 中,AB AC =,DE 是AB 的垂直平分线,垂足为D ,交AC 于E .若11AB cm =,BCE 的周长为17cm ,则BC=________cm .20.如图,在22⨯的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的ABC 为格点三角形,在图中最多能画出______个不同的格点三角形与ABC 成轴对称.三、解答题21.如图,在ABC ∆中,已知D 是BC 的中点,过点D 作BC 的垂线交∠BAC 的平分线于点E ,EF ⊥AB 于点F ,EG ⊥AC 于点G .(1)求证:BF=CG ;(2)若AB=12,AC=8,求线段CG 的长.22.如图,ABC 和ADE 均为等边三角形,连接BD 并延长,交AC 于点F ,连接CD 并延长,交AB 于点G ,连接CE .(1)求证:ABD ACE △≌△;(2)若ADG CED ∠=∠,求证:AG CF =.23.如图,在ABC 中,90,C AC BC ∠=︒>,D 为AB 的中点,E 为CA 延长线上一点,连接DE ,过点D 作DF DE ⊥,交BC 的延长线于点F ,连接EF .作点B 关于直线DF 的对称点G ,连接DG .(1)依题意补全图形;(2)若ADF α∠=.①求EDG ∠的度数(用含α的式子表示);②请判断以线段,,AE BF EF 为边的三角形的形状,并说明理由.24.在直角坐标系中,ABC ∆的三个顶点的位置如图所示.(1)请画出ABC ∆关于y 轴对称的'''A B C ∆(其中',','A B C 分别是,,A B C 的对应点,不写画法);(2)直接写出',','A B C 三点的坐标'A ( ),'B ( ),'C ( ), (3)求出'''A B C ∆的面积25.如图,在平面直角坐标系中,(1,5)A -,(1,0)B -,(4,3)C -.(1)作出ABC 关于y 轴的对称图形A B C ''';(2)写出点A ',B ',C '的坐标;(3)在y 轴上找一点P ,使PA PC +最短(不写作法).26.如图,已知四边形ABCD 中,60B ∠=,边8cm AB BC ==,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 方向匀速运动,其中点P 运动的速度是每秒1cm ,点Q 运动的速度是每秒2cm ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t 秒.解答下列问题:(1)AP =_______________,BP =______________,BQ =______________.(用含t 的式子表示)(2)当点Q 到达点C 时,PQ 与AB 的位置关系如何.请说明理由.(3)在点P 与点Q 的运动过程中,BPQ 是否能成为等边三角形.若能,请求出t 的值.若不能,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用线段的垂直平分线的性质即可解决问题.【详解】解:∵MN 垂直平分线段AD ,∴AC=DC ,AE+ED=AD=10cm ,∵AB+BC+AC=15cm ,∴AB+BC+DC=15cm ,∴△ABD 的周长=AB+BC+DC+AD=15+10=25cm ,故选:C .【点睛】本题考查了作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.2.B解析:B【分析】由作图易判断射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线,CDP 为等边三角形,由它们的性质逐项判断即可.【详解】由作图(1)(2)可知OC=OD ,CP=DP ,∴射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线.∴即=AOP BOP ∠∠,CD OP ⊥,故③④正确;由作图(2)可知CP=CD=DP ,即CDP 为等边三角形,又∵CD OP ⊥,∴CP=2CQ ,故②正确;若//CP OB ,则=CPO BOP ∠∠,又∵=AOP BOP ∠∠,∴=CPO AOP ∠∠,∴OC=PC ,故只有当OC=PC 时,//CP OB ,故①错误.综上,正确的有②③④.故选:B .【点睛】本题考查角平分线的判定和性质,线段垂直平分线的判定和性质,等边三角形的判定和性质.理解作图步骤隐藏的已知信息是解答本题的关键.3.D解析:D【分析】写出所组成的三个命题,然后根据等腰三角形的判断与性质对各命题进行判断.【详解】解:根据题意吧,如图:由等腰三角形的性质和全等三角形的判定定理,易证△ABD≌△ACE;命题1:若AB=AC,AD=AE,则BD=CE,此命题为真命题;命题2:若AB=AC,BD=CE,则AD=AE,此命题为真命题;命题3:若AD=AE,BD=CE,则AB=AC,此命题为真命题.故选:D.【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,以及命题真假的判断,解题的关键是熟练掌握所学的知识,正确的判断命题的真假.4.A解析:A【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数,以及循环的规律就可以得到.【详解】解:A1与A2关于x轴对称,A2与A3关于y轴对称,A3与A4关于x轴对称,A4与A5关于y 轴对称,A1与A5是同一个点,四次一循环,100÷4=25,A100与A4重合,即第一象限,故选:A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.C解析:C【分析】根据题意作图可知:AD 是BAC ∠的平分线,由此判断①正确;先求得∠BAC=60︒,由AD 是BAC ∠的平分线,求得∠CAD=∠BAD=30B ∠=︒,即可得到60ADC ∠=︒,判断②正确;过点D 作DE ⊥AB 于E ,根据∠BAD=30B ∠=︒,证得△ABD 是等腰三角形,得到AE=BE ,即可判断③正确;证明Rt △ACD ≌Rt △AED ,得到S △ACD =S △AED ,根据等底同高得到S △AED =S △BED ,即可得到:1:3DAC ABC S S =,判断④错误.【详解】解:由题意得:AD 是BAC ∠的平分线,故①正确;∵90C ∠=︒,30B ∠=︒,∴∠BAC=60︒,∵AD 是BAC ∠的平分线,∴∠CAD=∠BAD=30B ∠=︒,∴60ADC ∠=︒,故②正确;过点D 作DE ⊥AB 于E ,∵∠BAD=30B ∠=︒,∴AD=BD ,∴△ABD 是等腰三角形,∴AE=BE ,∴点D 在AB 的中垂线上,故③正确;∵AD 是BAC ∠的平分线,DC ⊥AC ,DE ⊥AB ,∴CD=DE ,∠C=∠AED=90︒,又∵AD=AD ,∴Rt △ACD ≌Rt △AED ,∴S △ACD =S △AED ,∵AE=BE ,DE ⊥AB ,∴S △AED =S △BED ,∴:1:3DAC ABC S S =,故④错误;故选:C ..【点睛】此题考查角平分线的作图方法及性质应用,全等三角形的判定及性质,线段垂直平分线的判定,等腰三角形的判定及性质,三角形内角和定理,熟练掌握各部分知识并综合应用是解题的关键.6.B解析:B【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD 得到DA=DB ,根据线段垂直平分线的性质定理的逆定理可对③进行判断.利用30度角所对的直角边是斜边的一半、三角形的面积计算公式即可得出两个三角形的面积之比.【详解】解:由作法得,AD 平分∠BAC ,所以①正确;∵∠C=90°,∠B=30°,∴∠BAC=60°,∴∠BAD=∠CAD=12×60°=30°, ∴∠ADC=90°-∠CAD=60°,所以②正确;∵∠B=∠BAD ,∴DA=DB ,∴点D 在AB 的垂直平分线上,所以③正确;在直角△ACD 中,∠CAD=30°,∴CD=12AD , ∴BC=CD+BD=12AD+AD=32AD ,1124DAC S AC CD AC AD ∆=⋅=⋅. ∴11332224ABC S AC BC AC AD AC AD ∆=⋅=⋅=⋅, ∴13::1:344DAC ABC S S AC AD AC AD ∆∆=⋅⋅=,故④错误. 所以,正确的结论有3个故选:B .【点睛】 本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.7.B解析:B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.8.D解析:D【分析】先根据直角三角形的性质得出∠2=30°,CD=12AD ,再由三角形的面积公式即可得出结论. 【详解】 解:由作图过程可知:AP 平分∠BAC ,∵∠C=90°,∠B=30°,∴∠BAC=60°,∴∠1=∠2=∠B=30°,∴CD=12AD ,AD=BD , ∴BC=BD+CD=AD+12AD=32AD , S △DAC =12AC•CD=14AC•AD , ∴S △ABC =12AC•BC=12AC•32AD=34AC•AD , ∴S △DAC :S △ABC =1:3,故选D .【点睛】本题考查的是作图—基本作图,熟知角平分线的作法和性质,30°的直角三角形的性质是解答此题的关键.9.A解析:A【分析】利用AD=AC,求出∠ADC=∠C=50︒,利用AD=AB,即可求得∠B=∠BAD1252ADC==∠︒.【详解】∵AD=AC,∴∠ADC=∠C,∵80CAD︒∠=,∴∠ADC=∠C=50︒,∵AD=AB,∴∠B=∠BAD1252ADC==∠︒,故选:A.【点睛】此题考查等边对等角的性质,三角形的内角和定理,三角形的外角性质,熟练掌握等腰三角形的性质是解题的关键.10.D解析:D【分析】①根据角平分线的定义与三角形外角的性质可证此结论;②利用等腰三角形“三线合一”可证明此结论;③根据角平分线定义与平行线性质可得∠APG=∠BAP,再利用等腰三角形的判定可证此结论;④如下图,由角平分线的性质定理可得PM=PN,PM=PO,则PN =PO,即可证明结论.【详解】解:∵AP平分∠BAC,PB平分∠CBE,∴∠CAB=2∠PAB,∠CBE=2∠PBE,∵∠CBE=∠CAB+∠ACB,∠PBE=∠PAB+∠APB,即∠CBE=∠CAB+2∠APB,∴∠ACB=2∠APB.故①正确;∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一).故②正确;∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴PG=AG.故③正确;如图,过点P作PM⊥AE于点M,PN⊥AD于点N,PO⊥BC于点O,∵AP平分∠BAC,PB平分∠CBE,∴PM=PN,PM=PO,∴PN =PO,∴CP平分∠DCB.故④正确.故选:D.【点睛】本题考查了角平分线的判定与性质、平行线的性质、等腰三角形的性质与判定,熟练掌握相关知识并能灵活运用所学知识进行论证是解题的关键.11.B解析:B【分析】解决本题要注意分为两种情况4cm为底或8cm为底,还要考虑到各种情况是否满足三角形的三边关系来进行解答.【详解】解:∵等腰三角形有两边分别分别是4cm和8cm,∴此题有两种情况:①4cm为底边,那么8cm就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4cm是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20cm.故选:B.【点睛】本题考查了等腰三角形性质;解题时涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.12.C解析:C【分析】如果OA为等腰三角形的腰,有两种可能,①以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;②如果OA为等腰三角形的底,只有一种可能,作线段OA的垂直平分线,与y轴有一个交点,所以符合条件的点一共4个.【详解】分二种情况进行讨论:①当OA为等腰三角形的腰时,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心OA为半径的圆弧与y轴有一个交点;②当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点,∴符合条件的点一共4个,故选:C.【点睛】本题考查等腰三角形的性质,解题关键是根据两腰相等,分四种情况进行讨论.二、填空题13.【分析】先根据向右平移4个单位横坐标加4纵坐标不变求出点的坐标再根据关于x轴对称横坐标不变纵坐标相反解答【详解】解:∵将点P(3-2)向右平移4个单位得到点∴点的坐标是(7-2)∴点关于x轴的对称点解析:(7,2)【分析】先根据向右平移4个单位,横坐标加4,纵坐标不变,求出点P'的坐标,再根据关于x轴对称,横坐标不变,纵坐标相反解答.【详解】解:∵将点P(3,-2)向右平移4个单位得到点P',∴点P'的坐标是(7,-2),∴点P'关于x轴的对称点的坐标是(7, 2).故答案为:(7, 2)【点睛】本题考查了坐标与图形变化−平移,以及关于x轴、y轴对称点的坐标的关系,熟练掌握并灵活运用是解题的关键.14.【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA2=A2B2=OA3OA3=A3B3=OA4…再将解得OA3==OA2==OA1=找到规律进而得出答案【详解】解:∵△A1B1A2是等边解析:12n-【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA2=A2B2=12OA3,OA3=A3B3=12OA4…,再将48OA=解得OA3=1842⨯==312-,OA2=1422⨯==212-,OA 1=1112122-⨯==,找到规律,进而得出答案. 【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠B 1A 1A 2=∠A 1B 1A 2=60°∵∠MON=30°,∴∠OB 1A 1=30°,∠OB 1A 2=90° ∴OA 1=A 1B 1=12OA 2, 同理可得OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4 ∵48OA =∴OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==, 以此类推△A n B n A n+1的边长为2n-1.故答案为2n-1.【点睛】本题考查了等边三角形的性质及含30°角的直角三角形的性质,根据得出的数值找到规律是解题的关键.15.【分析】分两种情况根据等腰三角形的性质及三角形的三边关系解答【详解】分两种情况:当6cm 的边为腰时底边长=24-6-6=12(cm )∵6+6=12故不能构成三角形;当6cm 的边为底边时腰长=(cm )解析:9【分析】分两种情况,根据等腰三角形的性质及三角形的三边关系解答.【详解】分两种情况:当6cm 的边为腰时,底边长=24-6-6=12(cm ),∵6+6=12,故不能构成三角形; 当6cm 的边为底边时,腰长=1(246)92⨯-=(cm ),由于6+9>9,故能构成三角形, 故答案为:9.【点睛】此题考查等腰三角形的性质:两腰相等,依据三角形三边关系,解题中运用分类思想解答. 16.①②④【分析】只要证明△BDF ≌△CDA △BAC 是等腰三角形即可判断①②正确作GM ⊥BD 于M 只要证明GH <DG 即可判断③错误证明可判断④正确【详解】解:①又又∴是等腰直角三角形在和中故①正确;②平分 解析:①②④【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,即可判断①②正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断③错误,证明DGF DFG ∠=∠可判断④正确.【详解】解:①CD AB ⊥,90CDA BDF ∠∴∠==︒,18090DBF DFB BDF ︒∠+∠=-∠=︒,又BE AC ⊥,90BEA ∴∠=︒,18090DBF DAC BEA ∠+∠=-∠=∴︒︒,DAC DFB ∠=∠∴,又45ABC ∠=︒,18045DCB ABC BDF ∴∠=︒-∠-∠=︒,∴BCD △是等腰直角三角形,BD CD ∴=,在ACD △和FBD 中,DAC DFB CDA BDF CD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD FBD AAS ∴≅,AC BF ∴=.故①正确;②BE 平分ABC ∠,BE AC ⊥,ABE CBE ∴∠=∠,90BEA BEC ∠=∠=︒,∴在ABE △和CBE △中,ABE CBE BE BEBEA BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ASA ABE CBE ∴≅,AE CE ∴=,2AC AE CE CE ∴=+=,又AC BF =,2BF CE ∴=,故②正确;③如图所示,过G 作GM BD ⊥于点M ,H 为等腰直角BCD △斜边BC 的中点,DH BC ∴⊥,即90GHB ∠=︒,又BE 平分ABC ∠,GM BD ⊥,GM GH ∴=,又BD BH >,BDG BGH S S ∴>,又ABE CBE ≅ABE CBE S S ∴=,ABE BDG ADGE S S S ∴=-四边形,CBE BGH GHCE S S S =-四边形,ADGE GHCE S S ∴<四边形四边形,故③错误;④18090HBG BGH GHB ∠+∠=︒-∠=︒,18090DBF DFG BDF ∠+∠=︒-∠=︒,HBG DBF ∠=∠,BGH DFG ∴∠=∠,又BGH DGF ∠=∠,DGF DFG ∴∠=∠,DGF ∴为等腰三角形.∴综上,答案为①②④.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第三个问题难度比较大,添加辅助线是解题关键.17.110°或80°【分析】根据等腰三角形的性质先求出∠BAC 的度数然后分3种情况:①AD =AE 时②AD =ED 时③当AE =DE 时分别求解即可【详解】∵在△ABC 中AB =AC ∠B =40°∴∠B =∠C=40解析:110°或80°【分析】根据等腰三角形的性质,先求出∠BAC 的度数,然后分3种情况:①AD =AE 时,②AD =ED 时,③当AE =DE 时,分别求解,即可.【详解】∵在△ABC 中,AB =AC ,∠B =40°,∴∠B=∠C=40°∴∠BAC=100°,①AD=AE时,∠AED=∠ADE=40°,∴∠DAE=100°,此时,点D与点B重合,不符合题意舍去,②AD=ED时,∠DAE=∠DEA,∴∠DAE=1(180°−40°)=70°,2∴∠BAD=∠BAC−∠DAE=100°−70°=30°,∴∠BDA=180°−∠B−∠BAD=110°,③当AE=DE时,∠DAE=∠ADE=40°,∴∠BAD=100°−40°=60°,∴∠BDA=180°−40°−60°=80°,综上所述:∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,故答案是:110°或80°【点睛】此题主要考查学生对等腰三角形的性质,三角形内角和定理的理解和掌握,解本题的关键是分类讨论,是一道基础题目.18.25【分析】分腰长为10和腰长为5两种情况讨论不合题意的舍去据此即可求解【详解】解:当腰长为10时三边分别为10105构成三角形周长为10+10+5=25;当腰长为5时三边分别为5510∵5+5=1解析:25【分析】分腰长为10和腰长为5两种情况讨论,不合题意的舍去,据此即可求解.【详解】解:当腰长为10时,三边分别为10、10、5,构成三角形,周长为10+10+5=25;当腰长为5时,三边分别为5、5、10,∵5+5=10,无法构成三角形,不合题意.故答案为:25【点睛】本题考查了等腰三角形的定义和三角形的三边关系,熟知相关定理是解题关键.19.6【分析】根据垂直平分线的性质可得AE=BE即可得出AC=BE+CE根据△BCE的周长即可得答案【详解】∵DE是AB的垂直平分线∴AE=BE∵AB=ACAC=AE+CEAB=11∴BE+CE=AC=解析:6【分析】根据垂直平分线的性质可得AE=BE,即可得出AC=BE+CE,根据△BCE的周长即可得答案.【详解】∵DE是AB的垂直平分线,∴AE=BE,∵AB=AC,AC=AE+CE,AB=11,∴BE+CE=AC=11,∵BCE的周长为17cm,∴BC+CE+BE=17,即BC+11=17,解得:BC=6.故答案为:6【点睛】本题考查了线段的垂直平分线性质,熟练掌握垂直平分线上任意一点,到线段两端点的距离相等是解题关键.20.5【分析】画出所有与成轴对称的三角形【详解】解:如图所示:和对称和对称和对称和对称和对称故答案是:5【点睛】本题考查轴对称图形解题的关键是掌握画轴对称图形的方法解析:5【分析】画出所有与ABC成轴对称的三角形.【详解】解:如图所示:ABC和ADC对称,ABC和EBD△对称,ABC和DEF对称,ABC和DCB对称,ABC和CDA对称,故答案是:5.【点睛】本题考查轴对称图形,解题的关键是掌握画轴对称图形的方法.三、解答题21.(1)见解析;(2)2【分析】(1)连接EC、EB,根据AE是∠CAB的平分线,得出EG=EF,再根据ED垂直平分BC,得出Rt△CGE≌△BFE,从而证出BF=CG;(2)根据全等三角形的性质得到AF=AG,求得AG=10,于是得到结论.【详解】(1)连接EC、EB.∵AE 是∠CAB 的平分线,EF ⊥AB 于点F ,EG ⊥AC 于点G ,∴EG=EF ,又∵ED 垂直平分BC ,∴EC=EB ,∴Rt △CGE ≌Rt △BFE (HL ),∴BF=CG ;(2)在Rt △AEF 和Rt △AEG 中,AE AE EF EG =⎧⎨=⎩, ∴△AEF ≌△AEG (HL ),∴AF=AG ,∵BF=CG ,∴AB+AC=AF+BF+AG-CG=2AG ,∵AB=12,AC=8,∴AG=10,∴CG=AG-AC=2.【点睛】本题主要考查了全等三角形的判定和性质,在解题时要注意全等三角形的判定和性质的灵活应用以及与角平分线的性质的联系是本题的关键.22.(1)证明见详解;(2)证明见详解.【分析】(1)根据等边三角形的性质得,,AB AC AD AE BAC DAE ==∠=∠,CAD ∠为公共角得出BAD CAE ∠=∠,根据SAS 可证全等.(2)根据全等三角形的性质,,ACE ABD ADB AEC ==∠∠∠∠联立题目条件ADG CED ∠=∠可得60BDG AED ==∠∠,根据三角形外角的性质得到AGD BFC ∠=∠证明()AGC BFC AAS ≅,即可证AG CF =.【详解】(1)∵ABC 和ADE 均为等边三角形,∴,,AB AC AD AE BAC DAE ==∠=∠, ∵CAD ∠为公共角,∴BAD CAE ∠=∠∴()ABD ACE SAS ≅△△(2)∵ABD ACE ≅,∴,,ACE ABD ADB AEC ==∠∠∠∠ ∵ADG CED ∠=∠,∴60BDG AED ==∠∠,∴GBD GDB GBD BAF +=+∠∠∠∠,即AGD BFC ∠=∠,在AGC 与BFC △中AGD BFC GAC FCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AGC BFC AAS ≅∴AG CF =【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,三角形外角的性质等知识点;解题的关键是熟练掌握以上知识点.23.(1)补图见解析;(2)①90EDG α∠=︒-;②以线段,,AE BF EF 为边的三角形是直角三角形,理由见解析.【分析】(1)根据题意画出图形解答即可;(2) ①根据轴对称的性质解答即可;②根据轴对称的性质和全等三角形的判定和性质得出AE GE =,进而解答即可.【详解】解:(1)补全图形,如图所示,(2)①∵ADF α∠=,∴180BDF α∠=︒-,由轴对称性质可知,180GDF BDF α∠=∠=︒-,∵DF DE ⊥,∴90EDF ∠=︒,∴1809090EDG GDF EDF αα∠=∠-∠=︒--︒=︒-,②以线段,,AE BF EF 为边的三角形是直角三角形,如图,连接,GF GE ,由轴对称性质可知,,GF BF DGF B =∠=∠,∵D 是AB 的中点,∴AD BD =,∵GD BD =,∴AD GD =,∵90,GDE EDA DE DE α∠=∠=︒-=,∴GDE ADE ≌,∴,EGD EAD AE GE ∠=∠=,∵90EAD B ∠=︒+∠,∴90EGD B ∠=︒+∠,∴9090EGF EGD DGF B B ∠=∠-∠=︒+∠-∠=︒, ∴以线段,,GE GF EF 为边的三角形是直角三角形,∴以线段,,AE BF EF 为边的三角形是直角三角形.【点睛】此题考查全等三角形的判定和性质,关键是根据轴对称的性质和全等三角形的判定和性质解答.24.(1)所画图形见解析;(2)3,-3 ;-1,-3;0,4 ;(3)11【分析】(1)分别作出各点关于y 轴的对称点,再顺次连接各点即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)作矩形DB EF ',用矩形的面积减去三个三角形的面积,即可得到A B C S'''.【详解】解:(1)如图所示:(2)由图可知,A '(3,-3),B '(-1,-3),C '(0,4);(3)如图,作矩形DB EF ',则DB EF S S S S S ''''''''''=---△A B C △C DB △C FA △A EB 四边形1117417316411222=⨯-⨯⨯-⨯⨯-⨯⨯=, ∴11A B C S '''=△.【点睛】本题考查的是作图-轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键. 25.(1)见解析;(2)(1,5)A ',(1,0)B ',3)(4,C ';(3)见解析【分析】(1)根据轴对称的性质确定点,,A B C ''',顺次连线即可得到图形;(2)根据点的位置直接得解;(3)连接AC '与y 轴交于一点即为点P ,连接PC ,此时AP+PC 最短.【详解】解:(1)如图所示,A B C '''为所求作.(2)由图可得,(1,5)A ',(1,0)B ',4,3)C '.(3)如图所示,点P 即为所求作.【得解】此题考查轴对称的性质,轴对称作图,点的坐标,最短路径问题,正确理解轴对称的性质作出图形是解题的关键.26.(1)AP t =,8BP t =-,2BQ t =;(2)PQ AB ⊥,理由见解析;(3)能,当t 为83时,BPQ 为等边三角形 【分析】(1)根据点P 、Q 的运动速度解答;(2)连接AC ,得到△ABC 为等边三角形,根据等腰三角形的三线合一证明; (3)根据等边三角形的判定定理列出方程,解方程即可.【详解】解:(1)AP t =,8BP t =-,2BQ t =故答案为:t ;8-t ;2t ;(2)PQ AB ⊥.理由如下:连接AC∵AB BC =,60B ∠=,∴ABC 是等边三角形.∵Q 的速度是每秒2cm ,故当Q 与C 重合时,t 4=又P 的速度是每秒1cm ,=8cm AB ,∴=4AB BP =又∵=CA CB ,∴PQ AB ⊥.(3)能.∵60B ∠=,∴当BP BQ =时,BPQ 为等边三角形,∴82t t -=. ∴83t =. ∴当t 为83时,BPQ 为等边三角形. 【点睛】 本题考查的是等腰三角形的性质、等边三角形的判定和性质,掌握等腰三角形的三线合一、等边三角形的判定定理和性质定理是解题的关键.。
江苏省无锡市梁溪区民办辅仁中学2024届中考数学模拟试题含解析
江苏省无锡市梁溪区民办辅仁中学2024届中考数学模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.已知x 1,x 2是关于x 的方程x 2+bx ﹣3=0的两根,且满足x 1+x 2﹣3x 1x 2=5,那么b 的值为( )A .4B .﹣4C .3D .﹣32.已知抛物线c :y=x 2+2x ﹣3,将抛物线c 平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是( )A .将抛物线c 沿x 轴向右平移52个单位得到抛物线c′B .将抛物线c 沿x 轴向右平移4个单位得到抛物线c′C .将抛物线c 沿x 轴向右平移72个单位得到抛物线c′ D .将抛物线c 沿x 轴向右平移6个单位得到抛物线c′ 3.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛.根据题意,下面所列方程正确的是( )A .221x =B .1(1)212x x -=C .21212x = D .(1)21x x -= 4.下列因式分解正确的是( ) A .x 2+9=(x+3)2 B .a 2+2a+4=(a+2)2C .a 3-4a 2=a 2(a-4)D .1-4x 2=(1+4x )(1-4x ) 5.下列式子中,与232-互为有理化因式的是( )A .232-B .232+C .322+D .322-6.如图,在射线OA ,OB 上分别截取OA 1=OB 1,连接A 1B 1,在B 1A 1,B 1B 上分别截取B 1A 2=B 1B 2,连接A 2B 2,…按此规律作下去,若∠A 1B 1O =α,则∠A 10B 10O =( )A .102αB .92αC .20αD .18α 7.如图,在△ABC 中,BC=8,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,则△ADE 的周长等于( )A .8B .4C .12D .16 8.将抛物线()2y x 13=-+向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )A .()2y x 2=-B .()2y x 26=-+C .2y x 6=+D .2y x =9.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是( )A .B .C .D .10.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是( )A .B .C .D .二、填空题(本大题共6个小题,每小题3分,共18分)11.中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 .12.-3的倒数是___________13.若一次函数y=﹣x+b (b 为常数)的图象经过点(1,2),则b 的值为_____.14.计算32)3-的结果是_____15.已知抛物线y=x 2﹣x+3与y 轴相交于点M ,其顶点为N ,平移该抛物线,使点M 平移后的对应点M′与点N 重合,则平移后的抛物线的解析式为_____.16.如图,在直角坐标系中,点A ,B 分别在x 轴,y 轴上,点A 的坐标为(﹣1,0),∠ABO=30°,线段PQ 的端点P 从点O 出发,沿△OBA 的边按O→B→A→O 运动一周,同时另一端点Q 随之在x 轴的非负半轴上运动,如果PQ=3,那么当点P 运动一周时,点Q 运动的总路程为__________.三、解答题(共8题,共72分)17.(8分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题: 产品名称核桃 花椒 甘蓝 每辆汽车运载量(吨)10 6 4 每吨土特产利润(万元) 0.7 0.8 0.5若装运核桃的汽车为x 辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y 万元.求y 与x 之间的函数关系式;若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.18.(8分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA 级别和20kgB 级别茶叶的利润为4000元,销售20kgA 级别和10kgB 级别茶叶的利润为3500元.(1)求每千克A 级别茶叶和B 级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200kg 用于出口,其中B 级别茶叶的进货量不超过A 级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.19.(8分)已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出如下定义:如果2a PQ a <<,则称点P 为正方形ABCD 的“关联点”.在平面直角坐标系xOy 中,若A (﹣1,1),B (﹣1,﹣1),C (1,﹣1),D (1,1).(1)在11,02P ⎛⎫- ⎪⎝⎭,213,22P ⎛⎫ ⎪ ⎪⎝⎭,()30,2P 中,正方形ABCD 的“关联点”有_____; (2)已知点E 的横坐标是m ,若点E 在直线3y x =上,并且E 是正方形ABCD 的“关联点”,求m 的取值范围; (3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线31y x =+与x 轴、y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围.20.(8分)2017年10月31日,在广州举行的世界城市日全球主场活动开幕式上,住建部公布许昌成为“国家生态园林城市”在2018年植树节到来之际,许昌某中学购买了甲、乙两种树木用于绿化校园.若购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元.(1)求甲种树和乙种树的单价;(2)按学校规划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量的12,请设计出最省钱的购买方案,并说明理由.21.(8分)如图所示,在Rt ABC △中,90ACB ∠=︒,(1)用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹)(2)连接AP 当B 为多少度时,AP 平分CAB ∠.22.(10分)兴发服装店老板用4500元购进一批某款T 恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.第一批该款式T 恤衫每件进价是多少元?老板以每件120元的价格销售该款式T 恤衫,当第二批T 恤衫售出45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T 恤衫每件售价至少要多少元?(利润=售价﹣进价)23.(12分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?24.如图,在矩形ABCD中,E是边BC上的点,AE=BC,DF⊥AE,垂足为F,连接DE.求证:AB=DF.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】根据一元二次方程根与系数的关系和整体代入思想即可得解.【题目详解】∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故选A.【题目点拨】本题主要考查一元二次方程的根与系数的关系(韦达定理),韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=,x1x2=.2、B【解题分析】∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为x=﹣1.∴抛物线与y轴的交点为A(0,﹣3).则与A点以对称轴对称的点是B(2,﹣3).若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.则B点平移后坐标应为(4,﹣3),因此将抛物线C向右平移4个单位.故选B.3、B.【解题分析】试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:1(1)212x x-=,故选B.考点:由实际问题抽象出一元二次方程.4、C【解题分析】试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)故选C,考点:因式分解【题目详解】请在此输入详解!5、B【解题分析】直接利用有理化因式的定义分析得出答案.【题目详解】∵()()=12﹣2,=10,∴与互为有理化因式的是:,故选B.【题目点拨】本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.6、B【解题分析】根据等腰三角形两底角相等用α表示出∠A 2B 2O ,依此类推即可得到结论.【题目详解】∵B 1A 2=B 1B 2,∠A 1B 1O =α,∴∠A 2B 2O =12α, 同理∠A 3B 3O =12×12α=212α, ∠A 4B 4O =312α, ∴∠A n B n O =n 112-α, ∴∠A 10B 10O =9a 2, 故选B .【题目点拨】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.7、A【解题分析】∵AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,∴DA=DB ,EA=EC ,则△ADE 的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A .8、D【解题分析】根据“左加右减、上加下减”的原则,将抛物线()2y x 13=-+向左平移1个单位所得直线解析式为:()22y x 113y x 3=-++⇒=+;再向下平移3个单位为:22y x 33y x =+-⇒=.故选D .9、D【解题分析】左视图从左往右,2列正方形的个数依次为2,1,依此得出图形D正确.故选D.【题目详解】请在此输入详解!10、B【解题分析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【题目详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【题目点拨】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、9.6×1.【解题分析】将9600000用科学记数法表示为9.6×1.故答案为9.6×1.12、1 3 -【解题分析】乘积为1的两数互为相反数,即a的倒数即为1a,符号一致【题目详解】∵-3的倒数是1 3 -∴答案是1 3 -13、3【解题分析】把点(1,2)代入解析式解答即可.【题目详解】解:把点(1,2)代入解析式y=-x+b,可得:2=-1+b,解得:b=3,故答案为3【题目点拨】本题考查的是一次函数的图象点的关系,关键是把点(1,2)代入解析式解答.14【解题分析】【分析】根据二次根式的运算法则进行计算即可求出答案.【题目详解】,.【题目点拨】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.15、y=(x﹣1)2+5 2【解题分析】直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出M、N点坐标,进而得出平移方向和距离,即可得出平移后解析式.【题目详解】解:y=x2-x+3=(x-12)2+114,∴N点坐标为:(12,114),令x=0,则y=3,∴M点的坐标是(0,3).∵平移该抛物线,使点M平移后的对应点M′与点N重合,∴抛物线向下平移14个单位长度,再向右平移12个单位长度即可,∴平移后的解析式为:y=(x-1)2+52.故答案是:y=(x-1)2+52.【题目点拨】此题主要考查了抛物线与坐标轴交点求法以及二次函数的平移,正确得出平移方向和距离是解题关键.16、4【解题分析】首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C时,点Q从O运动到Q,计算OQ的长就是运动的路程;③点P从C→A时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.【题目详解】在Rt△AOB中,∵∠ABO=30°,AO=1,∴AB=2,BO=22-=213①当点P从O→B时,如图1、图2所示,点Q运动的路程为3,②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴AQ=2AC,又∵3∴AQ=2∴OQ=2﹣1=1,则点Q 运动的路程为QO=1,③当点P 从C→A 时,如图3所示,点Q 运动的路程为QQ′=2④当点P 从A→O 时,点Q 运动的路程为AO=1,∴点Q +1=4故答案为4.考点:解直角三角形三、解答题(共8题,共72分)17、 (1)y=﹣3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【解题分析】(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x ﹣(1x+1)=(12﹣3x )辆,从而可以得到y 与x 的函数关系式;(1)根据装花椒的汽车不超过8辆,可以求得x 的取值范围,从而可以得到y 的最大值,从而可以得到总利润最大时,装运各种产品的车辆数.【题目详解】(1)若装运核桃的汽车为x 辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x ﹣(1x+1)=(12﹣3x )辆,根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x )=﹣3.4x+141.1. (1)根据题意得:()29382130x x x -≤⎧⎨++≤⎩, 解得:7≤x≤293, ∵x 为整数,∴7≤x≤2.∵10.6>0,∴y 随x 增大而减小,∴当x=7时,y 取最大值,最大值=﹣3.4×7+141.1=117.4,此时:1x+1=12,12﹣3x=1.答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【题目点拨】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.18、(1)100元和150元;(2)购进A 种级别的茶叶67kg ,购进B 种级别的茶叶133kg .销售总利润最大为26650元.【解题分析】试题分析:(1)设每千克A 级别茶叶和B 级别茶叶的销售利润分别为x 元和y 元;(2)设购进A 种级别的茶叶akg ,购进B 种级别的茶叶(200-a )kg .销售总利润为w 元.构建一次函数,利用一次函数的性质即可解决问题.试题解析:解:(1)设每千克A 级别茶叶和B 级别茶叶的销售利润分别为x 元和y 元. 由题意, 解得, 答:每千克A 级别茶叶和B 级别茶叶的销售利润分别为100元和150元.(2)设购进A 种级别的茶叶akg ,购进B 种级别的茶叶(200﹣a )kg .销售总利润为w 元.由题意w=100a+150(200﹣a )=﹣50a+30000,∵﹣50<0,∴w 随x 的增大而减小,∴当a 取最小值,w 有最大值,∵200﹣a≤2a ,∴a≥,∴当a=67时,w 最小=﹣50×67+30000=26650(元),此时200﹣67=133kg ,答:购进A 种级别的茶叶67kg ,购进B 种级别的茶叶133kg .销售总利润最大为26650元.点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.19、(1)正方形ABCD 的“关联点”为P 2,P 3;(2)1222m ≤≤或2122m -≤≤-;(3)33233n ≤≤. 【解题分析】(1)正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断; (2)因为E 是正方形ABCD 的“关联点”,所以E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),因为E 在直线3y x =上,推出点E 在线段FG 上,求出点F 、G 的横坐标,再根据对称性即可解决问题;(3)因为线段MN 上的每一个点都是正方形ABCD 的“关联点”,分两种情形:①如图3中,MN 与小⊙Q 相切于点F ,求出此时点Q 的横坐标;②M 如图4中,落在大⊙Q 上,求出点Q 的横坐标即可解决问题;【题目详解】(1)由题意正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD 的“关联点”为P 2,P 3;(2)作正方形ABCD 的内切圆和外接圆,∴OF =1,2OG =.∵E 是正方形ABCD 的“关联点”,∴E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),∵点E 在直线3y x =上,∴点E 在线段FG 上.分别作FF ’⊥x 轴,GG ’⊥x 轴,∵OF =1,2OG =∴12OF '=,22OG '=. ∴1222m ≤≤. 根据对称性,可以得出2122m -≤≤-.∴1222m≤≤或2122m-≤≤-.(3)∵3,03M⎛⎫-⎪⎪⎝⎭、N(0,1),∴33OM=,ON=1.∴∠OMN=60°.∵线段MN上的每一个点都是正方形ABCD 的“关联点”,①MN与小⊙Q相切于点F,如图3中,∵QF=1,∠OMN=60°,∴233 QM=∵3 OM=∴3 OQ=.∴13 3Q ⎛⎫⎪ ⎪⎝⎭.②M落在大⊙Q上,如图4中,∵2QM =3OM = ∴32OQ =∴2323Q ⎫⎪⎪⎭. 综上:33233n ≤≤【题目点拨】本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.20、(1)甲种树的单价为50元/棵,乙种树的单价为40元/棵.(2)当购买1棵甲种树、133棵乙种树时,购买费用最低,理由见解析.【解题分析】(1)设甲种树的单价为x 元/棵,乙种树的单价为y 元/棵,根据“购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购买甲种树a 棵,则购买乙种树(200-a )棵,根据甲种树的数量不少于乙种树的数量的1,2可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再由甲种树的单价比乙种树的单价贵,即可找出最省钱的购买方案.【题目详解】解:(1)设甲种树的单价为x 元/棵,乙种树的单价为y 元/棵,根据题意得:7451035350x y x y +=⎧⎨+=⎩,解得:5040.x y =⎧⎨=⎩答:甲种树的单价为50元/棵,乙种树的单价为40元/棵.(2)设购买甲种树a 棵,则购买乙种树(200﹣a )棵, 根据题意得:()12002a a ≥-, 解得:2003a ≥, ∵a 为整数,∴a≥1.∵甲种树的单价比乙种树的单价贵,∴当购买1棵甲种树、133棵乙种树时,购买费用最低.【题目点拨】一元一次不等式的应用,二元一次方程组的应用,读懂题目,是解题的关键.21、(1)详见解析;(2)30°.【解题分析】(1)根据线段垂直平分线的作法作出AB 的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【题目详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P , ∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【题目点拨】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.22、(1)第一批T 恤衫每件的进价是90元;(2)剩余的T 恤衫每件售价至少要80元.【解题分析】(1)设第一批T 恤衫每件进价是x 元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进的件数可得方程;(2)设剩余的T 恤衫每件售价y 元,由利润=售价﹣进价,根据第二批的销售利润不低于650元,可列不等式求解.【题目详解】解:(1)设第一批T 恤衫每件进价是x 元,由题意,得45004950x x 9=+, 解得x=90经检验x=90是分式方程的解,符合题意.答:第一批T 恤衫每件的进价是90元.(2)设剩余的T 恤衫每件售价y 元.由(1)知,第二批购进495099=50件. 由题意,得120×50×45+y×50×15﹣4950≥650, 解得y≥80.答:剩余的T 恤衫每件售价至少要80元.23、(1)甲:25万元;乙:28万元;(2)三种方案;甲种套房提升50套,乙种套房提升30套费用最少;(3)当a=3时,三种方案的费用一样,都是2240万元;当a>3时,取m=48时费用最省;当0<a<3时,取m=50时费用最省. 【解题分析】试题分析:(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论;(3)根据(2)表示出W与m之间的关系式,由一次函数的性质分类讨论就可以得出结论.(1)设甲种套房每套提升费用为x万元,依题意,得解得:x=25经检验:x=25符合题意,x+3=28;答:甲,乙两种套房每套提升费用分别为25万元,28万元.(2)设甲种套房提升套,那么乙种套房提升(m-48)套,依题意,得解得:48≤m≤50即m=48或49或50,所以有三种方案分别是:方案一:甲种套房提升48套,乙种套房提升32套.方案二:甲种套房提升49套,乙种套房提升1.套方案三:甲种套房提升50套,乙种套房提升30套.设提升两种套房所需要的费用为W.所以当时,费用最少,即第三种方案费用最少.(3)在(2)的基础上有:当a=3时,三种方案的费用一样,都是2240万元.当a>3时,取m=48时费用W最省.当0<a<3时,取m=50时费用最省.考点: 1.一次函数的应用;2.分式方程的应用;3.一元一次不等式组的应用.24、详见解析.【解题分析】根据矩形性质推出BC=AD=AE,AD∥BC,根据平行线性质推出∠DAE=∠AEB,根据AAS证出△ABE≌△DFA即可.【题目详解】证明:在矩形ABCD中∵BC=AD,AD∥BC,∠B=90°,∴∠DAF=∠AEB,∵DF⊥AE,AE=BC=AD,∴∠AFD=∠B=90°,在△ABE和△DFA中∵∠AFD=∠B,∠DAF=∠AEB ,AE=AD∴△ABE≌△DFA(AAS),∴AB=DF.【题目点拨】本题考查的知识点有矩形的性质,全等三角形的判定与性质,平行线的性质.解决本题的关键在于能够找到证明三角形全等的有关条件.。
无锡市辅仁中学八年级数学上册第十三章《轴对称》经典复习题(培优练)
一、选择题1.如图,AD 是ABC ∆的中线,E 是AD 上一点,BE 交AC 于F ,若,9,6BE AC BF CF ===,则AF 的长度为( )A .1B .1.5C .2D .2.52.以下尺规作图中,点D 为线段BC 边上一点,一定能得到线段AD BD =的是( ) A . B .C .D .3.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( ) A .1- B .1 C .0 D .2021- 4.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…,在射线ON 上,点B ,1B ,2B ,3B ,…,在射线OM 上,112A B B ,223A B B △,334A B B △,…,均为等边三角形.若11OB =,则202020202021A B B △的边长为( )A .20192B .20202C .20212D .20222 5.如图,ABC 是等边三角形,D 是线段BC 上一点(不与点,B C 重合),连接AD ,点,EF 分别在线段,AB AC 的延长线上,且DE DF AD ==,点D 从B 运动到C 的过程中,BED 周长的变化规律是( )A .不变B .一直变小C .先变大后变小D .先变小后变大 6.如图,等边ABC 的顶点(1,1)A ,(3,1)B ,规定把等边ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,ABC 顶点C 的坐标为( )A .(2020,13)-+B .(2020,13)---C .(2019,13)-+D .(2019,13)--- 7.如图所示的是A 、B 、C 三点,按如下步骤作图:①先分别以A 、B 两点为圆心,以大于12AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ;②再分别以B 、C 两点为圆心,以大于12BC 的长为半径作弧,两弧相交于G 、H 两点,作直线GH ,GH 与MN 交于点P ,若66BAC ∠=︒,则BPC ∠等于( )A .100°B .120°C .132°D .140°8.如图,在ABC 中,87,A ABC ∠=︒∠的平分线BD 交AC 于点,D E 是BC 中点,且DE BC ⊥,那么C ∠的度数为( )A .16︒B .28︒C .31︒D .62︒9.如图,ABC 中,AC AD BD ==,80CAD ︒∠=,则B 等于( )A .25︒B .30︒C .35︒D .40︒10.如图,已知等腰三角形ABC 中,AB AC =,15DBC ∠=︒,分别以A 、B 两点为圆心,以大于12AB 的长为半径画圆弧,两弧分别交于点E 、F ,直线EF 与AC 相交于点D ,则A ∠的度数是( )A .50°B .60°C .75°D .45°11.如图,是一个 3×4 的网格(由 12 个小正方形组成,虚线交点称之格点)图中有一个三角形,三个顶点都在格点上,在网格中可以画出( )个与此三角形关于某直线对称的格点三角形.A .6B .7C .8D .912.如图,在Rt △ABC 中,∠BAC =90°,∠ACB =45°,点D 是AB 中点,AF ⊥CD 于点H ,交BC 于点F ,BE ∥AC 交AF 的延长线于点E ,给出下列结论:①∠BAE =∠ACD ,②△ADC ≌△BEA ,③AC =AF ,④∠BDE =∠EDC ,⑤BC ⊥DE .上述结论正确的序号是( )A .①②⑤B .②④⑤C .①②④D .①②③ 13.等腰三角形腰上的高与另一腰的夹角为30,则底角度数是( ) A .30 B .60︒ C .40︒或50︒ D .30或60︒ 14.已知等边△ABC 的边长为6,D 是AB 上的动点,过D 作DE ⊥AC 于点E ,过E 作EF ⊥BC 于点F ,过F 作FG ⊥AB 于点G .当G 与D 重合时,AD 的长是( )A .1B .2C .3D .415.在直角坐标系中,已知A (2,-2),在y 轴上确定一点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .2个B .3个C .4个D .5个二、填空题16.如图,点CD 在线段AB 的同侧,CA =6,AB =14,BD =12,M 为AB 中点,∠CMD =120°.则CD 的最大值为____.17.如图,在ABC 中,BD 平分ABC ∠交AC 于点D ,//EF BC 交BD 于点G ,若130BEG ∠=︒,则DGF ∠=______.18.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.19.如图在钝角△ABC 中,已知∠BAC=135°,边AB 、AC 的垂直平分线分别交BC 于点D 、E ,连接AD 、AE ,则∠DAE=_____20.如图,等腰ABC 底边BC 的长为4cm ,面积是12cm 2,腰AB 的垂直平分线EF 交AC 于点F ,若D 为BC 边上的中点,M 为线段EF 上一动点,则BDM 的周长最小值为_____cm .21.如图,等边△ABC 的边长为4,点D 在边AC 上,AD =1.(1)△ABC 的周长等于_____;(2)线段PQ 在边BA 上运动,PQ =1,BQ >BP ,连接QD ,PC ,当四边形PCDQ 的周长取得最小值时,请在如图所示的矩形区域内,用无刻度的直尺和圆规,画出线段PC ,QD ,并简要说明点P 和点Q 的位置是如何找到的(保留作图痕迹,不要求证明)_____.22.如图,∠MON=30°,点123A A A 、、…在射线ON 上,点123B B B 、、…在射线OM 上,△112A B A 、△223A B A 、△334A B A …均为等边三角形,从左起第1个等边三角形的边长记为1a ,第2个等边三角形的边长记为2a ,以此类推.若11OA =,则2021a =____.23.给出如下三个图案,它们具有的公共特点是:________.(写出1个即可)24.如图,在正方形网格中,分别将①②③④四个网格涂上阴影,能与原阴影部分构成一个轴对称图形的有____________.(填网格序号)25.如图,E 是腰长为2的等腰直角ABC 斜边上一点,且BE BC P =,为CE 上任意一点,PQ BC ⊥于点Q PR BE ⊥,于点R ,则PQ PR +的值是___________.26.如图,△ABC 中,AB =AC ,点D 、E 、F 分别在AB 、BC 、CA 边上,且BE =CF ,BD =CE ,如果∠A =44°,则∠EDF 的度数为__.三、解答题27.小明遇到这样一个问题:如图①,在ABC 中,12AB =,8AC =,AD 是中线,求AD 的取值范围.她的做法是:过点B 作//BE AC 交AD 的延长线于点E ,证明BED CAD △≌△,经过推理和计算就可以使问题得到解决.按照上面的思路,请回答:(1)小红证明BED CAD △≌△的判定定理是:______;(2)AD 的取值范围是______;方法运用:(3)如图②,AD 是ABC 的中线,在AD 上取一点F ,连接BF 并延长交AC 于点E ,使AE EF =,求证:BF AC =.28.如图,在ABC 中,90ACB ∠=︒,AC BC =,点D 在线段BC 上,连接AD ,过点C 作CE AD ⊥交AD 于点E ,过点B 作BF CE ⊥,交CE 的延长线于点F ,点G 是AB 的中点,连接GE ,GF .(1)若30CAD ∠=︒,5AD =,求DE 的长度;(2)求证:GE GF =.29.如图,在ABC ∆中,60B ∠=︒,点M 从点B 出发沿线段BC 方向,在线段BC 上运动.在点M 运动的过程中,连结AM ,并以AM 为边在线段BC 上方,作等边AMN ∆,连结CN .(1)当_________BAM ∠=时,2AB BM =;(2)请添加一个条件:_________,使得ABC ∆为等边三角形;当ABC ∆为等边三角形时,求证:CN CM AC +=;30.在平面直角坐标系中,点(0,)A a ,点(,0)B b ,点(3,0)C -,且a 、b 满足269||0a a a b -++-=.(1)点A 坐标为______,点B 坐标为______,ABC 是______三角形. (2)如图,过点A 作射线l (射线l 与边BC 有交点),过点B 作BD l ⊥于点D ,过点C 作CE l ⊥于点E ,过点E 作EF DC ⊥于点F 交y 轴于点G .①求证:BD AE =;②求点G 的坐标.(3)如图,点P 是x 轴正半轴上一动点,APO ∠的角平分线交y 轴于点Q ,点M 为线段OP 上一点,过点M 作//MN PQ 交y 轴于点N ;若45AMN ∠=︒,请探究线段AP 、AN 、PM 三者之间的数量关系,并证明你的结论.。
江苏省无锡市辅仁中学2024-2025学年九上数学开学质量跟踪监视试题【含答案】
江苏省无锡市辅仁中学2024-2025学年九上数学开学质量跟踪监视试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)把代数式2x 2﹣18分解因式,结果正确的是()A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)2、(4分)关于x 的一元二次方程2(3)30mx m x ---=有两个不相等的实数根,则m 的取值范围是()A .0m ≠B .3m >-C .3m >-且0m ≠D .3m ≠-且0m ≠3、(4分)下列二次根式中,属于最简二次根式的是()A .B C D .4、(4分)点()1,4P 位于平面直角坐标系中的().A .第一象限B .第二象限C .第三象限D .第四象限5、(4分)给出下列几组数:①4,5,6;②8,15,16;③n 2-1,2n ,n 2+1;④m 2-n 2,2mn ,m 2+n 2(m>n>0).其中—定能组成直角三角形三边长的是().A .①②B .③④C .①③④D .④6、(4分)在实数范围内有意义,则a 的取值范围是()A .2a ≤B .2a ≥C .2a <D .2a >7、(4分)用配方法解一元二次方程2640x x -+=,下列变形正确的是()A .2(3)13x -=B .5)3(2=-x C .2(6)13x -=D .2(6)5x -=8、(4分)抛物线2y ax bx c =++(0a ≠)的部分图象如图所示,与x 轴的一个交点坐标为(4,0),抛物线的对称轴是1x =,下列结论是:①0abc >;②20a b +=;③方程22ax bx c ++=有两个不相等的实数根;④420a b c -+=;⑤若点(,)A m n 在该抛物线上,则2am bm c a b c ++≤++,其中正确的个数有()A .1个B .2个C .3个D .4个二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平面直角坐标系xOy 中,菱形AOBC 的边长为8,∠AOB =60°.点D 是边OB 上一动点,点E 在BC 上,且∠DAE =60°.有下列结论:①点C 的坐标为(12,;②BD=CE ;③四边形ADBE 的面积为定值;④当D 为OB 的中点时,△DBE 的面积最小.其中正确的有_______.(把你认为正确结论的序号都填上)10、(4分)如图,在边长为1的菱形ABCD 中,∠ABC =120°连接对角线AC ,以AC 为边作第二个菱形ACEF ,使∠ACE =120°连接AE ,再以AE 为边作第三个菱形AEGH ,使∠AEG =120°,…,按此规律所作的第n 个菱形的边长是________.11、(4分)在实数范围有意义,则x 的取值范围是_________.12、(4分)方程x 4﹣16=0的根是_____.13、(4分)如图,△ABC 与△A'B'C'是位似图形,点O 是位似中心,若OA=2AA',S △ABC =8,则S △A'B'C'=___.三、解答题(本大题共5个小题,共48分)14、(12分)某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.①求y 关于x 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?最大利润是多少?15、(8分)某区举行“中华诵经典诵读”大赛,小学、中学组根据初赛成绩,各选出5名选手组成小学代表队和中学代表队参加市级决赛,两个代表队各选出的5名选手的决赛成绩分别绘制成下列两个统计图根据以上信息,整理分析数据如下:平均数(分)中位数(分)众数(分)小学组85b 100中学组a 85c (1)写出表格中a ,b ,c 的值:a =,b =,c =.(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较稳定.16、(8分)如图,在平行四边形ABCD 中,点E ,F 分别是边AD ,BC 上的点,且AE=CF ,求证:AF=CE .17、(10分)有大小两种货车,3辆大货车与4辆小火车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)求1辆大货车和1辆小货车一次可以分别运多少吨;(2)现有31吨货物需要运输,货运公司拟安排大小货车共10辆把全部货物一次运完.求至少需要安排几辆大货车?18、(10分)已知:a ,b ,c 为一个直角三角形的三边长,且有2(2)0b +-=,求直角三角形的斜边长.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是分.20、(4分)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg 21、(4分)计算+的结果等于_______.22、(4分)若x x 的方程20x m -+=的一个根,则方程的另一个根是_________.23、(4分)已知一组数据为1,2,3,4,5,则这组数据的方差为_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠ABC 的度数.25、(10分)2018年8月中国铁路总公司宣布,京津高铁将再次提速,担任此次运营任务是最新的复兴号动车组,提速后车速是之前的1.5倍,100千米缩短了10分钟,问提速前后的速度分别是多少千米每小时?26、(12分)已知,如图E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE ,四边形ABCD 是平行四边形吗?请说明理由.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C 【解析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.2、D 【解析】根据方程有两个不相等的实数根,则>0∆,结合一元二次方程的定义,即可求出m 的取值范围.【详解】解:∵一元二次方程2(3)30mx m x ---=有两个不相等的实数根,∴2[(3)]4(3)0m m ∆=---⨯->解得:3m ≠-,∵0m ≠,∴m 的取值范围是:3m ≠-且0m ≠;故选:D.总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3、C【解析】根据二次根式的定义即可求解.【详解】A.,根号内含有分数,故不是最简二次根式;B.C.,是最简二次根式;D.=2,故不是最简二次根式;故选C.此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.4、A 【解析】本题根据各象限内点的坐标的特征即可得到答案【详解】解:∵点()1,4P 的横纵坐标都是正的∴,点P 在第一象限故选A 本题考查平面直角坐标系中四个象限内点的横纵坐标的正负,准确区分为解题关键5、D 【解析】①42+52≠62,∴不能组成直角三角形;②82+152≠162,∴不能组成直角三角形;③当n =1时,三边长为:0、2、2,不能组成直角三角形;④(m 2-n 2)2+(2mn )2=(m 2+n 2)2,且m >n >0,∴能组成直角三角形.故选D.点睛:本题关键在于勾股定理逆定理的运用.6、B【解析】根据二次根式的被开方数是非负数解题.【详解】解:依题意,得a-1≥0,解得,a≥1.故选:B .(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7、B 【解析】移项、方程两边同时加上一次项系数一半的平方,根据完全平方公式进行配方即可.【详解】移项,得:264x x -=-,配方,2695x x -+=,即2(3) 5.x -=,故选B.考查配方法解一元二次方程,解题的关键是把方程的左边化成含有未知数的完全平方式,右边是一个非负数形式.8、D 【解析】根据二次函数的对称性补全图像,再根据二次函数的性质即可求解.【详解】如图,∵与x 轴的一个交点坐标为(4,0),抛物线的对称轴是1x =,实验求出二次函数与x 轴的另一个交点为(-2,0)故可补全图像如下,由图可知a <0,c >0,对称轴x=1,故b >0,∴0abc >,①错误,②对称轴x=1,故x=-12ba -=,∴20ab +=,正确;③如图,作y=2图像,与函数有两个交点,∴方程22ax bx c ++=有两个不相等的实数根,正确;④∵x=-2时,y=0,即420a b c -+=,正确;⑤∵抛物线的对称轴为x=1,故点(,)A m n 在该抛物线上,则2am bm c a b c ++≤++,正确;故选D 此题主要考查二次函数的图像,解题的关键是熟知二次函数的对称性.二、填空题(本大题共5个小题,每小题4分,共20分)9、①②③【解析】①过点C 作CF ⊥OB ,垂足为点F ,求出BF=4,CF=C 坐标;②连结AB ,证明△ADB ≌△AEC ,则BD=CE ;③由S △ADB =S △AEC ,可得S △ABC =S △四边形ADBE =12×8×=;④可证△ADE 为等边三角形,当D 为OB 的中点时,AD ⊥OB ,此时AD 最小,则S △ADE 最小,由③知S 四边形ADBE 为定值,可得S △DBE 最大.【详解】解:①过点C 作CF ⊥OB ,垂足为点F ,∵四边形AOBC 为菱形,∴OB=BC=8,∠AOB=∠CBF=60°,∴BF=4,CF=∴OF=8+4=12,∴点C 的坐标为(12,,故①正确;②连结AB ,∵BC=AC=AO=OB ,∠AOB=∠ACB=60°,∴△ABC 是等边三角形,△AOB 是等边三角形,∴AB=AC ,∠BAC=60°,∵∠DAE=60°,∴∠DAB=∠EAC ,∵∠ABD=∠ACE=60°,∴△ADB ≌△AEC (ASA ),∴BD=CE ,故②正确;③∵△ADB ≌△AEC .∴S △ADB =S △AEC ,∴S △ABC =S △四边形ADBE =12×8×,故③正确;④∵△ADB ≌△AEC ,∴AD=AE ,∵∠DAE=60°,∴△ADE 为等边三角形,当D 为OB 的中点时,AD ⊥OB ,此时AD 最小,则S △ADE 最小,由③知S 四边形ADBE 为定值,可得S △DBE 最大.故④不正确;故答案为:①②③.本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质等,正确作出辅助线是解题的关键.10、1n 【解析】连接DB ,∵四边形ABCD 是菱形,∴AD=AB ,AC ⊥DB ,∵∠DAB=60°,∴△ADB 是等边三角形,∴DB=AD=1,∴BM=12,∴AM=2,∴,同理可得)2,AE=3)3,按此规律所作的第n 个菱形的边长为n −1,故答案为n −1.点睛:本题是一道找规律的题目.探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x ,再利用它们之间的关系,设出其它未知数,然后列方程.11、x≥13【解析】根据:对于式子,a≥0,式子才有意义.【详解】在实数范围内有意义,则3x-1≥0,解得x≥13.故答案为x≥13本题考核知识点:二次根式的意义.解题关键点:理解二次根式的意义.12、±1【解析】根据平方根的定义,很容易求解,或者把方程左边因式分解,通过降次的方法也可以求解.【详解】∵x 4﹣16=0,∴(x 1+4)(x +1)(x ﹣1)=0,∴x =±1,∴方程x 4﹣16=0的根是x=±1,故答案为±1.该题为高次方程,因此解决该题的关键,是需要把方程左边因式分解,从而达到降次的目的,把高次方程转化为低次方程,从而求解.13、1.【解析】解:由题易知△ABC ∽△A′B′C′,因为OA =2AA′,所以OA′=OA +AA′=3AA′,所以2239(()24A B C ABC S OA S OA '''=='=,又S △ABC =8,所以9981844A B C ABC S S '''==⨯=.故答案为:1.三、解答题(本大题共5个小题,共48分)14、(1)A 型:100元,B 型:150元;(2)①y=-50x+15000;②34台A 型电脑和66台B 型,利润最大,最大利润是1元【解析】(1)设每台A 型电脑销售利润为a 元,每台B 型电脑的销售利润为b 元;然后根据销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元列出方程组,然后求解即可;(2)①根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B 型电脑的进货量不超过A 型电脑的2倍列不等式求出x 的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【详解】解:(1)设每台A 型电脑销售利润为a 元,每台B 型电脑的销售利润为b 元;根据题意得1020400020103500a b a b +=⎧⎨+=⎩,解得100150 ab=⎧⎨=⎩.答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;(2)①根据题意得,y=100x+150(100-x),即y=-50x+15000;②据题意得,100-x≤2x,解得x≥331 3,∵y=-50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100-x=66,此时最大利润是y=-50×34+15000=1.即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是1元.本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.15、(1)1,80,1;(2)从平均数和中位数进行分析,中学组代表队的决赛成绩较好;(3)中学组代表队选手成绩较稳定.【解析】(1)根据平均数、中位数、众数的计算方法,通过计算得出答案,(2)从平均数和中位数两个方面进行比较、分析得出结论,(3)利用方差的计算公式,分别计算两个组的方差,通过比较得出答案.【详解】(1)中学组的平均数75858010085855x++++==分;小学组的成绩:70、75、80、100、100因此中位数为:80;中学组出现次数最多的分数是1分,所有众数为1分;故答案为:1,80,1.(2)从平均数上看,两个队都是1分,但从中位数上看中学组1分比小学组的80分要好,因此从平均数和中位数进行分析,中学组的决赛成绩较好;答:从平均数和中位数进行分析,中学组代表队的决赛成绩较好.(3)()()()()(2222221[758585858085100858585)705S ⎤=-+-+-+-+-=⎦中学组()()()()(2222221[7085758510085100858085)1605S ⎤=-+-+-+-+-=⎦小学组70160<,∴中学组的比较稳定.答:中学组代表队选手成绩较稳定.考查从统计图、统计表中获取数据的能力,以及平均数、中位数、众数、方差的意义和计算方法、明确各个统计量反映一组数据哪些特征,即要对一组数据进行分析,需要利用哪个统计量.16、见解析【解析】根据平行四边形ABCD 的对边平行得出AD ∥BC ,又AE=CF ,利用有一组对边平行且相等的四边形为平行四边形证得四边形AECF 为平行四边形,然后根据平行四边形的对边相等证得结论.【详解】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,即AE ∥CF ,又∵AE=CF ,∴四边形AECF 为平行四边形,∴AF=CE .本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.17、(1)1辆大货车一次运货4吨,1辆小货车一次运货1.5吨;(2)7辆.【解析】(1)设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨,34182617x y x y +=⎧⎨+=⎩,解方程组可得;(2)设货物公司安排大货车m 辆,则小货车需要安排()10m -辆,()4 1.51031m m +-≥,求整数解可得.【详解】解:(1)设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨,34182617x y x y +=⎧⎨+=⎩①2⨯-②3⨯得1015y -=-1.5y ∴=把 1.5y =代入①,得4x =41.5x y =⎧∴⎨=⎩(2)设货物公司安排大货车m 辆,则小货车需要安排()10m -辆,()4 1.51031m m +-≥解得 6.4m ≥m 为正整数,m ∴最小可以取7答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货1.5吨,该货物公司至少安排7辆大货车.考核知识点:方程组和不等式应用.理解题意中的数量关系是关键.18、该直角三角形的斜边长为3【解析】试题分析:根据非负数的性质求得a 、b 的值,然后利用勾股定理即可求得该直角三角形的斜边长.2(2)0b +-=,∴a ﹣3=2,b ﹣1=2,解得:a =3,b =1.①以a 为斜边时,斜边长为3;②以a ,b 综上所述:即直角三角形的斜边长为3点睛:本题考查了勾股定理,非负数的性质﹣绝对值、算术平方根.任意一个数的绝对值(二次根式)都是非负数,当几个数或式的绝对值相加和为2时,则其中的每一项都必须等于2.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.【详解】小海这学期的体育综合成绩=(80×40%+90×60%)=1(分).故答案为1.20、20【解析】设函数表达式为y=kx+b 把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg 21、2【解析】先套用平方差公式,再根据二次根式的性质计算可得.【详解】原式=)2)2=5﹣3=2,考点:二次根式的混合运算22、【解析】设另一个根为y ,利用两根之和,即可解决问题.【详解】解:设方程的另一个根为y ,则y +=4解得y =即方程的另一个根为故答案为:题考查根与系数的关系、一元二次方程的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、1.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+1+3+4+5)÷5=3,∴方差=[(1﹣3)1+(1﹣3)1+(3﹣3)1+(4﹣3)1+(5﹣3)1]÷5=1.考点:方差.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)∠ABC =45°.【解析】(1(2)连接AC ,根据勾股定理逆定理可得△ABC 是以AC 、BC 为腰的等腰直角三角形,据此可得答案.【详解】(1)如图1所示:(2)如图2,连AC ,则BC AC AB =====∵222+=,即BC 2+AC 2=AB 2,∴△ABC 为直角三角形,∠ACB =90°,∴∠ABC=∠CAB=45°.本题考查了作图﹣基本作图,解题的关键是掌握勾股定理及其逆定理和正方形的判定和性质.25、提速前的速度为200千米/小时,提速后的速度为350千米/小时,【解析】设列车提速前的速度为x千米每小时和列车提速后的速度为1.5千米每小时,根据关键语句“100千米缩短了10分钟”可列方程,解方程即可.【详解】设提速前后的速度分别为x千米每小时和1.5x千米每小时,根据题意得:10010010-=1.560x x解得:x=200,经检验:x=200是原方程的根,∴1.5x=300,答:提速前后的速度分别是200千米每小时和300千米每小时.考查了分式方程的应用,解题关键是弄懂题意,找出等量关系,列出方程.26、见解析【解析】解:结论:四边形ABCD是平行四边形证明:∵DF∥BE∴∠AFD=∠CEB又∵AF=CE DF=BE,∴△AFD≌△CEB(SAS)∴AD=CB∠DAF=∠BCE∴AD∥CB∴四边形ABCD是平行四边形。
无锡市无锡一中数学轴对称填空选择检测题(Word版 含答案)
无锡市无锡一中数学轴对称填空选择检测题(Word版含答案)一、八年级数学全等三角形填空题(难)1.如图,已知△ABC和△ADE均为等边三角形,点O是AC的中点,点D在射线BO上,连结OE,EC,则∠ACE=_____°;若AB=1,则OE的最小值=_____.【答案】301 4【解析】【分析】根据等边三角形的性质可得OC=12AC,∠ABD=30°,根据"SAS"可证△ABD≌△ACE,可得∠ACE=30°=∠ABD,当OE⊥EC时,OE的长度最小,根据直角三角形的性质可求OE 的最小值.【详解】解:∵△ABC的等边三角形,点O是AC的中点,∴OC=12AC,∠ABD=30°∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD当OE⊥EC时,OE的长度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=12OC=14AB=14故答案为:30,1 4【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键.2.如图,在△ABC中,AB=8,AC=5,AD是∠BAC的角平分线,点D在△ABC内部,连接AD、BD、CD,∠ADB=150°,∠DBC=30°,∠ABC+∠ADC=180°,则线段CD的长度为________.【答案】3【解析】【分析】在AB上截取AE=AC,证明△ADE和△ADC全等,再证BDE是等腰三角形即可得出答案.【详解】在AB上截取AE=AC∵AD是∠BAC的角平分线∴∠EAD=∠CAD又AD=AD∴△ADE≌△ADC(SAS)∴ED=DC,∠ADE=∠ADC∵∠ADB=150°∴∠EDB+∠ADE=150°又∵∠DBC=30°,∠ABC+∠ADC=180°∴∠ABD+∠DBC+∠ADC=180°即∠ABD +∠ADC=150°∴∠ABD=∠EDB∴BE=ED即BE=CD又AB=8,AC=5CD=BE=AB-AE=AB-AC=3故答案为3【点睛】本题考查的是全等三角形的综合,解题关键是利用截长补短法作出两个全等的三角形.3.如图,已知△ABC为等边三角形,点D,E分别在边BC,AC上,且BD=CE,若BE交AD于点F,则∠AFE的大小为_____(度).【答案】60【解析】【分析】根据△ABC为等边三角形得到AB=BC,∠ABD=∠BCE=60°,再利用BD=CE证得△ABD≌△BCE,得到∠BAD=∠CBE,再利用内角和外角的关系即可得到∠AFE=60°.【详解】∵△ABC为等边三角形,点D,E分别在边BC,AC上,且BD=CE,∴AB=BC,∠ABD=∠BCE=60°,在△ABD和△BCE中,AB BCABD BCEBD CE=⎧⎪∠∠⎨⎪=⎩=,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABF+∠CBE=∠ABC=60°,∴∠ABF+∠BAD=60°,∵∠AFE=∠ABF+∠BAD,∴∠AFE=60°,故答案为:60.【点睛】此题考查三角形全等的判定定理及性质定理,题中证明三角形全等后得到∠BAD=∠CBE,再利用外角和内角的关系求∠AFE是解题的关键.4.如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC边上的中点,两边PE,PF分别交AB,AC于点E,F,给出以下四个结论:①AE=CF;②EF=AP;③2S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合)有BE+CF=EF;上述结论中始终正确的序号有__________.【答案】①③【解析】【分析】根据题意,容易证明△AEP≌△CFP,然后能推理得到①③都是正确.【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,∴∠EAP=12∠BAC=45°,AP=12BC=CP.①在△AEP与△CFP中,∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°-∠APF,∴△AEP≌△CFP,∴AE=CF.正确;②只有当F在AC中点时EF=AP,故不能得出EF=AP,错误;③∵△AEP≌△CFP,同理可证△APF≌△BPE.∴S四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=12S△ABC,即2S四边形AEPF=S△ABC;正确;④根据等腰直角三角形的性质,EF=2PE,所以,EF随着点E的变化而变化,只有当点E为AB的中点时,EF=2PE=AP,在其它位置时EF≠AP,故④错误;故答案为:①③.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,证得△AEP和△CFP 全等是解题的关键,也是本题的突破点.5.已知:四边形ABCD中,AB=AD=CD,∠BAD=90°,三角形ABC的面积为1,则线段AC 的长度是___________.【答案】2【解析】【分析】过B作BE⊥AC于E, 过D作DF⊥AC于F,构造得出BE=AF利用等腰三角形三线合一的性质得出:AF=可得BE=AF=,利用三角形ABC的面积为1进行计算即可.【详解】过B作BE⊥AC于E, 过D作DF⊥AC于F,∴∠BEA=∠AFD=90°∴∠2+∠3=90°∵∠BAD=90°∴∠1+∠2=90°∴∠1=∠3∵AB=AD∴∴BE=AF∵AD=CD,DF⊥AC∴AF=∴BE=AF=∴∴AC=2故答案为:2【点睛】本题考查了利用一线三等角构造全等三角形,以及利用三角形面积公式列方程求线段,熟练掌握辅助线做法构造全等是解题的关键.6.如图,在△ABD中,∠BAD=80°,C为BD延长线上一点,∠BAC=130°,△ABD的角平分线BE与AC交于点E,连接DE,则∠DEB=_____.【答案】40°【解析】【分析】做辅助线,构建角平分线的距离,根据角平分线的性质和逆定理可得:EF=EG=EH,设∠DEG=y,∠GEB=x,根据三角形内角和定理可得:∠GEA=∠FEA=40°,∠FEB=∠HEB,列方程为2y+x=80-x,y+x=40,可得结论:∠DEB=40°.【详解】如图,过E作EF⊥AB于F,EG⊥AD于G,EH⊥BC于H,∵BE平分∠ABD∴EH=EF∵∠BAC=130°,∠BAD=80°∴∠FAE=∠CAD=50°∴EF=EG∴EG=EH∴ED平分∠CDG∴∠HED=∠DEG设∠DEG=y,∠GEB=x,∵∠EFA=∠EGA=90°∴∠GEA=∠FEA=40°∵∠EFB=∠EHB=90°,∠EBH=∠EBF∴∠FEB=∠HEB∴2y+x=80-x,2y+2x=80y+x=40即∠DEB=40°.故答案为:40°.【点睛】本题考查三角形内角和定理和角平分线的性质,正确作辅助线是解题的关键.7.如图,三角形△ABO中,∠OAB=∠AOB=15°,点B在x轴的正半轴,坐标为B(6,0).OC平分∠AOB,点M在OC的延长线上,点N为边OA上的点,则MA+MN的最小值是______.【答案】3【解析】【分析】在x轴正半轴上取点N’,使ON’=ON,作AD⊥x轴于D点.易证△N’OM≌△NOM,可得MN’=MN,则MA+MN的最小值即为MA+MN’的最小值,由于A点固定,故当N’点与D点重合时,MA+MN’的值最小,即MA+MN的值最小.【详解】解:在x轴正半轴上取点N’,使ON’=ON,作AD⊥x轴于D点.∵ON’=ON,∠N’OM=∠NOM,OM=OM,∴△N’OM≌△NOM,∴MN’=MN,∴MA+MN=MA+MN’,∵A点固定,∴MA+MN’的最小值为当N’与D点重合时的MA+MN’值,∴MA+MN’的最小值为AD,∵∠OAB=∠AOB=15°,OB=6,∴∠ABD=30°,AB=6,∴AD=0.5×6=3,∴MA+MN的最小值为3,故答案为3.【点睛】理解A点是固定点,而M和N均为动点,然后运用三点共线及点到直线的最短距离概念进行解答是本题的关键.8.如图,90C ∠=︒,10AC =,5BC =,AM AC ⊥,点P 和点Q 从A 点出发,分别在射线AC 和射线AM 上运动,且Q 点运动的速度是P 点运动的速度的2倍,当点P 运动至__________时,ABC △与APQ 全等.【答案】AC 中点或点P 与点C 重合【解析】分析:本题要分情况讨论:①Rt △APQ ≌Rt △CBA ,此时AP=BC=5cm ,可据此求出P 点的位置.②Rt △QAP ≌Rt △BCA ,此时AP=AC ,P 、C 重合.详解:根据三角形全等的判定方法HL 可知:①当P 运动到AP BC =的,∵90C QAP ∠=∠=︒,在Rt ABC △和Rt QPA 中,AP BC PQ AB =⎧⎨=⎩, ∴Rt ABC △≌Rt ()QPA HL ,即5AP BC ==,即P 运动到AC 的中点.②当P 运动到与C 点重合时,AP=AC ,在Rt △ABC 与Rt △QPA 中,AP AC PQ AB=⎧⎨=⎩ ∴Rt △QAP ≌Rt △BCA (HL ),即AP=AC=10cm ,∴当点P 与点C 重合时,△ABC 才能和△APQ 全等.故答案为:AC 中点或点P 与点C 重合.点睛:本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.9.已知AD 是△ABC 的边BC 上的中线,若AB = 4,AC = 6,则AD 的取值范围是___________.【答案】15AD <<【解析】延长AD 到点E ,使DE=AD ,连接BE ,则可用SAS 证明△DAC ≌△DEB ,所以BE=AC. △ABE 中,BE-AB <AE <BE+AB ,即6-4<AE <6+4,所以2<AE <10.又AE=2AD ,所以2<2AD <10,则1<AD <5.故答案为1<AD <5.点睛:本题主要考查了三角形的三边关系,即三角形的两边之和大于第三边,两边之差小于第三边,当题目中有三角形的中线时,如果需要添加辅助线,一般考虑把中线延长一倍(通常称“倍中线法”),构造全等三角形,将已知条件或要解决的问题集中到一个三角形中.10.如图,AD=AB,∠C=∠E,AB=2,AE=8,则DE=_________.【答案】6【解析】根据三角形全等的判定“AAS ”可得△ADC ≌△ABE ,可得AD=AB=2,由AE=8可得DE=AE-AD=6.故答案为:6.点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、SSA 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、八年级数学全等三角形选择题(难)11.如图,AC⊥BE于点C,DF⊥BE于点F,且BC=EF,如果添上一个条件后,可以直接利用“HL”来证明△ABC≌△DEF,则这个条件应该是()A.AC=DE B.AB=DE C.∠B=∠E D.∠D=∠A【答案】B【解析】在Rt△ABC与Rt△DEF中,直角边BC=EF,要利用“HL”判定全等,只需添加条件斜边AB=DE.故选:B.12.如图所示,在Rt ABC∆中,E为斜边AB的中点,ED AB⊥,且:1:7CAD BAD∠∠=,则BAC∠=( )A.70B.45C.60D.48【答案】D【解析】根据线段的垂直平分线,可知∠B=∠BAD,然后根据直角三角形的两锐角互余,可得∠BAC+∠B=90°,设∠CAD=x,则∠BAD=7x,则x+7x+7x=90°,解得x=6°,因此可知∠BAC=∠CDA+∠BAD=6°+42°=48°.故选:D.点睛:此题主要考查了线段垂直平分线的性质,利用线段垂直平分线的性质和直角三角形的性质求角的关系,根据比例关系设出未知数,然后根据角的关系列方程求解是解题关键.13.在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于点E,AB=18cm,则△DBE的周长为()A.16cm B.8cm C.18cm D.10cm【答案】C【解析】因为∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,易证△ACD≌△AED,所以AE=AC=BC,ED=CD.△DBE的周长=BE+DE+DB=BE+CD+DB=BE+BC=BE+AE=AB.因为AB=12,所以△DBE的周长=12.故选C.点睛:本题主要考查了全等三角形的判定的性质及角平分线的性质定理,角的平分线上的点到角的两边的距离相等,运用这个性质,结合等腰三角形有性质,将△DBE 的周长转化为AB 的长.14.如图,在ABC ∆中,AC BC =,90ACB ∠=︒,AE 平分BAC ∠交BC 于点E ,BD AE ⊥于点D ,DF AC ⊥交AC 的延长线于点F ,连接CD ,给出四个结论:①45ADC ∠=︒;②12BD AE =;③AC CE AB +=;④2AB BC FC -=;其中正确的结论有 ( )A .1个B .2个C .3个D .4个【答案】D【解析】试题解析:如图,过E 作EQ ⊥AB 于Q ,∵∠ACB=90°,AE 平分∠CAB ,∴CE=EQ ,∵∠ACB=90°,AC=BC ,∴∠CBA=∠CAB=45°,∵EQ ⊥AB ,∴∠EQA=∠EQB=90°,由勾股定理得:AC=AQ ,∴∠QEB=45°=∠CBA ,∴EQ=BQ ,∴AB=AQ+BQ=AC+CE ,∴③正确;作∠ACN=∠BCD ,交AD 于N ,∵∠CAD=12∠CAB=22.5°=∠BAD , ∴∠ABD=90°-22.5°=67.5°,∴∠DBC=67.5°-45°=22.5°=∠CAD ,∴∠DBC=∠CAD ,在△ACN 和△BCD 中, DBC CAD AC BCACN DCB ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ACN ≌△BCD ,∴CN=CD ,AN=BD ,∵∠ACN+∠NCE=90°,∴∠NCB+∠BCD=90°,∴∠CND=∠CDA=45°,∴∠ACN=45°-22.5°=22.5°=∠CAN ,∴AN=CN ,∴∠NCE=∠AEC=67.5°,∴CN=NE ,∴CD=AN=EN=12AE , ∵AN=BD ,∴BD=12AE , ∴①正确,②正确;过D 作DH ⊥AB 于H ,∵∠FCD=∠CAD+∠CDA=67.5°,∠DBA=90°-∠DAB=67.5°,∴∠FCD=∠DBA ,∵AE 平分∠CAB ,DF ⊥AC ,DH ⊥AB ,∴DF=DH ,在△DCF 和△DBH 中90F DHB FCD DBA DF DH ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△DCF ≌△DBH ,∴BH=CF ,由勾股定理得:AF=AH ,∴2,2AC AB AC AH BH AC AM CM AC AF CF AF AF AF AM AF AF+++++++====, ∴AC+AB=2AF ,AC+AB=2AC+2CF ,AB-AC=2CF ,∵AC=CB ,∴AB-CB=2CF , ∴④正确.故选D15.如图,BD 是∠ABC 的角平分线,AD ⊥AB ,AD=3,BC=5,则△BCD 的面积为( )A .7.5B .8C .10D .15【答案】A【解析】 作DE⊥BC 于E ,根据角平分线的性质,由BD 是∠ABC 的角平分线,AD⊥AB,DE⊥BC,求出DE=DA=3,根据三角形面积公式计算S △BCD =12×BC×DE=7.5, 故选:A .16.如图在ABC △中,P ,Q 分别是BC 、AC 上的点,作PR AB ⊥,PS AC ⊥,垂足分别是R ,S ,AQ PQ =,PR PS =,下面三个结论:①AS AR =;②PQ AB ∥;③BRP △≌CSP △.其中正确的是( ).A .①②B .②③C .①③D .①②③【答案】A【解析】连接AP ,由题意得,90ARP ASP ∠=∠=︒, 在Rt APR 和Rt APS 中,AP AP PR PS =⎧⎨=⎩, ∴△APR ≌()APS HL ,∴AS AR =,故①正确.BAP SAP ∠=∠,∴2SAB BAP SAP SAP ∠=∠+∠=∠,在AQP △中,∴AQ PQ =,∴QAP APQ ∠=∠,∴22CQP QAP APQ QAP SAP ∠=∠+∠=∠=∠,∴PQ AB ∥,故②正确; 在Rt BRP 和Rt CSP 中,只有PR PS =,不满足三角形全等的条件,故③错误.故选A .点睛:本题主要考查三角形全等的判定方法以及角平分线的判定和平行线的判定,准确作出辅助线是解决本题的关键.17.如图,将一个等腰Rt △ABC 对折,使∠A 与∠B 重合,展开后得折痕CD ,再将∠A 折叠,使C 落在AB 上的点F 处,展开后,折痕AE 交CD 于点P ,连接PF 、EF ,下列结论:①tan ∠2﹣1;②图中共有4对全等三角形;③若将△PEF 沿PF 翻折,则点E 一定落在AB 上;④PC=EC ;⑤S 四边形DFEP =S △APF .正确的个数是( )A .1个B .2个C .3个D .4个【答案】D【解析】【详解】 ①正确.作EM ∥AB 交AC 于M .∵CA=CB ,∠ACB=90°,∴∠CAB=∠CBA=45°,∵∠CAE=∠BAE=12∠CAB=22.5°, ∴∠MEA=∠EAB=22.5°, ∴∠CME=45°=∠CEM ,设CM=CE=a ,则ME=AM=2a ,∴tan ∠CAE=212CE AC a a==-+,故①正确, ②正确.△CDA ≌△CDB ,△AEC ≌△AEF ,△APC ≌△APF ,△PEC ≌△PEF ,故②正确, ③正确.∵△PEC ≌△PEF ,∴∠PCE=∠PFE=45°,∵∠EFA=∠ACE=90°,∴∠PFA=∠PFE=45°,∴若将△PEF 沿PF 翻折,则点E 一定落在AB 上,故③正确.④正确.∵∠CPE=∠CAE+∠ACP=67.5°,∠CEP=90°﹣∠CAE=67.5°,∴∠CPE=∠CEP ,∴CP=CE ,故④正确,⑤错误.∵△APC ≌△APF ,∴S △APC =S △APF ,假设S △APF =S 四边形DFPE ,则S △APC =S 四边形DFPE ,∴S △ACD =S △AEF ,∵S △ACD =12S △ABC ,S △AEF =S △AEC ≠12S △ABC , ∴矛盾,假设不成立.故⑤错误..故选D.18.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④B.①②C.①④D.①②③④【答案】B【解析】【分析】连接AP,由已知条件利用角平行线的判定可得∠1 = ∠2,由三角形全等的判定得△APR≌△APS,得AS=AR,由已知可得∠2 = ∠3,得QP=AQ,答案可得.【详解】解:如图连接AP,PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,AP是∠BAC的平分线,∠1=∠2,△APR≌△APS.AS=AR,又QP/AR,∠2 = ∠3又∠1 = ∠2,∠1=∠3,AQ=PQ,没有办法证明△PQR≌△CPS,③不成立,没有办法证明AC-AQ=2SC,④不成立.所以B选项是正确的.【点睛】本题主要考查三角形全等及三角形全等的性质.19.如图, AB=AC,AD=AE, BE、CD交于点O,则图中全等三角形共有()A.五对B.四对C.三对D.二对【答案】A【解析】如图,由已知条件可证:①△ABE≌△ACD;②△DBC≌△ECB;③△BDO≌△ECO;④△ABO≌△ACO;⑤△ADO≌△AEO;∴图中共有5对全等三角形.故选A.=,D、E是斜边BC上两点,且∠DAE=45°,将20.如图,在Rt△ABC中,AB AC△ADC绕点A顺时针旋转90︒后,得到△AFB,连接EF.列结论:+=①△ADC≌△AFB;②△ABE≌△ACD;③△AED≌△AEF;④BE DC DE 其中正确的是( )A.②④B.①④C.②③D.①③【答案】D【解析】解:∵将△ADC绕点A顺时针旋转90︒后,得到△AFB,∴△ADC≌△AFB,故①正确;②无法证明,故②错误;③∵△ADC≌△AFB,∴AF=AD,∠FAB=∠DAC.∵∠DAE=45°,∴∠BAE+∠DAC=45°,∠FA E=∠DAE=45°.在△FAE和△DAE中,∵AF=AD,∠FAE=∠DAE,AE=AE,∴△FAE≌△DAE,故③正确;④∵△ADC≌△AFB,∴DC=BF,∵△FAE≌△DAE,∴EF=ED,∵BF+BE>EF,∴DC+BE>ED .故④错误.故选D.21.如图所示,设甲、乙、丙、丁分别表示△ABC,△ACD,△EFG,△EGH.已知∠ACB=∠CAD=∠EFG=∠EGH=70°,∠BAC=∠ACD=∠EGF=∠EHG=50°,则叙述正确的是()A.甲、乙全等,丙、丁全等B.甲、乙全等,丙、丁不全等C.甲、乙不全等,丙、丁全等D.甲、乙不全等,丙、丁不全等【答案】B【解析】【分析】根据题意即是判断甲、乙是否全等,丙丁是否全等.运用判定定理解答.【详解】解:∵∠ACB=CAD=70°,∠BAC=∠ACD=50°,AC为公共边,∴△ABC≌△ACD,即甲、乙全等;△EHG中,∠EGH=70°≠∠EHG=50°,即EH≠EG,虽∠EFG=∠EGH=70°,∠EGF=∠EHG=50°,∴△EFG不全等于△EGH,即丙、丁不全等.综上所述甲、乙全等,丙、丁不全等,B正确,故选:B.【点睛】本题考查的是全等三角形的判定,但考生需要有空间想象能力.判定两个三角形全等的一般方法有:SSS、SAS、AAS、HL.找着∠EGH=70°≠∠EHG=50°,即EH≠EG是正确解决本题的关键.22.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是A.BF=DF B.∠1=∠EFD C.BF>EF D.FD∥BC【答案】B【解析】【分析】根据余角的性质得到∠C=∠ABE,∠EBC=∠BAC.根据SAS推出△ABF≌△ADF,根据全等三角形的性质得到BF=DF,故A正确;由全等三角形的性质得到∠ABE=∠ADF,等量代换得到∠ADF=∠C,根据平行线的判定得到DF∥BC,故D正确;根据直角三角形的性质得到DF >EF,等量代换得到BF>EF;故C正确;根据平行线的性质得到∠EFD=∠EBC=∠BAC=2∠1,故B错误.【详解】∵AB⊥BC,BE⊥AC,∴∠C+∠BAC=∠ABE+∠BAC=90°,∴∠C=∠ABE.同理:∠EBC=∠BAC.在△ABF与△ADF 中,∵12AD ABAF AF=⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△ADF,∴BF=DF,故A正确,∵△ABF≌△ADF,∴∠ABE=∠ADF,∴∠ADF=∠C,∴DF∥BC,故D正确;∵∠FED=90°,∴DF>EF,∴BF>EF;故C正确;∵DF∥BC,∴∠EFD=∠EBC.∵∠EBC=∠BAC=∠BAC=2∠1,∴∠EFD=2∠1,故B错误.故选B.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,证得△ABF≌△ADF是解题的关键.23.已知:如图,ABC∆、CDE∆都是等腰三角形,且CA CB=,CD CE=,ACB DCEα∠=∠=,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.以下4个结论:①AD BE=;②180DOBα∠=-;③CMN∆是等边三角形;④连OC,则OC平分AOE∠.正确的是( )A.①②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】①根据∠ACB=∠DCE求出∠ACD=∠BCE,证出ACD BCE≅△△即可得出结论,故可判断;②根据全等求出∠CAD=∠CBE,根据三角形外角定理得∠DOB=∠OBA+∠BAO,通过等角代换能够得到∠DOB=∠CBA+∠BAC,根据三角形内角和定理即可求出∠CBA+∠BAC,即可求出∠DOB,故可判断;③根据已知条件可求出AM=BN,根据SAS可求出CAM CBN≅,推出CM=CN,∠ACM=∠BCN,然后可求出∠MCN=∠ACB=α,故可判断CMN∆的形状;④在AD上取一点P使得DP=EO,连接CP,根据ACD BCE≅△△,可求出∠CEO=∠CDP,根据SAS可求出CEO CDP≅,可得∠COE=∠CPD,CP=CO,进而得到∠COP=∠COE,故可判断.【详解】①正确,理由如下:∵ACB DCE α∠=∠=,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,又∵CA=CB,CD=CE,∴ACD BCE ≅△△(SAS),∴AD=BE,故①正确;②正确,理由如下:由①知,ACD BCE ≅△△,∴∠CAD=∠CBE,∵∠DOB 为ABO 的外角,∴∠DOB=∠OBA+∠BAO=∠EBC+∠CBA+∠BAO=∠DAC+∠BAO+∠CBA=∠CBA+∠BAC, ∵∠CBA+∠BAC+∠ACB=180°,∠ACB=α,∴∠CBA+∠BAC=180°-α,即∠DOB=180°-α,故②正确;③错误,理由如下:∵点M 、N 分别是线段AD 、BE 的中点,∴AM=12AD,BN= 12BE, 又∵由①知,AD=BE,∴AM=BN,又∵∠CAD=∠CBE,CA=CB,∴CAM CBN ≅(SAS), ∴CM=CN ,∠ACM=∠BCN,∴∠MCN=∠MCB+∠CBN=∠MCB+∠ACM=∠ACB=α,∴MCN △为等腰三角形且∠MCN=α,∴MCN △不是等边三角形,故③错误;④正确,理由如下:如图所示,在AD 上取一点P 使得DP=EO,连接CP ,由①知,ACD BCE ≅△△,∴∠CEO=∠CDP ,又∵CE=CD,EO=DP ,∴CEO CDP ≅(SAS),∴∠COE=∠CPD ,CP=CO,∴∠CPO=∠COP ,∴∠COP=∠COE,即OC 平分∠AOE,故④正确;故答案为:B.【点睛】本题考查了三角形全等的判定和性质,三角形内角和定理和外角定理,等边三角形的判定,根据已知条件作出正确的辅助线,找出全等三角形是解题的关键.24.如图,在四边形ABCD 中,//AB CD .不能判定ABD CDB ∆≅∆的条件是( )A .AB CD =B .AD BC = C .//AD BC D .A C ∠=∠【答案】B【解析】【分析】根据已知条件,分别添加选项进行排查,即可完成解答;注意BD 是公用边这个条件.【详解】解:A.若添加AB=CD,根据AB ∥CD ,则∠ABD=∠CDB ,依据SAS 可得△ABD ≌△CDB ,故A 选项正确;B.若添加AD=BC,根据AB ∥CD ,则∠ADB=∠CBD ,不能判定△ABD ≌△CDB ,故B 选项错误;C.若添加//AD BC ,则四边形ABCD 是平行四边形,能判定△ABD ≌△CDB ,故C 选项正确;D.若添加∠A=∠C ,根据AB ∥CD ,则∠ABD=∠CDB ,且BD 公用,能判定△ABD≌△CDB,故D选项正确;故选:B.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.25.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④【答案】D【解析】分析:根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.详解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP,∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD,∴PH=PD,故③正确.∵△ABC 的角平分线AD 、BE 相交于点P ,∴点P 到AB 、AC 的距离相等,点P 到AB 、BC 的距离相等,∴点P 到BC 、AC 的距离相等,∴点P 在∠ACB 的平分线上,∴CP 平分∠ACB,故④正确.故选D .点睛:本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.26.具备下列条件的两个三角形,可以证明它们全等的是( ).A .一边和这一边上的高对应相等B .两边和第三边上的中线对应相等C .两边和其中一边的对角对应相等D .直角三角形的斜边对应相等【答案】B【解析】【分析】根据判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL 分别进行分析.【详解】解:A 、一边和这边上的高对应相等,无法得出它们全等,故此选项错误;B 、两边和第三边上的中线对应相等,通过如图所示方式(倍长中线法)可以证明它们全等(△ABC ≌△A ′B ′C ′),故此选项正确. .C 、两边和其中一边的对角对应相等,无法利用ASS 得出它们全等,故此选项错误;D 、直角三角形的斜边对应相等,无法得出它们全等,故此选项错误.故选:B .【点睛】本题考查三角形全等的判定方法,注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.27.如图,AOB ∆的外角,CAB DBA ∠∠的平分线,AP BP 相交于点P ,PE OC ⊥于E ,PF OD ⊥于F ,下列结论:(1)PE PF =;(2)点P 在COD ∠的平分线上;(3)90APB O ∠=︒-∠,其中正确的有 ( )A .0个B .1个C .2个D .3个【答案】C【解析】【分析】 过点P 作PG ⊥AB ,由角平分线的性质定理,得到PE PG PF ==,可判断(1)(2)正确;由12APB EPF ∠=∠,180EPF O ∠+∠=︒,得到1902APB O ∠=︒-∠,可判断(3)错误;即可得到答案.【详解】解:过点P 作PG ⊥AB ,如图:∵AP 平分∠CAB ,BP 平分∠DBA ,PE OC ⊥,PF OD ⊥,PG ⊥AB ,∴PE PG PF ==;故(1)正确;∴点P 在COD ∠的平分线上;故(2)正确;∵12APB APG BPG EPF ∠=∠+∠=∠, 又180EPF O ∠+∠=︒, ∴11(180)9022APB O O ∠=⨯︒-∠=︒-∠;故(3)错误; ∴正确的选项有2个;故选:C .【点睛】 本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题.28.如图,ABC ∆中,45ABC ∠=,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论正确的有( )个①BF AC=;②12AE BF=;③67.5A∠=;④DGF∆是等腰三角形;⑤ADGE GHCES S=四边形四边形.A.5个B.4个C.3个D.2个【答案】B【解析】【分析】只要证明△BDF≌△CDA,△BAC是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③④正确,作GM⊥BD于M,只要证明GH<DG即可判断⑤错误.【详解】∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中BDF CDAA DFBBD CD∠∠⎧⎪∠∠⎨⎪⎩===,∴△BDF≌△CDA(AAS),∴BF=AC,故①正确.∵∠ABE=∠EBC=22.5°,BE⊥AC,∴∠A=∠BCA=67.5°,故③正确,∴BA=BC,∵BE⊥AC,∴AE=EC=12AC=12BF,故②正确,∵BE平分∠ABC,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF,故④正确.作GM⊥AB于M.∵∠GBM=∠GBH,GH⊥BC,∴GH=GM<DG,∴S△DGB>S△GHB,∵S△ABE=S△BCE,∴S四边形ADGE<S四边形GHCE.故⑤错误,∴①②③④正确,故选:B.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.29.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有()A.0个B.1个C.2个D.3个【答案】D【解析】分析:由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS 得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.详解:①∵四边形ABCD和EFGC都为正方形,∴CB=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,∴△BCE≌△DCG,∴BE=DG,故结论①正确.②如图所示,设BE交DC于点M,交DG于点O.由①可知,△BCE≌△DCG,∴∠CBE=∠CDG,即∠CBM=∠MDO.又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,∴∠DOM=∠MCB=90°,∴BE⊥DG.故②结论正确.③如图所示,连接BD、EG,由②知,BE⊥DG,则在Rt△ODE中,DE2=OD2+OE2,在Rt△BOG中,BG2=OG2+OB2,在Rt△OBD中,BD2=OD2+OB2,在Rt△OEG中,EG2=OE2+OG2,∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.在Rt△BCD中,BD2=BC2+CD2=2a2,在Rt△CEG中,EG2=CG2+CE2=2b2,∴BG2+DE2=2a2+2b2.故③结论正确.故选:D.点睛:本题考查了旋转的性质、全等三角形的判定与性质、正方形的性质.30.如图,点 D 是等腰直角△ABC 腰 BC 上的中点,点B 、B′ 关于 AD 对称,且BB′ 交AD 于 F,交 AC 于 E,连接 FC 、 AB′,下列说法:① ∠BAD=30°; ② ∠BFC=135°;③ AF=2B′ C;正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】依据点D是等腰直角△ABC腰BC上的中点,可得tan∠BAD=12,即可得到∠BAD≠30°;连接B'D,即可得到∠BB'C=∠BB'D+∠DB'C=90°,进而得出△ABF≌△BCB',判定△FCB'是等腰直角三角形,即可得到∠CFB'=45°,即∠BFC=135°;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C;依据△AEF与△CEB'不全等,即可得到S△AFE≠S△FCE.【详解】∵点D是等腰直角△ABC腰BC上的中点,∴BD=12BC=12AB,∴tan∠BAD=12,∴∠BAD≠30°,故①错误;如图,连接B'D,∵B、B′关于AD对称,∴AD垂直平分BB',∴∠AFB=90°,BD=B'D=CD,∴∠DBB'=∠BB'D,∠DCB'=∠DB'C,∴∠BB'C=∠BB'D+∠DB'C=90°,∴∠AFB=∠BB'C,又∵∠BAF+∠ABF=90°=∠CBB'+∠ABF,∴∠BAF=∠CBB',∴△ABF≌△BCB',∴BF=CB'=B'F,∴△FCB'是等腰直角三角形,∴∠CFB'=45°,即∠BFC=135°,故②正确;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C,故③正确;∵AF>BF=B'C,∴△AEF与△CEB'不全等,∴AE≠CE,∴S△AFE≠S△FCE,故④错误;故选B.【点睛】本题主要考查了轴对称的性质以及全等三角形的判定与性质的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.。
2020年10 月 江苏省无锡市民办辅仁中学八年级数学上册 第2章 轴对称图形测试卷
《轴对称图形》单元测试2020.10班级_______姓名_______.一.选择题(共10小题)1.下列轴对称图形中,只有两条对称轴的图形是()A. B.C. D.2.若一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°B.120°C.20°或120°D.36°3.到三角形三边的距离相等的点是三角形的________交点.()A.三条高B.三条角平分线C.三条中线D.三边中垂线4.如图,在ΔABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD的度数为()A.65°B.35°C.30°D.25°5.如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形6.如图的2×4的正方形网格中,ΔABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与ΔABC成轴对称的格点三角形一共有( )A.2个B.3个C.4个D.5个(第6题图)(第7题图)7.如图,ΔABC的面积为27,AC=6,现将ΔABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长可能是()A.12B.10C.9D.88.如图,O是边长为9的等边三角形ABC内的任意一点,且OD//BC,交AB于点D,OF//AB,交AC于,F,OE//AC,交BC于点E,则OD+OE+OF的值为() A.8 B.9 C.10 D.129.已知:如图,BD为ΔABC的角平分线,且BD=BC,E为BD延长线上的一点,BE= BA,过E作EF⊥AB,F为垂足.下列结论:①ΔABD≅ΔEBC;②∠BCE+∠BDC =180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是() A.①②③ B.①③④ C.①②④ D.①②③④10.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MB N=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.视x,m,n的值而定B.锐角三角形C.直角三角形D.钝角三角形二.填空题(共10小题)11.在等腰三角形ABC中,两边之比为1:2,周长为25,底边是.12.线段的对称轴是_______________________;角的对称轴是___________________;等腰三角形的对称轴是___________________.13.若直角三角形斜边上的高和中线长分别是4.8cm,5cm,则它的面积是.14.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为.15.如图,∠A+∠B=100°,E、F为AB上的点,AE=AC,BC=BF,则∠ECF=.(第15题图)(第16题图)16.如图,以正方形ABCD的一边CD为边向形外作等边三角形CDE,则∠AEB=.17.如图,在等腰三角形ABC中,AB=AC=4,P是BC上任意一点,若ΔABC的面积是6,则点P到两腰的距离之和等于 .18.如图,已知ΔABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F(点E不与A,B重合),给出以下四个结论:①AE= CF;②∠CPF=∠EPA,③ΔEPF是等腰直角三角形;④BE+CF=EF,当∠EPF在ΔABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的序号有.19.如图,已知∠AOB=15°,点M在边OB上,且OM=4,点N和点P分别是OM和OA上的一个动点,则PM+PN的最小值为.20.在△ABC中,∠B=30°,AD和DE将△ABC分成3个等腰三角形,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,求出∠C所有可能的值___________.三.解答题(共6小题)21.作图题:(1)如图:如图,网格中的△ABC与△DEF为轴对称图形,且顶点都在格点上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本题考查全等三角形的判定和性质,作辅助线构造全等三角形是解决本题的关键.
5.已知在△ABC 中,两边 AB、AC 的中垂线,分别交 BC 于 E、G.若 BC=12,EG=2,则 △AEG 的周长是________. 【答案】16 或 12. 【解析】 【分析】 根据线段垂直平分线性质得出 AE=BE,CG=AG,分两种情况讨论:①DE 和 FG 的交点在 △ABC 内,②DE 和 FG 的交点在△ABC 外. 【详解】 ∵DE,FG 分别是△ABC 的 AB,AC 边的垂直平分线,∴AE=BE,CG=AG.分两种情况讨论: ①当 DE 和 FG 的交点在△ABC 内时,如图 1. ∵BC=12,GE=2,∴AE+AG=BE+CG=12+2=14,△AGE 的周长是 AG+AE+EG=14+2=16. ②当 DE 和 FG 的交点在△ABC 外时,如图 2,△AGE 的周长是 AG+AE+EG= BE+CG +EG=BC=12. 故答案为:16 或 12.
∵∠BAC=90°, ∴∠BAD+∠CAE=90°, ∵BD⊥DE, ∴∠BDA=90°, ∴∠BAD+∠DBA=90°, ∴∠DBA=∠CAE, ∵CE⊥DE, ∴∠E=90°, 在△BDA 和△AEC 中,
ABD CAE
D E
,
AB AC
∴△BDA≌△AEC(AAS), ∴DA=CE=3,AE=DB=14, ∴ED=DA+AE=17cm. 如图,当 D,E 在 BC 的两侧时,
2×
2 =13,∴ S△E'DF'= 1 DE'2=
2
2
13 .故答案为 13 或 5 .
2
22
点睛:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证 △ ADE≌ △ CDF 和△ CDE≌ △ BCF 是解题的关键.
8.如图,直线 l 上有三个正方形 a,b,c,若 a,c 的边长分别为 5 和 12,则 b 的面积为 _________________.
∴AF=
∴BE=AF=
∴
∴AC=2 故答案为:2 【点睛】 本题考查了利用一线三等角构造全等三角形,以及利用三角形面积公式列方程求线段,熟 练掌握辅助线做法构造全等是解题的关键.
7.如图,在等腰直角三角形 ABC 中,∠C=90 o,AC=BC=4,点 D 是 AB 的中点,E, F 在射线 AC 与射线 CB 上运动,且满足 AE=CF,∠EDF=90°;当点 E 运动到与点 C 的距离为 1 时,则 △DEF 的面积为___________.
【点睛】 本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相 等.
6.已知:四边形 ABCD 中,AB=AD=CD,∠BAD=90°,三角形 ABC 的面积为 1,则线段 AC 的长度是___________.
【答案】2 【解析】 【分析】 过 B 作 BE⊥AC 于 E, 过 D 作 DF⊥AC 于 F,构造
AC BC AD BD CD CD
∴△ ACD≌ △ BCD(SSS) ∴∠ CDA=∠ CDB,
∴ ∠ CDA=∠ CDB= 1 360 ADB = 1 360 120 =120°,
2
2
在△ ACD
∴△ ACD≌ △ AOD(ASA) ∴AO=AC=5, 故答案为 5. 【点睛】
∴∠7=∠MDG ∴MG=MD, ∵BC=7,BG=4, 设 MG=x,在△BDM 中, BD2+MD2=BM2,
即 72 x2 =4 x2 ,
解得 x= 33 , 8
在△ABC 和△MBD 中
ACB=MDB
BC BD
,
8=1
∴△ABC≌△MBD(ASA)
AB=BM=BG+MG=4+ 33 = 65 . 88
解:∵AC∥BD,∠ACB=90°, ∴∠CBD=90°,即∠1+∠2=90°, 又∵BF⊥AB, ∴∠ABF=90°, 即∠8+∠2=90°, ∵BE=BD, ∴∠8=∠1, 在△BHE 和△BGD 中,
8 1
BE
BD
,
4 3
∴△BHE≌△BGD(ASA), ∴∠EHB=∠DGB ∴∠5=∠6,∠6=∠7, ∵MD⊥BD ∴∠BDM=90°, ∴BC∥MD, ∴∠5=∠MDG,
=
1 2
CE•CF=
3 2
,∴
△
DEF
的面积=
1 2
×2
2 ×2
2
﹣
3 2
=
5 2
.
②E'在 AC 延长线
上.∵ AE'=CF',AC=BC=4,∠ ACB=90°,∴ CE'=BF',∠ ACD=∠ CBD=45°,CD=AD=BD= 2 2 ,
∴ ∠ DCE'=∠ DBF'=135°.在△ CDE'和△ BDF'中,
故答案为: 65 . 8
【点睛】 本题考查了全等三角形的判定和性质,勾股定理,适当添加辅助线构造全等三角形,利用 全等三角形的性质求出待求的线段,难度中等.
3.在 Rt△ABC 中,∠C=90°,∠A 的平分线 AD 分对边 BD,DC 的长度比为 3:2,且 BC= 20cm,则点 D 到 AB 的距离是_____cm. 【答案】8 【解析】 【分析】 根据题意画出图形,过点 D 作 DE⊥AB 于点 E,由角平分线的性质可知 DE=CD,根据角平 分线 AD 分对边 BC 为 BD:DC=3:2,且 BC=10cm 即可得出结论. 【详解】 解:如图所示,过点 D 作 DE⊥AB 于点 E, ∵AD 是∠BAC 的平分线,∠C=90°,
同法可证:BD=CE+DE,可得 DE=11cm, 故答案为:11cm 或 17cm. 【点睛】
此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理与性质定 理.
2.如图, ABC 中, ACB 90 , AC / /BD , BC BD ,在 AB 上截取 BE ,使 BE BD ,过点 B 作 AB 的垂线,交 CD 于点 F ,连接 DE ,交 BC 于点 H ,交 BF 于 点 G , BC 7, BG 4 ,则 AB ____________.
∴DE=CD. ∵BD:DC=3:2,且 BC=10cm,
∴CD=20× 2 =8(cm). 5
故答案为:8.
【点睛】 本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题 的关键.
4.如图,△ABC 中,AC=BC=5,∠ACB=80°,O 为△ABC 中一点,∠OAB=10°,∠OBA= 30°,则线段 AO 的长是_____.
【答案】 5 或 13 22
【解析】
解:①E 在线段 AC 上.在△ ADE 和△ CDF 中,
∵ AD=CD,∠ A=∠ DCF,AE=CF,∴ △ ADE≌ △ CDF(SAS),∴ 同理△ CDE≌ △ BDF,∴ 四边
形 CEDF 面积是△ ABC 面积的一半.∵ CE=1,∴ CF=4﹣1=3,∴ △ CEF 的面积
∵ CD=BD,∠ DCE′=DBF′,CE′=BF′,∴ △ CDE'≌ △ BDF'(SAS),∴ DE'=DF',∠ CDE'=∠ BDF'. ∵ ∠ CDE'+∠ BDE'=90°,∴ ∠ BDE'+∠ BDF'=90°,即
∠ E'DF'=90°.∵ DE'2=CE'2+CD2﹣2CD•CE'cos135°=1+8+2× 2
无锡市辅仁中学数学轴对称填空选择达标检测(Word 版 含解析)
一、八年级数学全等三角形填空题(难)
1.在 Rt△ABC 中,∠BAC=90°AB=AC,分别过点 B、C 做经过点 A 的直线的垂线 BD、CE, 若 BD=14cm,CE=3cm,则 DE=_____ 【答案】11cm 或 17cm 【解析】 【分析】 分两种情形画出图形,利用全等三角形的性质分别求解即可. 【详解】 解:如图,当 D,E 在 BC 的同侧时,
【答案】 65 8
【解析】
【分析】
过点 D 作 DM⊥BD,与 BF 延长线交于点 M,先证明△BHE≌△BGD 得到∠EHB=∠DGB,再 由平行和对顶角相等得到∠MDG=∠MGD,即 MD=MG,在△△BDM 中利用勾股定理算出 MG 的长度,得到 BM,再证明△ABC≌△MBD,从而得出 BM=AB 即可. 【详解】
【答案】10 【解析】
试题分析:如图所示,∠3=15°,∠ E1 =90°, ∴ ∠ 1=∠ 2=75°, 又∵∠B=45°, ∴ ∠ OF E1 =∠ B+∠ 1=45°+75°=120° ∴ ∠ D1 FO=60°∵ ∠ C D1E1 =30°,
∴ ∠ 5=∠ 4=90°, 又∵AC=BC,AB=12, ∴ OA=OB=6 ∵ ∠ ACB=90°,
故答案为:169.
点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解 能力要比较强.
9.已知 AD 是△ABC 的边 BC 上的中线,若 AB = 4,AC = 6,则 AD 的取值范围是 ___________.
【答案】1 AD 5
【解析】 延长 AD 到点 E,使 DE=AD,连接 BE,则可用 SAS 证明△ DAC≌△DEB,所以 BE=AC. △ ABE 中,BE-AB<AE<BE+AB,即 6-4<AE<6+4,所以 2<AE<10.又 AE=2AD,所 以 2<2AD<10,则 1<AD<5.