大学物理章质点动力学习题答案
大学物理-质点运动学-习题及答案
大学物理-质点运动学-习题及答案第1章质点运动学习题及答案1.|r ?|与r ? 有无不同t d d r 和dr dt 有无不同 t d d v 和dv dt有无不同其不同在哪里试举例说明.解: |r ?|与r ? 不同. |r ?|表示质点运动位移的大小,而r ?则表示质点运动时其径向长度的增量;t d d r 和dr dt 不同. t d d r 表示质点运动速度的大小,而dr dt则表示质点运动速度的径向分量;t d d v 和dv dt 不同. t d d v 表示质点运动加速度的大小, 而dv dt则表示质点运动加速度的切向分量. 2.质点沿直线运动,其位置矢量是否一定方向不变质点位置矢量方向不变,质点是否一定做直线运动解: 质点沿直线运动,其位置矢量方向可以改变;质点位置矢量方向不变,质点一定做直线运动.3.匀速圆周运动的速度和加速度是否都恒定不变圆周运动的加速度是否总是指向圆心,为什么解: 由于匀速圆周运动的速度和加速度的方向总是随时间发生变化的,因此,其速度和加速度不是恒定不变的;只有匀速圆周运动的加速度总是指向圆心,故一般来讲,圆周运动的加速度不一定指向圆心.4.一物体做直线运动,运动方程为2362x t t =-,式中各量均采用国际单位制,求:(1)第二秒内的平均速度(2)第三秒末的速度;(3)第一秒末的加速度;(4)物体运动的类型。
解: 由于: 232621261212x(t )t t dx v(t )t t dtdv a(t )t dt=-==-==- 所以:(1)第二秒内的平均速度: 1(2)(1)4()21x x v ms --==- (2)第三秒末的速度:21(3)1236318()v ms -=?-?=-(3)第一秒末的加速度:2(1)121210()a ms -=-?=(4)物体运动的类型为变速直线运动。
5.一质点运动方程的表达式为2105(t t t =+r i j ),式中的,t r 分别以m,s 为单位,试求;(1)质点的速度和加速度;(2)质点的轨迹方程。
大学物理2-1第二章(质点动力学)习题(含答案)答案
习题二2-1 质量为m的子弹以速率v水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系;(2)子弹射入沙土的最大深度。
[解] 设任意时刻子弹的速度为v,子弹进入沙土的最大深度为s,由题意知,子弹所受的阻力f= - kv(1) 由牛顿第二定律tvmmafdd==即vmkvd==-xvmvtxxvmtvmmafdddddddd====即xvmvkvdd=-所以vxmkdd=-对上式两边积分⎰⎰=-000ddvsvxmk得到vsmk-=-即kmvs0=2-2 质量为m的小球,在水中受到的浮力为F,当它从静止开始沉降时,受到水的粘滞阻力为f=kv(k为常数)。
若从沉降开始计时,试证明小球在水中竖直沉降的速率v与时间的关系为⎪⎪⎭⎫⎝⎛--=-mktekFmgv1[证明] 任意时刻t小球的受力如图所示,取向下为y轴的正方向,开始沉降处为坐标原点。
由牛顿第二定律得tvmmafFmgdd==--即tvmmakvFmgdd==--整理得mtkvFmgv dd=--m,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kvF=。
求跳伞员的运动速率v随时间t变化的规律和极限速率Tv。
[解] 设运动员在任一时刻的速率为v,极限速率为Tv,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。
此时2Tkvmg=即kmgv=T有牛顿第二定律tvmkvmgdd2=-整理得mtkvmgv dd2=-对上式两边积分mgkmtkvmgv tv21dd02⎰⎰=-得mtv kmgv kmg=+-ln整理得T22221111veekmgeevkgmtkgmtkgmtkgmt+-=+-=2-4 61085.1⨯=h m的高空f的大小;(2)()2ehRmMG+=地2eRMGg地=由上面两式得()()()N1082.71085.11063781063788.913273263232e2e⨯=⨯+⨯⨯⨯⨯=+=hRRmgf(2) 由牛顿第二定律hRvmf+=e2()()m1096.613271085.11063781082.73633e⨯=⨯+⨯⨯⨯=+=mhRfv(3) 卫星的运转周期()()2h3min50ss1043.71096.61085.1106378223363e=⨯=⨯⨯+⨯=+=ππvhRT2-5 试求赤道上方的地球同步卫星距地面的高度。
(完整版)大学物理课后习题答案详解
r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。
(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。
解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理_第2章_质点动力学_习题答案
第二章 质点动力学2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。
解:物体与斜面间的摩擦力f =uN =umgcos30物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-20(2)(31)s g u ∴=-把式(2)代入式(1)得,()222200.1983u v v=+2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。
解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdt v F T mg mR αα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )2cos 2cos /m cos 3cos '3cos ,e v vdv rg d v gr vg rrv mg mg rmg ααααωαααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。
解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+-2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。
大学物理练习册习题及答案
习题及参考答案第2章 质点动力学参考答案一 思考题2-1如图,滑轮绳子质量忽略不计,忽略一切摩擦力,物体A 的质量m A 大于物体B 的质量m B ,在A 、B 运动过程中弹簧秤的读数是(A )()12m m g + (B )()12m m g -(C )12122m m g m m ⎛⎫⎪+⎝⎭ (D )12124m m g m m ⎛⎫⎪+⎝⎭2-2用水平压力F 把一个物体压着靠在竖直的墙面上保持静止,当F 逐渐增大时,物体所受的静摩擦力f(A )恒为零 (B )不为零,但保持不变(C )随成F 正比增大 (D )开始随F 增大,达到某一值后,就保持不变 2-3如图,物体A 、B 的质量分别为M 、m ,两物体间摩擦系数为μ,接触面为竖直面,为使B 不下滑,则需要A 的加速度为(A )a g μ≥ (B )a g μ≥ (C )a g ≥ (D )M ma g M +≥2-4质量分别为m 和M 的滑块A 和B ,叠放在光滑的水平面上,如图,A 、B 间的静摩擦系数为μs ,滑动摩擦系数为μk ,系统原先处于静止状态,今将水平力F 作用于B 上,要使A 、B 间不轰生相对滑动,应有(A )s F mgμ≤ (B )(1)s F m M mgμ≤+(C )()s F m M mg μ≤+(D )s m MF mgM μ+≤AmBBm A 思考题2-1图思考题2-3图 思考题2-4图m(a )(b )Bm mm 21m 21思考题2-7图2-5 在光滑的水平面上,放有两个相互接触的物体A 和B ,质量分别为m 1和m 2,且m 1> m 2。
设有一水平恒力F ,第一次作用在A 上如图(a )所示,第二次作用在B 上如图(b )所示,问在这两次作用中A 与B 之间的作用力哪次大?2-6 图(a )中小球用轻弹簧o 1A 与o 2A 轻绳系住,图(b )中小球用轻绳o'1B 与o'2B 系住,今剪断o 2A 绳和o'2B 绳;试求在刚剪断的瞬时,A 球与B 球的加速度量值和方向。
大学物理第2章 质点动力学习题(含解答)
第2章质点动力学习题解答2-1如图所示,电梯作加速度大小为a 运动。
物体质量为m ,弹簧的弹性系数为k ,•求图示三种情况下物体所受的电梯支持力(图a 、b )及电梯所受的弹簧对其拉力(图c )。
解:(a )ma mg N =-)(a g m N +=(b )ma N mg =-)(a g m N -=(c )ma mg F =-)(a g m F +=2-2如图所示,质量为10kg 物体,•所受拉力为变力2132+=t F (SI ),0=t 时物体静止。
该物体与地面的静摩擦系数为20.0=s μ,滑动摩擦系数为10.0=μ,取10=g m/s 2,求1=t s 时,物体的速度和加速度。
解:最大静摩擦力)(20max N mg f s ==μmax f F >,0=t 时物体开始运动。
ma mg F =-μ,1.13.02+=-=t mmgF a μ 1=t s 时,)/(4.12s m a =dtdv a =,adt dv =,⎰⎰+=t v dt t dv 0201.13.0t t v 1.11.03+=1=t s 时,)/(2.1s m v =2-3一质点质量为2.0kg ,在O x y 平面内运动,•其所受合力j t i t F 232+=(SI ),0=t 时,速度j v 20=(SI ),位矢i r20=。
求:(1)1=t s 时,质点加速度的大小及方向;(2)1=t s时质点的速度和位矢。
解:j t i t m Fa+==223 223t a x =,00=x v ,20=x ⎰⎰=t v x dt t dv x 0223,23t v x =⎰⎰⎰==txtx dt t dt v dx 03202,284+=t xt a y =,20=y v ,00=y⎰⎰=tv y tdt dv y02,222+=t v y⎰⎰⎰+==tyty dt t dt v dy 020)22(,t t y 263+=(1)1=t s 时,)/(232s m j i a +=(2)j t i t v )22(223++=,1=t s 时,j i v2521+= j t t i t r )26()28(34+++=,1=t s 时,j i r613817+=2-4质量为m 的子弹以速度0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度随时间变化的关系;(2)子弹射入沙土的最大深度。
质点动力学答案
第2章-质点动力学答案(总6页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2015-2016(2)大学物理A (1)第二次作业第二章 质点动力学答案[ A ] 1、【基础训练1 】 一根细绳跨过一光滑的定滑轮,一端挂一质量为M 的物体,另一端被人用双手拉着,人的质量M m 21=.若人相对于绳以加速度a 0向上爬,则人相对于地面的加速度(以竖直向上为正)是 (A) 3/)2(0g a +. (B) )3(0a g --.(C) 3/)2(0g a +-. (D) 0a [解答]:()()()()00000(),/3,2/3Mg T Ma T mg m a a M m g M m a ma a g a a a g a -=-=+-=++=-∴+=+ [ D ]2、【基础训练3】 图示系统置于以g a 21=的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦并不计空气阻力,则绳中张力为 (A) mg . (B) m g 21.(C) 2mg . (D) 3mg / 4.[解答]: 设绳的张力为T ,F 惯=mamg −T +ma =ma‘,T =ma’,mg +mg /2=2ma’. 所以 a’=3g/4, T=3mg/4[ B ] 3、【基础训练5】 光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1<m 2.今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N 应有BA a(A) N =0. (B) 0 < N < F.(C) F < N <2F. (D) N > 2F.[解答]:2F=(m 1+m 2)a, F+N=m 2a, 所以:2N=(-m 1+m 2)a=2F(-m 1+m 2)/ (m 1+m 2)N=F(-m 1+m 2)/ (m 1+m 2) 0 < N < F.[ C ] 4、【自测1】 在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断 (A) 2a 1. (B) 2(a 1+g ).(C) 2a 1+g . (D) a 1+g . [解答]: 适合用非惯性系做。
大学物理习题答案02质点动力学
大学物理练习题二一、选择题1. 质量为m的小球在向心力作用下,在水平面内作半径为R、速率为v的匀速圆周运动,如下左图所示。
小球自A点逆时针运动到B点的半周内,动量的增量应为:(A )mv 2j (B )jmv2 (C )i mv 2 (D )i mv 2 [ B ]解: j mv j mv v m v m p A B)(j mv 2 ; 另解:取y 轴为运动正向,mv mv mv p 2)( , pj mv 22. 如图所示,圆锥摆的摆球质量为m,速率为v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A ).2mv (B )22/2v R mg mv(C )v Rmg / (D )0。
[ C ]解: v /R 2T ,2/T t ,t mgd I T 20v /R mg(注)不能用0v m v m p I,因为它是合力的冲量。
3. 一质点在力)25(5t m F (SI )(式中m 为质点的质量,t 为时间)的作用下,0 t 时从静止开始作直线运动,则当s t 5 时,质点的速率为(A )s m /50 (B )s m /25 (C )0 (D )s m /50 [ C ]mvR解:F 为合力,00 v ,0525)25(5525t tt mt mt dt t m Fdt由mv mv mv Fdt tt 00可得0 v解2:由知)25(5t m F 知)25(5t a ,550)25(5dt t adt v v0)5(5520 t t v v , (00 v )4. 质量分别为m和4m的两个质点分别以动能E和4E沿一直线相向运动,它们的总动量大小为(A ),22mE (B )mE 23, (C )mE 25, (D ) mE 2122 。
[ B ]解:由M p Mv E k 22122,有k ME p 2 ,mE 2p 1 ,12p 4)E 4)(m 4(2p ,1123)(p p p p 总m E 235. 一个质点同时在几个力作用下的位移为:k j i r654 (SI ) 其中一个力为恒力k j i F953 (SI ),则此力在该位移过程中所作的功为 (A) 67J (B) 91J (C) 17J (D) –67J [ A ]解:恒力作功,z F y F x F r F A z y x69)5()5(4)3()(67J6. 对功的概念有以下几种说法:(1)保守力作正功时,系统内相应的势能增加。
质点动力学习题答案
l
m
v0
T
m
v02 l
2g
3g cos
2-9. 质量均为M的三条小船以相同的速率 v 沿一直线同
向航行,从中间的小船向前后两船同时以相同速率 u
(相对于该船)抛出质量同为 m 的小包。从小包被抛出
至落入前后船的过程中,试分别对前、中、后船建立动
量守恒方程。
(2)解:物体系的加速度:
a (mA mB )g mC g
f
T
(mA mB mC )
1.1 m s2
分析物体C,T mC g mCa
代入数据解得:T 1.7 N
2-7. 已知条件如图,求物体系的加速度和A、B两绳中的 张力。绳与滑轮的质量和所有摩擦不计。
解:物体系的加速度:
a 2mg cos 45 mg 2m m 2m
解:设小包抛出之后,三船的速度分别变为 v前 ,v中 ,v后
Mv m(v u)
(M
m)v前
v前
v
m M m
u
Mv m(v u) m(v u) (M 2m)v中 v中 v
m Mv m(v u) (M m)v后 v后 v M m u
2-10. 一质量为0.25kg的小球以20m/s的速度和45°的 仰角投向竖直放置的木板,设小球与木板碰撞时间为
0.05s,反弹角与入射角相等,小球速率不变,求木板
对小球的冲力。
y
解:建立直角坐标系:
P mv mv0
0.25
20
i
20
j 0.25
20
i
20
j
45
x
2
2
2
2
7.07i
大学物理第二章质点动力学习题答案
习题二2-1质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系;(2)子弹射入沙土的最大深度。
[解]设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力f =-kv (1)由牛顿第二定律tv mma f d d == 即tv mkv d d ==- 所以t mk v v d d -=对等式两边积分⎰⎰-=tvv t m k v v 0d d 0得t mkv v -=0ln因此t mke v v -=0(2)由牛顿第二定律xv mv t x x v m t v m ma f d d d d d d d d ==== 即xvmv kv d d =- 所以v x mkd d =-对上式两边积分⎰⎰=-000d d v sv x mk 得到0v s m k-=-即kmv s 0=2-2质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。
若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为[证明]任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。
由牛顿第二定律得即tvm ma kv F mg d d ==--整理得mtkv F mg v d d =--对上式两边积分⎰⎰=--t vmt kv F mg v00d dy得mktF mg kv F mg -=---ln即⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 1 2-3跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。
求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。
[解]设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。
《新编大学物理》(上、下册)教材习题答案
答案:[A]
提示: ,
题:
答案:[C]
提示:由时间的相对性, ,长度为
题 :
答案:[D]
提示: 得
题:
答案:[D]
提示: , ,故
题:
答案:[A]
提示: ; ; ;故
二、填空题
题:
答案:
提示:设痕迹之间距离为 ,由公式 ( 为静长度)。则车上观察者测得长度为
题:
答案:(1) ,(2)
提示:(1)相对论质量和相对论动量: ,
简谐振动的表达式为:x= (πt –π/3).
(2)当t=T/4时物体的位置为;x= (π/2–π/3) = π/6 = (m).
速度为;v= -πAsin(π/2–π/3) = πsinπ/6 = (m·s-1).
加速度为:a= dv/dt= -ω2Acos(ωt + φ)= -π2Acos(πt -π/3)= π2cosπ/6 = (m·s-2).
[解答]物体的总能量为:E = Ek+ Ep= (J).
(1)根据能量公式E = kA2/2,得振幅为: = (m).
(2)当动能等于势能时,即Ek= Ep,由于E = Ek+ Ep,可得:E =2Ep,
即 ,解得: = ±(m).
(3)再根据能量公式E = mvm2/2,得物体经过平衡位置的速度为:
(2)速度的最大值为:vm= ωA= π = (m·s-1); 题解答图
加速度的最大值为:am= ω2A= π2= (m·s-2).
(3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A= (N);
振动能量为:E = kA2/2 =mω2A2/2 = ×10-2(J),
大学物理章质点动力学习题答案
第二章 质点动 力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数。
解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-o2(2)s ∴=把式(2)代入式(1)得,220.198u =2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度与对圆弧表面的作用力,圆弧半径为r 。
解:小球在运动的过程中受到重力G r 与轨道对它的支持力T r 、取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dvF mg mdtv F T mg m Rαα=-==-=r r r由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )m cos 3cos '3cos ,e v vdv rg d v vrv mg mg rmg αααωααα=-===+==-=-⎰⎰o r得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。
习题2-2图解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m,用质量不计的滑轮与细绳连接,并不计摩擦,则A与B 的加速度大小各为多少 。
大学物理2-1第二章(质点动力学)习题答案
大学物理2-1第二章(质点动力学)习题答案习 题 二2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。
[解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv(1) 由牛顿第二定律 tv m ma f d d ==即 tv mkv d d ==-所以t m k v v d d -=对等式两边积分 ⎰⎰-=t v v tm k v v 0d d 0得t mk v v -=0ln因此t mke v v -=0(2)由牛顿第二定律xvmv t x x v m t v m ma f d d d d d d d d ==== 即 xvmvkv d d =- 所以 v x mkd d =-对上式两边积分 ⎰⎰=-000d d v sv x m k得到v s mk-=-即 kmv s 0=2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。
若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 1[证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。
由牛顿第二定律得t vm ma f F mg d d ==-- 即tvmma kv F mg d d ==-- 整理得mtkv F mg v d d =--对上式两边积分 ⎰⎰=--t v mt kv F mg v00d d 得mktF mg kv F mg -=---ln即 ⎪⎪⎭⎫ ⎝⎛--=-m kte kF mg v 1mgFf2-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。
《新编大学物理》(上、下册)教材习题答案
第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j ri ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v ,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t =⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m sπ提示: 200tdvv v dt t dt =+=⎰,11/t v m s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v tg t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴=又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴(2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dva kv dt ==- 00v tdv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0ktv v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+ 1()F M m ga M M+==题2.4 :答案:[D] 提示:a a A22A B AB m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45Aa g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos60)()1010m mv m v =+ 共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=-由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin Gy Pmgv mg ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT F由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k ga== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19: 答案: 02mgk ,2mg,题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx L μμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。
大学物理习题精选答案——第2章质点动力学
⼤学物理习题精选答案——第2章质点动⼒学质点动⼒学习题答案2-1⼀个质量为P 的质点,在光滑的固定斜⾯(倾⾓为α)上以初速度0v 运动,0v 的⽅向与斜⾯底边的⽔平线AB 平⾏,如图所⽰,求这质点的运动轨道、解: 物体置于斜⾯上受到重⼒mg ,斜⾯⽀持⼒N 、建⽴坐标:取0v⽅向为X 轴,平⾏斜⾯与X 轴垂直⽅向为Y 轴、如图2-1、图2-1X ⽅向: 0=x F t v x 0= ① Y ⽅向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v2sin 21t g y α=由①、②式消去t ,得220sin 21x g v y ?=α 2-2 质量为m 的物体被竖直上抛,初速度为0v ,物体受到的空⽓阻⼒数值为f KV =,K 为常数、求物体升⾼到最⾼点时所⽤时间及上升的最⼤⾼度、解:⑴研究对象:m⑵受⼒分析:m 受两个⼒,重⼒P 及空⽓阻⼒f ⑶⽜顿第⼆定律:合⼒:f P F +=a m f P =+y 分量:dtdVmKV mg =-- dt KVmg mdV-=+?即dt mKV mg dV 1-=+-=+t vv dt m KV mg dV 01KV mg KV mg K 1ln 10-=++ )(0KV mg e KV mg t mK+?=+-mg Ke KV mg K V t m K1)(10-+=?- ①0=V 时,物体达到了最⾼点,可有0t 为)1ln(ln 000mgKV K m mg KV mg K m t +=+=②∵ dtdyV =∴ Vdt dy =dt mg K e KV mg K Vdt dy tt mK ty-+==-00001)(1mgt Ke KV mg K my t m K 11)(02--+-=-021()1Kt m mmg KV e mgt K K-+--??= ③ 0t t = 时,max y y =,)1ln(11)(0)1ln(02max0mg KV K m mg Ke KV mg K m y mgKV K mm K +--+=+- )1ln(11)(02202mg KV g K m mg KV mg KV mg K m +-??+-+=)1ln()(0220002mg KV g K m KV mg KV KV mg Km +-++=)1ln(0220mg KV g Km K mV +-=2-3 ⼀条质量为m ,长为l 的匀质链条,放在⼀光滑的⽔平桌⾯,链⼦的⼀端由极⼩的⼀段长度被推出桌⼦边缘,在重⼒作⽤下开始下落,试求链条刚刚离开桌⾯时的速度、解:链条在运动过程中,其部分的速度、加速度均相同,沿链条⽅向,受⼒为mxg l,根据⽜顿定律,有mF xg ma l== 图2-4通过变量替换有 m dv xg mv l dx=0,0x v ==,积分00l vm xg mvdv l =??由上式可得链条刚离开桌⾯时的速度为v gl =2-5 升降机内有两物体,质量分别为1m 与2m ,且2m =21m .⽤细绳连接,跨过滑轮,绳⼦不可伸长,滑轮质量及⼀切摩擦都忽略不计,当升降机以匀加速a =12g 上升时,求:(1) 1m 与2m 相对升降机的加速度.(2)在地⾯上观察1m 与2m 的加速度各为多少?解: 分别以1m ,2m 为研究对象,其受⼒图如图所⽰.(1)设2m 相对滑轮(即升降机)的加速度为a ',则2m 对地加速度a a a -'=2;因绳不可伸长,故1m 对滑轮的加速度亦为a ',⼜1m 在⽔平⽅向上没有受牵连运动的影响,所以1m 在⽔平⽅向对地加速度亦为a ',由⽜顿定律,有)(22a a m T g m -'=-a m T '=1题2-5图联⽴,解得g a ='⽅向向下 (2) 2m 对地加速度为22ga a a =-'= ⽅向向上 1m 在⽔⾯⽅向有相对加速度,竖直⽅向有牵连加速度,即牵相绝a a a+='∴ g g g a a a 25422221=+=+'=a a '=arctanθo 6.2621arctan ==,左偏上. 2-6 ⼀物体受合⼒为t F 2=(SI),做直线运动,试问在第⼆个5秒内与第⼀个5秒内物体受冲量之⽐及动量增量之⽐各为多少?解:设物体沿+x ⽅向运动,2525501===??tdt Fdt I N·S(1I 沿i ⽅向)7521051052===?tdt Fdt I N·S(2I 沿i⽅向)3/12=?I I=?=1122)()(p I p I∴3)()(12=??p p2-7 ⼀弹性球,质量为020.0=m kg,速率5=v m/s,与墙壁碰撞后跳回、设跳回时速率不变,碰撞前后的速度⽅向与墙的法线夹⾓都为60α?=,⑴求碰撞过程中⼩球受到的冲量=I⑵设碰撞时间为05.0=?t s,求碰撞过程中⼩球受到的平均冲⼒?F =解:=-=-==--=-=0sin sin cos 2)cos (cos 1212αααααmv mv mv mv I mv mv mv mv mv I y y y x x x i i i mv i I I x10.060cos 5020.02cos 2====?αN·S2-9 ⼀颗⼦弹由枪⼝射出时速率为10s m -?v ,当⼦弹在枪筒内被加速时,它所受的合⼒为F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设⼦弹运⾏到枪⼝处合⼒刚好为零,试计算⼦弹⾛完枪筒全长所需时间;(2)求⼦弹所受的冲量.(3)求⼦弹的质量. 解: (1)由题意,⼦弹到枪⼝时,有0)(=-=bt a F ,得ba t =(2)⼦弹所受的冲量-=-=t bt at t bt a I 0221d )(将bat =代⼊,得ba I 22=(3)由动量定理可求得⼦弹的质量202bv a v I m == 2-10 ⽊块B 静⽌置于⽔平台⾯上,⼩⽊块A 放在B 板的⼀端上,如图所⽰、已知0.25A m =kg,B m =0.75kg,⼩⽊块A 与⽊块B 之间的摩擦因数1µ=0、5,⽊板B 与台⾯间的摩擦因数2µ=0、1、现在给⼩⽊块A ⼀向右的⽔平初速度0v =40m/s,问经过多长时间A 、B 恰好具有相同的速度?(设B 板⾜够长)解:当⼩⽊块A 以初速度0v 向右开始运动时,它将受到⽊板B 的摩擦阻⼒的作⽤,⽊板B 则在A 给予的摩擦⼒及台⾯给予的摩擦⼒的共同作⽤下向右运动、如果将⽊板B 与⼩⽊块A 视为⼀个系统,A 、B 之间的摩擦⼒就是内⼒,不改变系统的总动量,只有台⾯与⽊板B 之间的摩擦⼒才就是系统所受的外⼒,改变系统的总动量、设经过t ?时间,A 、B 具有相同的速度,根据质点系的动量定理 0()k A B A F t m m v m v -?=+-2()k A B F m m g µ=+再对⼩⽊块A 单独予以考虑,A 受到B 给予的摩擦阻⼒'K F ,应⽤质点的动量定理'0k A B F t m v m v -?=-以及 '1k A F m g µ=解得 0012121(),A A B v v v m v t m m gµµµµµ-=-?=+-代⼊数据得 2.5v =m/s t ?=7、65s2-11⼀粒⼦弹⽔平地穿过并排静⽌放置在光滑⽔平⾯上的⽊块,如图2-11所⽰、已知两⽊块的质量分别为1m 与2m ,⼦弹穿过两⽊块的时间各为1t ?与2t ?,设⼦弹在⽊块中所受的阻⼒为恒⼒F ,求⼦弹穿过后,两⽊块各以多⼤速度运动、图2-10图2-11解:⼦弹穿过第⼀⽊块时,两⽊块速度相同,均为1v ,初始两⽊块静⽌, 由动量定理,于就是有1121()0F t m m v ?=+-设⼦弹穿过第⼆⽊块后,第⼆⽊块速度变为2v ,对第⼆块⽊块,由动量定理有22211F t m v m v ?=-解以上⽅程可得 1121212122,F t F t F t v v m m m m m ==+++2-12⼀端均匀的软链铅直地挂着,链的下端刚好触到桌⾯、如果把链的上端放开,证明在链下落的任⼀时刻,作⽤于桌⾯上的压⼒三倍于已落到桌⾯上那部分链条的重量、解:设开始下落时0t =,在任意时刻t 落到桌⾯上的链长为x ,链未接触桌⾯的部分下落速度为v ,在dt 时间内⼜有质量dm dx ρ=(ρ为链的线密度)的链落到桌⾯上⽽静⽌、根据动量定理,桌⾯给予dm 的冲量等于dm 的动量增量,即 I Fdt vdm vdx ρ=== 所以 2dxF vv dtρρ== 由⾃由落体的速度22v gx =得2F gx ρ=这就是t 时刻桌⾯给予链的冲⼒、根据⽜顿第三定律,链对桌⾯的冲⼒'F F =,'F ⽅向向下,t 时刻桌⾯受的总压⼒等于冲⼒'F 与t 时刻已落到桌⾯上的那部分链的重⼒之与,所以 '3N F xg xg ρρ=+= 所以3Nxgρ= 即链条作⽤于桌⾯上的压⼒3倍于落在桌⾯上那部分链条的重量、2-13⼀质量为50kg 的⼈站在质量为100kg 的停在静⽔中的⼩船上,船长为5m,问当⼈从船头⾛到船尾时,船头移动的距离、解:以⼈与船为系统,整个系统⽔平⽅向上动量守恒设⼈的质量为m ,船的质量为M ,应⽤动量守恒得 m +M =0v V其中v ,V 分别为⼈与⼩船相对于静⽔的速度,可得m -MV =v ⼈相对于船的速度为 'M mM+=-=v v V v 设⼈在t 时间内⾛完船长l ,则有 '000tttM m M m l v dt vdt vdt M M ++===?在这段时间内,⼈相对于地⾯⾛了0t所以Mlx M m=+船头移动的距离为'53ml x l x M m =-==+2-14质量为M 的⽊块静⽌在光滑的⽔平桌⾯上,质量为m ,速度0v 的⼦弹⽔平地射⼊⽊块,并陷在⽊块内与⽊块⼀起运动、求: (1)⼦弹相对⽊块静⽌后,⽊块的速度与动量; (2)⼦弹相对⽊块静⽌后,⼦弹的动量; (3) 在这个过程中,⼦弹施于⽊块的冲量、解:⼦弹相对⽊块静⽌后,其共同速度设为u ,⼦弹与⽊块组成系统动量守恒 (1)0()mv m M u =+ 所以 0mv u m M=+M Mmv P Mu m M==+(2)⼦弹的动量20m m v P mu m M==+(3)针对⽊块,由动量守恒知,⼦弹施于⽊块的冲量为00M MmI P v M m=-=+2-15质量均为M 的两辆⼩车沿着⼀直线停在光滑的地⾯上,质量为m 的⼈⾃⼀辆车跳⼊另⼀辆车,接着⼜以相同的速率跳回来、试求两辆车的速率之⽐、解: 质量为m 的⼈,以相对于地⾯的速度v 从车A 跳到车B,此时车A 得到速度1u ,由于车就是在光滑的地⾯上,沿⽔平⽅向不受外⼒,因此,由动量守恒得1mv Mu =⼈到达车B 时,共同得速度为2u ,由动量守恒得2()M m u mv +=⼈再由车B 以相对于地⾯的速度v 跳回到车A,则车B 的速度为'2u ,⽽车A 与⼈的共同1u ,如图所⽰,由动量守恒得联⽴⽅程解得:'22m u v M ='12m u v M m=+ 所以车B 与车A 得速率之⽐为'2'1u M m u M+=2-16体重为P 的⼈拿着重为p 的物体跳远,起跳仰⾓为?,初速度为0v 、到达最⾼点时,该⼈将⼿中的物体以⽔平向后的相对速度u 抛出,问跳远成绩因此增加多少?解:⼈与物体组成系统在最⾼点抛出物体前后沿⽔平⽅向动量守恒,注意到对地⾯这个惯性参考系''0'0'()cos ()cos m m v mv m v u m v v u m m+=+-=++从最⾼点到落地,⼈做平抛运动所需时间0sin v t g= 跳远距离增加为'00'(cos )cos m s v u t v t m m =+-+ '0'sin v m put u m m P p g==++2-17铁路上有⼀平板车,其质量为M ,设平板车可⽆摩擦地在⽔平轨道上运动、现有N 个⼈从平板车的后端跳下,每个⼈的质量均为m ,相对平板车的速度均为u 、问在下述两种情况下,平板车的末速度就是多少?(1)N 个⼈同时跳离;(2)⼀个⼈、⼀个⼈的跳离、所得结果就是否相同、解:取平板车与N 个⼈为研究对象,由于在⽔平⽅向上⽆外⼒作⽤,故系统在该⽅向上动量守恒、取平板车运动⽅向为坐标轴正⽅向,设最初平板车静⽌,则有()0Mv Nm v u +-= 所以N 个⼈同时跑步跳车时,车速为Nmv u M Nm=+'22'11()()Mu mv M m u M m u mv Mu -=++=+(2)若⼀个⼈、⼀个⼈地跳车,情况就不同了、第⼀个跳车时,由动量守恒定律可得11[(1)]()0M N m v m v u +-+-=221[(2)]()[(1)]M N m v m v u M N m v +-+-=+-21(1)muv v M N m-=+-以此类推,第N 个⼈跳车时,有1()()N N N Mv m v u M m v -+-=+1N N muv v M m--=+所以1111()2NN n muv mu M m M m M Nm M nm==++=++++∑因为1112M m M m M Nm >>>+++ 1112NM m M m M Nm M Nm++>++++ 故N v v >2-18质量为kg 10的物体作直线运动,受⼒与坐标关系如图2-18所⽰。
大学物理_第2章_质点动力学_习题答案
第二章 质点动力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数。
解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)s ∴=把式(2)代入式(1)得,220.198u =2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。
解:小球在运动的过程中受到重力G 和轨道对它的支持力T.取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdtv F T mg m Rαα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )m cos 3cos '3cos ,e v vdv rg d v vrv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两习题2-2图者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。
解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。
大学物理第2章 质点动力学习题解答
第2章 质点动力学习题解答2-17 质量为2kg 的质点的运动学方程为 j t t i t r ˆ)133(ˆ)16(22+++-=ρ(单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。
解:∵j i dt r d a ˆ6ˆ12/22+==ρρ, j ia m F ˆ12ˆ24+==ρρ 为一与时间无关的恒矢量,∴质点受恒力而运动。
F=(242+122)1/2=125N ,力与x 轴之间夹角为:'34265.0/︒===arctg F arctgF x y α2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:j t b i t a r ˆsin ˆcos ωω+=ρ,a,b,ω为正常数,证明作用于质点的合力总指向原点。
证明:∵r j t b it a dt r d a ρρρ2222)ˆsin ˆcos (/ωωωω-=+-== r m a m F ρρρ2ω-==, ∴作用于质点的合力总指向原点。
2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。
解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律:②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ①+②可求得:g m m gm F a μμ-+-=2112将a 代入①中,可求得:2111)2(m m g m F m T +-=μf 1 N 1 m 1g TaFN 2 m 2gTaN 1 f 1 f 22-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。
大学物理第二章质点动力学课后答案
势能零点在 z = 0处。
1 2 弹性势能:E p kx 势能零点在弹簧原长处。 2 Mm 引力势能:E p G0 势能零点在 r 处。 r
五、功能原理与机械能守恒定律
W W E2 E1 功能原理
ex in 非
Ek 2 Ep 2 Ek1 Ep1 机械能守恒定律
4 105 t 0.003s F 400 t0 3 t t 4 105 I Fdt [400 t ]dt 0.6 N s 0 0 3 I 0.6 0.002kg m I mv 0 v 300
2-7 两块并排的木块A和B,质量分别为m1和m2,静 止地放置在光滑的水平面上。一子弹水平地穿过两木 块,设子弹穿过两木块所用的时间分别为t1和t2,木 块对子的阻力为恒力F,则子弹穿出后,木块A的速度 大小为 ,木块B的速度大小为 。
1 1 2 W mv2 mv12 2 2
质点的动能定理:在一个过程中,作用在质点上 合外力的功,等于质点动能的增量。
四、保守力的功 F保 dr 0
l
势能
E p F保 dr (b为势能零点) a
b
W保 ( Epb Epa ) Ep
重力势能:Ep mgz
l
dx v 2ct dt
l
W 0 fdx 0 4kcxdx 2kcl 2
2-28 水平方向动量守恒
( P Q)v0 cos Pv Q(v u)
Qu ( P Q) v0 cos Qu v0 cos v PQ PQ
Δx vt v0 cos t
总
结
一、动量定理和动量守恒定律 t2 Fdt mv2 mv1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 质点动 力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数;解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)s ∴=把式2代入式1得,220.198u =2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r ;解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdt v F T mg mR αα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )m cos 3cos '3cos ,e v vdv rg d v vrv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩习题2-2图擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件;解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m,用质量不计的滑轮和细绳连接,并不计摩擦,则A和B 的加速度大小各为多少 ; 解:如图由受力分析得(1)(2)2(3)2(4)ggA AB B A B A BA B mg T ma T mg ma a a T T a a -=-===1解得=-52=-52-5如本题图所示,已知两物体A 、B 的质量均为m=,物体A 以加速度a =s 2 运动,求物体B 与桌面间的摩擦力;滑轮与连接绳的质量不计解:分别对物体和滑轮受力分析如图,由牛顿定律和动力学方程得,()()()1f 111f (1)''(2)2'(3)'2(4)5'6'7(4)7.22A T A TB T T A B T T T T m g F m a F F m a a a F F m m m F F F F mg m m aF N-=-======-+===解得2-6质量为M 的三角形木块,放在光滑的水平桌面上,另一质量为m 的木块放在斜面上如本题图所示;如果所有接触面的摩擦均可忽略不计,求M 的加速度和m 相对M 的加速度;AB 习题2-4图习题2-5图aθ习题2-3图ma AmgT A T B a Bmg解:如图m 相对M 的相对加速度为m a ',则 cos ,sin ,mxm my m a a a a θθ''''== 在水平方向,cos mxmx Mx mx mxMx m M a a a a a a a a θ'=-''∴=+=-+在竖直方向sin mymy myma a a a θ'='∴=由牛顿定律可得,sin cos cos sin sin mx mM my m MN ma ma ma mg N ma ma N Ma θθθθθ'-==-+'-===解得θ+θθ=2sin cos sin m M mg a M , 2()sin sin m M m g a M m θθ++= 2-7在一只半径为R 的半球形碗内,有一粒质量为m 的小钢球;当钢球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高解:取钢球为隔离体,受力分析如图所示,在图示坐标中列动力学方程得,2sin sin cos cos ()/n F ma mR F mg R h Rθωθθθ====-解得钢球距碗底的高度2ω-=g R h2-8光滑的水平面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦系数为μ;物体的初速率为v 0,求:1t 时刻物体的速率;2当物体速率从v 0减少到v 0/2时,物体所经历的时间及经过的路程;解:1设物体质量为m,取图示的自然坐标系,由牛顿定律得,02222tv 2v (1)(2)(3)4dv 4dt u v N n f t f Nv F ma m R dv F m a m dtF uF v dvu R dt ===-=-=-⎰⎰0由上三式可得=()R 对()式积分得=-习题2-6图00Rv v R v tμ∴=+(2) 当物体速率从v 0减少到v 0/2时,由上式00Rv vR v tμ∴=+可得物体所经历的时间0t R v μ'=经过的路程t t 000vdt dt ln 2Rv Rs R v t μμ''=+⎰⎰==2-9从实验知道,当物体速度不太大时,可以认为空气的阻力正比于物体的瞬时速度,设其比例常数为k;将质量为m 的物体以竖直向上的初速度v 0抛出; 1试证明物体的速度为t m ktm ke v e kmg v --+-=0)1(2证明物体将达到的最大高度为)1ln(020mgkv k g m k mv H +-=3证明到达最大高度的时间为)1ln(0mgkv k mt H +=证明:由牛顿定律可得0000220200ln (1)(2),()ln(13tvv mmt t k kx mg mg kv mdv dt mg kvmg kv m mg t v e v e k mg kv kmvdvdx mg kvmg kv u du kdvk mgdu k mgdudx mdu dx mdu m u m u mv kv m g x k k mg m t k --+-=++∴==-++=-++==∴=-+=-+∴=-+=⎰⎰⎰⎰dv(1)-mg-kv=m ,dt,dv -mg-kv=mv ,dx 令,)()0ln0t ln mg kv mg kvmg kv m v k mg k +++∴=+当时,=即为到达最高点的时间2-10质量为m 的跳水运动员,从距水面距离为h 的高台上由静止跳下落入水中;把跳水运动员视为质点,并略去空气阻力;运动员入水后垂直下沉,水对其阻力为-b v 2,其中b 为一常yf =-kvmgv量;若以水面上一点为坐标原点O,竖直向下为Oy 轴,求:1运动员在水中的速率v 与y 的函数关系;2跳水运动员在水中下沉多少距离才能使其速率v 减少到落水速率v 0的1/10假定跳水运动员在水中的浮力与所受的重力大小恰好相等解:运动员入水可视为自由落体运动,所以入水时的速度为0v =入水后如图由牛顿定律的0220//0100mg-f-F=ma mg=F f=bv dv a=dt v dy (2)0.4,0.1m vy ln 5.76m b y v v by m by m dv v dy dvb mv dyb dv m vv v e m v v v ---=∴-=-=====⎰⎰b将已知条件代入上式得,m=-=2-11一物体自地球表面以速率v 0竖直上抛;假定空气对物体阻力的值为f =-km v 2,其中k 为常量,m 为物体质量;试求:1该物体能上升的高度;2物体返回地面时速度的值;解:分别对物体上抛和下落时作受力分析如图,h120m 1ln()2v 01ln()2(2)m v=v 1gyvv vvdv dy g k g k y k g k g k k g vdvdy g k k =-++∴=-+∴+=-∴+⎰⎰⎰⎰222220max 222-/0dv mvdv (1)-mg-k v =m=,dt dy v v v 物体达到最高点时,=,故v h=y =dv mvdv下落过程中,-mg+k v =m=dt dy-v v ()2-12长为60cm 的绳子悬挂在天花板上,下方系一质量为1kg 的小球,已知绳子能承受的最大张力为20N ;试求要多大的水平冲量作用在原来静止的小球上才能将绳子打断解:由动量定理得000I mv I v m∆=-∆∴=,如图受力分析并由牛顿定律得,2020220/202.47mv T mg l mv T mg lmg I l I Ns-==+≥∴+∆≥∆≥2-13一作斜抛运动的物体,在最高点炸裂为质量相等的两块,最高点距离地面为;爆炸后,第一块落到爆炸点正下方的地面上,此处距抛出点的水平距离为100m;问第二块落在距抛出点多远的地面上 设空气的阻力不计解:取如图示坐标系,根据抛体运动规律,爆炸前,物体在最高点得速度得水平分量为()1010x 2x 12y 2x 0x (1),v 2mv mv 30mv mv 414v v 100x x v x t==+=2111121物体爆炸后,第一块碎片竖直下落的运动方程为1y =h-v t-gt 2当碎片落地时,y =0,t=t 则由上式得爆炸后第一块碎片抛出得速度为1h-gt 2=()t 又根据动量守恒定律,在最高点处有1=()211=-22联立以上()-()式得爆炸后第二块碎片抛出时的速度分量分别为=2=2x 11212x 2222y 222214.7v t 5y =h+v t -60,x 500my ms v v ms gt y --====21211h-gt 2t 爆炸后第二块碎片作斜抛运动,其运动方程为x =x +()1()2落地时由式(5)和(6)可解得第二块碎片落地点得水平位置=2-14质量为M 的人手里拿着一个质量为m 的物体,此人用与水平面成θ角的速率v 0向前跳去;当他达到最高点时,他将物体以相对于人为u 的水平速率向后抛出;问:由于人抛出物体,他跳跃的距离增加了多少假设人可视为质点解:取如图所示坐标,把人和物视为一系统,当人跳跃到最高点处,在向左抛物得过程中,满足动量守恒,故有()00000m cos ()v u mu v cos m mu v v- cos m sin t g m sin x vt um gv Mv m v u v v v v v θθθθθ=+-∆∆∆+M 式中为人抛物后相对地面的水平速率,-为抛出物对地面得水平速率,得=++M人的水平速率得增量为==+M而人从最高点到地面得运动时间为=所以人跳跃后增加的距离为==(+M )2-15铁路上有一静止的平板车,其质量为M,设平板车可无摩擦地在水平轨道上运动;现有N 个人从平板车的后端跳下,每个人的质量均为m,相对平板车的速度均为u;问:在下列两种情况下,1N 个人同时跳离;2一个人、一个人地跳离,平板车的末速是多少所得的结果为何不同,其物理原因是什么解:取平板车及N 个人组成的系统,以地面为参考系,平板车的运动方向为正方向,系统在该方向上满足动量守恒;考虑N 个人同时跳车的情况,设跳车后平板车的速度为v,则由动量守恒定律得 0=Mv+Nmv -uv =Nmu/Nm+M 1又考虑N 个人一个接一个的跳车的情况;设当平板车上商有n 个人时的速度为v n ,跳下一个人后的车速为v n -1,在该次跳车的过程中,根据动量守恒有M+nmv n =M v n -1+n-1m v n -1+mv n -1-u 2 由式2得递推公式v n -1=v n +mu/M+nm 3当车上有N 个人得时即N =n,v N =0;当车上N 个人完全跳完时,车速为v 0, 根据式3有,v N-1=0+mu/Nm+Mv N-2= v N-1+mu/N-1m+M ………….v 0= v 1+mu/M+nm将上述各等式的两侧分别相加,整理后得,0n 0mu v nm,1,2,3....v vM nm M Nm n N N +≤+=∑N=1=M+由于故有,即个人一个接一个地跳车时,平板车的末速度大于N 个人同时跳下车的末速度。