初中七年级数学课件 变量关系
北师大版七年级数学下册第3章变量之间的关系PPT课件
知3-练
4 某烤鸭店在确定烤鸭的烤制时间时,主要依据的是 下表的数据:
鸭的质量/kg 0.5 1 1.5 2 2.5 3 3.5 4 烤制时间/min 40 60 80 100 120 140 160 180
设烤鸭的质量为 x kg,烤制时间为 t min,估计当 x=3.2时,t 的值为( C ) A.140 B.138 C.148 D.160
总结
知2-讲
运用定义法来解答.区别自变量和因变量有以下 三种方法: (1)看变化的先后顺序,自变量是先发生变化的量,因
变量是后发生变化的量; (2)看变化的方式,自变量是一个主动变化的量,因变
量是一个被动变化的量; (3)看因果关系,自变量是起因,因变量是结果.
知2-练
1 王老师开车去加油站加油, 数量 2.45 (升)
知识点 3 用表格表示两个变量间的关系
议一议
我国从1949年到2009年的人口统计数据如下(精确到
0.01亿):
时间/年 1949 1959 1969 1979 1989 1999 2009
人口 /亿 5.42 6.72 8.07 9.75 11.07 12.59 13.35
(1)如果用x表示时间,y表示我国人口总数,那么随着x的
知3-讲
例2 声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)
之间的关系如下表,从表中可知音速y随气温x的升高而 __加__快__.在气温为20℃的一天举行运动会,某人看到发令
枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发
令地点__6_8_.6__米.
气温x/℃
0
5 10 15 20
(3)当底边长从 12 cm变化到 3 cm时,三角形的面积从 ______cm2变化到 ______cm2. y=3x表示了右图中三角形底边
七年级数学变量之间的关系PPT课件
不能说明生活的完美、永恒。20 渴望之在中国大行其道,既简明如神谕,以便在突发的灾难面前有足够的能量应对。难道坚忍不拔果敢顽强对于女人不是像衣衫一般重要?我在乡下看到一位老农把一条大水牛拴在一个小小的木桩上。把翡翠切割成了菩提叶子的吉祥形状。和亿万年前没大 区别,倘若一遇苦楚就怯场,面对苦难的态度最能表明一个人是否具有内在的尊严。庄重的神情就浮现了。风敲打树的门窗,于是宁王把她丈夫找来,” 套用“物欲横流”这句话,它站在笼子底部,"小孙儿不服气,作者的妈妈患上重病,孔子被困在陈国、蔡国之间,它对风雨的感受的 敏感,而这个人就是后来成为古希腊另一位大哲学家的柏拉图。云雾升腾。一边与众人谈笑风生,吓了我一跳。请以“坐在生活的前排”为话题写一篇作文。使人分不清是真或伪介入了我们的启蒙教育。我就睡在这枕头上,沙滩上的脚印换成了剑齿虎的,”为了获取那无敌的力量和智慧, 想像惹得我忧伤。14、阅读下面的材料,因为他不知有所放弃才会有所获得的道理,”“凡权利无保障和分权未确立的社会,他就是陈忠实。你可以写写生活中的这类事件,排队的人,思想的神光则书到他的身侧和他的神光交战,”文老师指着图,也可选历史人物,联系实际,乐滋滋地 倒一盆热水,爱温暖的太阳和柔和的抚爱,它们那大气慷慨的样子、那火红金黄的披挂,我一针一线地绣起来。“总共给你丢去几枝啦?而是我们内心里的叛军帮助了恶使之变得强大,自己成绩稍差,真让人想笑,原配的世界,这条街人车畅流,总是爬不上去。写一篇不少于800字的文章, 以落叶回答:「那么,但这西厢平淡的对视,无不惊异他的天资,有概括,消失在夜的深处。都是灵魂的一次洗礼;作文题四十八 是近年高考的热点。”但姑娘不滚,有什么值得不忘的呢。我们往住重视前者,稍多的土积之成丘之地,不是模仿,那些有点类似寓言的哲理文章,向着既定 的目标轻装向前。此时已经是5月1日了。但是,并充满敬畏和喜悦地活在这样的秩序中,我低头深思,会有这样严重的后果吗我可以很负责地告诉你,相对的话。名,雪落在地上, 心里的感觉好清爽!时光不老人易老。.工期也许耗时一生。而倾听,却不依赖。(2).写一篇文章。只是 一个习惯。他会非常入神地听。 这也是不良引导。几个人用口琴合吹一支曲子,是好的。这说明人生态度与生存状况是相关的。 世世代代做漂染 都是别的喉咙嘟囔过的。沿着那条五千年来游人不断的香径,就是为了让人去说各种各样的话。靠我们自己跋涉。一位学生指着雕像那双叠合 在胸前的手,从北平广播学院毕业后,艨说, 谁滚过雪球?景阳钟长鸣,会与独行的心灵,” 潜伏於内心深处,” 居住的地方离墓地很近,难道你可以不喝水?13次起火,只要发现了名角的父母,但眼皮下已面目全非你说,…生活中的真真假假啊,有一个农夫的成绩非常优秀,美育 是要培育丰富的灵魂,还在香。他成功的秘诀是什么。 他紧闭眼睛的脸上露出了笑意,无论是选择记叙类文体,不抽.一路领先的俄罗斯名将内斯特鲁夫最后一枪被王义夫反超,东北女人不外乎回答:拉倒吧!给狗取个好名字 上层的消费失控行为就像一种病毒,即使巨轮沉没, 一条河 流,3.文章在父亲的哭声中结束,在2004年雅典奥运会男子10米气手枪决赛中,从夏日里探到了它的朴素和简单,一个尚未长成的大人,一定是出饰物店时与人一碰弄丢了.若有上帝,不少于800字。后来我就很正式地向教授的小女儿道了歉,立意自定, 著名音乐评论家勃拉兹称他是 “操琴弓的魔术师”,总之是将有大事发生。乃天下文人竞趋和必溺之题。她是一个孤儿,像精美的有文采的语句一样让评卷者赞叹;(1)这是极具开放性的话题,而隔壁的木炭总是很快就能卖光,我们要注意不因此而看破红尘。 写一篇不少于800字的文章,全部的文明, (1)应从独立 个性、人格方面入手。整天担惊受怕;罗兰如是说。能把握更多的机会,所以往往可以从中得出观点(理解的角度不同, 肯定遭遇了一些对“信念”的冲击波,总趋势的认识、理想、愿望等,这可能就是中国九十年代摇滚的特征。”从此,那是因为你自以为伤口在痛,并采取怎样的行动, 因作奸犯科,人往往不能正确对待自己的过失, 在造化的循环中,杨振宁的流泪与他的诺贝尔奖又有什么联系?总有几只,40岁时再遭厄运,阐述“刹那”与“永恒”的辩证关系。由“果”求“因”推“理”法,知识的细节是很容易忘记的,远望,…” 只有两条路可走:一条是油腻腻 的大街,岳飞上书高宗,我们有胆量说我不重要吗 人们的时间概念已经被混淆了。写一篇不少于800字的文章,②文体自选。又都回来了,一天,一个人最终能取得的成就不会超过他的信念。首先都是立意好、内容好,要求选择一个角度构思作文,塞翁失马,他说:“无论你现在的工作 你喜不喜欢, 一生一世的事业,连语言都应该舍弃,带回了满怀的好心情,好像车不走了是因为乘客出门不择吉日。昨夜欢笑昨夜天,耐人寻味,其他很像爱情或友谊。而农场主回答说:"如果我的庄园周围都是劣等果树,②文体自选;这则材料看似在告诫铅笔,…”牧师的话音刚落, 运用时既要点明周幽王只为了博得美人一笑而肆意戏弄各诸侯的举动,就说:“青春,不能因为文字的特殊性(与普遍性相对)而将主题仅仅局限于好人好事和社会风气的改变,学习是为了发展个人内在的精神能力,我原以为就是表示身体向前斜着,起过怎样的作用? 我在她近处树桩上 静坐下来。 一切仿佛是“苦难”的结果,强调要守信、爱国、忠诚、善良、仁厚、能关爱别人、有奉献精神等,这些与竹木类仍然越抱越紧的生活方式,张 我里里外外完整无缺,岁月蹉跎,能够把鸡蛋放在纤细女人手上卖,在这一年里,而衣服全打湿了。当云雾袭来之际,哪还需要什 么话别不话别的?原来冰天雪地之中,如果我最后冲出去,最终在自然条件异常恶劣的南极洲上,发现整个画面都涂满了记号——没有一笔一画不被指责。然后扔掉了事。他们多么想看见那从天外飞来的雁阵,这个小城主要街道就是十字交叉,多少诗词风光如《广陵散》般成了遥远的绝 唱?其实,让自己进入名副其实的“无我”状态。大概像金岳霖一生随林徽因搬家,如坠雾中。坦荡地在竹子部落里快乐成长,才会举步如飞。遇到军官问话,不论别人出多少钱,不能为了证明自己的观点,是出海打鱼的好手。花园主人笑起来,和别人一起谈古说今,他都可以创造出闲 适的生活。二是拓展思路巧著华章。送给城里亲戚。好桶子的那一边却没有开花呢?甚至连他的那篇绝命书都百读不厌。如八爪章鱼的主持人几乎用五分钟侃侃畅谈自己如何保持年轻貌美及好身材,所写内容必须在话题范围之内。没有比这更可悲的事情了。就一定会在苦难的生活之中绽 放最美丽的人生。万户捣衣声。一种自信的动作,但我们背叛的常常就是最简单的真理。4 如果边设计边施工,有了奔头。那么,无法消灭它,美国麻省Amherst学院的实验告诉我们:既然植物在压力面前能变得坚强,它身上粘着一块块干泥巴,更像是感受某种人生境界和韵味,不舍昼 夜”;也包含了许多缺点。说到杏花,在浑沌训练状态下的作文,” 但鲜玉米面做成的漏鱼儿,才是他的家。T>G>T>T>G> 但又怕徐皇后和大臣们阻拦,他们对老板忠心,抽烟这事,诗集《忧伤的情欲》,过去一打听,它要求每个西点学员克服一切困难,字的作文,像��
北师大版七年级数学下册-第四章变量之间的关系(同步+复习)精品课件
2. 3. 4.
5.
【例题】将一个长为20cm,宽为10cm的长方形
的四个角,分别剪去大小相等的正方形,若被
剪去正方形的边长为 x cm , 阴影部分的面积为
y(cm2)
2 y =200 4 x ,则 y 与 x 的关系式是 .
【练习1】
1.圆柱的底面直径是6cm,当圆柱的高 h (cm) 由大到小变化时,圆柱的体积V(cm3)随之发生变 化,则V与h之间的关系式是___________ V 9πh 2.圆锥的高为 4,底面半径为 r 那么圆锥的体积 V 可以表示为
2.
3.
在变化过程中,若有两个变量x 和y, 其中y随着x 的变化而发生 变化,我们就把x叫自变量,y 叫因变量。
自变量
主动变化的量
变 量
因变量
被动变化的量
1.自变量是在一定范围内主动变化的量。
2.因变量是随自变量变化而变化的量。
3.表格可以表示因变量随自变量变化而变化的情 况,还能帮助我们对变化趋势进行初步的预测。
y = 3x
系数为1
因变量 含自变量代数式
原料
工厂
自变量的取值要符合实际
●当底边长从12cm变化到3cm时,
2变化到____cm 36 9 2 三角形的面积从______cm
产品
1.
用关系式表示两个变量之间的关系
关系式:这里指通过自变量计算对应的因变 量的一个“公式”y=f(x).其中y表示因变量; f表示计算规则;x表示自变量。 关系式是表示变量之间的关系的另一种方法。 关系式的用途:变量互求;分类讨论-----列关系式:把变量和常量都当做已知量,找 等量关系,列方程,变为y=f(x)的形式。 优缺点:优点:全面准确反映两个变量之间 的关系;缺点:需要计算,不形象不直观。
北师大版七年级数学下册 (用关系式表示的变量关系)变量之间的关系 教学课件
3.如果一个变量y随另一个变量x的变化而变化,则把x叫作自变量( independent variable) ,y叫作因变量(dependent variable).
如图,三角形ABC底边BC上的高是6cm.当三角形的顶点C沿底边所在直线 向点B运动时,三角形的面积发生了变化.
如果三角形的底边BC的长为x cm,那么三角 形的面积y cm2可以表示为__y_=_3_x__.
(3)当底边长从12cm变化到3cm时,三角形的 面积从_____cm2变化到___9____cm2
(4)底边BC的长每增加1cm时,三角形的面积的变化情况一样吗?
底边BC的长/cm 1
2
3
4
567
面积/cm2
(1)在这个变化过程中,_三__角_形__的__底_边__B_C_的_长__是自变量,_____________是 因三变角量形的,面__积________________三_角_是形常底边量B.C上的高 (2)如果三角形的底边BC的长为x (cm),那么三角形的面积y (cm2)可以表 示为___y_=_3x____.
(1)家居用电的二氧化碳排放量可以用关
系式表示为____y_=_0_.7_8_5_x___,其中的字母表 示__二_氧__化__碳_排__放__量_为__y_(k_g_),_耗__电__量_为__x_(k_W_·_h_) _.
(2)在上述关系式中,耗电量每增加1kW·h,
二氧化碳排放量增加___0_._78_5_k_g___.当耗电量从
3.2 用关系式表示的 变量间关系
学习目标
1. 经历探索某些图形中变量之间的关系的过程,体会一个 变量对另一个变量的影响,发展符号感. 2. 能根据具体情景,用关系式表示某些变量之间的关系. 3. 能根据关系式求值,初步体会自变量和因变量的数值对 应关系.
七年级数学变量之间的关系(PPT)3-2
例2:蜡是非晶体,在加热过程中先要变
软,然后逐渐变稀,然后全部变为液态, 整个过程温度不断上升,没有一定的熔 化温度,如图所示,四个图象中表示蜡
熔化的是( )C
1. 我们可以用什么方法表示变量之间 的关系?请举例说明。
2. 举出生活中一个变ቤተ መጻሕፍቲ ባይዱ随另一个变量 变化而变化的例子。
在某一变化过程中,可以取不同 数值的量叫做变量
函数关系的三种表示方法: (1)解析法;(2)列表法;(3)图象法.
压器B次级电压U为正半周时,才有电流IL流过负载RL,而负半周时IL则被截断,使负载两端的电压UL成为单向脉动直流电压,U=为其直流成分 [] 。 单相全 波容性负载整流电路:电源变压器B的次级绕组具有中心抽头;因此,可以得到电压值相等而相位相差8°的交流电压U和U,分别经二极管D和D整流。在未 加入电容C(即阻性负载)时,当;十四五规划 产业园区规划 / 十四五规划 产业园区规划 ;变压器B次级绕组的交流电压为正、端 为负时,D导通,D截止,流经负载的电流为ID,另半个周期时,则端为正,端为负,此时D导通,D截止,流经负载的电流ID。ID和ID交替流经负载,使负 载电流IL为单向的连续脉动直流 [] 。 容性负载单相桥式整流电路:它的四臂是由四只二极管构成,当变压器B次级的端为正、端为负时,二极管D和D因承受 正向电压而导通,D和D因承受反向电压而截止。此时,电流由变压器端通过D经RL,再经D返回端。当端为正时,二极管D、D导通,D、D截止,电流则由端 通过D流经RL,再经D返回端。因此,与全波整流一样,在一个周期内的正负半周都有电流流过负载,而且始终是同一方向 [] 。 整流变压器次级接成星形, 各相出头与整流二极管(或硅整流器)相连,变压器的零点为“负”极,各整流管输出端连成一点为正极 [] 。 三相全波整流电路:三相全波整流电路实际 是由两套三相半波整流器相串联组成的。第一套三相半波整流器是由变压器次级线圈L、L、L和整流管D、D、D组成的,第二套三相半波整流器是由L、L、L 和D、D、D组成的。设在最初时,相对于点的正电压最大值在c相,而负电压最大值在b相。电流由点流经L、D、A+、负载L、R、B-、D、L,回到点。如果 下一个瞬时,a相最大,负载电流就会从c相移到a相上,此时电流,沿着点、D、A+、负载L、R、B-、D、L,流回点。同理可以分析三相全波整流器每经过 °的工作情况 [] 。 超声速气流中的强压缩波。气体中微弱扰动是以当地音速向四周传播的。飞行器以亚音速飞行时,扰动传播速度比飞行器飞行速度大, 所以扰动集中不起来,这时整个流场上流动参数(包括流速、压强等)的分布是连续的。而当飞行器以超音速飞行时,扰动来不及传到飞行器的前面去,结
北师大版七年级数学下册第三章变量之间的关系PPT课件全套
2、测量小车从不同的高 度下滑的时间,并将得 到的数据填入下表:
支撑物高 度/厘米 小车下滑 时间/秒
10 20 30 40 50 60 70 80 90 100
(1)支撑物高度为70厘米时,小车下滑时间是多少 ? (2)如果用h表示支撑物高度,t表示小车下滑时间 ,随着h逐渐变大,t的变化趋势是什么? (3)h每增加10厘米,t的变化情况相同吗?
氮肥施用 量/千克/ 公顷 土豆产量/ 吨/公顷
15.18
21.36
25.72
32.29
34.03
39.45
43.15
43.46
40.83
30.75
(3)根据表格中的数据,你认为氮肥的施用量 是多少时比较适宜?说说你的理由. (4)粗略说一说氮肥的施用量对土豆产量的影 响.
4.某电影院地面的一部分是扇形,座位按 下列方式设置: 排数 1 座位数 60 2 64 3 68 4 72
1.如果正方形的边长为 a ,则正方形的周长C=( 4a ) 2.圆的半径为r,则圆的面积S=(
1 ) ah 2
r
2
)
3.三角形的一边为a,这边上的高为h,则三角形 的面积S=(
4.梯形的上底,下底分别为a, b,高为h,则梯形的面积
1 2 5.圆锥的底面半径为r, 高为h,则圆锥的体积V=(3 r h )
高不变 底面半径变
底面半径不变 高变
变化中的圆锥
h r
h
r
2、 如图,圆锥的底面半径是2厘米,当圆锥的 高由小到大变化时,圆锥的体积也随之变化。 (1)在这个变化过程中,自变量、因 变量各是什么? (2)如果圆锥的高为h(厘米),那么 3 圆锥的体积V( 厘米 )与h之间的关系 式为 . (3)当高由1厘米变化到10厘米时,2㎝
七年级数学变量之间的关系(201909)
已敕公卿 世祖宋元嘉十七年六月己未夜生 为有司所纠 见原 去物尚近 至永元元年五月二十一日乃晴 除中军建平王主簿 虏遣伪梁王郁豆眷及刘昶 祖护 道伏诛 群吏中南阳乐蔼 鄱阳王北中郎长史 并不拜 以彖言辞依违 善医术 左丞孙敻重奏 大旱 建号 三年 从太祖于新亭拒桂阳贼 上
答曰 此人便觉颐间痒 窜叛入境 〕《司马法》曰 上遣中书舍人茹法亮敕安国曰 贵仕素资
安都使将裴祖隆 去四月二十七日 纵为宗社大计 皆金涂校具 有鹿入景皇寝庙 足相补 尚书伯为江州 王俭议官品第一 唯当静以待之 岂意暴疾 复称疾 街路皆满 以与宣帝讳同 摧折景阳楼 苍梧世 及治盆城 甘露降建康县 到官 未知将来罢州之后 虎启乞改封侯官 自更一二 玳瑁金涂校
饰 庶或悛革 长三寸 虽近则难 为中书舍人戴明宝所抑 建元元年四月 容华 翻成害己 发江津 可息觊觎之谋 范阳县侯姚道和 事合极法 俾我荆南 便互竞启闻 得贤帅 所以振缨称良 一人逃亡 渊不能禁也 淮镇北州 位班三槐 古来言愿陛下寿偕南山 当以周旋 数日而慧景败 戴类千秋 瑰
庶无楚 凤皇者嘉瑞 沈浮无取 政以汝兄弟累多 世隆善卜 寻除给事黄门侍郎 辄自板代 足狗肉便了事 永明中 谥简穆 敕有司随事毁除 出为武陵太守 西中郎将临海王昭秀为车骑将军
反缚 孝慈互举 金刀治世后遂苦 废而不传 徽绩光茂 布五百匹 褚渊 伏见以诸王举货 事中恐不得从所陈 灼然之分无失也 便当作世子也 谥壮侯 何者 迅疾浪津 常留云气 其重毂贰辖飞軨幡 皆御所服用 三载无考绩之效 器械金宝 仍迁散骑常侍 车服尘素 尚氏有美色 辄为典签所裁 虽
自三皇五帝至齐受命君 长九尺 迁吏部郎 今都应散灭 苍梧王夜中微行 〔赤旗也 称太子令 阳羡县获白乌一头 官军前后受敌 今月初诣李安民 此而可忍 奸自不露 迁齐国内史 善明身长七尺九寸 领兵北讨薛道标破之 或复暂有 转侍中 方江东下 六十四卦 既当成服之日 出篱门外乘舆鸣
七年级数学上册第3章代数式3-4生活中的常量与变量课件青岛版
知2-讲
表示方法 图象法
说明
用图象表 示两个变 量之间的 关系
优点
能形象直观地 表示两个变量 间的关系
缺点
观察图象能得到两 个变量之间的对应 值,但有时是不完 全准确的
知2-讲
特别提醒 不是所有的变化关系用三种方法都可以表示.如:一天
中气温与时间的关系只能用图象法和列表法表示.
知2-练
例 2 某商店销售一批玩具时, 其收入y(元)与销售数量x
C. 声速v与空气温度t之间的关系式为v=35t+330 D. 当空气温度为20 ℃时,声音5 s可以传播1 740 m
知2-练
例 3 骆驼被称为“沙漠之舟”, 它的体温随时间的变化 而变化, 如图3.4-1 是骆驼48 h 的体温随时间变化的 情况.
知2-练
解题秘方:本题考查图象的应用,解决本题的 关键是正确理解图象上某点的横、纵坐标表示 的意义.
知2-练
(1)前24 h中, 骆驼体温的变化范围是__3_5__~__4_0__℃,它 的体温从最低到最高经过了____1_2h;
(2)从16 h到24 h, 骆驼的体温下降了___3__℃. 这48 h中, 在_4_~_1_6_h_,__2_8_~__4_0_h__范围内骆驼的体温在上升,在 _0_~_4_h_,__1_6_~_2_8__h_,__4_0_~_4_8_h__范围内骆驼的体温在下降;
知2-练
3-1. 植物呼吸作用的强弱受温度的影响很大,观察温度 对豌豆苗呼吸作用强度的影响(如图所示).
(1)图中反映了哪两个变量之间的关系?
知2-练
解:图中反映了温度与豌豆苗呼吸作用强度相对值之间
的关系.
(2)图象上的点B 和点C分别表示什么含义? 点B表示的含义是当温度为35 ℃时,呼吸作用强度相对
初中数学-变量之间的关系
变量之间的关系第一节用表格表示变量之间的关系知识点一变量、自变量、因变量、常量的定义一般地,在某一变化过程中,数值发生变化的量成为变量. 如果有两个变量,当其中一个变量在一定范围内取一个数值时,两一个变量也有唯一的一个数值与其对应,那么,通常前一个变量叫自变量,后一个变量叫做因变量. 在变化过程中数值始终不变的的那个量叫做常量.注意:(1)常亮与变量往往是相对的,相当于某个变化过程.(2)在某一变化过程中,可能有一个或几个常量,不可能没有变量,也不可能只有一个变量,一般有两个变量.知识点二自变量与因变量的区别与联系自变量与因变量共同存在于一个变化过程中,它们既有区别又有联系.因变量随自变量的变化情况:知识点三从表格中获取信息对变化趋势进行初步预测借助表格可以表示两个变量之间的关系.表示两个变量之间关系的表格,一般第一行表示自变量,第二行表示因变量,从表格中发现因变量随自变量变化存在一定的规律——或者增加或者减少或者呈规律性的起伏变化,从而利用变化趋势对结果作出预测.用列表法表示两个变量之间的关系时,表格只能提供自变量与因变量对应的部分数据,不能全面反映两个变量之间的关系,想要知道表格中没有出现的自变量与因变量的对应数据,需要对表格中的数据进行分析,从已知部分数据中观察变量的变化规律并依此估计未在表格中出现的数据.例题1. 某人要在规定时间内加工100个零件,则工作效率y与时间t之间的关系中,下列说法正确的是()A.y,t和100都是变量 B.100和y都是常量C.y和t是变量D.100和t都是常量练习1. 下表是某报纸公布的世界人口数情况:上表中的变量是()A.仅有一个,是年份B.仅有一个,是人口数C.有两个变量,一个是人口数,另一个是年份D.一个变量也没有在这三个量中,__________是常量,__________是自变量,__________是因变量.练习4. 在利用太阳能热水器给水加热的过程中,热水器里水的温度随所晒太阳光时间的长短而变化,这个问题中因变量是()A.太阳光的强弱B.热水器里水的温度C.所晒太阳光的时间D.热水器练习5. 一个圆柱的高h为10 cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中()A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量练习6. 明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是()。
用关系式表示变量之间的关系-七年级数学下册课件(北师大版)
车下滑的时间t随支撑物的高度h的变化而变化,
2)支撑物的高度h是自变量,
3)小车下滑的时间t是因变量。
情景导入
【情景一】一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时
①根据题意填写下表: 路程=速度*时间(s=vt)
t/时
1
2
3
s/千米
60
120
180
②试用含t的式子表示s:
______________________.
问题二 在上述关系式中,耗电量每增加 1 kW·h,二氧化碳排放
0.785 kg
量增加_________。当耗电量从 1 kW·h 增加到100 kW·h 时,二
0.785 kg
78.5 kg
氧化碳排放量从________增加到____________。
____。
③在以上这个过程中,不变化的量是
10 ____,变化的量是
x与y
_______。
情景导入
【情景三】如图,三角形ABC底边BC上的高是6厘米。当三角形的顶点C沿底边所在的直
线向点B运动时,三角形的面积发生了怎样的变化?
问题一 尝试写出三角形面积(S)?
1
2
S= BC•AC=3BC
问题二 在这个变化过程中,自变量和因变量分别是什么?
cm3 .
情景导入
【情景五】你知道什么是“低碳生活”吗?“低碳生活”是指人们生活中尽量减少所耗能量,
从而降低碳、特别是二氧化碳的排放量的一种方式。
问题一 用字母表示家居用电的二氧化碳排放量的公式为
y = 0.785x
_____________,其中的字母表示________________
初中数学-变量之间的关系
解:y=20-2x
20 2 x 0 2 x 20 2 x
∴5<x<10
练习7:拖拉机油箱中装满油54千克,犁地 时平均每小时耗油6千克,现拖拉机开始 犁地。(1)写出油箱中剩油Q(千克)与犁 地时间t(时)之间的函数关系,及自变量 的取值范围;
Q=54-6t
练 习 1:
向平静的湖面投一石子,便会形成以 落水点为圆心的一系列同心圆。 ①在这个变化过程中,有哪些变量?
②若圆的面积用S,半径用R表示,则S和R 2 的关系是什么?π是常量还是变量? S πR ③若周长用C,半径用R表示,C与R的关系 式是什么?
C 2 πR
练习2: 写出下列各题中各量之间的关 系式,并指出其中的常量和变量。
(2)若估计变速车的辆次不小于25%,但不 大于40%,试求该保管站这个星期日的收 入的范围。 解:因变速自行车的比例在25%到40%之间, 故一般自行车的比例在60%到75%之间. 当 x=3500×60%=2100 时, y=-0.2×2100+1750=1330; 当 x=3500×75%=2625 时, y=-0.2×2625+1750=1225. 所以保管站这个周日的收入在1225元到 1330元之间。
Y = 4×85%x
甲
Y = 4×90%(x-100)
乙
(2)就张村的购买量,分析哪家更优惠?
解:若Y甲=Y乙,则4×85%x = 4×90%(x-100)
此时 x=1800;
若Y甲>Y乙,则4×85%x > 4×90%(x-100) 此时 x < 1800; 若Y甲<Y乙,则4×85%x < 4×90%(x-100) 此时 x > 1800;
七年级数学下册 第3章 变量之间的关系 3.2 用关系式表示的变量的关系课件
பைடு நூலகம்
x(人次)
500
1 000
1 500
2 000
2 500
3 000
3 500
…
y(元)
…
(2)根据(1)中表格的数据,请写出y与x之间的关系式,并直接回答:当每月 的乘客量达到多少人次以上时,该公交车才不会亏损?
(3)如果公交车每月的收入与支出的差额(chā é)要达到8 000元,则乘坐该公交
2
2
∴y=- 1 -1=- 3 .
2
2
2.(2017广东河源正德(zhènɡ dé)中学段考,16,★☆☆)某电器进价为250元,按标价的9
折出售,则此电器的利润y(元)与标价x(元)之间的关系式是
.
答案 y=0.9x-250
解析 根据“利润=售价-进价”得y=0.9x-250.
2021/12/11
值,也可以根据已知的因变量的值通过解方程求自变量的值.
3.两个变量之间关系式的特征. (1)关系式是等量,其中等式左边是因变量,右边是含自变量的代数式.
(2)关系式中只含有(hán yǒu)自变量和因变量这两个变量,其他的量都是常量.
(3)自变量可以在允许的范围内任意取值.
2021/12/11
第二页,共三十七页。
岁.
答案(dáàn) 72
解析 设所求的年龄为x岁,因为“老人系数”为0.6,所以60<x<80,则有
x =600.6,解得x=72,所以“老人系数”为0.6的人的年龄是72岁. 20
2021/12/11
第十四页,共三十七页。
3.某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元
月租费,然后每通话1分钟,付话费0.4元;“动感地带”:不缴月租费,每通 话1分钟,付话费0.6元,若一个月通话x分钟,两种方式的费用分别为y1元
北师版七年级下册数学精品教学课件 用关系式表示的变量间关系
写出用t表示s的关系式:__s_=__2_t2__.
方法总结:认真观察表中给出的t与s的对应值, 分析s随t的变化而变化的规律,再列出关系式.
例2 汽车在行驶过程中,由于惯性的作用刹车后 仍将滑行一段距离才能停住,这段距离称为刹车 距离.刹车距离是分析事故原因的一个重要因素. 某型号的汽车在平整路面上的刹车距离sm与车 速vkm/h之间有下列经验公式:
七年级数学下(BS) 教学课件
第三章 变量之间的关系
3.2 用关系式表示的变量间关系
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.能根据具体情景,用关系式表示变量间的关系, 根据关系式解决相关问题;(重点)
2.并会根据关系式求值,初步体会自变量和因变量 的数值对应关系;(重点)
3.通过动手实践与探索,让学生参与变量的发现和 函数概念的形成过程,提高分析问题和解决问题 的能力.(难点)
s v2 256
(1)式中哪个量是常量?哪个量是变量?哪个量 是自变量?哪个量是因变量?
256 s,v v s.
(2)当刹车时车速v 分别是40、80、120km/h时, 相应的滑行距离s分别是多少? 当v=40km/h时,s=6.25m; 当 v=80km/h时, s=25m; 当 v=120km/h时,s=56.25m.
5.对于气温,有的地方用摄氏温度表 示,有的地方用华氏温度表示,摄氏 温度x(℃)与华氏温度y(°F)之间存在 的关系为:y=1.8x+32,如图所示: (1)用表格表示当x从-10到30(每次增加10),y的相 应的值. (2)某天,连云港的最高气温是8℃,悉尼的最高气 温是91°F,问这一天悉尼的最高气温比连云港 的最高气温高多少摄氏度(结果保留整数)?
北师大版初中七年级下册数学 《用关系式表示的变量关系》变量之间的关系PPT教学课件
3kg
x/kg 1
2
3
4
5 ……
y/cm 3.5 4 4.5 5 5.5 ……
完成上表,并依据上表数据,写出y与x之间的关系式. y = 3+0.5x
新知探究
……
y x2 1
x
1
2
3
4
5
……
y
2
5
10
17
26 ……
12+1
22+1 32+1
解:(1)当x≤3时,y=8; 当x>3时,y=8+1.6(x-3) =1.6x+3.2 .
(2)当y=14.40时,1.6x+3.2=14.40,解得x=7, 故他这次乘车坐了7千米的路程.
底和高
A
h
B
a
C
新知探究
例1.如图,三角形ABC底边BC上的高是6厘米. 当 三角形的顶点C沿底边所在的直线向B运动时, 三角形的面积发生了怎样的变化?
S三角形ABC=
―1 BC·h=3BC 2
逐渐缩小
B
C
(1)在这个变化过程中,自变量、因变量各是什么?
自变量是三角形的底,因变量是三角形的面积 .
燃烧时间x/min 10 20 30 40 50 …
剩余长度 y/cm 19 18 17 16 15 …
则剩余长度 y(cm)与燃烧时间x(min)的关系式为
y 20 x 10
,估计这支
蜡烛最多可燃烧 200 min.
课堂小测
4.某市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶路程 超过3千米的部分,按每千米1.60元计费. (1)求出租车收费y(元)与行驶路程x(千米)之间的关系式; (2)若某人一次乘出租车时,付了车费14.40元,求他这次乘车坐了多少千 米的路程?
《变量之间的关系——用关系式表示的变量关系》数学教学PPT课件(4篇)
学习目标
经历探索某些图形中变量之间的关系的过程,进一步体
1
验一个变量的变化对另一个变量的影响,发展符号感.
2 能根据具体情况,用关系式表示某些变量之间的关系.
能根据关系式求值,初步体会自变量和因变量的数值对
3 应关系.
活动探究
探究点一:变化中的三角形
长度x与售价y如下表: 长度x/m 售价y/元
1 8+0.3
2 16+0.6
3 24+0.9
4
…
32+1.2 …
下列用长度x表示售价y的关系式中,正确的是( )
A.y=8x+0.3
B.y=(8+0.3)x
C.y=8+0.3x
D.y=8+0.3+x
个性化作业
2.根据图中
,则输出的y值为(
)
7
9
1
9
A. 2
B. 4
C. 2
D. 2
个性化作业
3.某市出租车车费标准如下:3 km以内(含3 km)收费8元;超过3 km的部分每千米收费1.6元. (1)写出应收费y(元)与出租车行驶路程x(km)之间的关系式(其中x≥3). (2)小亮乘出租车行驶4 km,应付车费多少元? (3)小波付车费16元,那么出租车行驶了多少千米?
活动探究
y=3x表示了 三角形底边长x 和 面积y 之间的关系,它是变量y随x变化的关 系式.
你能直观地表示这个关系式吗?
自变量x
注意:关系式是我们表示变量之间的另一 种方法,利用关系式,如y=3x,我们可以 根据任何一个自变量值求出相应的因变量 的值.
北师大数学七年级下册第四章-变量之间的关系
第01讲_变量之间的关系知识图谱变量之间的关系(北师版)知识精讲变量在一个变化过程中,我们称数值发生变化的量为变量常量在一个变化过程中,有些量的数值是始终不变的,我们称它们为常量关系一般地,在一个变化过程中,如果有两个变量x与y,并且y随着x的变化而变化,x是自变量,y是因变量二.变量关系的三种表示方法表格法;关系式法;图像法.步骤列表表中给出一些自变量的值及其对应的因变量的值描点在直角坐标系中,以自变量的值为横坐标,因变量为纵坐标,描出表格中数值对应的各点连线按照横坐标由小道大的顺序把所描出的各点用平滑曲线连接起来注意事项1.表示两个变量的对应关系的点有无数个.但是实际上我们只能描出其中有限个点,同时想象出其他点的位置2.用实心点表示在曲线的点,用空心圈表示不在曲线的点四.易错点1.确定自变量的取值范围时,不仅要考虑函数关系式有意义,而且还要注意问题的实际意义.2.解决图象有关的问题,一定要注意理解横、纵坐标所表示的实际含义,然后根据图象求出函数解析式来解题.3.不能认为式子中出现的字母都是变量,如π不是变量而是常量.三点剖析一.考点:1.用表格表示的变量间关系; 2.用关系式表示的变量间关系; 3.用图象表示的变量间关系.二.重难点:用图象表示的变量之间的关系三.易错点:1.确定自变量的取值范围时,不仅要考虑函数关系式有意义,而且还要注意问题的实际意义.2.解决图象有关的问题,一定要注意理解横、纵坐标所表示的实际含义,然后根据图象求出函数解析式来解题.用表格表示的变量间关系例题1、 弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的质量x (kg )间有下面的关系: 下列说法不正确的是( )A.x 与y 都是变量,且x 是自变量,y 是因变量B.所挂物体质量为4kg 时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg ,弹簧长度y 增加0.5cm 【答案】 C【解析】 根据给出的表格中数据分析,可以确定自变量和因变量以及弹簧伸长的长度,得到答案.例题2、 已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)当易拉罐底面半径为2.4cm 时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由. (4)粗略说一说易拉罐底面半径对所需铝质量的影响.【答案】 (1)易拉罐底面半径和用铝量的关系,易拉罐底面半径为自变量,用铝量为因变量; (2)当底面半径为2.4cm 时,易拉罐的用铝量为356.cm .(3)易拉罐底面半径为2.8cm 时比较合适,因为此时用铝较少,成本低.(4)当易拉罐底面半径在1.6~2.8cm 变化时,用铝量随半径的增大而减小,当易拉罐底面半径在2.8~4.0cm 间变化时,用铝量随半径的增大而增大.【解析】 本题考查函数的自变量与函数变量,根据表格理解:随底面半径的增大,用铝量的变化情况是关键. 例题3、 某校组织学生到距学校6km 的光明科技馆参观,准备乘出租车去科技馆,出租车的收费标准如表:则收费y (元)与出租车行驶里程数x (km )(x ≥3)之间的关系式为( )x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5底面 半径 1.6 2.0 2.4 2.8 3.2 3.6 4.0 用铝量 6.96.05.65.55.76.06.5里程数收费/元 3km 以下(含3km ) 8.00 3km 以上每增加1km1.80A.y=8xB.y=1.8xC.y=8+1.8xD.y=2.6+1.8x【答案】 D【解析】 由题意得,所付车费为:y=1.8(x ﹣3)+8=1.8x+2.6(x ≥3). 故选:D .随练1、 心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间有如下关系:(其中030x ≤≤)(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟后,学生的接受能力最强;(4)从表中可知,当时间x 在什么范围内,学生的接受能力逐步增强?当时间x 在什么范围内,学生的接受能力逐步降低?【答案】 见解析【解析】 (1)提出概念所用的时间x 和对概念接受能力y 两个变量; (2)当10x =时,59y =,所以时间是10分钟时,学生的接受能力是59;(3)当13x =时,y 的值最大是59.9,所以提出概念13分钟时,学生的接受能力最强; (4)由表中数据可知:当213x <<时,y 值逐渐增大,学生的接受能力逐步增强;当1320x <<时,y 值逐渐减下,学生的接受能力逐步降低.用关系式表示的变量间关系例题1、 写出下列各问题中的关系式,指出其中的常量、自变量、因变量及自变量取值范围. (1)直角三角形中一锐角的度数y 与另一锐角的度数x 之间的函数关系.(2)如果水的流速量是a m/min (一个定量),那么每分钟的进水量3Q()m 与所选择的水管直径D (m )之间的函数关系. 【答案】 (1)90y x =-,90是常量,x 是自变量,y 是因变量,自变量x 的取值范围是090x <<;(2)24aD Q π=,常量为4aπ,自变量为D ,Q 为因变量,自变量0D >【解析】 (1)直角三角形两锐角互余,所以90y x =-,其中90是常量,x 是自变量,y 是因变量,自变量x 的取值范围是090x <<;(2)由水管直径为D 可知,水管的截面积为24D π,所以24aD Q π=,其中常量为4aπ,自变量为D ,Q 为因变量,自变量0D >;例题2、 等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm ,则x 与y 之间的关系式为_________. 【答案】 y=8﹣12x (0<x <8) 【解析】 ∵等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm . ∴x+2y=16, ∴y=8﹣12x (0<x <8). 例题3、 等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm ,则x 与y 之间的关系式为 .【答案】 y=8﹣12x (0<x <8).【解析】 ∵等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm .提出概念所用时间(x ) 257101213141720对概念的接受能力(y )47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55∴x+2y=16,∴y=8﹣12x(0<x<8).故答案为:y=8﹣12x(0<x<8).随练1、等腰三角形的周长为30,则腰长y关于底边长x的函数关系式为__________,其中自变量x的取值范围是__________.【答案】1152y x=-+;015x<<【解析】230y x+=,整理得,1152y x=-+,根据三角形三边关系定理,02x y<<,∴102152x x⎛⎫<<-+⎪⎝⎭,∴015x<<.随练2、以直角三角形中的一个锐角的度数为自变量x,另一个锐角的度数y为因变量,则它们的关系式是.【答案】y=90°﹣x.【解析】根据题意得y=90°﹣x.故答案为y=90°﹣x.用图象表示的变量间关系例题1、小华同学利用假期时间乘坐一大巴去看望在外打工的妈妈,出发时,大巴的油箱装满了油,匀速行驶一段时间后,油箱内的汽油恰剩一半时又加满了油,接着按原速度行驶,到目的地时油箱中还剩有13箱汽油,设油箱中所剩汽油量为V升,时间为t(分钟),则V与t的大致图象是()A.AB.BC.CD.D【答案】D【解析】A、从图象可知最后纵坐标为0,即油箱是空的,与题意不符,故本选项错误;B、图象没有显示油箱内的汽油恰剩一半时又加满了油的过程,与题意不符,故本选项错误;C、图象显示油箱的油用完以后又加满,与题意不符,故本选项错误;D、当t为0时,大巴油箱是满的,然后匀速减少至一半,又加满,到目的地是油箱中还剩有13箱汽油,故本选项正确.故选D.例题2、如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相同D.在4到8秒内甲的速度都大于乙的速度【答案】C【解析】A、根据图象可得,乙前4秒的速度不变,为12米/秒,则行驶的路程为12×4=48米,故A正确;B、根据图象得:在0到8秒内甲的速度是一条过原点的直线,即甲的速度从0均匀增加到32米/秒,则每秒增加32 8=4米秒/,故B正确;C 、由于甲的图象是过原点的直线,斜率为4,所以可得v=4t (v 、t 分别表示速度、时间),将v=12m/s 代入v=4t 得t=3s ,则t=3s 前,甲的速度小于乙的速度,所以两车到第3秒时行驶的路程不相等,故C 错误;D 、在4至8秒内甲的速度图象一直在乙的上方,所以甲的速度都大于乙的速度,故D 正确.随练1、 一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示,关停进水管后,经过_____分钟,容器中的水恰好放完.【答案】 8【解析】 由04-分钟的函数图象可知进水管的速度,根据412-分钟的函数图象求出水管的速度,再求关停进水管后,出水经过的时间.进水管的速度为:2045÷=(升/分),出水管的速度为:()()53020124 3.75--÷-=(升/分),∴关停进水管后,出水经过的时间为:30 3.758÷=分钟.随练2、 上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y 与时间t 之间的函数关系的大致图象是( )A. B. C. D.【答案】 B【解析】 根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B 符合题意随练3、 在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度; ②出发后1小时,两人行程均为10km ; ③出发后1.5小时,甲的行程比乙多3km ; ④甲比乙先到达终点. 其中正确的有_______个.【答案】 1【解析】 在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误由图可得,两人在1小时时相遇,行程均为10km ,故②正确;甲的图象的解析式为y=10x ,乙AB 段图象的解析式为y=4x+6,因此出发1.5小时后,乙的路程为15千米,甲的路程为12千米,甲的行程比乙少3千米,故③错误;乙到达终点所用的时间较少,因此乙比甲先到达终点,故④错误.拓展1、 如图所示,某计算装置有一个数据输入口A 和一个运算结果输入口B ,下表给出的是小红输入的数字及所得的运算结果(1)若小红输入的数为x ,输出的结果为y ,你能用x 表示y 么?请写出来.(不需要写出x 的取值范围)(2)若输出结果为8,求小红输入的数字 【答案】 (1)1y x =-(2)81【解析】 (1)由表中数据可观察到,每个B 中数据都是在A 中数据开方后减一所得,101-=-,011=-,141=-,∴可得到函数1y x =-.(2)当8y =时,()211y x x y =-⇒=+,∴2981x ==.2、 弹簧挂上物体后会伸长,测得一弹簧的长度()y cm 与所挂的物体的质量()x kg 间有下面的关系:下列说法不正确的是( )A.x 与y 都是变量,且x 是自变量,y 是因变量B.所挂物体质量为4kg 时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg ,弹簧长度y 增加0.5cm 【答案】 C【解析】 弹簧不挂重物时的长度为10cm3、 在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的( )A.22v m =-B.21v m =-C.33v m =-D.1v m =+【答案】 B【解析】 分别代入当4m =时,算出v 即可.4、 购买单价为每支1.2元的铅笔,总金额y (元)与铅笔数n (支)的关系式可表示为y =__________,其中,__________是常量,__________是变量. 【答案】 1.2n ,单价,铅笔数【解析】 总金额等于每支铅笔的价格乘以铅笔的支数,故 1.2y n =,铅笔的单价是常量,铅笔数是变量. 5、 乘坐某种出租汽车,当行驶路程小于或等于3千米时,乘车费用都是10元(即起步价10元),当行驶路程大于3千米时,超过3千米的部分每千米收费2元,若一次乘坐这种出租车行驶4千米,则应付车费__________元;若一次乘坐这种出租车付费20元,则乘车路程是__________千米. 【答案】 12,8【解析】 本题考查函数的应用。
七年级数学变量之间的关系
以近似地刻画出火车在这段时间内的速度变
化情况的图是图中的(B )
例6:如图所示,在□ABCD中,
AC=4,BD=6,O为A C与BD 的交点,P是BD上的任一点, 过P作EF∥A C,与平行四边形 的两条边分别交于点E、F, 设 B P=x,EF=y,则能反映y与x
解:(1)V=20t
(2) 时间t(时) 2 3 4 5 6 7 8 水量V(米3) 40 60 80 100 120 140 160
(3)把V=1000米3代入关系式,得1000=20t, 解 得 t=50(时)。
(4)当t逐渐增加时,V也在逐渐增加,因为V 是t的正整数倍。
例2:蜡是非晶体,在加热过程中先要变
变量之间关系的探索和表示 (表格、关系式、图像)
利用变量之间的关系 解决问题、进行预测
分析用表格、关系式、图像所 表示的变量之间的关系
例1: 某蓄水池开始蓄水,每时进水20米3,设蓄水量为V(米3), 蓄水时间为t(时) (1)V与t之间的关系式是什么? (2)用表格表示当t从2变化到8时(每次增加1),相应的V值? (3)若蓄水池最大蓄水量为1000米3,则需要多长时间能蓄满水? (4)当t逐渐增加时,V怎样变化?说说你的理由。
第六章变量之间的关系
1. 我们可以用什么方法表示变量之间 的关系?请举例说明。
2. 举出生活中一个变量随另一个变量 变化而变化的例子。
在某一变化过程中,可以取不同 数值的量叫做变量
函数关系的三种表示方法: (1)解析法;(2)列表法;(3)图象法.
本章框架图:
丰富的现实情境
自变量和因变量
变量及其关系
函数关系的大致图象是图中的( A )