2013辽宁高考数学文科试题及解析

合集下载

2013年普通高等学校招生全国统一考试(辽宁卷)数学试题 (文科) word解析版

2013年普通高等学校招生全国统一考试(辽宁卷)数学试题 (文科) word解析版

绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}1,2,3,4,|2,A B x x A B ==<=则(A ){}0 (B ){}0,1 (C ){}0,2 (D ){}0,1,2答案 B解析 B ={x ||x |<2}={x |-2<x <2},∴A ∩B ={0,1}.2.复数z =1i -1的模为( ) A.12 B.22C. 2 D .2 答案 B解析 z =1i -1=-1-i 2,∴|z |= ⎝⎛⎭⎫-122+⎝⎛⎭⎫-122=22.3.已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为( )A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35C.⎝⎛⎭⎫-35,45D.⎝⎛⎭⎫-45,35 答案 A解析 A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4),∴与A B →同方向的单位向量为A B →|A B →|=⎝⎛⎭⎫35,-45.4.下面是关于公差d >0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;p 4:数列{a n +3nd }是递增数列. 其中的真命题为( )A .p 1,p 2B .p 3,p 4C .p 2,p 3D .p 1,p 4答案 D解析 a n =a 1+(n -1)d ,d >0,∴a n -a n -1=d >0,命题p 1正确.na n =na 1+n (n -1)d ,∴na n -(n -1)a n -1=a 1+2(n -1)d 与0的大小和a 1的取值情况有关. 故数列{na n }不一定递增,命题p 2不正确.对于p 3:a n n =a 1n +n -1n d ,∴a n n -a n -1n -1=-a 1+d n (n -1), 当d -a 1>0,即d >a 1时,数列{a n n}递增, 但d >a 1不一定成立,则p 3不正确.对于p 4:设b n =a n +3nd ,则b n +1-b n =a n +1-a n +3d =4d >0.∴数列{a n +3nd }是递增数列,p 4正确.综上,正确的命题为p 1,p 4.5.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A .45B .50C .55D .60答案 B解析 由频率分布直方图,低于60分的频率为(0.01+0.005)×20=0.3.∴该班学生人数n =150.3=50.6.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则∠B 等于( )A.π6B.π3C.2π3D.5π6答案 A解析 由条件得a b sin B cos C +c b sin B cos A =12, 依正弦定理,得sin A cos C +sin C cos A =12, ∴sin(A +C )=12,从而sin B =12, 又a >b ,且B ∈(0,π),因此B =π6.7.已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+f ⎝⎛⎭⎫lg 12等于( ) A .-1 B .0 C .1 D .2答案 D解析 设g (x )=lg(1+9x 2-3x )=f (x )-1,g (-x )=lg(1+9x 2+3x )=lg 11+9x 2-3x=-g (x ). ∴g (x )是奇函数,∴f (lg 2)-1+f ⎝⎛⎭⎫lg 12-1=g (lg 2)+g ⎝⎛⎭⎫lg 12=0, 因此f (lg 2)+f ⎝⎛⎭⎫lg 12=2.8.执行如图所示的程序框图,若输入n =8,则输出S 等于( )A .49 B.67 C.89 D.1011答案 A解析 执行第一次循环后,S =13,i =4; 执行第二次循环后,S =25,i =6;执行第三次循环后,S =37,i =8;执行第四次循环后,S =49,i =10; 此时i =10>8,输出S =49.9.已知点O (0,0),A (0,b ),B (a ,a 3).若△OAB 为直角三角形,则必有( )A .b =a 3B .b =a 3+1aC .(b -a 3)⎝⎛⎭⎫b -a 3-1a =0D .|b -a 3|+⎪⎪⎪⎪b -a 3-1a =0 答案 C解析 易知A B →=O B →-O A →=(a ,a 3-b ),且b ≠0,a ≠0,若A 为直角,OA →·AB →=(0,b )·(a ,a 3-b )=b (a 3-b )=0,∴b -a 3=0,若B 为直角,O B →·A B →=(a ,a 3)·(a ,a 3-b )=0,∴a 2+a 3(a 3-b )=0,则b -a 3-1a=0, 故(b -a 3)·⎝⎛⎭⎫b -a 3-1a =0,选C.10.已知直三棱柱ABCA 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ) A.3 172 B .2 10 C.132D .3 10 答案 C解析 ∵AB ⊥AC ,且AA 1⊥底面ABC ,将直三棱柱补成内接于球的长方体,则长方体的对角线l =32+42+122=2R ,R =132.11.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为( ) A.35 B.57 C.45 D.67答案 B解析 在△ABF 中,由余弦定理得|AF |2=|AB |2+|BF |2-2|AB |·|BF |cos ∠ABF ,∴|AF |2=100+64-128=36,∴|AF |=6,从而|AB |2=|AF |2+|BF |2,则AF ⊥BF .∴c =|OF |=12|AB |=5, 利用椭圆的对称性,设F ′为右焦点,则|BF ′|=|AF |=6,∴2a =|BF |+|BF ′|=14,a =7.因此椭圆的离心率e =c a =57.12.已知函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8.设H 1(x )=max{f (x ),g (x )},H 2(x )=min{f (x ),g (x )}(max{p ,q }表示p ,q 中的较大值,min{p ,q }表示p ,q 中的较小值).记H 1(x )的最小值为A ,H 2(x )的最大值为B ,则A -B 等于( )A .a 2-2a -16B .a 2+2a -16C .-16D .16答案 C解析 f (x )=[x -(a +2)]2-4-4a ,g (x )=-[x -(a -2)]2+12-4a ,在同一坐标系内作f (x )与g (x )的图象(如图).依题意知,函数H 1(x )的图象(实线部分),函数H 2(x )的图象(虚线部分).∴H 1(x )的最小值A =f (a +2)=-4-4a ,H 2(x )的最大值B =g (a -2)=12-4a ,因此A -B =(-4-4a )-(12-4a )=-16.第Ⅱ卷二、填空题13.某几何体的三视图如图所示,则该几何体的体积是________.答案 16π-16解析 由三视图知,该几何体是由一个底面半径r =2的圆柱内挖去了一个底面边长为2的正四棱柱,又该几何体的高h =4,∴V =(π×22-22)×4=16π-16.14.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.答案 63解析 ∵a 1,a 3是方程x 2-5x +4=0的两根,且q >1,∴a 1=1,a 3=4,则公比q =2,因此S 6=1×(1-26)1-2=63.15.已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.答案 44解析 由双曲线C 的方程,知a =3,b =4,c =5,∴点A (5,0)是双曲线C 的右焦点,且|PQ |=|QA |+|P A |=4b =16,由双曲线定义,|PF |-|P A |=6,|QF |-|QA |=6.∴|PF |+|QF |=12+|P A |+|QA |=28,因此△PQF 的周长为|PF |+|QF |+|PQ |=28+16=44.16.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为________.答案 10解析 把5个班中参加该小组的人数从小到大排列,记为x 1,x 2,x 3,x 4,x 5,(x i ∈N ,且x 1,x 2,x 3,x 4,x 5各不相同),由题意(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2+(x 5-7)2=20.∵x 1,x 2,x 3,x 4,x 5∈N ,且各不相同. 若使x 5-7最大,只需(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2最小,显然(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2最小值为0+1+1+4=6.∴(x 5-7)2≤14,因此(x 5-7)2≤9,则x 5≤10,x 5∈N ,经验证x 5=10时,x 1=4,x 2=6,x 3=7,x 4=8满足,所以样本数据中的最大值为10.三、解答题17.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎡⎦⎤0,π2. (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.解 (1)由|a |2=(3sin x )2+(sin x )2=4sin 2 x ,|b |2=(cos x )2+(sin x )2=1,及|a |=|b |,得4sin 2 x =1.又x ∈⎣⎡⎦⎤0,π2,从而sin x =12,所以x =π6. (2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎫2x -π6+12, 当x =π3∈⎣⎡⎦⎤0,π2时,sin ⎝⎛⎭⎫2x -π6取最大值1. 所以f (x )的最大值为32.18. 如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点.(1)求证:BC ⊥平面P AC ;(2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC .证明 (1)由AB 是圆O 的直径,得AC ⊥BC ,由P A ⊥平面ABC ,BC ⊂平面ABC ,得P A ⊥BC .又P A ∩AC =A ,P A ⊂平面P AC ,AC ⊂平面P AC ,所以BC ⊥平面P AC .(2)连OG 并延长交AC 于M ,连接QM ,QO ,由G 为△AOC的重心,得M 为AC 中点.由Q 为P A 中点,得QM ∥PC ,又O 为AB 中点,得OM ∥BC .因为QM ∩MO =M ,QM ⊂平面QMO ,MO ⊂平面QMO ,BC ∩PC =C ,BC ⊂平面PBC ,PC ⊂平面PBC .所以平面QMO ∥平面PBC .因为QG ⊂平面QMO ,所以QG ∥平面PBC .19.现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.解 (1)将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用A 表示“都是甲类题”这一事件,则A 包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P(A)=615=25. (2)基本事件同(1),用B 表示“不是同一类题”这一事件,则B 包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P (B )=815.20. 如图,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当x 0=1-2时,切线MA 的斜率为-12. (1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ).解 (1)因为抛物线C 1:x 2=4y 上任意一点(x ,y )的切线斜率为y ′=x 2,且切线MA 的斜率为-12,所以A 点坐标为⎝⎛⎭⎫-1,14,故切线MA 的方程为y =-12(x +1)+14. 因为点M (1-2,y 0)在切线MA 及抛物线C 2上,于是y 0=-12(2-2)+14=-3-224,① y 0=-(1-2)22p =-3-222p.② 由①②得p =2.(2)设N (x ,y ),A ⎝⎛⎭⎫x 1,x 214,B (x 2,x 224),x 1≠x 2, 由N 为线段AB 中点知x =x 1+x 22,③ y =x 21+x 228.④ 切线MA 、MB 的方程为y =x 12(x -x 1)+x 214.⑤ y =x 22(x -x 2)+x 224.⑥ 由⑤⑥得MA ,MB 的交点M (x 0,y 0)的坐标为x 0=x 1+x 22,y 0=x 1x 24. 因为点M (x 0,y 0)在C 2上,即x 20=-4y 0,所以x 1x 2=-x 21+x 226.⑦ 由③④⑦得x 2=43y ,x ≠0. 当x 1=x 2时,A ,B 重合于原点O ,AB 中点N 为O ,坐标满足x 2=43y . 因此AB 中点N 的轨迹方程为x 2=43y . 21.(1)证明:当x ∈[0,1]时,22x ≤sin x≤x ; (2)若不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]恒成立,求实数a 的取值范围.(1)证明 记F (x )=sin x -22x , 则F ′(x )=cos x -22. 当x ∈⎝⎛⎭⎫0,π4时,F ′(x )>0,F (x )在⎣⎡⎦⎤0,π4上是增函数; 当x ∈⎝⎛⎭⎫π4,1时,F ′(x )<0,F (x )在⎣⎡⎦⎤π4,1上是减函数. 又F (0)=0,F (1)>0,所以当x ∈[0,1]时,F (x )≥0,即sin x ≥22x . 记H (x )=sin x -x ,则当x ∈(0,1)时,H ′(x )=cos x -1<0,所以,H (x )在[0,1]上是减函数,则H (x )≤H (0)=0,即sin x ≤x . 综上,22x ≤sin x ≤x ,x ∈[0,1]. (2)解 方法一 因为当x ∈[0,1]时, ax +x 2+x 32+2(x +2)cos x -4=(a +2)x +x 2+x 32-4(x +2)sin 2x 2≤(a +2)x +x 2+x 32-4(x +2)⎝⎛⎭⎫24x 2=(a +2)x . 所以,当a ≤-2时, 不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]恒成立. 下面证明,当a >-2时,不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]不恒成立. 因为当x ∈[0,1]时,ax +x 2+x 32+2(x +2)cos x -4 =(a +2)x +x 2+x 32-4(x +2)sin 2x 2 ≥(a +2)x +x 2+x 32-4(x +2)⎝⎛⎭⎫x 22 =(a +2)x -x 2-x 32≥(a +2)x -32x 2=-32x ⎣⎡⎦⎤x -23(a +2). 所以存在x 0∈(0,1)⎝⎛⎭⎫例如x 0取a +23和12中的较小值满足 ax 0+x 20+x 302+2(x 0+2)cos x 0-4>0. 即当a >-2时,不等式ax +x 2+x 32+2(x +2)cos x -4≤4对x ∈[0,1]不恒成立. 综上,实数a 的取值范围是(-∞,-2].方法二 记f (x )=ax +x 2+x 32+2(x +2)cos x -4,则 f ′(x )=a +2x +3x 22+2cos x -2(x +2)sin x . 记G (x )=f ′(x ),则G ′(x )=2+3x -4sin x -2(x +2)cos x .当x ∈(0,1)时,cos x >12,因此 G ′(x )<2+3x -4×22x -(x +2)=(2-22)x <0.于是F ′(x )在[0,1]上是减函数,因此,当x ∈(0,1)时,f ′(x )<f ′(0)=a +2.故当a ≤-2时,f ′(x )<0,从而f (x )在[0,1]上是减函数,所以f (x )≤f (0)=0. 即当a ≤-2时,不等式ax +x 2+x 32+2(x +2)cos x ≤4,对x ∈[0,1]恒成立. 下面证明:当a >-2时,不等式ax +x 2+x 32+ 2(x +2)cos x ≤4,对x ∈[0,1]不恒成立.由于f ′(x )在[0,1]上是减函数,且f ′(0)=a +2>0,f ′(1)=a +72+2cos 1-6sin 1. 当a ≥6sin 1-2cos 1-72时,f ′(1)≥0,所以当x ∈(0,1)时,f ′(x )>0. 因此f (x )在[0,1]上是增函数,故f (1)>f (0)=0;当-2<a <6sin 1-2cos 1-72时,f ′(1)<0. 又f ′(0)>0.故存在x 0∈(0,1),使f ′(x 0)=0,则当0<x <x 0时,f ′(x )>f ′(x 0)=0,所以f (x )在[0,x 0]上是增函数,所以当x ∈(0,x 0)时,f (x )>f (0)=0. 所以,当a >-2时,不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]不恒成立. 综上,实数a 的取值范围是(-∞,-2].22. 选修4-1:几何证明选讲如图,AB 为⊙O 的直径,直线CD 与⊙O 相切于E ,AD 垂直CD 于D ,BC 垂直CD 于C ,EF 垂直AB 于F ,连接AE ,BE .证明:(1)∠FEB =∠CEB ;(2)EF 2=AD ·BC .证明 (1)由直线CD 与⊙O 相切,得∠CEB =∠EAB .由AB 为⊙O 的直径,得AE ⊥EB ,从而∠EAB +∠EBF =π2; 又EF ⊥AB ,得∠FEB +∠EBF =π2, 从而∠FEB =∠EAB .故∠FEB =∠CEB .(2)由BC ⊥CE ,EF ⊥AB ,∠FEB =∠CEB ,BE 是公共边,得Rt △BCE ≌Rt △BFE ,所以BC =BF .同理可证,得AD =AF .又在Rt △AEB 中,EF ⊥AB ,故EF 2=AF ·BF ,所以EF 2=AD ·BC .23.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧ x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值. 解 (1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧ x 1=0,y 1=4,⎩⎪⎨⎪⎧ x 2=2,y 2=2. 所以C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4, 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3).故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab 2+1, 所以⎩⎨⎧b 2=1,-ab 2+1=2,解得a =-1,b =2.24.选修4-5:不等式选讲已知函数f (x )=|x -a |,其中a >1.(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解 (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧ -2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|得-2x +6≥4,解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|得2x -6≥4,解得x ≥5;所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}.(2)记h (x )=f (2x +a )-2f (x ),则h (x )=⎩⎪⎨⎪⎧ -2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12. 又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧ a -12=1,a +12=2,于是a =3.。

2013年高考真题——文科数学 (辽宁卷) 解析版

2013年高考真题——文科数学  (辽宁卷)  解析版

绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}{}1,2,3,4,|2,A B x x A B ==<= 则(A ){}0 (B ){}0,1 (C ){}0,2 (D ){}0,1,2 (2)复数的11Z i =-模为(A )12(B )2 (C (D )2(3)已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为(A )3455⎛⎫ ⎪⎝⎭,- (B )4355⎛⎫ ⎪⎝⎭,-(C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭, (4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列; {}2:n p na 数列是递增数列;3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列;其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p(5)某学校组织学生参加英语测试,成绩的频率分布直方图如图, 数据的分组一次为[)[)[)[)20,40,40,60,60,80,820,100.若低于60分的人数是15人,则该班的学生人数是(A )45 (B )50 (C )55 (D )60(6)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则A .6π B .3π C .23π D .56π(7)已知函数())()1ln31,.lg 2lg 2f x x f f ⎛⎫=++= ⎪⎝⎭则A .1-B .0C .1D .2(8)执行如图所示的程序框图,若输入8,n S ==则输出的A .49 B .67 C .89 D .1011(9)已知点()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有A .3b a =B .31b a a=+C .()3310b a b a a ⎛⎫---= ⎪⎝⎭ D .3310b a b a a -+--=(10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,,,AB AC ⊥112AA O =,则球的半径为A B . C .132D . (11)已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,F C 与过原点的直线相交于,A B 两点,4,.10,8,cos ABF ,5AF BF AB B F C ==∠=连接若则的离心率为(A )35 (B )57 (C )45 (D )67(12)已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=(A )2216a a -- (B )2216a a +- (C )16- (D )16第II 卷本卷包括必考题和选考题两部分。

2013年辽宁省高考数学试卷(文科)

2013年辽宁省高考数学试卷(文科)

2013年辽宁省高考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}2.(5分)复数的模长为()A.B.C.D.23.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A.B.C.D.4.(5分)下列关于公差d>0的等差数列{a n}的四个命题:p1:数列{a n}是递增数列;p2:数列{na n}是递增数列;p3:数列是递增数列;p4:数列{a n+3nd}是递增数列;其中真命题是()A.p1,p2B.p3,p4C.p2,p3D.p1,p45.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C. D.7.(5分)已知函数f(x)=ln(﹣3x)+1,则f(lg2)+f(lg)=()A.﹣1 B.0 C.1 D.28.(5分)执行如图所示的程序框图,若输入n=8,则输出S=()A.B.C.D.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.11.(5分)已知椭圆C:的左焦点F,C与过原点的直线相交于A,B两点,连结AF,BF,若|AB|=10,|AF|=6,,则C的离心率为()A.B.C.D.12.(5分)已知函数f(x)满足f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x ﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max(p,q)表示p,q中的较大值,min(p,q)表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.a2﹣2a﹣16 B.a2+2a﹣16 C.﹣16 D.16二、填空题13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.15.(5分)已知F为双曲线C:的左焦点,P,Q为C上的点,若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.(12分)如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)若Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.19.(12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).21.(12分)(1)证明:当x∈[0,1]时,;(2)若不等式对x∈[0,1]恒成立,求实数a的取值范围.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分。

辽宁2013年高考文科数学试题(带答案和解释)

辽宁2013年高考文科数学试题(带答案和解释)

辽宁2013年高考文科数学试题(带答案和解释)文绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)第I卷一、:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合(A)(B)(C)(D)(2)复数的模为(A)(B)(C)(D)(3)已知点(A)(B)(C)(D)(4)下面是关于公差的等差数列的四个命题:其中的真命题为(A)(B)(C)(D)(5)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为若低于60分的人数是15人,则该班的学生人数是(A)(B)(C)(D)(6)在,内角所对的边长分别为A. B. C. D.(7)已知函数A. B. C. D.(8)执行如图所示的程序框图,若输入A. B. C. D.(9)已知点A. B.C. D.(10)已知三棱柱A. B. C. D.(11)已知椭圆的左焦点为F(A)(B)(C)(D)(12)已知函数设表示中的较大值,表示中的较小值,记得最小值为得最小值为 ,则(A)(B)(C)(D)第II卷本卷包括必考题和选考题两部分。

第13题-第22题为必考题,每个试题考生都必须作答。

第22题-第24题为选考题,考生根据要求作答。

二、题:本大题共4小题,每小题5分.(13)某几何体的三视图如图所示,则该几何体的体积是 .(14)已知等比数列.(15)已知为双曲线.(16)为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)设向量(I)若(II)设函数18.(本小题满分12分)如图,(I)求证:(II)设19.(本小题满分12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取3道题解答.试求:(I)所取的2道题都是甲类题的概率;(II)所取的2道题不是同一类题的概率.20.(本小题满分12分)如图,抛物线(I);(II)21.(本小题满分12分)(I)证明:当(II)若不等式取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分。

2013年高考文科数学辽宁卷考试试题与答案word解析版

2013年高考文科数学辽宁卷考试试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学文史类(辽宁卷)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2013辽宁,文1)已知集合A ={0,1,2,3,4},B ={x ||x |<2},则A ∩B =( ).A .{0}B .{0,1}C .{0,2}D .{0,1,2} 2.(2013辽宁,文2)复数1=i 1z -的模为( ). A .12 B.2 CD .23.(2013辽宁,文3)已知点A (1,3),B (4,-1),则与向量AB 同方向的单位向量为( ).A .34,55⎛⎫- ⎪⎝⎭B .43,55⎛⎫- ⎪⎝⎭C .34,55⎛⎫- ⎪⎝⎭D .43,55⎛⎫- ⎪⎝⎭4.(2013辽宁,文4)下面是关于公差d >0的等差数列{a n }的四个命题: p 1:数列{a n }是递增数列; p 2:数列{na n }是递增数列;p 3:数列n a n ⎧⎫⎨⎬⎩⎭是递增数列; p 4:数列{a n +3nd }是递增数列.其中的真命题为( ).A .p1,p2B .p3,p4C .p2,p3D .p1,p45.(2013辽宁,文5)某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( ).A .45B .50C .55D .606.(2013辽宁,文6)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则∠B =( ).A .π6B .π3C .2π3D .5π67.(2013辽宁,文7)已知函数f (x )=3)1x +,则1(lg 2)lg 2f f ⎛⎫+ ⎪⎝⎭=( ).A .-1B .0C .1D .28.(2013辽宁,文8)执行如图所示的程序框图,若输入n =8,则输出S =( ).A.49 B.67 C.89 D.10119.(2013辽宁,文9)已知点O(0,0),A(0,b),B(a,a3).若△OAB为直角三角形,则必有( ).A.b=a3 B.31b aa=+C.331()0b a b aa⎛⎫---=⎪⎝⎭ D.331b a b aa-+--=10.(2013辽宁,文10)已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上.若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( ).A.2 B..132 D.11.(2013辽宁,文11)已知椭圆C:2222=1x ya b+(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=45,则C的离心率为( ).A.35 B.57 C.45 D.6712.(2013辽宁,文12)已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A-B=( ).A.a2-2a-16 B.a2+2a-16 C.-16 D.16第Ⅱ卷二、填空题:本大题共4小题,每小题5分。

2013年普通高等学校招生全国统一考试数学文试题(辽宁卷,含答案)

2013年普通高等学校招生全国统一考试数学文试题(辽宁卷,含答案)

第 - 1 - 页 共 6 页绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}{}1,2,3,4,|2,A B x x A B ==<=I 则(A ){}0 (B ){}0,1 (C ){}0,2 (D ){}0,1,2(2)复数的11Z i =-模为 (A )12(B)2 (C(D )2 (3)已知点()()1,3,4,1,A B AB -u u u r 则与向量同方向的单位向量为 (A )3455⎛⎫ ⎪⎝⎭,- (B )4355⎛⎫ ⎪⎝⎭,- (C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭,(4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列; {}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p第 - 2 - 页 共 6 页 (5)某学校组织学生参加英语测试,成绩的频率分布直方图如图, 数据的分组一次为[)[)[)[)20,40,40,60,60,80,820,100.若低于60分的人数是15人,则该班的学生人数是(A )45 (B )50(C )55 (D )60(6)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B A b += ,a b B >∠=且则A .6πB .3π C .23π D .56π (7)已知函数()()()21ln 1931,.lg 2lg 2f x x x f f ⎛⎫=+-++= ⎪⎝⎭则 A .1- B .0 C .1 D .2(8)执行如图所示的程序框图,若输入8,n S ==则输出的A .49 B .67 C .89 D .1011(9)已知点()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有 A .3b a = B .31b a a =+C .()3310b ab a a ⎛⎫---= ⎪⎝⎭ D .3310b a b a a-+--=第 - 3 - 页 共 6 页 (10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,,,AB AC ⊥112AA O =,则球的半径为A .317B .210C .132D .310 (11)已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,F C 与过原点的直线相交于 ,A B 两点,4,.10,8,cos ABF ,5AF BF AB B F C ==∠=连接若则的离心率为 (A )35 (B )57 (C )45 (D )67(12)已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则 A B -=(A )2216a a -- (B )2216a a +-(C )16- (D )16第II 卷本卷包括必考题和选考题两部分。

2013学年高考文科数学年辽宁卷答案

2013学年高考文科数学年辽宁卷答案

2013年普通高等学校招生全国统一考试(全国新课标卷1)
文科数学答案解析
第Ⅰ卷
当0a >时,y ax =与()y f x =恒有公共点,所以排除()
若0x ≤,则以y ax =与22||y x x =-+相切为界限,
由2
,2,
y ax y x x =⎧⎨=-⎩得22()0x a x -+=. ∵22()0a ∆=+=,∴2a =-. ∴,0[]2a ∈-;故选D .
第Ⅱ卷
0=b c ,a 1112⨯⨯=a b 1(0[]t =+-=b c a b b ,即1()t t +-a b b 2
【解析】画出可行域如图所示。

画出直线20x y -=,并平移,当直线经过点15.【答案】9π2
【解析】如图,
设球O 的半径为R ,则AH =又∵2π·πEH =,∴1EH =.
123n +
+
-
从以上茎叶图可以看出,A 药疗效的试验结果有
710的叶集中在茎叶集中在茎0,1上,由此可看出A 药的疗效更好. 19.【答案】(Ⅰ)见解析 (Ⅱ)3
【解析】(Ⅰ)证明:取AB 的中点
因为CA CB =,所以OC AB ⊥.
由于1AB AA =,160BAA ∠︒=,故
由弦切角定理得,ABE BCE ∠∠=又因为DB BE ⊥,所以DE 为直径,
所以原不等式的解集是|0
{x<
(Ⅱ)当
1
,
22
x
a
⎡⎫
-⎪
⎢⎣⎭
∈时,(f x。

2013年高考文科数学辽宁卷(含详细答案)

2013年高考文科数学辽宁卷(含详细答案)

绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数学(文科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合=0,1,{}2,3,4A ,{||=2|<}B x x ,则=A B ( )A .{0}B .{0,1}C .{0,2}D .{0,1,2} 2.复数1=i 1z -的模为( )A .12BCD .23.已知点(1,3)A ,1(4,)B -,则与向量AB 同方向的单位向量为( )A .34(,)55-B .43(,)55-C .34(,)55-D .43(,)55-4.下面是关于公差0d >的等差数列{}n a 的四个命题: 1p :数列{}n a 是递增数列; 2p :数列{}n na 是递增数列; 3p :数列{}n an是递增数列; 4p :数列{3}n a nd +是递增数列. 其中的真命题为( )A .12p p ,B .34p p ,C .23p p ,D .14p p ,5.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是 ()A .45B .50C .55D .606.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若s i n c o s s i n c o s =12a cb B C BA+,且a b >,则B ∠=( )A .π6B .π3C .2π3D .5π67.)3)1(x f x =+,则1(lg2)(lg )2f f +=( )A .1-B .0C .1D .28.执行如图所示的程序框图,若输入8n =,则输出S = ( )A .49 B .67 C .89 D .10119.已知点(0,0)O ,()0,A b ,3(),B a a .若OAB △为直角三角形,则必有 ( )A .3=b aB .31b a a=+C .331()()0b a b a a---=D .331||||0b a b a a-+--=10.已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上.若=3AB ,=4AC ,AB AC ⊥,112=AA ,则球O 的半径为( )AB.C .132D.11.已知椭圆2222=1(0)x y a C ba b :+>>的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若||=10AB ,||=8BF ,os =45c ABF ∠,则C 的离心率为 ( )A .35B .57C .45D .6712.已知函数22(()22)f x x a x a +-=+,22((2))28g x x a x a =---++.设1()H x =max ()(){}f x g x ,,2mi (){)(n (,)}H x f x g x =({},max p q 表示p ,q 中的较大值,min{},p q 表示p ,q 中的较小值).记1()H x 的最小值为A ,2()H x 的最大值为B ,则A B -=( )A .2216a a --B .2216a a +-C .16-D .16--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.某几何体的三视图如图所示,则该几何体的体积是 . 14.已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和.若1a ,3a 是方程2540x x +=-的两个根,则6S = .15.已知F 为双曲线22=1916x y C :-的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点(5,0)A 在线段PQ 上,则PQF △的周长为 .16.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为 . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)设向量a )=,sin x x ,b (,=cos s )in x x ,2[]π0,x ∈.(Ⅰ)若|a |=|b |,求x 的值;(Ⅱ)设函数()f x =a ·b ,求()f x 的最大值.18.(本小题满分12分)如图,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点. (Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)设Q 为PA 的中点,G 为AOC △的重心, 求证:QG ∥平面PBC .19.(本小题满分12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求: (Ⅰ)所取的2道题都是甲类题的概率; (Ⅱ)所取的2道题不是同一类题的概率.20.(本小题满分12分)如图,抛物线214C x y :=,222()0C x py p :-=>.点00(,)M x y 在抛物线2C 上,过M 作1C 的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当0=1x MA 的斜率为12-.(Ⅰ)求p 的值;(Ⅱ)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ).21.(本小题满分12分) (Ⅰ)证明:当[0,1]x ∈si n x x ≤≤; (Ⅱ)若不等式23()222cos 4ax x x x x ≤++++对[0,1]x ∈恒成立,求实数a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 为O 直径,直线CD 与O 相切于E ,AD 垂直CD 于D ,BC 垂直CD 于C ,EF 垂直AB 于F ,连接AE ,BE .证明: (Ⅰ)=FEB CEB ∠∠; (Ⅱ)2=EF AD BC .23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆1C ,直线2C 的极坐标方程分别为=4sin ρθ,πcos(4ρθ- (Ⅰ)求1C 与2C 交点的极坐标;(Ⅱ)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为33,1,2x t a b y t ⎧=+⎪⎨=+⎪⎩(t R ∈为参数),求a ,b 的值.24.(本小题满分10分)选修4—5:不等式选讲已知函数|(|)f x x a =-,其中1a >.(Ⅰ)当2a =时,求不等式()4||4f x x ≥--的解集;(Ⅱ)已知关于x 的不等式|()22()|2f x a f x ≤-+的解集为2|}1{x x ≤≤,求a 的值.{01}A B =,【解析】1i 1z ==-【提示】利用2i =-【试题解析】(3AB =-,,则与其同方向的单位向量3,5ABe AB ⎛== ⎝【提示】同方向的单位向量求法,向量除以模长即可【解析】根据等差数列的性质判定.d n 是假命题.a又sin a 32a b a -=-【解析】根据球的内接三棱柱的性质求解.直三棱柱中∠AB BF ABFcos,点数学试卷 第16页(共33页)【解析】a )又x )3sin =a b)AB PA 又PAAC A =,连接OG 并延长交,G Q PA 中点,∴又O QM MO M =BC PC C =,平面PBC QG ⊂平面QMO )抛物线点N点又F)解法一:当数学试卷第22页(共33页))又)直线AB又EF)BC又在AF BF,∴EF AD BC. (步骤【提示】根据圆中直线的垂直等角关系证明;根据圆中三角形的全等和线段间的关系求解【考点】弦切角及圆的有关性质,三角形全等,直角三角形性质数学试卷第28页(共33页)又(11 / 11。

2013年辽宁省高考数学试卷(文科)

2013年辽宁省高考数学试卷(文科)

2013年辽宁省高考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}2.(5分)复数的模长为()A.B.C.D.23.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A.B.C.D.4.(5分)下列关于公差d>0的等差数列{a n}的四个命题:p1:数列{a n}是递增数列;p2:数列{na n}是递增数列;p3:数列是递增数列;p4:数列{a n+3nd}是递增数列;其中真命题是()A.p1,p2B.p3,p4C.p2,p3D.p1,p45.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C. D.7.(5分)已知函数f(x)=ln(﹣3x)+1,则f(lg2)+f(lg)=()A.﹣1 B.0 C.1 D.28.(5分)执行如图所示的程序框图,若输入n=8,则输出S=()A.B.C.D.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.11.(5分)已知椭圆C:的左焦点F,C与过原点的直线相交于A,B两点,连结AF,BF,若|AB|=10,|AF|=6,,则C的离心率为()A.B.C.D.12.(5分)已知函数f(x)满足f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a ﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max(p,q)表示p,q中的较大值,min(p,q)表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.a2﹣2a﹣16 B.a2+2a﹣16 C.﹣16 D.16二、填空题13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.15.(5分)已知F为双曲线C:的左焦点,P,Q为C上的点,若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.(12分)如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)若Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.19.(12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).21.(12分)(1)证明:当x∈[0,1]时,;(2)若不等式对x∈[0,1]恒成立,求实数a的取值范围.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分。

2013年高考真题——文科数学(辽宁卷) Word版含答案

2013年高考真题——文科数学(辽宁卷) Word版含答案

绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}{}1,2,3,4,|2,A B x x AB ==<=则(A ){}0 (B ){}0,1 (C ){}0,2 (D ){}0,1,2 (2)复数的11Z i =-模为(A )12 (B )2(C (D )2 (3)已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为(A )3455⎛⎫ ⎪⎝⎭,-(B )4355⎛⎫ ⎪⎝⎭,- (C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭, (4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p(5)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)[)20,40,40,60,60,80,820,100.若低于60分的人数是15人,则该班的学生人数是(A )45 (B )50 (C )55 (D )60(6)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则 A .6π B .3π C .23π D .56π(7)已知函数())()1ln31,.lg 2lg 2f x x f f ⎛⎫=++= ⎪⎝⎭则A .1-B .0C .1D .2(8)执行如图所示的程序框图,若输入8,n S ==则输出的A .49 B .67 C .89 D .1011(9)已知点()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有A .3b a =B .31b a a=+C .()3310b a b a a ⎛⎫---= ⎪⎝⎭ D .3310b a b a a -+--=(10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,, ,AB AC ⊥112AA O =,则球的半径为A .2B .C .132D .(11)已知椭圆2222:1(0)x y C a b a b +=>>的左焦点为F ,F C 与过原点的直线相交于,A B 两点,4,.10,8,cos ABF ,5AF BF AB B F C ==∠=连接若则的离心率为 (A )35 (B )57 (C )45 (D )67(12)已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=(A )2216a a -- (B )2216a a +- (C )16- (D )16第II 卷本卷包括必考题和选考题两部分。

2013年辽宁省高考数学试卷(文科)

2013年辽宁省高考数学试卷(文科)

2013年辽宁省高考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0} B.{0,1} C.{0,2} D.{0,1,2}2.(5分)复数的模长为()A.B. C.D.23.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A.B.C.D.4.(5分)下列关于公差d>0的等差数列{an}的四个命题:p 1:数列{an}是递增数列;p 2:数列{nan}是递增数列;p3:数列是递增数列;p 4:数列{an+3nd}是递增数列;其中真命题是()A.p1,p2B.p3,p4C.p2,p3D.p1,p45.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C.D.7.(5分)已知函数f(x)=ln(﹣3x)+1,则f(lg2)+f(lg)=()A.﹣1 B.0 C.1 D.28.(5分)执行如图所示的程序框图,若输入n=8,则输出S=()A.B.C.D.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.11.(5分)已知椭圆C:的左焦点F,C与过原点的直线相交于A,B两点,连结AF,BF,若|AB|=10,|AF|=6,,则C的离心率为()A.B.C.D.12.(5分)已知函数f(x)满足f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max(p,q)表示p,q中的较大值,min(p,q)表示p,q中的较小值),记H 1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.a2﹣2a﹣16 B.a2+2a﹣16 C.﹣16 D.16二、填空题13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{an }是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6= .15.(5分)已知F为双曲线C:的左焦点,P,Q为C上的点,若PQ 的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.(12分)如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)若Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.19.(12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x,y)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).21.(12分)(1)证明:当x∈[0,1]时,;(2)若不等式对x∈[0,1]恒成立,求实数a的取值范围.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分。

2013年辽宁文科高考题及答案-1

2013年辽宁文科高考题及答案-1

212868541.doc及答案
2013年普通高等学校招生全国统一考试(辽宁卷)
数学(供文科考生使用)
第I卷
一、选择题:本大题共12小题,每小题5分,共40分.
(1)已知集合A??0,1,2,3,4?, B??x||x|?2?,则A?B?()。

(A)?0? (B)?0,1? (C)?0,2? (D)?0,1,2?
(2)复数的Z?1模为()。

i?1
1 (B
(C
(D)2 2
????(3)已知点A?1,3?,B?4,?1?,则与向量AB同方向的单位向量为()。

(A)(A)?,-? (B)?,-? (C)??? (D)???
(4)下面是关于公差d?0的等差数列?an?的四个命题: ?3?54?5??4?53?5??34??55??43??55? p1:数列?an?是递增数列; p2:数列?nan?是递增数列;
?a?p3:数列?n?是递增数列; p4:数列?an?3nd?是递增数列; n??
其中的真命题为()。

(A)p1,p2 (B)p3,p4 (C)p2,p3 (D)p1,p4
(5)某学校组织学生参加英语测试,成绩的频率分布
直方图如图,数据的分组一次为?20,40?,?40,60?,
?60,80?,?80,100?.若低于60分的人数是15人,则该班的学生人数是()。

(A)45 (B)50 (C)55 (D)60
第 1 页共 13 页。

2013年辽宁省高考数学试卷(文科)

2013年辽宁省高考数学试卷(文科)

2013年辽宁省高考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0} B.{0,1} C.{0,2} D.{0,1,2}2.(5分)复数的模长为()A.B. C.D.23.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A.B.C.D.4.(5分)下列关于公差d>0的等差数列{an}的四个命题:p 1:数列{an}是递增数列;p 2:数列{nan}是递增数列;p3:数列是递增数列;p 4:数列{an+3nd}是递增数列;其中真命题是()A.p1,p2B.p3,p4C.p2,p3D.p1,p45.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C.D.7.(5分)已知函数f(x)=ln(﹣3x)+1,则f(lg2)+f(lg)=()A.﹣1 B.0 C.1 D.28.(5分)执行如图所示的程序框图,若输入n=8,则输出S=()A.B.C.D.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.11.(5分)已知椭圆C:的左焦点F,C与过原点的直线相交于A,B两点,连结AF,BF,若|AB|=10,|AF|=6,,则C的离心率为()A.B.C.D.12.(5分)已知函数f(x)满足f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max(p,q)表示p,q中的较大值,min(p,q)表示p,q中的较小值),记H 1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.a2﹣2a﹣16 B.a2+2a﹣16 C.﹣16 D.16二、填空题13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{an }是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6= .15.(5分)已知F为双曲线C:的左焦点,P,Q为C上的点,若PQ 的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.(12分)如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)若Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.19.(12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x,y)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).21.(12分)(1)证明:当x∈[0,1]时,;(2)若不等式对x∈[0,1]恒成立,求实数a的取值范围.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分。

2013年高考辽宁文科数学(含答案)

2013年高考辽宁文科数学(含答案)

2013年普通高等学校夏季招生全国统一考试数学文史类(辽宁卷)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2013辽宁,文1)已知集合A ={0,1,2,3,4},B ={x ||x |<2},则A ∩B =( ).A .{0}B .{0,1}C .{0,2}D .{0,1,2} 答案:B解析:∵|x|<2,∴x ∈(-2,2),即B ={x|-2<x <2}.∴A∩B ={0,1},故选B. 2.(2013辽宁,文2)复数1=i 1z -的模为( ). A .12 BCD .2 答案:B 解析:1i 111i i 1(i 1)(i 1)22z --===------, ∴|z |= B.3.(2013辽宁,文3)已知点A (1,3),B (4,-1),则与向量AB同方向的单位向量为( ).A .34,55⎛⎫- ⎪⎝⎭B .43,55⎛⎫- ⎪⎝⎭C .34,55⎛⎫- ⎪⎝⎭D .43,55⎛⎫- ⎪⎝⎭答案:A解析:与向量AB 同方向的单位向量为AB AB34,55⎛⎫=- ⎪⎝⎭,故选A. 4.(2013辽宁,文4)下面是关于公差d >0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列; p 2:数列{na n }是递增数列;p 3:数列n a n ⎧⎫⎨⎬⎩⎭是递增数列; p 4:数列{a n +3nd }是递增数列. 其中的真命题为( ). A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 4 答案:D解析:如数列-2,-1,0,1,2,…,则1×a1=2×a2,排除p2,如数列1,2,3,…,则na n =1,排除p3,故选D. 5.(2013辽宁,文5)某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( ).A .45B .50C .55D .60 答案:B解析:根据频率分布直方图,低于60分的人所占频率为:(0.005+0.01)×20=0.3,故该班的学生数为150.3=50,故选B.6.(2013辽宁,文6)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则∠B =( ).A .π6 B .π3 C .2π3 D .5π6答案:A解析:根据正弦定理a sin B cos C +c sin B cos A =12b 等价于sin A cos C +sin C cos A =12, 即sin(A +C )=12. 又a >b ,所以A +C =5π6,所以π6B =.故选A. 7.(2013辽宁,文7)已知函数f (x )=3)1x +,则1(lg 2)lg2f f ⎛⎫+ ⎪⎝⎭=( ). A .-1 B .0 C .1 D .2答案:D解析:∵f (x )=3)1x +, ∴f (-x )=3)1x +, ∴f (x )+f (-x )=ln 1+1+1=2,又1lg2=-lg 2, ∴1(lg 2)lg 2f f ⎛⎫+ ⎪⎝⎭=2,故选D.8.(2013辽宁,文8)执行如图所示的程序框图,若输入n =8,则输出S =( ).A .49 B .67 C .89 D .1011答案:A解析:当n =8时,输出的22221111021416181S =++++---- 111113355779=+++⨯⨯⨯⨯111111111213355779⎛⎫=-+-+-+- ⎪⎝⎭ 49=, 故选A.9.(2013辽宁,文9)已知点O (0,0),A (0,b ),B (a ,a 3).若△OAB 为直角三角形,则必有( ).A .b =a 3B .31b a a=+C .331()0b a b a a ⎛⎫---= ⎪⎝⎭D .3310b a b a a-+--=答案:C解析:若∠OBA 为直角,则0OB AB ⋅=,即a 2+(a 3-b )·a 3=0,又a ≠0,故31b a a =+; 若∠OAB 为直角时,0OA AB ⋅=,即b (a 3-b )=0,得b =a 3;若∠AOB 为直角,则不可能.所以b -a 3-1a=0或b -a 3=0,故选C.10.(2013辽宁,文10)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ).A B .C .132D .答案:C解析:过C ,B 分别作AB ,AC 的平行线交于点D ,过C 1,B 1分别作A 1B 1,A C 的平行线交于D 1,连接DD 1,则ABCD -A 1B 1C 1D 1恰为该球的内接长方体,故该球的半径r 132=,故选C.11.(2013辽宁,文11)已知椭圆C :2222=1x y a b+(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为( ).A .35 B .57 C .45 D .67答案:B解析:如图所示,根据余弦定理,|AF |2=|BF |2+|AB |2-2|BF ||AB |cos ∠ABF ,即|AF |=6,又|OF |2=|BF |2+|OB |2-2|OB ||BF |cos ∠ABF ,即|OF |=5.又根据椭圆的对称性,|AF |+|BF |=2a =14,∴a =7,|OF |=5=c ,所以离心率为57,故选B.12.(2013辽宁,文12)已知函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8.设H 1(x )=max{f (x ),g (x )},H 2(x )=min{f (x ),g (x )}(max{p ,q }表示p ,q 中的较大值,min{p ,q }表示p ,q 中的较小值).记H 1(x )的最小值为A ,H 2(x )的最大值为B ,则A -B =( ).A .a 2-2a -16B .a 2+2a -16C .-16D .16 答案:C解析:∵f (x )-g (x )=2x 2-4ax +2a 2-8 =2[x -(a -2)][x -(a +2)],∴()1(),(,2],(),(2,2],(),(2,],f x x a H x g x x a a f x x a ∈-∞-⎧⎪∈-+⎨⎪∈++∞⎩=()2(),(,2],(),(2,2],(),(2,],g x x a H x f x x a a g x x a ∈-∞-⎧⎪∈-+⎨⎪∈++∞⎩=可求得H 1(x )的最小值A =f (a +2)=-4a -4,H 2(x )的最大值B =g (a -2)=-4a +12, ∴A -B =-16.故选C.第Ⅱ卷本卷包括必考题和选考题两部分。

2013年普通高等学校招生全国统一考试(辽宁卷)数学试题 (文科) word解析版

2013年普通高等学校招生全国统一考试(辽宁卷)数学试题 (文科) word解析版

绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}1,2,3,4,|2,A B x x A B ==<=I 则(A ){}0 (B ){}0,1 (C ){}0,2 (D ){}0,1,2 答案 B解析 B ={x ||x |<2}={x |-2<x <2},∴A ∩B ={0,1}.2.复数z =1i -1的模为( ) A.12 B.22 C. 2 D .2 答案 B解析 z =1i -1=-1-i 2,∴|z |= ⎝⎛⎭⎫-122+⎝⎛⎭⎫-122=22.3.已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为( )A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35C.⎝⎛⎭⎫-35,45D.⎝⎛⎭⎫-45,35 答案 A 解析 A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4), ∴与A B →同方向的单位向量为A B→|A B →|=⎝⎛⎭⎫35,-45.4.下面是关于公差d >0的等差数列{a n }的四个命题: p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;p 4:数列{a n +3nd }是递增数列.其中的真命题为( )A .p 1,p 2B .p 3,p 4C .p 2,p 3D .p 1,p 4 答案 D解析 a n =a 1+(n -1)d ,d >0, ∴a n -a n -1=d >0,命题p 1正确.na n =na 1+n (n -1)d ,∴na n -(n -1)a n -1=a 1+2(n -1)d 与0的大小和a 1的取值情况有关. 故数列{na n }不一定递增,命题p 2不正确.对于p 3:a n n =a 1n +n -1n d ,∴a n n -a n -1n -1=-a 1+dn (n -1),当d -a 1>0,即d >a 1时,数列{a nn}递增,但d >a 1不一定成立,则p 3不正确. 对于p 4:设b n =a n +3nd ,则b n +1-b n =a n +1-a n +3d =4d >0.∴数列{a n +3nd }是递增数列,p 4正确. 综上,正确的命题为p 1,p 4.5.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( ) A .45 B .50 C .55 D .60 答案 B解析 由频率分布直方图,低于60分的频率为 (0.01+0.005)×20=0.3.∴该班学生人数n =150.3=50.6.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则∠B 等于( ) A.π6 B.π3 C.2π3 D.5π6 答案 A解析 由条件得a b sin B cos C +c b sin B cos A =12,依正弦定理,得sin A cos C +sin C cos A =12,∴sin(A +C )=12,从而sin B =12,又a >b ,且B ∈(0,π),因此B =π6.7.已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+f ⎝⎛⎭⎫lg 12等于( ) A .-1 B .0 C .1 D .2 答案 D解析 设g (x )=lg(1+9x 2-3x )=f (x )-1,g (-x )=lg(1+9x 2+3x )=lg 11+9x 2-3x=-g (x ).∴g (x )是奇函数,∴f (lg 2)-1+f ⎝⎛⎭⎫lg 12-1=g (lg 2)+g ⎝⎛⎭⎫lg 12=0, 因此f (lg 2)+f ⎝⎛⎭⎫lg 12=2.8.执行如图所示的程序框图,若输入n =8,则输出S 等于( )A .49 B.67 C.89 D.1011 答案 A解析 执行第一次循环后,S =13,i =4;执行第二次循环后,S =25,i =6;执行第三次循环后,S =37,i =8;执行第四次循环后,S =49,i =10;此时i =10>8,输出S =49.9.已知点O (0,0),A (0,b ),B (a ,a 3).若△OAB 为直角三角形,则必有( )A .b =a 3B .b =a 3+1aC .(b -a 3)⎝⎛⎭⎫b -a 3-1a =0D .|b -a 3|+⎪⎪⎪⎪b -a 3-1a =0 答案 C 解析 易知A B →=O B →-O A →=(a ,a 3-b ), 且b ≠0,a ≠0,若A 为直角, OA →·AB →=(0,b )·(a ,a 3-b )=b (a 3-b )=0, ∴b -a 3=0,若B 为直角,O B →·A B →=(a ,a 3)·(a ,a 3-b )=0,∴a 2+a 3(a 3-b )=0,则b -a 3-1a=0,故(b -a 3)·⎝⎛⎭⎫b -a 3-1a =0,选C.10.已知直三棱柱ABCA 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ) A.3 172 B .2 10 C.132 D .3 10答案 C解析 ∵AB ⊥AC ,且AA 1⊥底面ABC ,将直三棱柱补成内接于球的长方体,则长方体的对角线l =32+42+122=2R ,R =132.11.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为( )A.35B.57C.45D.67 答案 B解析 在△ABF 中,由余弦定理得 |AF |2=|AB |2+|BF |2-2|AB |·|BF |cos ∠ABF , ∴|AF |2=100+64-128=36,∴|AF |=6, 从而|AB |2=|AF |2+|BF |2,则AF ⊥BF .∴c =|OF |=12|AB |=5,利用椭圆的对称性,设F ′为右焦点, 则|BF ′|=|AF |=6,∴2a =|BF |+|BF ′|=14,a =7.因此椭圆的离心率e =c a =57.12.已知函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8.设H 1(x )=max{f (x ),g (x )},H 2(x )=min{f (x ),g (x )}(max{p ,q }表示p ,q 中的较大值,min{p ,q }表示p ,q 中的较小值).记H 1(x )的最小值为A ,H 2(x )的最大值为B ,则A -B 等于( )A .a 2-2a -16B .a 2+2a -16C .-16D .16 答案 C解析 f (x )=[x -(a +2)]2-4-4a ,g (x )=-[x -(a -2)]2+12-4a ,在同一坐标系内作f (x )与g (x )的图象(如图).依题意知,函数H 1(x )的图象(实线部分),函数H 2(x )的图象(虚线部分).∴H 1(x )的最小值A =f (a +2)=-4-4a ,H 2(x )的最大值B =g (a -2)=12-4a ,因此A -B =(-4-4a )-(12-4a )=-16.第Ⅱ卷二、填空题13.某几何体的三视图如图所示,则该几何体的体积是________.答案 16π-16解析 由三视图知,该几何体是由一个底面半径r =2的圆柱内挖去了一个底面边长为2的正四棱柱,又该几何体的高h =4,∴V =(π×22-22)×4=16π-16.14.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________. 答案 63解析 ∵a 1,a 3是方程x 2-5x +4=0的两根,且q >1, ∴a 1=1,a 3=4,则公比q =2,因此S 6=1×(1-26)1-2=63.15.已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________. 答案 44解析 由双曲线C 的方程,知a =3,b =4,c =5, ∴点A (5,0)是双曲线C 的右焦点, 且|PQ |=|QA |+|P A |=4b =16,由双曲线定义,|PF |-|P A |=6,|QF |-|QA |=6. ∴|PF |+|QF |=12+|P A |+|QA |=28, 因此△PQF 的周长为|PF |+|QF |+|PQ |=28+16=44.16.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为________. 答案 10解析 把5个班中参加该小组的人数从小到大排列,记为x 1,x 2,x 3,x 4,x 5,(x i ∈N ,且x 1,x 2,x 3,x 4,x 5各不相同),由题意(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2+(x 5-7)2=20.∵x 1,x 2,x 3,x 4,x 5∈N ,且各不相同. 若使x 5-7最大,只需(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2最小,显然(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2最小值为0+1+1+4=6.∴(x 5-7)2≤14,因此(x 5-7)2≤9,则x 5≤10,x 5∈N ,经验证x 5=10时,x 1=4,x 2=6,x 3=7,x 4=8满足,所以样本数据中的最大值为10.三、解答题17.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎡⎦⎤0,π2. (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.解 (1)由|a |2=(3sin x )2+(sin x )2=4sin 2 x , |b |2=(cos x )2+(sin x )2=1, 及|a |=|b |,得4sin 2 x =1.又x ∈⎣⎡⎦⎤0,π2,从而sin x =12,所以x =π6. (2)f (x )=a ·b =3sin x ·cos x +sin 2x=32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎫2x -π6+12, 当x =π3∈⎣⎡⎦⎤0,π2时,sin ⎝⎛⎭⎫2x -π6取最大值1. 所以f (x )的最大值为32.18. 如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点. (1)求证:BC ⊥平面P AC ; (2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC . 证明 (1)由AB 是圆O 的直径,得AC ⊥BC , 由P A ⊥平面ABC ,BC ⊂平面ABC ,得P A ⊥BC . 又P A ∩AC =A ,P A ⊂平面P AC ,AC ⊂平面P AC , 所以BC ⊥平面P AC .(2)连OG 并延长交AC 于M ,连接QM ,QO ,由G 为△AOC 的重心,得M 为AC 中点.由Q 为P A 中点,得QM ∥PC ,又O 为AB 中点,得OM ∥BC .因为QM ∩MO =M ,QM ⊂平面QMO , MO ⊂平面QMO ,BC ∩PC =C , BC ⊂平面PBC ,PC ⊂平面PBC . 所以平面QMO ∥平面PBC .因为QG ⊂平面QMO ,所以QG ∥平面PBC .19.现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率; (2)所取的2道题不是同一类题的概率. 解 (1)将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的. 用A 表示“都是甲类题”这一事件,则A 包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P (A )=615=25.(2)基本事件同(1),用B 表示“不是同一类题”这一事件,则B 包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P (B )=815.20. 如图,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当x 0=1-2时,切线MA 的斜率为-12.(1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ).解 (1)因为抛物线C 1:x 2=4y 上任意一点(x ,y )的切线斜率为y ′=x2,且切线MA 的斜率为-12,所以A 点坐标为⎝⎛⎭⎫-1,14,故切线MA 的方程为y =-12(x +1)+14.因为点M (1-2,y 0)在切线MA 及抛物线C 2上,于是y 0=-12(2-2)+14=-3-224,①y 0=-(1-2)22p =-3-222p.②由①②得p =2.(2)设N (x ,y ),A ⎝⎛⎭⎫x 1,x 214,B (x 2,x 224),x 1≠x 2,由N 为线段AB 中点知 x =x 1+x 22,③y =x 21+x 228.④切线MA 、MB 的方程为 y =x 12(x -x 1)+x 214.⑤y =x 22(x -x 2)+x 224.⑥由⑤⑥得MA ,MB 的交点M (x 0,y 0)的坐标为x 0=x 1+x 22,y 0=x 1x 24.因为点M (x 0,y 0)在C 2上,即x 20=-4y 0,所以x 1x 2=-x 21+x 226.⑦由③④⑦得x 2=43y ,x ≠0.当x 1=x 2时,A ,B 重合于原点O ,AB 中点N 为O ,坐标满足x 2=43y .因此AB 中点N 的轨迹方程为x 2=43y .21.(1)证明:当x ∈[0,1]时,22x ≤sin x ≤x ;(2)若不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]恒成立,求实数a 的取值范围.(1)证明 记F (x )=sin x -22x , 则F ′(x )=cos x -22. 当x ∈⎝⎛⎭⎫0,π4时,F ′(x )>0,F (x )在⎣⎡⎦⎤0,π4上是增函数; 当x ∈⎝⎛⎭⎫π4,1时,F ′(x )<0,F (x )在⎣⎡⎦⎤π4,1上是减函数. 又F (0)=0,F (1)>0,所以当x ∈[0,1]时,F (x )≥0,即 sin x ≥22x .记H (x )=sin x -x ,则当x ∈(0,1)时,H ′(x )=cos x -1<0,所以,H (x )在[0,1]上是减函数,则H (x )≤H (0)=0,即sin x ≤x .综上,22x ≤sin x ≤x ,x ∈[0,1].(2)解 方法一 因为当x ∈[0,1]时,ax +x 2+x 32+2(x +2)cos x -4=(a +2)x +x 2+x 32-4(x +2)sin 2x 2≤(a +2)x +x 2+x 32-4(x +2)⎝⎛⎭⎫24x 2=(a +2)x .所以,当a ≤-2时,不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]恒成立.下面证明,当a >-2时,不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]不恒成立.因为当x ∈[0,1]时,ax +x 2+x32+2(x +2)cos x -4=(a +2)x +x 2+x 32-4(x +2)sin 2x 2≥(a +2)x +x 2+x32-4(x +2)⎝⎛⎭⎫x 22 =(a +2)x -x 2-x 32≥(a +2)x -32x 2=-32x ⎣⎡⎦⎤x -23(a +2). 所以存在x 0∈(0,1)⎝⎛⎭⎫例如x 0取a +23和12中的较小值满足ax 0+x 20+x 302+2(x 0+2)cos x 0-4>0. 即当a >-2时,不等式ax +x 2+x 32+2(x +2)cos x -4≤4对x ∈[0,1]不恒成立. 综上,实数a 的取值范围是(-∞,-2].方法二 记f (x )=ax +x 2+x 32+2(x +2)cos x -4,则f ′(x )=a +2x +3x22+2cos x -2(x +2)sin x .记G (x )=f ′(x ),则G ′(x )=2+3x -4sin x -2(x +2)cos x .当x ∈(0,1)时,cos x >12,因此G ′(x )<2+3x -4×22x -(x +2)=(2-22)x <0.于是F ′(x )在[0,1]上是减函数,因此,当x ∈(0,1)时,f ′(x )<f ′(0)=a +2.故当a ≤-2时,f ′(x )<0,从而f (x )在[0,1]上是减函数,所以f (x )≤f (0)=0.即当a ≤-2时,不等式ax +x 2+x 32+2(x +2)cos x ≤4,对x ∈[0,1]恒成立.下面证明:当a >-2时,不等式ax +x 2+x 32+2(x +2)cos x ≤4,对x ∈[0,1]不恒成立. 由于f ′(x )在[0,1]上是减函数,且f ′(0)=a +2>0,f ′(1)=a +72+2cos 1-6sin 1.当a ≥6sin 1-2cos 1-72时,f ′(1)≥0,所以当x ∈(0,1)时,f ′(x )>0.因此f (x )在[0,1]上是增函数,故f (1)>f (0)=0;当-2<a <6sin 1-2cos 1-72时,f ′(1)<0.又f ′(0)>0.故存在x 0∈(0,1),使f ′(x 0)=0,则当0<x <x 0时,f ′(x )>f ′(x 0)=0,所以f (x )在[0,x 0]上是增函数,所以当x ∈(0,x 0)时,f (x )>f (0)=0.所以,当a >-2时,不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]不恒成立. 综上,实数a 的取值范围是(-∞,-2].22. 选修4-1:几何证明选讲如图,AB 为⊙O 的直径,直线CD 与⊙O 相切于E ,AD 垂直CD 于D ,BC 垂直CD 于C ,EF 垂直AB 于F ,连接AE ,BE .证明: (1)∠FEB =∠CEB ;(2)EF 2=AD ·BC .证明 (1)由直线CD 与⊙O 相切,得∠CEB =∠EAB .由AB 为⊙O 的直径,得AE ⊥EB ,从而∠EAB +∠EBF =π2;又EF ⊥AB ,得∠FEB +∠EBF =π2, 从而∠FEB =∠EAB . 故∠FEB =∠CEB .(2)由BC ⊥CE ,EF ⊥AB ,∠FEB =∠CEB ,BE 是公共边,得Rt △BCE ≌Rt △BFE ,所以BC =BF . 同理可证,得AD =AF .又在Rt △AEB 中,EF ⊥AB , 故EF 2=AF ·BF ,所以EF 2=AD ·BC .23.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值.解 (1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧ x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2. 所以C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4, 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab2+1,所以⎩⎨⎧b2=1,-ab2+1=2,解得a =-1,b =2.24.选修4-5:不等式选讲已知函数f (x )=|x -a |,其中a >1.(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值.解 (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|得-2x +6≥4,解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|得2x -6≥4,解得x ≥5; 所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}. (2)记h (x )=f (2x +a )-2f (x ), 则h (x )=⎩⎪⎨⎪⎧-2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2}, 所以⎩⎪⎨⎪⎧a -12=1,a +12=2,于是a =3.。

2013年辽宁省高考数学试卷(文科)答案与解析

2013年辽宁省高考数学试卷(文科)答案与解析

2013年辽宁省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)2.(5分)(2013•辽宁)复数的模长为()B解:复数==3.(5分)(2013•辽宁)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为B=,|再根据与向量=,|=5则与向量,4.(5分)(2013•辽宁)下列关于公差d>0的等差数列{a n}的四个命题:p1:数列{a n}是递增数列;p2:数列{na n}是递增数列;p3:数列是递增数列;p4:数列{a n+3nd}是递增数列;对于数列=,不一定是正实数,5.(5分)(2013•辽宁)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()则该班的学生人数是=506.(5分)(2013•辽宁)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()BsinAsinBcosC+sinCsinBcosA=,B=7.(5分)(2013•辽宁)已知函数f(x)=ln﹣3x)+1,则f(lg2)+f=是奇函数以及对数值,解:函数++1++8.(5分)(2013•辽宁)执行如图所示的程序框图,若输入n=8,则输出S=()BS=0+,S=+,S=+,S=+,S=.9.(5分)(2013•辽宁)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角=,①②③=,=,则,则,则.为直角三角形,则必有10.(5分)(2013•辽宁)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,B,所以球的半径为:11.(5分)(2013•辽宁)已知椭圆C:的左焦点F,C与过原点的直线相交于A,B两点,连结AF,BF,若|AB|=10,|AF|=6,,则C的离心率B12.(5分)(2013•辽宁)已知函数f(x)满足f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max (p,q)表示p,q中的较大值,min(p,q)表示p,q中的较小值),记H1(x)的最小值或二、填空题13.(5分)(2013•辽宁)某几何体的三视图如图所示,则该几何体的体积是16π﹣16.14.(5分)(2013•辽宁)已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=63.,则15.(5分)(2013•辽宁)已知F为双曲线C:的左焦点,P,Q为C上的点,若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为44.的左焦点16.(5分)(2013•辽宁)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为10.三、解答题17.(12分)(2013•辽宁)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.)由条件求得,的值,再根据以及).结合=+sin,,可得.]sinx=,即.(sin2x+﹣]∈,]﹣=)取得最大值为=.18.(12分)(2013•辽宁)如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)若Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.19.(12分)(2013•辽宁)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.=15=6.20.(12分)(2013•辽宁)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).,且切线的斜率为﹣,﹣(,()=﹣﹣﹣),y=((yy21.(12分)(2013•辽宁)(1)证明:当x∈[0,1]时,;(2)若不等式对x∈[0,1]恒成立,求实数a的取值范围.x﹣,)与(≥+x.)时,,([,x+2﹣﹣+2﹣﹣xx[x(和中的较小值)满足+请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分。

2013年高考真题——文科数学(辽宁卷)解析版Word含答案

2013年高考真题——文科数学(辽宁卷)解析版Word含答案

绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}{}1,2,3,4,|2,A B x x A B ==<=I 则(A ){}0 (B ){}0,1 (C ){}0,2 (D ){}0,1,2 (2)复数的11Z i =-模为(A )12(B )2 (C (D )2(3)已知点()()1,3,4,1,A B AB -u u u r则与向量同方向的单位向量为(A )3455⎛⎫ ⎪⎝⎭,-(B )4355⎛⎫ ⎪⎝⎭,-(C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭, (4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列;其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p(5)某学校组织学生参加英语测试,成绩的频率分布直方图如图, 数据的分组一次为[)[)[)[)20,40,40,60,60,80,820,100. 若低于60分的人数是15人,则该班的学生人数是(A )45 (B )50 (C )55 (D )60(6)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则A .6π B .3πC .23πD .56π(7)已知函数()()()21ln1931,.lg 2lg 2f x x x f f ⎛⎫=+-++= ⎪⎝⎭则A .1-B .0C .1D .2(8)执行如图所示的程序框图,若输入8,n S ==则输出的A .49 B .67 C .89 D .1011(9)已知点()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有A .3b a =B .31b a a=+C .()3310b a b a a ⎛⎫---= ⎪⎝⎭ D .3310b a b a a -+--=(10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,,,AB AC ⊥112AA O =,则球的半径为A .317 B .210 C .132D .310 (11)已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,F C 与过原点的直线相交于,A B 两点,4,.10,8,cos ABF ,5AF BF AB B F C ==∠=连接若则的离心率为(A )35 (B )57 (C )45 (D )67(12)已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=(A )2216a a -- (B )2216a a +- (C )16- (D )16第II 卷本卷包括必考题和选考题两部分。

2013年辽宁省高考文科数学试卷含答案精简

2013年辽宁省高考文科数学试卷含答案精简

2013年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}{}1,2,3,4,|2,A B x x A B ==<= 则(A ){}0 (B ){}0,1 (C ){}0,2 (D ){}0,1,2 (2)复数的11Z i =-模为(A )12(B )2 (C (D )2(3)已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为(A )3455⎛⎫ ⎪⎝⎭,- (B )4355⎛⎫ ⎪⎝⎭,-(C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭, (4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列; {}2:n p na 数列是递增数列;3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列;其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p (5)某学校组织学生参加英语测试,成绩的频率分布直方图如图, 数据的分组一次为[)[)[)[)20,40,40,60,60,80,820,100. 若低于60分的人数是15人,则该班的学生人数是(A )45 (B )50 (C )55 (D )60(6)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则A .6π B .3πC .23πD .56π(7)已知函数())()1ln31,.lg 2lg 2f x x f f ⎛⎫=++= ⎪⎝⎭则A .1-B .0C .1D .2(8)执行如图所示的程序框图,若输入8,n S ==则输出的A .49 B .67 C .89 D .1011(9)已知点()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有A .3b a =B .31b a a=+C .()3310b a b a a ⎛⎫---= ⎪⎝⎭ D .3310b a b a a -+--=(10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,,,AB AC ⊥112AA O =,则球的半径为A .2 B . C .132D . (11)已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,F C 与过原点的直线相交于,A B 两点,4,.10,8,cos ABF ,5AF BF AB B F C ==∠=连接若则的离心率为(A )35 (B )57 (C )45 (D )67(12)已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=(A )2216a a -- (B )2216a a +- (C )16- (D )16二、填空题:本大题共4小题,每小题5分.(13)某几何体的三视图如图所示,则该几何体的体积是 . (14)已知等比数列{}{}13n n n a S a n a a 是递增数列,是的前项和.若,是方程26540x x S -+==的两个根,则 .(15)已知F 为双曲线22:1,916x y C P Q C PQ -=的左焦点,为上的点,若的长等于虚轴长的2倍,()5,0A PQ PQF =∆点在线段上,则的周长为 . (16)为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为 . 17.(本小题满分12分)设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b x =求的值;(II )设函数()(),.f x a b f x =求的最大值 18.(本小题满分12分)如图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点(I )求证:BC PAC ⊥平面;(II )设//.Q PA G AOC QG PBC ∆为的中点,为的重心,求证:平面19.(本小题满分12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取3道题解答.试求: (I )所取的2道题都是甲类题的概率;(II )所取的2道题不是同一类题的概率. 20.(本小题满分12分)如图,抛物线()()2212002:4,:20.,C x y C x py p M x y C ==->点在抛物线上,1M C 过作()0,,.1A B M O A B O x =的切线,切点为为原点时,重合于当1-.2MA 切线的斜率为(I )P 求的值;(II )2M C AB N 当在上运动时,求线段中点的轨迹方程(),,.A B O O 重合于时中点为21.(本小题满分12分)(I )证明:当[]0,1sin ;2x x x x ∈≤≤时,(II )若不等式()[]3222cosx 40,12x ax x x x a ++++≤∈对恒成立,求实数的取值范围.1.B2. B 3 A 4 D 5 B 6 A 7 D 8 A 9 C 10 C11 B 12 C 13 [答案]1616π- 14 [答案]63 15 [答案]44 16 [答案]10 17所以6x π=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)乐享玲珑,为中国数学增光添彩!免费玲珑3D 画板,全开放的几何教学软件,功能强大,好用实用第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,2,3,4,|2,A B x x ==< 则AB =(A ){}0 (B ){}0,1 (C ){}0,2 (D ){}0,1,2 2.复数的11Z i =-模为(A )12(B )2 (C (D )23.已知点()()1,3,4,1,A B -则与向量AB 同方向的单位向量为(A )3455⎛⎫ ⎪⎝⎭,-(B )4355⎛⎫ ⎪⎝⎭,- (C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭,4.下面是关于公差0d >的等差数列{}n a 的四个命题:1:p 数列{}n a 是递增数列; 2:p 数列{}n na 是递增数列;3:p 数列n a n ⎧⎫⎨⎬⎩⎭是递增数列; 4:p 数列{}3n a nd +是递增数列;其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p 5.某学校组织学生参加英语测试,成绩的频率分布直方图如图, 数据的分组一次为[)[)[)[)20,40,40,60,60,80,820,100. 若低于60分的人数是15人,则该班的学生人数是(A )45 (B )50 (C )55 (D )606.在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab += 且a b >,则B ∠= A .6π B .3πC .23πD .56π7.已知函数())ln31,f x x =+则()1lg 2lg 2f f ⎛⎫+= ⎪⎝⎭A .1-B .0C .1D .2 8.执行如图所示的程序框图,若输入8,n =则输出的S = A .49 B .67 C .89 D .10119、已知点()()()30,0,0,,,.O A b B a a .若△ABC 为直角三角形,则必有A .3b a =B .31b a a=+ C .()3310b a b a a ⎛⎫---= ⎪⎝⎭ D .3310b a b a a-+--=10、已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上. 若34AB AC ==,, ,AB AC ⊥112AA =,则球O 的半径为 A .3172 B .210 C .132D .310 11、已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,C 与过原点的直线相交于A,B 两点,连接AF,BF.若|AB|=10,|BF|=8,4cos ABF ,5∠=则C 的离心率为 (A )35 (B )57 (C )45 (D )6712、已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=(A )2216a a -- (B )2216a a +- (C )16- (D )16第II 卷本卷包括必考题和选考题两部分。

第13题-第22题为必考题,每个试题考生都必须作答。

第22题-第24题为选考题,考生根据要求作答。

二、填空题:本大题共4小题,每小题5分.13、某几何体的三视图如图所示,则该几何体的体积是 .14、已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和.若13a a ,是方程2540x x -+=的两个根,则6S = .15、已知F 为双曲线22:1916x y C -=的左焦点,P,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为 .16、为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为 .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 设向量()()3sin ,sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b =求x 的值;(II )设函数(),f x a b =求()f x 的最大值.18.(本小题满分12分)如图,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点. (I )求证:BC ⊥平面PAC ; (II )设Q 为PA 的中点。

G 为△AOC 的重心,求证:QG ∥平面PBC.19.(本小题满分12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取3道题解答.试求: (I )所取的2道题都是甲类题的概率;(II )所取的2道题不是同一类题的概率. 20.(本小题满分12分)如图,抛物线()2212:4,:20.C x y C x py p ==->点()00,M x y 在抛物线2C 上,过M 作1C 的切线,切点为A,B(M 为原点O 时,A,B 重合于O ).当012x =-时,切线MA 的斜率为12-.(I )求P 的值;(II )当M 在2C 上运动时,求线段AB 中点N 的轨迹方程 (A,B 重合于O 时,中点为O ). 21.(本小题满分12分) (I )证明:当[]0,1x ∈ 时,2sin ;2x x x ≤≤ (II )若不等式()3222cosx 42x ax x x ++++≤对[]0,1x ∈恒成立,求实数a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分。

作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑。

22.(本小题满分10分)选修4-1:几何证明选讲如图,AB 为O 直径,直线CD 与O 相切于E.AD 垂直于CD 于D,BC 垂直于CD 于C,EF垂直AB 于F,连接AE,BE.证明:(I );FEB CEB ∠=∠ (II )2.EF AD BC =22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 2 2.4πρθρθ⎛⎫==-= ⎪⎝⎭. (I )求1C 与2C 交点的极坐标;(II )设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为3312x t a b y t ⎧=+⎪⎨=+⎪⎩(t R ∈为参数),求,a b 的值. 22.(本小题满分10分)选修4-5:不等式选讲 已知函数(),f x x a =-其中 1.a >(I )当=2a 时,求不等式()44f x x ≥--的解集;(II )已知关于x 的不等式()()|22|2f x a f x +-≤的解集为{}|12x x ≤≤,求a 的值.2013高考数学辽宁卷(文科)解析 参考答案一.选择题 1. [答案]B[解析] 由已知{|22}B x x =-<<,所以{0,1}A B ⋂=,选B 。

2. [答案]B[解析]由已知111,(1)(1)22i Z i i i -+==-----+所以||2Z =3 . [答案]A[解析](3,4)AB =-,所以||5AB =,这样同方向的单位向量是134(,)555AB =- 4 . [答案]D[解析]设1(1)n a a n d dn m =+-=+,所以1P 正确;如果312n a n =-则满足已知,但2312n na n n =-并非递增所以2P 错;如果若1n a n =+,则满足已知,但11n a n n=+,是递减数列,所以3P 错;34n a nd dn m +=+,所以是递增数列,4P 正确5 . [答案]B[解析]第一、第二小组的频率分别是0.1、0.2,所以低于60分的频率是0.3,设班级人数为m ,则150.3m=,50m =。

6 . [答案]A[解析]边换角后约去sin B ,得1sin()2A C +=,所以1sin 2B =,但B 非最大角,所以6B π=。

7. [答案]D[解析]()3)1f x x -=+所以()()2f x f x +-=,因为lg 2,1lg 2为相反数,所以所求值为2.8 . [答案]A[解析]211s s i =+-的意义在于是对211i -求和。

因为21111()2111i i i =--+-,同时注意2i i =+,所以所求和为1111111[()()()]2133579-+-++-=499 . [答案]C[解析]若A 为直角,则根据A 、B 纵坐标相等,所以30b a -=;若B 为直角,则利用1OB AB K K =-得310b a a--=,所以选C 10 . [答案]C[解析]由球心作面ABC 的垂线,则垂足为BC 中点M 。

计算AM=52,由垂径定理,OM=6,所以半径R=22513()622+= 11 . [答案]B[解析]由余弦定理,AF=6,所以26814a =+=,又210c =,所以105147e == 12 . [答案]C[解析]()f x 顶点坐标为(2,44)a a +--,()g x 顶点坐标(2,412)a a --+,并且()f x 与()g x 的顶点都在对方的图象上,图象如图, A 、B 分别为两个二次函数顶点的纵坐标,所以A-B=(44)(412)16a a ----+=-[方法技巧](1)本题能找到顶点的特征就为解题找到了突破口。

(2)并不是A ,B 在同一个自变量取得。

二.填空题13. [答案]1616π-[解析]直观图是圆柱中去除正四棱柱。

V =222424π⋅-⋅=1616π- 14 . [答案]63[解析]13135,4a a a a +==由递增,131,4a a ==,所以2314a q a ==,2q =代入等比求和公式得663S = 15 .[答案]44[解析]||||6,||||6,FP PA FQ QA -=-=两式相加,所以并利用双曲线的定义得||||28FP FQ +=,所以周长为||||||44FP FQ PQ ++=16 .[答案]10[解析]设五个班级的数据分别为a b c d e <<<<。

相关文档
最新文档