第2章 晶体学基础(1)

合集下载

2-1晶体学基础--西安交大材料科学基础

2-1晶体学基础--西安交大材料科学基础

1
13
c
c1
(463)
O a a1
b1
b
图2-6 晶面指数的确定 1 Oa1=1/2a Ob1=1/2b Oc1=1/2c
14
在确定密勒指数时,还需规定几点: 在确定密勒指数时,还需规定几点: (1)该晶面不能通过原点,因为这时截距为零,其倒数 )该晶面不能通过原点,因为这时截距为零, 是无意义的, 是无意义的,这时应选择与该晶面平行但不过原点的面来 确定晶面指数或把坐标原点移到该面之外; 确定晶面指数或把坐标原点移到该面之外; (2)当晶面与某晶轴平行时,规定其截距为 ,则截距 )当晶面与某晶轴平行时,规定其截距为∞, 的倒数为零; 的倒数为零; ( 3)当晶面与坐标轴的负方向相交时,截距为负,该指数 当晶面与坐标轴的负方向相交时, 当晶面与坐标轴的负方向相交时 截距为负, 的负号最后标在数字的上方。 的负号最后标在数字的上方。 (4)由于任一晶面平移一个位置后仍然是等同的晶面, )由于任一晶面平移一个位置后仍然是等同的晶面, 因此指数相同而符号相反的晶面指数是可以通用的。 因此指数相同而符号相反的晶面指数是可以通用的。
相同,还要看晶面的面间距和原子密度是否相等 如果它们 相同 还要看晶面的面间距和原子密度是否相等.如果它们 还要看晶面的面间距和原子密度是否相等 不相等,尽管晶面指数的数字相等 尽管晶面指数的数字相等,也不是性质相同的等同 不相等 尽管晶面指数的数字相等 也不是性质相同的等同 晶面,而不属于同族晶面 而不属于同族晶面。 晶面 而不属于同族晶面。
1
9
●确定晶向指数时,坐标原点不一定非选在晶向上,若 确定晶向指数时,坐标原点不一定非选在晶向上, 原点不在待标晶向上, 原点不在待标晶向上,那就需要找出该晶向上 ( x 1 , y 1 , z 1 )和 ( x 2 , y 2 , z 2 ) 两点的坐标 标 (x 1 − x 2 ) ( y 1 − y 2 ) (z 1 − z 2 ) 并使之满足: 质整数 uvw ,并使之满足: ,然后将三个数化成互 然后将三个数化成互

晶体学基础(第二章)

晶体学基础(第二章)

2.1 面角守恒定律
双圈反射测角仪: 双圈反射测角仪:晶体位于二旋转 轴的交点。 轴的交点。。当观测镜 筒中出现“信号” 筒中出现“信号”时,我们便可以 在水平圈上得到一个读数ρ 极距角) 在水平圈上得到一个读数ρ(极距角), 并在竖圈上得到一个读数ϕ 方位角) 并在竖圈上得到一个读数ϕ(方位角), ρ和ϕ这两个数值犹如地球上的纬度 和经度,是该晶面的球面坐标 球面坐标。 和经度,是该晶面的球面坐标。
使用很简单,但精度较差,且不适于测量小晶体。 使用很简单,但精度较差,且不适于测量小晶体。
2.1 面角守恒定律
单圈反射测角仪, 单圈反射测角仪,精度可达 0.5′ l′-0.5′。但缺点是晶体安置 好之后只能测得一个晶带( 好之后只能测得一个晶带(指 晶棱相互平行的一组晶面) 晶棱相互平行的一组晶面)上 的面角数据。 的面角数据。若欲测另一晶 带上的面角时, 带上的面角时,必须另行安 置一次晶体。测量手续复杂。 置一次晶体。测量手续复杂。
2.1 面角守恒定律 晶体测量(goniometry)又称为测角法。 晶体测量(goniometry)又称为测角法。根据测角 (goniometry)又称为测角法 的数据,通过投影, 的数据,通过投影,可以绘制出晶体的理想形态 图及实际形态图。 图及实际形态图。在这一过程中还可以计算晶体 常数,确定晶面符号(见第四章) 同时, 常数,确定晶面符号(见第四章),同时,还可以 观察和研究晶面的细节(微形貌) 观察和研究晶面的细节(微形貌)。晶体测量是研 究晶体形态的一种最重要的基本方法。 究晶体形态的一种最重要的基本方法。 为了便于投影和运算, 为了便于投影和运算,一 般所测的角度不是晶面的 夹角, 夹角,而是晶面的法线 plane)夹角 (normals to plane)夹角 (晶面夹角的补角),称为 晶面夹角的补角) 面角(interfacial angle)。 面角(interfacial angle)。

上海交大-材料科学基础-第二章-1

上海交大-材料科学基础-第二章-1

晶面的位向
h : k : l cos : cos : cos
cos2 cos2 cos2 1 立方晶系
晶面间距
dhkl
a h
cos
b h
cos
c h
cos
d
2hkl [(
h a
)2
( h )2 b
( h )2 ] c
cos2
cos2
cos2
式中h、k、l为晶面指数(hkl),a、b、c为 点阵常数,α、β、γ为晶面法线方向与晶轴夹角。
每个原子周围的情况完全相同,则这种原子所组成的
网格称为简单晶格。
复式晶格:如果晶体由两种或两种以上原子组成,同 种原子各构成和格点相同的网格,网格的相对位移而 形成复式晶格。
cc
金刚石结构
2.1.2 晶向指数和晶面指数
晶列:布拉菲格子的格点可以看成是分布在一系列相 互平行的直线上,而无遗漏,这样直线称为晶列;
uvw 放入方括号内,写成[uvw],即为待标定晶向的晶 向指数。若为负值,则在指数上加一负号。(化整数, 列括号)
xa : yb : zc u :v : w abc
立方晶系中一些常用的晶向指数
例:如图在立方体中, a i , b j , c k
方法2
D是BC的中点,求BE,AD的晶列指数
第二章 固体结构
本章主要内容
❖ 2.1晶体学基础 ❖ 2.2金属的晶体结构 ❖ 2.3合金相结构 ❖ 2.4离子晶体结构 ❖ 2.5共价晶体结构
概述
❖ 物质按聚集状态分类: 气态、液态和固态; ❖ 按原子(或分子)排列特征分类:晶体和非晶体。
绝大部分陶瓷、少数高分子材料、金属及合金是晶体; 多数高分子材料、玻璃及结构复杂材料是非晶体。

晶体学基础(第二章)

晶体学基础(第二章)

晶体学基础(第二章)第二章晶体的投影2.1面角守恒定律2.2晶体的球面投影及其坐标2.3极射赤平投影和乌尔夫网2.4乌尔夫网的应用举例2.1面角守恒定律面角守恒定律(lawofcontancyofangle),斯丹诺于面角守恒定律(angle)斯丹诺定律(Steno)1669年提出亦称斯丹诺定律年提出,1669年提出,亦称斯丹诺定律(lawofSteno)。

同种晶体之间,对应晶面间的夹角恒等。

这里夹角一般指同种晶体之间,对应晶面间的夹角恒等。

的是面角面角(angle)即晶面法线之间的夹角。

的是面角(interfacialangle),即晶面法线之间的夹角。

晶面角守恒定律告诉我们:晶面角守恒定律告诉我们:将一种物质的一个晶体的m1面与另一晶体的相应面m1´平行放置,则这两个晶体其它的相平行放置,也互相平行,应晶面m2与m2´,…………,mn与mn´也互相平行,即同一种,物质的相应晶面间夹角不变。

物质的相应晶面间夹角不变。

2.1面角守恒定律2.1面角守恒定律成分和结构相同的晶体,成分和结构相同的晶体,常常因生长环境条件变化的影响,而形成不同的外形,影响,而形成不同的外形,或者偏离理想的形态而形成所谓的“歪晶”成所谓的“歪晶”。

2.1面角守恒定律面角守恒定理起源于晶体的格子构造。

面角守恒定理起源于晶体的格子构造。

因为同种晶体具有完全相同的格子构造,晶体具有完全相同的格子构造,格子构造中的同种面网构成晶体外形上的同种晶面。

种面网构成晶体外形上的同种晶面。

晶体生长过程中,晶面平行向外推移,程中,晶面平行向外推移,故不论晶面大小形态如何,对应晶面间的夹角恒定不变。

如何,对应晶面间的夹角恒定不变。

面角守恒定律的确立,使人们从晶形千变万化的面角守恒定律的确立,使人们从晶形千变万化的实际晶体中,找到了晶体外形上所固有的规律性,实际晶体中,找到了晶体外形上所固有的规律性,得以根据面角关系来恢复晶体的理想形状,得以根据面角关系来恢复晶体的理想形状,从而奠定了几何结晶学的基础,奠定了几何结晶学的基础,并促使人们进一步去探索决定这些规律的根本原因。

第二章 晶体结构

第二章 晶体结构

晶胞
• 有实在的具体质点所 组成
平行六面体
• 由不具有任何物理、化学 特性的几何点构成。
是指能够充分反映整个晶体结构特征的最小结构单位, 其形状大小与对应的单位平行六面体完全一致,并可用 晶胞参数来表征,其数值等同于对应的单位平行六面体 参数。

晶胞棱边长度a、b、c,其单位为nm ,棱间夹角α、β、 γ。这六个参数叫做点阵常数或晶格常数。
面网密度:面网上单位面积内结点的数目; 面网间距:任意两个相邻面网的垂直距离。
相互平行的面网的面网密度
和面网间距相等; 面网密度大的面网其面网间 距越大。

空间格子―――连接分布在三维空间的结点构成空 间格子。由三个不共面的行列就决定一个空间格子。
空间格子由一系列 平行叠放的平行六 面体构成

2-1 结晶学基础
一、空间点阵
1.晶体的基本概念 人们对晶体的认识,是从石英开始的。 人们把外形上具有规则的几何多面体形态的 固体称为晶体。 1912年劳厄(德国的物理学家)第一次成功 获得晶体对X射线的衍射线的图案,才使研究 深入到晶体的内部结构,才从本质上认识了 晶体,证实了晶体内部质点空间是按一定方 式有规律地周期性排列的。
第二章 晶体结构
第二章 晶体结构
1
结晶学基础 晶体化学基本原理 非金属单质晶体结构
2
3 4 5
无机化合物晶体结构
硅酸盐晶体结构
重点:重点为结晶学指数,晶体中质点的堆 积,氯化钠型结构,闪锌矿型结构,萤石型 (反萤石型)结构,钙钛矿型结构,鲍林规 则,硅酸盐晶体结构分类方法。 难点:晶体中质点的堆积,典型的晶体结构 分析。
• 结点分布在平行六面
体的顶角; •平行六面体的三组棱长 就是相应三组行列的结 点间距。

第2章 贵金属材料晶体学基础

第2章 贵金属材料晶体学基础

每个面心立方结构晶胞中实际只有 1/8×8+1/2 ×6=4 晶格常数只用晶胞的棱边长a一个数值表示,原 子间最小距离为两个原子中心的距离,等于原子的 直径d: d=√2/2a 面心立方结构n=4 致密度:K=nv/V K=n×原子球体体积/晶胞体积 = 4 ×(4/3πR3)/a3 =0.74=74%
c 密排六方结构
每个面心立方结构晶胞中实际只有: 1/6×12+1/2×2+3=6 晶格常数有2个,六方底面的边长a与上下底面的间 距c(即六方柱的高度),它们之比c/a称为密排六方 结构的轴比,理想轴比为1.633。 原子的直径d与a的关系为: d=a
K=nv/V =0.74=74% 配位数为12 最密排面为{0001}面 密排六方结构和面心立方结构的配位数 和致密度都相等,因为都为最紧密堆积, 从晶体化学来看还有很多相似的性质。
第2章 贵金属材料晶 体学基础
第1节晶体结构及晶体结构间隙
1 晶体 晶体是内部质点(原子、离子或分子)在三维 空间周期性地重复排列构成的固体物质 晶体具有自限性、均一性、各项异性、对称性、最 小内能性 (1) 晶体与非晶体 晶体 非晶体 内部构造 宏观外形 方向性 具有格子构造 具有规则的几何外 形 各向异性 不具格子构造 不具有规则的几 何外形 各向同性
1 固溶体 固溶体是原子溶入固体溶剂中所形成的均一的 结晶相。固溶体的一个特点是成分可以在一定范围 内连续变化,这种变化不引起原来溶剂金属的点阵 类型发生改变 固溶体 置换固溶体 间隙固溶体
(1)置换固溶体 溶质原子置换了溶剂结构中的一些溶剂原子
影响固溶体固溶度的因素: a 组员的晶体结构因素 b 原子尺寸因素 c 化学亲和力因素
(1)正常价化合物 一般有AB,A2B(AB2),A3B2三种类型,分 子式对应相同类型分子的离子化合物。

第2章 晶体学基础

第2章 晶体学基础

晶向指数的确定
建立坐标系,结点为原点, 1. 建立坐标系,结点为原点,三 棱为方向, 棱为方向,点阵常数为单位 ; 2. 在晶向上任两点的坐标 (x1,y1,z1) (x2,y2,z2)。(若 (x2,y2,z2)。 平移晶向或坐标, 平移晶向或坐标,让在第一点 在原点则下一步更简单) 在原点则下一步更简单); 3. 计算x2-x1 : y2-y1 : z2计算x2y2z2x2 z1 ; 化成最小、整数比u 4. 化成最小、整数比u:v:w ; 放在方括号[uvw] [uvw]中 5. 放在方括号[uvw]中,不加逗 号,负号记在上方 。
习 题
分别为3, , (1)截距 、s、t分别为 ,3,5 )截距r、 、 分别为 (2)1/r : 1/s : 1/t = 1/3 : 1/3 : 1/5 ) (3)最小公倍数 , )最小公倍数15, (4)于是,1/r,1/s,1/t分别 )于是, , , 分别 得到5, , , 乘15得到 ,5,3, 得到 因此,晶面指标为( 因此,晶面指标为(553)。 )。 c a b y
红线由两个结点的坐标之差确定
2.2.2 晶面及晶面指标
在点阵中由结点构成的平面称为晶面。 在点阵中由结点构成的平面称为晶面。 晶面 空间点阵划分为平面点阵的方式是多种多 样的. 不同的划法划出的晶面(点阵面 点阵面)的 样的 不同的划法划出的晶面 点阵面 的阵点密 度是不相同的. 意味着不同面上的作用力不相 是不相同的 所以给不同面以相应的指标(hkl),代表一 同. 所以给不同面以相应的指标 , 组平行的晶面。 组平行的晶面。
学习要点
⑴ ⑵ ⑶ (4) 晶体结构周期性与点阵。 晶体结构周期性与点阵。 7个晶系和14种Bravias空间格子。 个晶系和14种Bravias空间格子。 14 空间格子 晶胞,晶带,晶向,晶面,晶面间距,晶面夹角。 晶胞,晶带,晶向,晶面,晶面间距,晶面夹角。 倒易点阵

1-2 晶体学基础

1-2 晶体学基础

晶向指数的确定步骤:
4 i
1)以晶胞的某一阵点O为原点,过原点的 晶轴为坐标轴,以晶胞点阵矢量的长度 . 作为坐标轴的长度单位.
2)过原点O作一直线OP,使其平行于待定的晶向。 3)在直线OP上任取一点P,求出P在三个坐标轴 上的坐标值。 4) 将这3个坐标值化为最小整数u,v,w,加上方 括号,[uvw]即为待定晶向的晶向指数。
为便于描述空间点阵的图形,可用许多平行 的直线将所有阵点连接起来,于是就构成一个 三维几何格架,称为空间格子,也叫晶格。
导出空间格子的方法:
首先在晶体结构中找出相当点,再将相当点按照 一定的规律连接起来就形成了空间格子。
相当点(两个条件:1、性质相同,2、周围环境相同。)
5.628Ǻ
2.8148Ǻ
1 11 1 1 1
111 1 1 1
晶向族:由晶体学上的等价晶向构成
晶面指数
4 i
三、晶面指数 晶体内部构造中由物质质点所组成的平面 称为晶面, 用来表征晶面的一组数字称为晶面指数。
n i
晶面指数的确定步骤 1) 建立坐标系,方法同晶向指数,但坐标原点 不能在待确定指数的晶面上。 2) 求待定晶面在三个坐标上的截距。 若晶面与某轴平行,则在此轴上截距为∞; 若晶面与某轴负方向相截,则在此轴上 截距为一负值 3) 取截距的倒数,并化成互质的整数比, 加上圆括号,记为(hkl),即为晶面指数。
● ●
结点:空间格子中的等同点。
行列:结点在直线上的排列。
行列中相邻结点间的距离称结点间距。同行列方向上结
点间距相等;不同方向的行列,结点间距一般不等。

面网:结点在平面上的分布。
单位面积内结点的数目称面网密度;相邻面网间的垂直 距离称面网间距。 相互平行的面网间面网密度和面网间距相等;否则一般 不等且面网密度大的其面网间距亦大。

材料科学基础第二章

材料科学基础第二章


y

[111]
x
[111]

例:画出晶向
[112 ]
2.立方晶系晶面指数
晶面指数的确定方法
(a)建立坐标系,结点为原点, 三棱为方向,点阵常数为单位 (原点在标定面以外,可以采 用平移法); (b)晶面在三个坐标上的截距a1 a2 a3 ; (c)计算其倒数 b1 b2 b3 ; (d)化成最小、整数比h:k:l ; 放在圆方括号(hkl),不加逗号, 负号记在上方 。
3.六方晶系晶面和晶向指数
三指数表示六方晶系晶面和晶向的缺点:晶体学上等价的 晶面和晶向不具有类似的指数。 例:
晶面指数

(11 0)
(100)
[010] [100]
从晶面指数上不能明确表示等同晶面,为了克服这一缺点, 采用a1、a2、a3及c四个晶轴, a1、a2、a3之间的夹角均 为120º ,晶面指数以(hkil)表示。 根据立体几何,在三维空间中独立的坐标轴不会超过三 个可证明 : i= - (h+k) 或 h+k+i=0
六方晶系
d hkl
h k l a b c
2 2 2
d hkl
a h2 k 2 l 2
1 l c
2
4 h 2 hk k 2 3 a2
注:以上公式是针对简单晶胞而言的,如为复杂晶胞, 例如体心、面心,在计算时应考虑晶面层数增加的影 响,如体心立方、面心立方、上下底(001)之间还有 一层同类型晶面,实际
[1 00 ]

[0 1 0]

[010]
[1 00]
y
[100]
x

[00 1]

材料科学基础_武汉理工出版(部分习题答案)[1]

材料科学基础_武汉理工出版(部分习题答案)[1]

第一章 结晶学基础 第二章 晶体结构与晶体中的缺陷1 名词解释:配位数与配位体,同质多晶、类质同晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。

晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、离子极化、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应. 答:配位数:晶体结构中与一个离子直接相邻的异号离子数。

配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。

同质多晶:同一化学组成在不同外界条件下(温度、压力、pH 值等),结晶成为两种以上不同结构晶体的现象。

多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。

位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。

重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。

晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。

配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论图2-1 MgO 晶体中不同晶面的氧离子排布示意图2 面排列密度的定义为:在平面上球体所占的面积分数。

(a )画出MgO (NaCl 型)晶体(111)、(110)和(100)晶面上的原子排布图; (b )计算这三个晶面的面排列密度。

解:MgO 晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。

(a )(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。

(b )在面心立方紧密堆积的单位晶胞中,r a 220=(111)面:面排列密度= ()[]907.032/2/2/34/222==∙ππr r (110)面:面排列密度=()[]555.024/224/22==∙ππr r r(100)面:面排列密度=()785.04/22/222==⎥⎦⎤⎢⎣⎡ππr r3、已知Mg 2+半径为0.072nm ,O 2-半径为0.140nm ,计算MgO 晶体结构的堆积系数与密度。

晶体学基础-晶向与晶面指数B

晶体学基础-晶向与晶面指数B
所有结果(不同空间方位)。 {112} {123}
22:16
晶面 24
单晶硅绒面:碱溶液温度较低时,(100)面比 (111)面腐蚀速率高数十倍以上。
在(100)表面形成许多密布的表面为(111)面的金字塔结构
单晶硅是制造半导体器件、太阳能电池等的基材。
22:16
25
第二章 材料的结构 Material structure
解出: u:v:w=
②由晶向[u1 v1 w1]和晶向[u2 v2 w2]求晶面: hu1+kv1+lw1 = 0 hu2+kv2+lw2 = 0
h:k:l=
22:16
46
③由同一晶带的两个晶面 (h1 k1 l1)和(h2 k2 l2)
求此晶带上另一晶面指数.
[001]
由: h1u+k1v+l1w = 0 h2u+k2v+l2w = 0
立方晶系中有:
[001]
晶面(hkl)和其晶带轴[uvw]的 指数之间满足关系:
凡满足此关系的晶面都属于以[u v w]为晶带轴的晶带,
此关系式也称作晶带定律(魏斯定律(Weiss zone law) 。
22:16
43
22:16
44
晶带定律
•德国学者魏斯(Christian Samuel Weiss)
有:(h1+h2)u+(k1+k2)v+(l1+l2)w = 0 即: (h1+h2),(k1+k2),(l1+l2)
为此晶带上另一可能晶面的晶面指数。
22:16
47
三个晶面共线的指数条件:
若上式的uvw有非零解,要求:
④三个晶向共面的条件 [u1v1w1]、[u2v2w2]、[u3v3w3] 共面(hkl).
晶向族:任意交换指数的位置和 改变符号后的所有指数。(原因??)

晶体学基础第二章-晶体的对称分类与布拉菲点阵

晶体学基础第二章-晶体的对称分类与布拉菲点阵

2.晶系(crystal system):7个晶系
三斜晶系:只有 1 或 1
单斜晶系:2 和 m 均不多于一个 正交晶系(斜方晶系):2 和 m 的总数不少于3个
三方晶系:唯一的一个高次轴是 3 或 3 四方晶系:唯一的一个高次轴是 4 或 4 六方晶系:唯一的一个高次轴是 6 或 6
立方晶系(等轴晶系):有4个 3
32种点群描述的晶体对称性对应的只有14种布拉菲点阵分为7个晶系沿晶体的对称轴或对称面的法向在一般情况下它们构成斜坐标系三个晶轴之间的夹角二晶体的14种布拉菲点阵布拉菲格子
2.4 晶体的对称分类与布拉菲点阵
一、晶体的对称分类
按晶体的对称性特征晶体分类
1.晶族(crystal category):3个晶族 低级晶族:无高次轴 中级晶族:只有一个高次轴 高级晶族:高次轴多于一个
3.晶类: 属于同一点群的晶体。32个晶类。
二、晶体的14种布拉菲点阵(布拉菲格子)
—— 32种点群描述的晶体对称性 —— 对应的只有14种布拉菲点阵 —— 分为7个晶系

—— 单胞的三个基矢
沿晶体的对称轴或对称面
的法向,在一般情况下,它们构成斜坐标系
三个晶轴之间的夹角
7大晶系的形成

1.晶体学基础

1.晶体学基础

原子可在 顶角、线 、面、内 部。
晶胞参数:
平行六面体的三根棱长a、b、c及其夹角α、β、γ是表示它本 身的形状、大小的一组参数,称为点阵参数(晶胞参数)
依照晶胞参数之间的关系,所有晶体的空间点阵可以划分为7个晶系:
晶 系 立方晶系 四方晶系 a=b=c a=b≠c 格子常数特点 α=β=γ=90° α=β=γ=90°
晶面族指数:用晶面族中 某个最简便的晶面指数填 在大括号{ }内作为该晶面
族的指数。
晶面间距
一般是晶面指数数值越小,其面间距较大,并且其阵点密度较大
a
b
(100)
(110) (210) (4-10) (130)
晶面间距的计算
一组平行晶面的晶面间距dhkl与晶面指数和晶格常数a、b、c有下列关系:
(2)晶胞
ClNa+
空间格子+基元
●晶胞:是指晶体结构中的平行六面体单位,其形状大小与对应的 空间格子中的平行六面体一致。 ●晶胞:是描述晶体结构的基本组成单位。 ●晶胞:能够反映整个晶体结构特征的最小结构单元。
周期性、对称 性
晶胞的选取不是唯一的!
晶胞的选取原则: 1)充分表示出晶体的对称性 2)三条棱边尽量相等 3)夹角尽量为直角 4)单元体积尽可能小
晶体结构=空间点阵+结构基元
实际晶体——质点体积忽略——空间点阵——阵点连线——晶格(空间格子)
等同点: 各阵点的周围 环境完全相同, 周围阵点排布 及取向完全相 同。 A位臵
B位臵
空间格子有下列几种要素存在:
面网
平行六面体
晶面:可将晶体点阵在任意方向上分解 为相互平行的节点平面。 晶面族:对称性高的晶体中,不平行的 两组以上的晶面,它们的原子排列状况 是相同的,这些晶面构成一个晶面族。 晶向:也可将晶体点阵在任意方向上分 解为相互平行的节点直线组,质点等距 离的分布在直线上。 晶向族:晶体中原子排列周期相同的所 有晶向为一个晶向族。

晶体学基础知识点小节

晶体学基础知识点小节

第一章晶体与非晶体★相当点(两个条件:1、性质相同,2、周围环境相同。

)★空间格子的要素:结点、行列、面网★晶体的基本性质:自限性: 晶体能够自发地生长成规则的几何多面体形态。

均一性:同一晶体的不同部分物理化学性质完全相同。

晶体是绝对均一性,非晶体是统计的、平均近似均一性。

异向性:同一晶体不同方向具有不同的物理性质。

例如:蓝晶石的不同方向上硬度不同。

对称性:同一晶体中,晶体形态相同的几个部分(或物理性质相同的几个部分)有规律地重复出现。

最小内能性:晶体与同种物质的非晶体相比,内能最小。

稳定性:晶体比非晶体稳定。

■本章重点总结:本章包括3组重要的基本概念:1) 晶体、格子构造、空间格子、相当点;它们之间的关系。

2) 结点、行列、面网、平行六面体; 结点间距、面网间距与面网密度的关系.3) 晶体的基本性质:自限性、均一性、异向性、对称性、最小内能、稳定性,并解释为什么。

第二章晶体生长简介2.1 晶体形成的方式★液-固结晶过程:⑴溶液结晶: ①降温法②蒸发溶剂法③沉淀反应法⑵熔融结晶: ①熔融提拉②干锅沉降③激光熔铸④区域熔融★固-固结晶过程:①同质多相转变②晶界迁移结晶③固相反应结晶④重结晶⑤脱玻化2.2 晶核的形成●思考:怎么理解在晶核很小时表面能大于体自由能,而当晶核长大后表面能小于体自由能?因为成核过程有一个势垒:能越过这个势垒的就可以进行晶体生长了,否则不行。

★均匀成核:在体系内任何部位成核率是相等的。

★非均匀成核:在体系的某些部位(杂质、容器壁)的成核率高于另一些部位。

●思考:为什么在杂质、容器壁上容易成核?为什么人工合成晶体要放籽晶?2.3 晶体生长★层生长理论模型(科塞尔理论模型)层生长理论的中心思想是:晶体生长过程是晶面层层外推的过程。

★螺旋生长理论模型(BCF理论模型)●思考:这两个模型有什么联系与区别?联系:都是层层外推生长;区别:生长新的一层的成核机理不同。

●思考:有什么现象可证明这两个生长模型?环状构造、砂钟构造、晶面的层状阶梯、螺旋纹2.4 晶面发育规律★★布拉维法则(law of Bravais):晶体上的实际晶面往往平行于面网密度大的面网。

晶体学基础

晶体学基础

0.25A-1 020 120 220
b (110)
010 110 210
(100) b* H110
H 210
(210)
100
c
a
c* 000
a*
200
晶体点阵
倒易点阵
立方晶系晶体及其倒易点阵
第三章 X射线衍射方向
自伦琴发出X射线后,许多物理学家都在积极地研究和探索,1905年 和1909年,巴克拉曾先后发现X射线的偏振现象,但对X射线究竟是一 种电磁波还是微粒辐射,仍不清楚。1912年德国物理学家劳厄发现了 X射线通过晶体时产生衍射现象,证明了X射线的波动性和晶体内部结 构的周期性,发表了《X射线的干涉现象》一文。
cosa0 H cos0 K
衍射线
1' X
1
显然,当X射线照射二 维原子网时,X、Y晶轴 方向上的那些同轴的圆 锥面上的衍射线要能够 加强,只有同时满足劳 厄第一和第二方程,才 能发生衍射。
衍射线只能出现在沿X晶轴方向及Y晶轴方向的两系列 圆锥簇的交线上。如果照相的底片平行于原子网,圆 锥在底片上的迹线为双曲线。每对双曲线的交点即为 衍射斑点,也相当于圆锥的交线在底片上的投影。不 同的H,K值,可得到不同的斑点。
劳厄的文章发表不久,就引起英国布拉格父子的关注,他们都是X射 线微粒论者,年轻的小布拉格经过反复研究,成功地解释了劳厄的实 验事实。他以更简结的方式,清楚地解释了X射线晶体衍射的形成, 并提出著名的布拉格公式:nX=2dsino这一结果不仅证明了小布拉格的 解释的正确性,更重要的是证明了能够用X射线来获取关于晶体结构 的信息。老布拉格则于1913年元月设计出第一台X射线分光计,并利 用这台仪器,发现了特征X射线。小布拉格在用特征X射线与其父亲合 作,成功地测定出了金刚石的晶体结构,并用劳厄法进行了验证。金 刚石结构的测定完美地说明了化学家长期以来认为的碳原子的四个键 按正四面体形状排列的结论。这对尚处于新生阶段的X射线晶体学来 说用于分析晶体结构的有效性,使其开始为物理学家和化学家普遍接 受。

晶体学基础第二章-晶体的32种点群及其符号

晶体学基础第二章-晶体的32种点群及其符号

Dnh群

Dn群加上与n重轴垂直且过二重轴的反演面,
共4个
群加上通过n重轴及两根二重轴角平分线
的反演面,
共2个
群只包含旋转反演轴的点群。 其中
共2个
群 —— 立方点群, 含有48个对称操作 群 —— 正四面体点群, 含有24个对称操作 群 —— 立方点群 的24个纯转动操作 群 —— 正四面体点群 的12个纯转动操作

群加上中心反演
晶体的宏观对称只有32个不同类型
晶体点群的国际符号符号:
晶体的对称元素间至少有一点重合。
晶体的全部对称元素对应的对称操作的集合——点群。 晶体对称元素组合的推导:
A类组合:高次轴(n > 2)不多于1个 B类组合论证明由10种对称素只能组成32种不同的点群 —— 晶体的宏观对称只有32个不同类型
晶体点群的符号: 国际(Hermann-Mauguin)符号 熊夫利(Schoenflies)符号 C,D,S,T,O i,s,v,h,d
晶体点群的熊夫利符号:
—— 不动操作,只含一个元素,表示没有任何对称性的晶体
回转群
只包含一个旋转轴的点群 —— 下标表示是几重旋转轴
—— 4个
双面群
包含一个n重旋转轴和n个与之对应的二重轴的点群 —— 4个

群加上中心反演

群加上反演面

群加上与n重轴垂直的反演面,共4个

群加上含有n重轴的反演面,共4个
任何晶体的宏观对称性只能有以下十种对称元素23晶体的32种点群及其符号一晶体对称元素的组合晶体的对称元素间至少有一点重合晶体的全部对称元素对应的对称操作的集合点群晶体对称元素组合的推导
2.3 晶体的32种点群及其符号

晶体学基础专题知识

晶体学基础专题知识

2.3 极射赤平投影和乌尔夫网
直立小园旳投影为一段圆弧。其位置和大小取决 于小园旳位置和大小。
2.3 极射赤平投影和乌尔夫网 水平小园投影仍为一种园,并以基园旳圆心为圆心。
2.3 极射赤平投影和乌尔夫网 倾斜小园旳投影为一小圆。其位置决定于小园旳位置。
2.3 极射赤平投影和乌尔夫网 ②和投影面垂直旳大圆旳极射投影是过基圆圆心旳直线。
2.1 面角守恒定律
晶面角守恒定律告诉我们:将一种物质旳一种晶体旳m1面 与另一晶体旳相应面m1´平行放置,则这两个晶体其他旳相 应晶面m2与m2´,…………,mn与mn´也相互平行,即同一种
物质旳相应晶面间夹角不变。
2.1 面角守恒定律
成份和构造相同旳晶体,经常因生长环境条件变化旳 影响,而形成不同旳外形,或者偏离理想旳形态而形 成所谓旳“歪晶”。
2.3 极射赤平投影和乌尔夫网 将基园拿出来,根据倾斜大园和直立小园投影旳成果, 并标示出合适旳角度间隔,就是著名旳乌尔夫网(吴 氏网)。
乌尔夫网是极射投影旳量度工具。
2.3 极射赤平投影和乌尔夫网
基园旳刻度可用来度量方位角 ,旋转 一周为360; 直径上旳刻度能够用来度量极距角, 从圆心为=0,到圆周为=90;
在球面坐标网中,与纬度相当旳是极距角,与经 度相当旳是方位角。如图所示。
2.2 晶体旳球面投影及其坐标
① 极距角():投影轴与晶面法线或直线间旳夹角,也 就是北极N与球面上投影点之间旳弧度,故称极距角。 极距角都是从北极N点开始度量,从投影球N极到S极, 共分180°。
② 方位角():是包括晶面法线或直线要素旳子午面与 投影球零子午面之间旳夹角。也就是球面上投影点所在 旳子午线与零子午线之间旳水平弧度,故称方位角。方 位角都是从零度子午线(=0,一般在投影球最右侧) 开始顺时针方向计角旳,投影球一周旳方位角共分为 360°。 有了球面坐标网后来,只要懂得投影点旳球面坐标值, 即能够拟定投影点在球面上旳位置。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章晶体学基础1、晶体结构与空间点阵2、晶向、晶面及指标3、晶面间距4、晶面族5、倒易空间以及倒易点阵教学目标通过本章学习,掌握表达晶体周期性结构与它的点阵的各种概念;掌握晶面指数与晶向指数的标定,晶面间距与晶面夹角的表达;倒易点阵。

学习要点⑴⑵⑶(4)晶体结构周期性与点阵。

7个晶系和14种Bravias空间格子。

晶胞,晶带,晶向,晶面,晶面间距,晶面夹角。

倒易点阵学时安排学时----- 2学时2.1、晶体结构与空间点阵2.1.1空间点阵(Space Lattice)晶体结构的几何特征是其结构基元(原子、离子、分子或其它原子集团)一定周期性的排列。

通常将结构基元看成一个相应的几何点,而不考虑实际物质内容。

这样就可以将晶体结构抽象成一组无限多个作周期性排列的几何点。

这种从晶体结构抽象出来的,描述结构基元空间分布周期性的几何点,称为晶体的空间点阵。

几何点为阵点。

结构基元在晶体的点阵结构中每个阵点所代表的具体内容,包括原子或分子的种类和数量及其在空间按一定方式排列的结构,称为晶体的结构基元。

结构基元是指重复周期中的具体内容。

点阵点点阵点是代表结构基元在空间重复排列方式的抽象的点。

如果在晶体点阵中各点阵点位置上,按同一种方式安置结构基元,就得整个晶体的结构。

所以可简单地将晶体结构示意表示为:晶体结构= 点阵+ 结构基元2.1.2 基本矢量与晶胞一个结点在空间三个方向上,以a , b , c 重复出现即可建立空间点阵。

重复周期的矢量a ,b ,c 称为点阵的基本矢量。

由基本矢量构成的平行六面体称为点阵的单位晶胞。

布拉菲晶胞同一个点阵可以由不同的平行六面体晶胞叠成。

即可以任意选择不同的坐标系与基本矢量来表示。

为了表达最简单,应该选择最理想、最适当的基本矢量作为坐标系统。

即是以结点作为坐标原点,(1)选取基本矢量长度相等的数目最多、(2)其夹角为直角的数目最多,且(3)晶胞体积最小。

这样的基本矢量构成的晶胞称为布拉菲(BRAVAIS)晶胞。

每一个点阵只有一个最理想的晶胞即布拉菲晶胞。

2.1.3布拉菲点阵法国晶体学家A. Bravais研究表明,按照上述三原则选取的晶胞只有14种,称为14种布拉菲点阵。

14种布拉菲点阵分属7个晶系中。

14 种空间点阵形式按晶胞中阵点位置的不同可将14种布拉菲点阵分为四类:·简单(P)·体心(I)·面心(F)·底心(C)阵点坐标的表示方法:以晶胞的任意顶点为坐标原点,以与原点相交的三个棱边为坐标轴,分别用点阵周期(a, b, c)为度量单位。

晶胞中的原子计数在晶胞不同位置的原子由不同数目的晶胞分享:····顶角原子:1/8 棱上原子:1/4 面上原子:1/2 晶胞内部:12.1.4 点阵常数平行六面体的三个棱长a、b、c和及其夹角α、β、γ,可决定平行六面体尺寸和形状,这六个量亦称为点阵常数。

按点阵参数可将晶体点阵分为七个晶系。

2.2、晶向、晶面及晶向、晶面指标《晶体学中阵点平面与阵点直线的空间取向分别用晶面指数与晶向指数来表示。

》2.2.1晶向与晶向指标任意两结点的结点列称为晶向。

与此晶向相对应,一定有一组相互平行而且具有同一重复周期的结点列。

晶向的表示方法:取其中通过原点的一根结点列,求该列最近原点的结点的指数,u, v, w,并用方括号标记[uvw]。

或者:(1)在一族相互平行的阵点直线中引出过坐标原点的阵点直线。

(2)在该直线上任取一点,量出坐标,并用点阵周期a, b, c表示。

(3)将三个坐标值用同一个数乘或除,划归互质整数,并加方括号。

晶向指数的确定1. 建立坐标系,结点为原点,三棱为方向,点阵常数为单位;2. 在晶向上任两点的坐标(x1,y1,z1) (x2,y2,z2)。

(若平移晶向或坐标,让在第一点在原点则下一步更简单);z1 ;4. 化成最小、整数比u:v:w ;5. 放在方括号[uvw]中,不加逗号,负号记在上方。

红线由两个结点的坐标之差确定国际上通用的是密勒(Miller)指数,即用三个数字来表示晶面指数。

标定方法:· (1)在一组相互平行的晶面中任选一个晶面,量出它在三个坐标轴上的截距,并用点阵周期a,b,c来度量。

假设截距为r,s,t。

· (2)取截距的倒数1/r,1/s,1/t。

· (3)将这些倒数乘以分母的最小公倍数,把他们化为三个简单整数h,k,l,,并用圆括号括起来。

使h∶k∶l = 1/r∶1/s∶1/t。

则(h k l)就是待标晶面的晶面指数。

cba晶面指数特征:1,所有相互平行的晶面,其晶面指数相同。

因此,晶面指数所代表的不仅仅是某一晶面,而是着一组相互平行的晶面。

2,晶面指数中h、k、l是互质的整数。

3,最靠近原点的晶面与X、Y、Z坐标轴的截距为a/h、b/k、c/l。

即与原点位置无关;每一指数对应一组平行的晶面。

立方晶系几组晶面及其晶面指标。

(100)晶面表示晶面与a 轴相截与b 轴、c 轴平行; (110)晶面表示与a 和b 轴相截,与c 轴平行; (111)晶面则与a 、b 、c 轴相截,截距之比为1:1:1(100) (110) (111) 在点阵中的取向六方晶系的晶面和晶向指数表示方法与其它晶系不同。

六方体系的晶面指数轴定向的方法确定面指数,六个柱面的面指数为:(100)、(010)、(1(-)10)、(1(-)00)、(01(-)0)、(11(-)0)。

但是,这种方法所确定的晶面指数不能显示出六次对称及等同面的特征。

因此,对六方晶系往往采用四轴定向方法,称为密勒-布拉菲指数。

选取四个坐标轴,其中a1、a2、a3在同一水平面上,之间的夹角为120°,c轴与这个平面垂直。

这样求出的晶面指数由四个数字组成,用(hkil)表示。

其中前三个数字存在如下关系:h+k=-i用四轴定向方法求出的六个柱面的晶面指数为:(101(-)0)、(011(-)0)、(1(-)100)、(1(-)010)、(01(-)10)、(11(-)00)。

这样的晶面指数可以明显地显示出六方对称及等同晶面的特征。

2.3、晶面间距d (hkl)一组平行晶面(hkl)中两个相邻平面间的垂直距离称为晶面间距,用d hkl表示。

它与晶胞参数和晶面指标有关。

晶面与晶面间距是晶体X射线衍射结构分析所围绕的内容。

晶面指标越高,面间距越小,晶面上粒子的阵点密度也越小.只有晶面指数低[即(hkl)小], d hkl大,阵点密度大的晶面(结构基元间距离近,作用能大,稳定)才能被保留下来.属于同一晶面族的晶面具有相同的晶面间距,在晶体对X射线产生衍射时可以看成等效晶面。

---多重性因数。

2.5、倒易点阵(教学难点)2.5.1 为什么要引入倒易点阵概念晶面的两个基本性质:1,斜度(Slope)或者取向–表征晶面的方向2,面间距(Interplanar distances)–表征晶面间的堆积程度如果能利用一个矢量,把晶面的斜度和面间距都表示出来,对晶面的研究就会简化,何乐不为?引入倒易点阵、倒易矢量·(1)简化对晶面的表达;·(2)更容易表达衍射原理;-- 第三章具体介绍·(3)与实验测量结果直接关联。

实验中得到的衍射图谱是“某些”倒易阵点的投影。

-- 第三章具体介绍2.5.2 倒易点阵的概念、表达形式倒易点阵是在晶体点阵的基础上按一定对应关系建立起来的空间几何图形,是晶体点阵的另一种表达形式。

为了区别有时把晶体点阵空间称为正空间。

倒易空间中的结点称为倒易点。

2、倒易点阵的本质倒易点阵是晶体结构周期性在傅立叶空间中的数学抽象。

如果把晶体点阵本身理解为周期函数,则倒易点阵就是晶体点阵的傅立叶变换,反之晶体点阵就是倒易点阵的傅立叶逆变换。

所以,倒易点阵只是晶体点阵在不同空间(波矢空间)的反映。

2.5.3倒易矢量1、定义:从倒易点阵原点向任一倒易阵点所连接的矢量叫倒易矢量,表示为:r* = ha* + kb* + lc*倒易阵点用它所代表的晶面指数标定。

b(110)(220) (210)acOCA BbacO CMBba Ar* = ha* + kb* + l c*,则ha * + kb* + lc * )ha * kb lc *倒易点阵总结·晶体点阵中二维阵点晶面在倒易点阵中对应一个点----倒易点。

·晶面间距和取向两个参量在倒易点阵中只用一个倒易矢量就能表达。

·我们所观察到的衍射花样(或者衍射图谱)实际上是满足衍射条件的倒易阵点的投影。

相关文档
最新文档