2018年江苏省扬州市解析版

合集下载

江苏省扬州市2018年中考物理试卷(解析版)(完整资料).doc

江苏省扬州市2018年中考物理试卷(解析版)(完整资料).doc

【最新整理,下载后即可编辑】江苏省扬州市2018年中考物理试卷(解析版)一.选择题1.下列用做功的方式使冰熔化的是()A.太阳照射B.相互摩擦C.浸入热水D.炉火加热【分析】知道改变物体内能的方式有两种:做功和热传递,热传递过程是能量的转移过程,而做功过程是能量的转化过程。

【解答】解:太阳辐射、浸入热水、炉火加热,都是通过热传递的方式改变冰的内能的;相互摩擦时克服摩擦做功,使冰的内能变大,故B正确。

故选:B。

【点评】此题是考查对做功和热传递改变物体内能的辨别,注意区分其实质,一个是能量的转化,一个是能量的转移。

2. 下列有关人体物理量估测正确的是()A.成人的体重约50N B.中学生步行的速度约10m/sC.人体安全电压220V D.中学生正常上楼的功率约120W解:A、中学生的体重在500N左右,成年人的体重比中学生大一些,在650N左右。

故A不符合实际;B、中学生正常步行的速度在左右。

故B不符合实际;C、经验证明,只有不高于36V的电压对人体才是安全的。

故不符合实际;D、中学生的体重在500N左右,一层楼的高度在3.5m左右,中学生上一层楼的时间在15s左右,爬楼功率在左右。

故D符合实际。

故选:D。

3. 太阳光通过树叶间的空隙,在地上形成许多圆形的光斑,这些圆形光斑是()A.树叶的虚像B.树叶的实像C.太阳的虚像D.太阳的实像【分析】光沿直线传播现象,知道影子的形成、日月食的形成、小孔成像都是光沿直线传播形成的。

【解答】解:树阴下的地面上出现的圆形光斑,是太阳光通过浓密的树叶中的小孔所成的太阳的像,是实像,是由光的直线传播形成的。

故选:D。

【点评】本题主要考查学生利用光学知识解释生活中常见的物理现象,此题与实际生活联系密切,体现了生活处处是物理的理念。

4. 平面镜成像实验中,以下说法正确的是()A.用光屏可以呈现虚像B.用玻璃板代替平面镜便于确定像的位置C.平面镜所成像的大小与物到平面镜的距离有关D.平面镜所成像的大小与平面镜的大小有关【分析】(1)实像能用光屏承接,虚像不能用光屏承接。

2018年初中数学中考扬州试题解析

2018年初中数学中考扬州试题解析

江苏省扬州市2018年中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项符合题目要求的,请根据正确选项前的字母代号填涂在答题卡相应位置上)..4抛一枚硬币正面朝上的概率为的概率为这一事件发生的频率稳定在4.(3分)(2018•扬州)某几何体的三视图如图所示,则这个几何体是()B...7.(3分)(2018•扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()BAC=BAD=×8.(3分)(2018•扬州)方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象3..的图象交点的横坐的图象交点的横坐标,x=+2=2=4x=+2=2=3x=+2=2=2y=<<.二、填空题((本大题共10小题,每小题3分,共30分,不需要写出解决过程,请把答案直接填在答题卡相应位置上)9.(3分)(2018•扬州)据了解,截止2018年5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为 4.5×105.10.(3分)(2018•扬州)分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).11.(3分)(2018•扬州)在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=400.P==40012.(3分)(2018•扬州)为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有1200条鱼.∴有标记的鱼占13.(3分)(2018•扬州)在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=6.ABC==0.8BD=14.(3分)(2018•扬州)如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为30.15.(3分)(2018•扬州)如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则的长为5π.l=来求的长.的长为=516.(3分)(2018•扬州)已知关于x的方程的解是负数,则n的取值范围为n<2且n≠.,求出,的方程﹣,..﹣17.(3分)(2018•扬州)矩形的两邻边长的差为2,对角线长为4,则矩形的面积为6.或﹣另一边为:﹣)﹣18.(3分)(2018•扬州)如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.××OM=××,MH==×=,EM+FN=故答案为:.三、解答题(本大题共10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)(2018•扬州)(1)计算:;(2)先化简,再求值:(x+1)(2x﹣1)﹣(x﹣3)2,其中x=﹣2.×+2;20.(8分)(2018•扬州)已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.,所以,方程组的解是,,,<21.(8分)(2018•扬州)端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转装盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得20元购物券,最多可得80元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.=.22.(8分)(2018•扬州)为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.知,小明是甲组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.(23.(10分)(2018•扬州)如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.24.(10分)(2018•扬州)某校九(1)、九(2)两班的班长交流了为四川安雅地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.人,即可得方程:﹣﹣=825.(10分)(2018•扬州)如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.ADB=,∴===5ABE=,∴BE===,=,=.26.(10分)(2018•扬州)如图,抛物线y=x2﹣2x﹣8交y轴于点A,交x轴正半轴于点B.(1)求直线AB对应的函数关系式;(2)有一宽度为1的直尺平行于x轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.)分别代入解析式得解得,,即<,即27.(12分)(2018•扬州)如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.,即x xx x=),x=时,取得最大值,最大值为≤y=+y=或的长为或或的长为或或的长为或28.(12分)(2018•扬州)如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n两个量之间的同一关系.(1)根据劳格数的定义,填空:d(10)=1,d(10﹣2)=﹣2;(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n).根据运算性质,填空:=3(a为正数),若d(2)=0.3010,则d(4)=0.6020,d(5)=0.6990,d(0.08)=﹣1.097;(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说)即可求得)=3。

【真题】2018年江苏省扬州市中考数学试卷含答案解析Word版.docx

【真题】2018年江苏省扬州市中考数学试卷含答案解析Word版.docx

2018 年中考试题2018 年江苏省扬州市中考数学试卷一、选择题(本大题共有8 小题,每小题 3 分,共 24 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣ 5 的倒数是()A.﹣B.C.5 D.﹣ 52.(3分)使有意义的 x 的取值范围是()A.x>3B.x<3 C. x≥ 3D.x≠33.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3 分)下列说法正确的是()A.一组数据 2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126 分,130 分,136 分,则小明这三次成绩的平均数是131 分D.某日最高气温是7℃,最低气温是﹣ 2℃,则改日气温的极差是5℃5.(3 分)已知点A(x1, 3),B(x2, 6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x 1<x2<0B.x1< 0< x2. 2<x1<0D.x2<0<x1C x6.(3 分)在平面直角坐标系的第二象限内有一点M,点 M 到 x 轴的距离为 3,到 y 轴的距离为 4,则点 M 的坐标是()A.(3,﹣ 4) B.(4,﹣ 3)C.(﹣ 4, 3)D.(﹣ 3,4)2018 年中考试题7.(3 分)在 Rt△ ABC中,∠ ACB=90°,CD⊥ AB 于 D,CE平分∠ ACD交 AB 于 E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC8.(3 分)如图,点 A 在线段 BD 上,在 BD 的同侧做等腰 Rt△ABC和等腰 Rt△ADE,CD与 BE、AE 分别交于点 P, M.对于下列结论:①△ BAE∽△ CAD;② MP?MD=MA?ME;③ 2CB2=CP?CM.其中正确的是()A.①②③B.①C.①②D.②③二、填空题(本大题共有10 小题,每小题 3 分,共 30 分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据 0.00077 用科学记数法表示为.10.( 3 分)因式分解: 18﹣2x2=.11.( 3 分)有 4 根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选 3 根,恰好能搭成一个三角形的概率是.(.分)若m 是方程2﹣ 3x﹣1=0 的一个根,则 6m2﹣9m+2015 的值为.12 32x13.( 3 分)用半径为 10cm,圆心角为 120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.14.( 3 分)不等式组的解集为.15.( 3 分)如图,已知⊙ O 的半径为2,△ ABC 内接于⊙ O,∠ ACB=135°,则AB=.2018 年中考试题16.( 3 分)关于 x 的方程 mx2﹣ 2x+3=0 有两个不相等的实数根,那么m 的取值范围是.17.( 3 分)如图,四边形OABC是矩形,点 A 的坐标为( 8,0),点 C 的坐标为( 0,4),把矩形 OABC沿 OB 折叠,点 C 落在点 D 处,则点 D 的坐标为.18.( 3 分)如图,在等腰 Rt△ ABO,∠A=90°,点 B 的坐标为( 0,2),若直线 l:y=mx+m(m≠0)把△ ABO分成面积相等的两部分,则m 的值为.三、解答题(本大题共有10 小题,共 96 分 .请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.( 8 分)计算或化简( 1)()﹣1+||+ tan60 °(2)(2x+3)2﹣( 2x+3)( 2x﹣3)20.( 8 分)对于任意实数 a,b,定义关于“?”的一种运算如下: a?b=2a+b.例如3?4=2×3+4=10.2018 年中考试题(1)求 2?(﹣ 5)的值;(2)若 x?(﹣ y)=2,且 2y?x=﹣ 1,求 x+y 的值.21.( 8 分)江苏省第十九届运动会将于 2018 年 9 月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表最喜爱的项目人数篮球20羽毛球9自行车10游泳a其他b合计根据以上信息,请回答下列问题:( 1)这次调查的样本容量是,a+b.( 2)扇形统计图中“自行车”对应的扇形的圆心角为.( 3)若该校有 1200 名学生,估计该校最喜爱的省运会项目是篮球的学生人数.22.( 8 分) 4 张相同的卡片分别写着数字﹣1、﹣ 3、 4、 6,将卡片的背面朝上,并洗匀.( 1)从中任意抽取1张,抽到的数字是奇数的概率是;( 2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b 中的 k;再从余下的卡片中任意抽取 1 张,并将所取卡片上的数字记作一次函数y=kx+b 中的 b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四2018 年中考试题象限的概率.23.(10 分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h )24.( 10 分)如图,在平行四边形 ABCD中, DB=DA,点 F 是 AB 的中点,连接DF并延长,交 CB的延长线于点 E,连接 AE.(1)求证:四边形 AEBD是菱形;(2)若 DC= ,tan∠DCB=3,求菱形 AEBD的面积.25.( 10 分)如图,在△ ABC中, AB=AC, AO⊥ BC于点 O, OE⊥AB 于点 E,以点O 为圆心, OE 为半径作半圆,交 AO 于点F.( 1)求证: AC是⊙ O 的切线;( 2)若点 F 是 A 的中点, OE=3,求图中阴影部分的面积;( 3)在( 2)的条件下,点 P 是 BC边上的动点,当 PE+PF 取最小值时,直接写出 BP 的长.26.( 10 分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30 元/ 件,每天销售 y(件)与销售单价 x(元)之间存在一次函数关系,如图所示.( 1)求 y 与 x 之间的函数关系式;( 2)如果规定每天漆器笔筒的销售量不低于 240 件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?( 3)该网店店主热心公益事业,决定从每天的销售利润中捐出150 元给希望工程,为了保证捐款后每天剩余利润不低于3600 元,试确定该漆器笔筒销售单价的范围.27.( 12 分)问题呈现如图 1,在边长为 1 的正方形网格中,连接格点D,N 和 E, C,DN 和 EC相交于点P,求 tan∠ CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠ CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 M , N,可得 MN ∥EC,则∠ DNM=∠CPN,连接 DM,那么∠ CPN就变换到 Rt△DMN 中.问题解决( 1)直接写出图 1 中 tan∠CPN的值为;( 2)如图 2,在边长为 1 的正方形网格中, AN 与 CM 相交于点 P,求 cos∠CPN 的值;思维拓展(3)如图 3, AB⊥BC,AB=4BC,点 M 在 AB 上,且 AM=BC,延长 CB到 N,使BN=2BC,连接 AN 交 CM 的延长线于点 P,用上述方法构造网格求∠CPN的度数.28.( 12 分)如图 1,四边形 OABC是矩形,点 A 的坐标为( 3,0),点 C 的坐标为( 0,6),点 P 从点 O 出发,沿 OA 以每秒 1 个单位长度的速度向点 A 出发,同时点 Q 从点 A 出发,沿 AB 以每秒 2 个单位长度的速度向点 B 运动,当点 P 与点A 重合时运动停止.设运动时间为 t 秒.( 1)当 t=2 时,线段 PQ 的中点坐标为;(2)当△ CBQ与△ PAQ相似时,求 t 的值;(3)当 t=1 时,抛物线 y=x2+bx+c 经过 P,Q 两点,与 y 轴交于点 M ,抛物线的顶点为 K,如图 2 所示,问该抛物线上是否存在点 D,使∠ MQD= ∠MKQ?若存在,求出所有满足条件的 D 的坐标;若不存在,说明理由.2018 年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8 小题,每小题 3 分,共 24 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3 分)﹣ 5 的倒数是()A.﹣B.C.5D.﹣ 5【分析】依据倒数的定义求解即可.【解答】解:﹣ 5 的倒数﹣.故选: A.【点评】本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.2.(3 分)使有意义的x的取值范围是()A.x>3B.x<3 C. x≥ 3D.x≠3【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣3≥0,解得 x≥3,故选: C.【点评】本题考查了二次根式有意义的条件,利用得出不等式是解题关键.3.(3 分)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选: B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(3 分)下列说法正确的是()A.一组数据 2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126 分,130 分,136 分,则小明这三次成绩的平均数是131 分D.某日最高气温是7℃,最低气温是﹣ 2℃,则改日气温的极差是5℃【分析】直接利用中位数的定义以及抽样调查的意义和平均数的求法、极差的定义分别分析得出答案.【解答】解: A、一组数据 2,2,3,4,这组数据的中位数是 2.5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126 分,130 分,136 分,则小明这三次成绩的平均数是 130分,故此选项错误;D、某日最高气温是7℃,最低气温是﹣ 2℃,则改日气温的极差是7﹣(﹣ 2)=9℃,故此选项错误;故选: B.【点评】此题主要考查了中位数、抽样调查的意义和平均数的求法、极差,正确把握相关定义是解题关键.2018 年中考试题5.(3 分)已知点A(x1, 3),B(x2, 6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1< x2<0 B.x1< 0< x2C. x2<x1<0D.x2<0<x1【分析】根据反比例函数的性质,可得答案.【解答】解:由题意,得k=﹣3,图象位于第二象限,或第四象限,在每一象限内, y 随 x 的增大而增大,∵3< 6,∴x1<x2<0,故选: A.【点评】本题考查了反比例函数,利用反比例函数的性质是解题关键.6.(3 分)在平面直角坐标系的第二象限内有一点M,点 M 到 x 轴的距离为 3,到 y 轴的距离为 4,则点 M 的坐标是()A.(3,﹣ 4)B.(4,﹣ 3)C.(﹣ 4, 3)D.(﹣ 3,4)【分析】根据地二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣ 4, y=3,即M 点的坐标是(﹣4,3),故选: C.【点评】本题考查了点的坐标,熟记点的坐标特征是解题关键.7.(3 分)在 Rt△ ABC中,∠ ACB=90°,CD⊥ AB 于 D,CE平分∠ ACD交 AB 于 E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠ A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠ BEC=∠A+∠ ACE、∠ BCE=∠BCD+∠ DCE即可得出∠ BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ ACB=90°, CD⊥AB,∴∠ ACD+∠BCD=90°,∠ ACD+∠ A=90°,∴∠ BCD=∠A.∵CE平分∠ ACD,∴∠ ACE=∠DCE.又∵∠ BEC=∠A+∠ACE,∠ BCE=∠BCD+∠DCE,∴∠ BEC=∠BCE,∴BC=BE.故选: C.【点评】本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠ BEC=∠BCE是解题的关键.8.(3 分)如图,点 A 在线段 BD 上,在 BD 的同侧做等腰 Rt△ABC和等腰 Rt△ADE,CD与 BE、AE 分别交于点 P, M.对于下列结论:①△ BAE∽△ CAD;② MP?MD=MA?ME;③ 2CB2=CP?CM.其中正确的是()A.①②③B.①C.①②D.②③【分析】(1)由等腰 Rt△ABC和等腰 Rt△ADE三边份数关系可证;( 2)通过等积式倒推可知,证明△PAM∽△ EMD 即可;2( 3) 2CB 转化为 AC2,证明△ ACP∽△ MCA,问题可证.【解答】解:由已知: AC= AB,AD=AE∴∵∠ BAC=∠EAD∴∠ BAE=∠CAD∴△ BAE∽△ CAD所以①正确∵△ BAE∽△ CAD∴∠ BEA=∠CDA∵∠ PME=∠AMD∴△ PME∽△ AMD∴∴MP?MD=MA?ME所以②正确∵∠ BEA=∠CDA∠PME=∠AMD∴P、 E、 D、 A 四点共圆∴∠ APD=∠EAD=90°∵∠ CAE=180°﹣∠ BAC﹣∠ EAD=90°∴△ CAP∽△ CMA2∴ AC=CP?CM∵AC= AB2∴ 2CB=CP?CM所以③正确故选: A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.二、填空题(本大题共有10 小题,每小题 3 分,共 30 分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3 分)在人体血液中,红细胞直径约为 0.00077cm,数据 0.00077 用科学记数法表示为 7.7×10﹣4.【分析】绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为a× 10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.﹣4故答案为:﹣ 4 7.7× 10 .【点评】本题主要考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤| a| <10,n 为由原数左边起第一个不为零的数字前面的0 的个数所决定.210.( 3 分)因式分解: 18﹣2x = 2(x+3)(3﹣x).【解答】解:原式 =2(9﹣x2) =2(x+3)(3﹣x),故答案为: 2(x+3)( 3﹣ x)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.( 3 分)有 4 根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选 3 根,恰好能搭成一个三角形的概率是.【分析】根据题意,使用列举法可得从有 4 根细木棒中任取 3 根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从有4 根细木棒中任取3 根,有2、3、4;3、4、5;2、3、5;2、4、5,共 4 种取法,而能搭成一个三角形的有 2、3、4;3、4、5;2,4,5, 3 种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率 =所求情况数与总情况数之比.12.( 3 分)若 m 是方程2x2﹣3x﹣1=0 的一个根,则6m2﹣9m+2015 的值为2018.【分析】根据一元二次方程的解的定义即可求出答案.【解答】解:由题意可知: 2m2﹣3m﹣ 1=0,∴2m2﹣3m=1∴原式 =3(2m2﹣3m)+2015=2018【点评】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.13.( 3 分)用半径为 10cm,圆心角为 120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.【分析】圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r,依题意,得2π r=,解得 r= cm.故选:.【点评】本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化: 1、圆锥的母线长为扇形的半径, 2、圆锥的底面圆周长为扇形的弧长.14.( 3 分)不等式组的解集为﹣3<x≤.【分析】先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.【解答】解:解不等式 3x+1≥ 5x,得: x≤,解不等式>﹣ 2,得: x>﹣ 3,则不等式组的解集为﹣ 3<x≤,故答案为:﹣ 3<x≤.【点评】此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3 分)如图,已知⊙ O 的半径为 2,△ABC内接于⊙ O,∠ACB=135°,则 AB= 2.【分析】根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠ AOB的度数,然后根据勾股定理即可求得 AB 的长.【解答】解:连接 AD、AE、 OA、 OB,∵⊙ O 的半径为 2,△ ABC内接于⊙ O,∠ ACB=135°,∴∠ ADB=45°,∴∠ AOB=90°,∵OA=OB=2,∴ AB=2 ,故答案为: 2 .【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.( 3 分)关于 x 的方程 mx2﹣ 2x+3=0 有两个不相等的实数根,那么m 的取值范围是m<且m≠0.【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4﹣ 12m>0 且m≠ 0,求出 m 的取值范围即可.【解答】解:∵一元二次方程mx2﹣2x+3=0 有两个不相等的实数根,∴4﹣ 12m>0 且 m≠0,。

江苏省扬州市2018年中考数学试卷及答案解析

江苏省扬州市2018年中考数学试卷及答案解析

2018年省市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣B.C.5 D.﹣52.(3分)使有意义的x的取值围是()A.x>3 B.x<3 C.x≥3 D.x≠33.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列说确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x16.(3分)在平面直角坐标系的第二象限有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB 于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt △ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为.10.(3分)因式分解:18﹣2x2= .11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.14.(3分)不等式组的解集为.15.(3分)如图,已知⊙O的半径为2,△ABC接于⊙O,∠ACB=135°,则AB= .16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值围是.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.21.(8分)省第十九届运动会将于2018年9月在举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表最喜爱的项目人数篮球20羽毛球9自行车10游泳a其他b合计根据以上信息,请回答下列问题:(1)这次调查的样本容量是,a+b .(2)扇形统计图中“自行车”对应的扇形的圆心角为.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.22.(8分)4相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1,抽到的数字是奇数的概率是;(2)从中任意抽取1,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1,并将所取卡片上的数字记作一次函数y=kx+b中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从到的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.26.(10分)“漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的围.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN 的度数.28.(12分)如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.2018年省市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣B.C.5 D.﹣5【分析】依据倒数的定义求解即可.【解答】解:﹣5的倒数﹣.故选:A.【点评】本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.2.(3分)使有意义的x的取值围是()A.x>3 B.x<3 C.x≥3 D.x≠3【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣3≥0,解得x≥3,故选:C.【点评】本题考查了二次根式有意义的条件,利用得出不等式是解题关键.3.(3分)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(3分)下列说确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃【分析】直接利用中位数的定义以及抽样调查的意义和平均数的求法、极差的定义分别分析得出答案.【解答】解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;D、某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是7﹣(﹣2)=9℃,故此选项错误;故选:B.【点评】此题主要考查了中位数、抽样调查的意义和平均数的求法、极差,正确把握相关定义是解题关键.5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x1【分析】根据反比例函数的性质,可得答案.【解答】解:由题意,得k=﹣3,图象位于第二象限,或第四象限,在每一象限,y随x的增大而增大,∵3<6,∴x1<x2<0,故选:A.【点评】本题考查了反比例函数,利用反比例函数的性质是解题关键.6.(3分)在平面直角坐标系的第二象限有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】根据地二象限点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.【点评】本题考查了点的坐标,熟记点的坐标特征是解题关键.7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB 于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.【点评】本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt △ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为7.7×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00077=7.7×10﹣4,故答案为:7.7×10﹣4.【点评】本题主要考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(3分)因式分解:18﹣2x2= 2(x+3)(3﹣x).【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(9﹣x2)=2(x+3)(3﹣x),故答案为:2(x+3)(3﹣x)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为2018 .【分析】根据一元二次方程的解的定义即可求出答案.【解答】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+2015=2018故答案为:2018【点评】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.【分析】圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=cm.故选:.【点评】本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.14.(3分)不等式组的解集为﹣3<x≤.【分析】先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.【解答】解:解不等式3x+1≥5x,得:x≤,解不等式>﹣2,得:x>﹣3,则不等式组的解集为﹣3<x≤,故答案为:﹣3<x≤.【点评】此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)如图,已知⊙O的半径为2,△ABC接于⊙O,∠ACB=135°,则AB= 2.【分析】根据圆接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.【解答】解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值围是m<且m≠0 .【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4﹣12m>0且m≠0,求出m的取值围即可.【解答】解:∵一元二次方程mx2﹣2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4﹣12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为(,﹣).【分析】由折叠的性质得到一对角相等,再由矩形对边平行得到一对错角相等,等量代换及等角对等边得到BE=OE,利用AAS得到三角形OED与三角形BEA 全等,由全等三角形对应边相等得到DE=AE,过D作DF垂直于OE,利用勾股定理及面积法求出DF与OF的长,即可确定出D坐标.【解答】解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+(8﹣x)2=x2,解得:x=5,即OE=5,DE=3,过D作DF⊥OA,∵S△OED=OD•DE=OE•DF,∴DF=,OF==,则D(,﹣).故答案为:(,﹣)【点评】此题考查了翻折变化(折叠问题),坐标与图形变换,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.【分析】根据题意作出合适的辅助线,然后根据题意即可列出相应的方程,从而可以求得m的值.【解答】解:∵y=mx+m=m(x+1),∴函数y=mx+m一定过点(﹣1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=﹣x+2,,得,∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴,解得,m=或m=(舍去),故答案为:.【点评】本题考查一次函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)【分析】(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.【解答】解:(1)()﹣1+||+tan60°=2+(2﹣)+=2+2﹣+=4(2)(2x+3)2﹣(2x+3)(2x﹣3)=(2x)2+12x+9﹣[(2x2)﹣9]=(2x)2+12x+9﹣(2x)2+9=12x+18【点评】本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.【分析】(1)依据关于“⊗”的一种运算:a⊗b=2a+b,即可得到2⊗(﹣5)的值;(2)依据x⊗(﹣y)=2,且2y⊗x=﹣1,可得方程组,即可得到x+y 的值.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(﹣5)=2×2+(﹣5)=4﹣5=﹣1;(2)∵x⊗(﹣y)=2,且2y⊗x=﹣1,∴,解得,∴x+y=﹣=.【点评】本题主要考查解一元一次方程组以及有理数的混合运算的运用,根据题意列出方程组是解题的关键.21.(8分)省第十九届运动会将于2018年9月在举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表最喜爱的项目人数篮球20羽毛球9自行车10游泳a其他b合计根据以上信息,请回答下列问题:(1)这次调查的样本容量是50 ,a+b 11 .(2)扇形统计图中“自行车”对应的扇形的圆心角为72°.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.【分析】(1)依据9÷18%,即可得到样本容量,进而得到a+b的值;(2)利用圆心角计算公式,即可得到“自行车”对应的扇形的圆心角;(3)依据最喜爱的省运会项目是篮球的学生所占的比例,即可估计该校最喜爱的省运会项目是篮球的学生人数.【解答】解:(1)样本容量是9÷18%=50,a+b=50﹣20﹣9﹣10=11,故答案为:50,11;(2)“自行车”对应的扇形的圆心角=×360°=72°,故答案为:72°;(3)该校最喜爱的省运会项目是篮球的学生人数为:1200×=480(人).【点评】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22.(8分)4相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1,抽到的数字是奇数的概率是;(2)从中任意抽取1,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1,并将所取卡片上的数字记作一次函数y=kx+b中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次获胜的性质,找出k<0,b>0的结果数,然后根据概率公式求解.【解答】解:(1)从中任意抽取1,抽到的数字是奇数的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中k<0,b>0有4种结果,所以这个一次函数的图象经过第一、二、四象限的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了一次函数的性质.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从到的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)【分析】设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据时间=路程÷速度结合客车比货车少用6小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据题意得:﹣=6,解得:x=121≈121.8.答:货车的速度约是121.8千米/小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.【分析】(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;(2)解直角三角形求出EF的长即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四边形AEBD是平行四边形,∵BD=AD,∴四边形AEBD是菱形.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四边形AEBD是菱形,∴AB⊥DE,AF=FB,EF=DF,∴tan∠ABE==3,∵BF=,∴EF=,∴DE=3,∴S菱形AEBD=•AB•DE=•3=15.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.【分析】(1)作OH⊥AC于H,如图,利用等腰三角形的性质得AO平分∠BAC,再根据角平分线性质得OH=OE,然后根据切线的判定定理得到结论;(2)先确定∠OAE=30°,∠AOE=60°,再计算出AE=3,然后根据扇形面积公式,利用图中阴影部分的面积=S△AOE﹣S扇形EOF进行计算;(3)作F点关于BC的对称点F′,连接EF′交BC于P,如图,利用两点之间线段最短得到此时EP+FP最小,通过证明∠F′=∠EAF′得到PE+PF最小值为3,然后计算出OP和OB得到此时PB的长.【解答】(1)证明:作OH⊥AC于H,如图,∵AB=AC,AO⊥BC于点O,∴AO平分∠BAC,∵OE⊥AB,OH⊥AC,∴OH=OE,∴AC是⊙O的切线;(2)解:∵点F是AO的中点,∴AO=2OF=3,而OE=3,∴∠OAE=30°,∠AOE=60°,∴AE=OE=3,∴图中阴影部分的面积=S△AOE﹣S扇形EOF=×3×3﹣=;(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,∵PF=PF′,∴PE+PF=PE+PF′=EF′,此时EP+FP最小,∵OF′=OF=OE,∴∠F′=∠OEF′,而∠AOE=∠F′+∠OEF′=60°,∴∠F′=30°,∴∠F′=∠EAF′,∴EF′=EA=3,即PE+PF最小值为3,在Rt△OPF′中,OP=OF′=,在Rt△ABO中,OB=OA=×6=2,∴BP=2﹣=,即当PE+PF取最小值时,BP的长为.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”.也考查了等腰三角形的性质和最短路径问题.26.(10分)“漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的围.【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值围.【解答】解:(1)由题意得:,解得:.故y与x之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=﹣10(46﹣50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点评】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为 2 ;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN 的度数.【分析】(1)连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.(2)如图2中,取格点D,连接CD,DM.那么∠CPN就变换到等腰Rt△DMC 中.(3)利用网格,构造等腰直角三角形解决问题即可;【解答】解:(1)如图1中,∵EC∥MN,∴∠CPN=∠DNM,∴tan∠CPN=tan∠DNM,∵∠DMN=90°,。

江苏省扬州市2018年中考数学试卷及答案解析

江苏省扬州市2018年中考数学试卷及答案解析

2018年江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣B.C.5 D.﹣52.(3分)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠33.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x16.(3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4) B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为.10.(3分)因式分解:18﹣2x2= .11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.14.(3分)不等式组的解集为.15.(3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB= .16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m (m≠0)把△ABO分成面积相等的两部分,则m的值为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.21.(8分)江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表(1)这次调查的样本容量是,a+b .(2)扇形统计图中“自行车”对应的扇形的圆心角为.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.22.(8分)4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan ∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.28.(12分)如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.2018年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣B.C.5 D.﹣5【分析】依据倒数的定义求解即可.【解答】解:﹣5的倒数﹣.故选:A.【点评】本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.2.(3分)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠3【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣3≥0,解得x≥3,故选:C.【点评】本题考查了二次根式有意义的条件,利用得出不等式是解题关键.3.(3分)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(3分)下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃【分析】直接利用中位数的定义以及抽样调查的意义和平均数的求法、极差的定义分别分析得出答案.【解答】解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;D、某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是7﹣(﹣2)=9℃,故此选项错误;故选:B.【点评】此题主要考查了中位数、抽样调查的意义和平均数的求法、极差,正确把握相关定义是解题关键.5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x1【分析】根据反比例函数的性质,可得答案.【解答】解:由题意,得k=﹣3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选:A.【点评】本题考查了反比例函数,利用反比例函数的性质是解题关键.6.(3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4) B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】根据地二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.【点评】本题考查了点的坐标,熟记点的坐标特征是解题关键.7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.【点评】本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为7.7×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00077=7.7×10﹣4,故答案为:7.7×10﹣4.【点评】本题主要考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(3分)因式分解:18﹣2x2= 2(x+3)(3﹣x).【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(9﹣x2)=2(x+3)(3﹣x),故答案为:2(x+3)(3﹣x)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为2018 .【分析】根据一元二次方程的解的定义即可求出答案.【解答】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+2015=2018故答案为:2018【点评】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.【分析】圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=cm.故选:.【点评】本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.14.(3分)不等式组的解集为﹣3<x≤.【分析】先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.【解答】解:解不等式3x+1≥5x,得:x≤,解不等式>﹣2,得:x>﹣3,则不等式组的解集为﹣3<x≤,故答案为:﹣3<x≤.【点评】此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB= 2.【分析】根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.【解答】解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是m<且m≠0 .【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4﹣12m>0且m≠0,求出m的取值范围即可.【解答】解:∵一元二次方程mx2﹣2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4﹣12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为(,﹣).【分析】由折叠的性质得到一对角相等,再由矩形对边平行得到一对内错角相等,等量代换及等角对等边得到BE=OE,利用AAS得到三角形OED与三角形BEA全等,由全等三角形对应边相等得到DE=AE,过D作DF垂直于OE,利用勾股定理及面积法求出DF与OF的长,即可确定出D坐标.【解答】解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+(8﹣x)2=x2,解得:x=5,即OE=5,DE=3,过D作DF⊥OA,=OD•DE=OE•DF,∵S△OED∴DF=,OF==,则D(,﹣).故答案为:(,﹣)【点评】此题考查了翻折变化(折叠问题),坐标与图形变换,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.【分析】根据题意作出合适的辅助线,然后根据题意即可列出相应的方程,从而可以求得m 的值.【解答】解:∵y=mx+m=m(x+1),∴函数y=mx+m一定过点(﹣1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=﹣x+2,,得,∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴,解得,m=或m=(舍去),故答案为:.【点评】本题考查一次函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)【分析】(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.【解答】解:(1)()﹣1+||+tan60°=2+(2﹣)+=2+2﹣+=4(2)(2x+3)2﹣(2x+3)(2x﹣3)=(2x)2+12x+9﹣[(2x2)﹣9]=(2x)2+12x+9﹣(2x)2+9=12x+18【点评】本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.【分析】(1)依据关于“⊗”的一种运算:a⊗b=2a+b,即可得到2⊗(﹣5)的值;(2)依据x⊗(﹣y)=2,且2y⊗x=﹣1,可得方程组,即可得到x+y的值.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(﹣5)=2×2+(﹣5)=4﹣5=﹣1;(2)∵x⊗(﹣y)=2,且2y⊗x=﹣1,∴,解得,∴x+y=﹣=.【点评】本题主要考查解一元一次方程组以及有理数的混合运算的运用,根据题意列出方程组是解题的关键.21.(8分)江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表(1)这次调查的样本容量是50 ,a+b 11 .(2)扇形统计图中“自行车”对应的扇形的圆心角为72°.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.【分析】(1)依据9÷18%,即可得到样本容量,进而得到a+b的值;(2)利用圆心角计算公式,即可得到“自行车”对应的扇形的圆心角;(3)依据最喜爱的省运会项目是篮球的学生所占的比例,即可估计该校最喜爱的省运会项目是篮球的学生人数.【解答】解:(1)样本容量是9÷18%=50,a+b=50﹣20﹣9﹣10=11,故答案为:50,11;(2)“自行车”对应的扇形的圆心角=×360°=72°,故答案为:72°;(3)该校最喜爱的省运会项目是篮球的学生人数为:1200×=480(人).【点评】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22.(8分)4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次获胜的性质,找出k<0,b>0的结果数,然后根据概率公式求解.【解答】解:(1)从中任意抽取1张,抽到的数字是奇数的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中k<0,b>0有4种结果,所以这个一次函数的图象经过第一、二、四象限的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了一次函数的性质.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)【分析】设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据时间=路程÷速度结合客车比货车少用6小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据题意得:﹣=6,解得:x=121≈121.8.答:货车的速度约是121.8千米/小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.【分析】(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD 可得结论;(2)解直角三角形求出EF的长即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四边形AEBD是平行四边形,∵BD=AD,∴四边形AEBD是菱形.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四边形AEBD是菱形,∴AB⊥DE,AF=FB,EF=DF,∴tan∠ABE==3,∵BF=,∴EF=,∴DE=3,∴S菱形AEBD=•AB•DE=•3=15.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.【分析】(1)作OH⊥AC于H,如图,利用等腰三角形的性质得AO平分∠BAC,再根据角平分线性质得OH=OE,然后根据切线的判定定理得到结论;(2)先确定∠OAE=30°,∠AOE=60°,再计算出AE=3,然后根据扇形面积公式,利用图中阴影部分的面积=S△AOE ﹣S扇形EOF进行计算;(3)作F点关于BC的对称点F′,连接EF′交BC于P,如图,利用两点之间线段最短得到此时EP+FP最小,通过证明∠F′=∠EAF′得到PE+PF最小值为3,然后计算出OP和OB得到此时PB的长.【解答】(1)证明:作OH⊥AC于H,如图,∵AB=AC,AO⊥BC于点O,∴AO平分∠BAC,∵OE⊥AB,OH⊥AC,∴OH=OE,∴AC是⊙O的切线;(2)解:∵点F是AO的中点,∴AO=2OF=3,而OE=3,∴∠OAE=30°,∠AOE=60°,∴AE=OE=3,∴图中阴影部分的面积=S△AOE ﹣S扇形EOF=×3×3﹣=;(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,∵PF=PF′,∴PE+PF=PE+PF′=EF′,此时EP+FP最小,∵OF′=OF=OE,∴∠F′=∠OEF′,而∠AOE=∠F′+∠OEF′=60°,∴∠F′=30°,∴∠F′=∠EAF′,∴EF′=EA=3,即PE+PF最小值为3,在Rt△OPF′中,OP=OF′=,在Rt△ABO中,OB=OA=×6=2,∴BP=2﹣=,即当PE+PF取最小值时,BP的长为.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”.也考查了等腰三角形的性质和最短路径问题.26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【解答】解:(1)由题意得:,解得:.故y与x之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=﹣10(46﹣50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x 1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点评】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan ∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为 2 ;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.【分析】(1)连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.(2)如图2中,取格点D,连接CD,DM.那么∠CPN就变换到等腰Rt△DMC中.(3)利用网格,构造等腰直角三角形解决问题即可;【解答】解:(1)如图1中,∵EC∥MN,。

2018江苏扬州中考物理解析

2018江苏扬州中考物理解析

2018年江苏省扬州市初中毕业、升学考试物理试题(满分60分,考试时间60分钟)一、选择题(每小题只有一个选项符合题意,请将正确选项填在括号内。

每小题2分,共24分)1.(2018江苏省扬州市,题号1,分值2)【答案】B【解析】太阳照射、浸入热水、炉火加热都是通过热传递的方式使冰熔化,故ACD不符合题意;相互摩擦是通过做功的方式使冰的内能增大,温度升高,从而使冰熔化,故B符合题意。

【知识点】做功和热传递改变物体内能的辨别。

2.(2018江苏省扬州市,题号2,分值2)【答案】D【解析】成年人的体重在600N左右,故A不符合实际;中学生正常步行的速度在1.4m/s左右,故B不符合实际;只有不高于36V的电压对人体才是安全的,故不符合实际;中学生的体重在500N左右,一层楼的高度在3.5m左右,中学生上一层楼的时间在15s左右,爬楼功率在⨯===≈W500 3.5120t15Gh N mP Wt s,故D符合实际。

【知识点】物理量的估算。

3.(2018江苏省扬州市,题号3,分值2)【答案】D【解析】树阴下的地面上出现的圆形光斑,是太阳光沿直线传播,通过浓密的树叶中的小孔所成的太阳的实像,故选D。

【知识点】光的直线传播的应用。

4.(2018江苏省扬州市,题号4,分值2)【答案】B【解析】光屏能承接实像,虚像不能承接在光屏上,故A错误;用玻璃板代替平面镜便于确定像的位置,故B 正确;平面镜所成像的大小与物到平面镜的距离无关,故C错误;平面镜所成像的大小与平面镜的大小无关,故D错误。

【知识点】平面镜成像的应用。

5.(2018江苏省扬州市,题号5,分值2)【答案】C【解析】水中的筷子看起来向上偏折,是光线从水中射入空气时,而BD图都是光从空气射向水里,故BD错误;当光从水中射入空气时,在水与空气的交界面上发生折射,进入空气中的折射光线向水面偏折,远离法线,折射角大于入射角,看到的筷子位置在折射光线的反向延长线上,从而位置比实际位置偏高,看起来筷子向上弯折,而A图折射角小于入射角,故C正确。

2018年江苏省扬州市中考数学试卷含答案解析

2018年江苏省扬州市中考数学试卷含答案解析

故本题选 B 项. 【考点】中位数、平均数、极差的求法以及统计方法的选择. 5.【答案】A 【解析】k 3,双曲线y k 位于第二、四象限,在每个象限内, y 随 x 的增大而
x
增大,0<3<6, x1<x2<0 ;故本题选 A 项. 【考点】反比例函数的增减性.
第8页
徐老师
6.【答案】C
【解析】坐标系中,一个点的横、纵坐标的大小是这个点分别到 y 轴和 x 轴的距 离.点M到x 轴的距离为 3,到 y 轴的距离为 4,点M 的横、纵坐标的绝对值大
19.(本题满分 8 分)计算或化简.
(1)
1 2
1
|
3 2 | tan60 ;
(2) (2x 3)2 (2x 3)(2x 3) .
20.(本题满分 8 分)对于任意实数 a 、 b ,定义关于“ ”的一种运算如下: a b 2a b. 例如 3 4=2 3+4=10. (1)求 2 (5) 的值; (2)若 x ( y) 2 ,且 2 y x 1,求 x y 的值.
A× 项错误.
B √ 灯泡属于消耗品,不可使用普查,适合抽样调查;此选项正确. 根据“平均数 总分数 次数”,得小明这三次数学成绩的平均数是:

1 (126 130 136) 130 2 131 分;此选项错误.
3
3
根据“一组数据得极差等于最大值减去最小值”,得该日气温的极

差是 7 (2) 9 ℃ 5℃;此选项错误.
第5页
26.(本题满分 10 分)“扬州漆器”名扬天下.某网店专门销售某种品牌的漆器笔筒, 成本为 30 元/件,每天销售量 y (件)与销售单价 x (元)之间存在一次函数关系, 如图所示. (1)求 y 与 x 之间的函数关系式; (2)如果规定每天漆器笔筒的销售量不低于 240 件,当销售单价为多少元时,每天 获取的利润最大,最大利润是多少? (3)该网店主热心公益事业,决定从每天的销售利润中捐出 150 元给希望工程,为 了保证捐款后每天剩余利润不低于 3 600 元,试确定该漆器笔筒销售单价的 范围.

2018江苏省扬州市中考语文真题与答案解析

2018江苏省扬州市中考语文真题与答案解析

扬州市二〇一八年初中毕业、升学统一考试语文试题注意事项:1.本试卷共6页,计23题(包含单项选择题:第1—5题、第12题,共6题),满分150分,考试时间150分。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前,考生务必将本人的姓名、准考证号准确无误地填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填好,在试卷第一面的右下角填好座位号。

3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B铅笔作答,非选择题在指定位置用0.5毫米书写黑色字迹的水笔作答。

在试卷或草稿纸上答题无效。

一、积累与运用(36分)1.下列加点字注音,全部正确的一项是()(2分)A.裨益(bì)亘古(gèn)镌刻(jun)面面相觑(qù)B.愠怒(wèn)蹊跷(x)女工(gng)感人肺腑(f)C.驾驭(yù)攒聚(zn)宽宥(yóu)熙来攘往(nng)D.澎湃(péng)竣工(jùn)迸溅(bìng)鲜为人知(xin)2.下列各句中,加点成语使用正确的一项是()(2分)A.一拿到语文试卷,小明忍不住笑了,拿起笔开始答题,信心满满,手不释卷。

B.危机时刻最能看出人的胆识,勇者首当其冲,怯者畏缩不前,我们当做前者。

C.时光的淬炼、岁月的磨砺让他日渐成熟,处理事情变得优柔寡断,毫不迟疑。

D.我们应做“文明有礼二十四条”的践行者,不能让它在我们手中成为一纸空文。

3.下列各句中,没有语病的一项是()(2分)A.第十九届省运会开幕在即,维扬城已做好了招待从祖国四面八方而来的客人。

B.纪录片《厉害了,我的国》展示了我国在各个领域所取得的举世瞩目的成就。

C.人的一生约有一半左右的时间都在思考,只不过成功者总在思考有意义的事。

D.一个人能否成为真正的阅读爱好者,关键在于青少年时期要培养阅读的兴趣。

4.下列解说正确的一项是()(2分)A.园林藤萝阳台枣核解说:这四个词的词性相同。

2018年江苏省扬州市中考真题语文试题(答案+解析)

2018年江苏省扬州市中考真题语文试题(答案+解析)

2018年江苏省扬州市中考语文真题一、积累与运用1. 下列加点字注音,全部正确的一项是()A. 裨.益(bì)亘.古(gèn)镌.刻(juān)面面相觑.(qù)B. 愠.怒(wèn)蹊.跷(xī)女工.(gōng)感人肺腑.(fǔ)C. 驾驭.(yù)攒.聚(zǎn)宽宥.(yóu)熙来攘.往(nǎng)D. 澎.湃(péng)竣.工(jùn)迸.溅(bìng)鲜.为人知(xiān)【答案】A【解析】本题考查学生对字音的掌握情况,这就要求学生平时的学习中注意字音的识记和积累,特别是形近字、多音字。

要注意平时的积累,可以归纳整理,分别列出不同词语下的不同读音,系统性地复习。

A项正确。

其他各项错误的应更正为:B项中“愠”应读yùn,“蹊”应读qī。

C项中“攒”应读cuán,“攘”应读rǎng。

D项中“迸”应读bèng,“鲜”应读xiǎn。

2. 下列各句中,加点成语使用正确的一项是()A. 一拿到语文试卷,小明忍不住笑了,拿起笔开始答题,信心满满,手不释卷....。

B. 危机时刻最能看出人的胆识,勇者首当其冲....,怯者畏缩不前,我们当做前者。

C. 时光的淬炼、岁月的磨砺让他日渐成熟,处理事情变得优柔寡断....,毫不迟疑。

D. 我们应做“文明有礼二十四条”的践行者,不能让它在我们手中成为一纸空文....。

【答案】D【解析】本题考查学生对具体语境中成语运用正误的辨析能力。

要结合积累的成语来分析,在平时的学习中,首先我们对于遇到的成语要做好积累,其次是注意可以从词义、词语的感情色彩、习惯用法等方面进行归纳。

D项运用恰当。

其他各项的错误之处分别为:A项手不释卷:书本不离手。

形容勤奋好学。

属不合语境,是错误的。

B项首当其冲:比喻最先受到攻击或遭到灾难,与语境不符。

C项优柔寡断:指做事犹豫,缺乏决断。

【语文中考真题】江苏省扬州市2018年中考语文试题(解析版)

【语文中考真题】江苏省扬州市2018年中考语文试题(解析版)

扬州市二〇一八年初中毕业、升学统一考试语文试题注意事项:1.本试卷共6页,计23题(包含单项选择题:第1—5题、第12题,共6题),满分150分,考试时间150分。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前,考生务必将本人的姓名、准考证号准确无误地填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填好,在试卷第一面的右下角填好座位号。

3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B铅笔作答,非选择题在指定位置用0.5毫米书写黑色字迹的水笔作答。

在试卷或草稿纸上答题无效。

一、积累与运用1. 下列加点字注音,全部正确的一项是()A. 裨益(bì)亘古(gèn)镌刻(juān)面面相觑(qù)B. 愠怒(wèn)蹊跷(xī)女工(gōng)感人肺腑(fǔ)C. 驾驭(yù)攒聚(zǎn)宽宥(yóu)熙来攘往(nǎng)D. 澎湃(péng)竣工(jùn)迸溅(bìng)鲜为人知(xiān)【答案】A【解析】本题考查学生对字音的掌握情况,这就要求学生平时的学习中注意字音的识记和积累,特别是形近字、多音字。

要注意平时的积累,可以归纳整理,分别列出不同词语下的不同读音,系统性地复习。

A项正确。

其他各项错误的应更正为:B项中“愠”应读yùn,“蹊”应读qī。

C项中“攒”应读cuán,“攘”应读rǎng。

D项中“迸”应读bèng,“鲜”应读xiǎn。

2. 下列各句中,加点成语使用正确的一项是()A. 一拿到语文试卷,小明忍不住笑了,拿起笔开始答题,信心满满,手不释卷....。

B. 危机时刻最能看出人的胆识,勇者首当其...冲.,怯者畏缩不前,我们当做前者。

C. 时光的淬炼、岁月的磨砺让他日渐成熟,处理事情变得优柔寡断....,毫不迟疑。

D. 我们应做“文明有礼二十四条”的践行者,不能让它在我们手中成为一纸空文....。

江苏扬州市2018年中考数学试题(含解析)-推荐

江苏扬州市2018年中考数学试题(含解析)-推荐

江苏省扬州市2018年中考数学试题一、选择题:)【答案】A【解析】分析:根据倒数的定义进行解答即可.详解:∵(-5)×(=1,∴-5的倒数是故选A.点睛:本题考查的是倒数的定义,即乘积是1的两数互为倒数.2. 有意义的)【答案】C【解析】分析:根据被开方数是非负数,可得答案.详解:由题意,得x-3≥0,解得x≥3,故选C.3. 如图所示的几何体的主视图是()A. B. C. D.【答案】B【解析】根据主视图的定义,几何体的主视图由三层小正方形组成,下层有三个小正方形,二三层各有一个小正方形,故选B.4. 下列说法正确的是()A. 一组数据2,2,3,4,这组数据的中位数是2B. 了解一批灯泡的使用寿命的情况,适合抽样调查C. 小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.【答案】B【解析】分析:直接利用中位数的定义以及抽样调查的意义和平均数的求法、极差的定义分别分析得出答案.详解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是故此选项错误;D、某日最高气温是7℃,最低气温是-2℃,则改日气温的极差是7-(-2)=9℃,故此选项错误;故选B.点睛:此题主要考查了中位数、抽样调查的意义和平均数的求法、极差,正确把握相关定义是解题关键.5. 、则下列关系式一定正确的是()D.【答案】A【解析】分析:根据反比例函数的性质,可得答案.详解:由题意,得k=-3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选A.点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.6. 34,)B.【答案】C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M点的坐标是(-4,3),故选C.点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.7. 中,,成立的是()B.【答案】C【解析】分析:根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.详解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选C.点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.8.对于下列结论:其中正确的是()A. ①②③B. ①C. ①②D. ②③【答案】A【解析】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.详解:由已知:,∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵∴2CB2=CP•CM所以③正确故选A.点睛:本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.二、填空题9. 0.00077用科学记数法表示为__________.【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.00077=7.7×10-4,故答案为:7.7×10-4.点睛:本题主要考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10. .【解析】分析:原式提取2,再利用平方差公式分解即可.详解:原式=2(9-x2)=2(x+3)(3-x),故答案为:2(x+3)(3-x)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11. 有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.【解析】分析:根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.详解:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,二种;点睛:本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.12. 是方程__________.【答案】2018【解析】分析:根据一元二次方程的解的定义即可求出答案.详解:由题意可知:2m2-3m-1=0,∴2m2-3m=1∴原式=3(2m2-3m)+2015=2018故答案为:2018点睛:本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.13.半径为【解析】分析:圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.详解:设圆锥的底面圆半径为r,依题意,得解得r=cm.故答案为:点睛:本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.14. __________.【解析】分析:先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.详解:解不等式x>-3,则不等式组的解集为-3故答案为:-3点睛:此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15. 2.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴故答案为:点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16. __________.【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>0且m≠0,求出m的取值范围即可.详解:∵一元二次方程mx2-2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4-12m>0且m≠0,∴m m≠0,故答案为:m m≠0.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.17. 如图,的坐标为的坐标为__________.【解析】分析:由折叠的性质得到一对角相等,再由矩形对边平行得到一对内错角相等,等量代换及等角对等边得到BE=OE,利用AAS得到三角形OED与三角形BEA全等,由全等三角形对应边相等得到DE=AE,过D作DF垂直于OE,利用勾股定理及面积法求出DF与OF的长,即可确定出D坐标.详解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8-x,在Rt△ODE中,根据勾股定理得:42+(8-x)2=x2,解得:x=5,即OE=5,DE=3,过D作DF⊥OA,∵S△OED∴,则D().故答案为:(.点睛:此题考查了翻折变化(折叠问题),坐标与图形变换,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.18. 如图,中,若直线:分成面积相等的两部分,则的值为__________.【解析】分析:根据题意作出合适的辅助线,然后根据题意即可列出相应的方程,从而可以求得m的值.详解:∵y=mx+m=m(x+1),∴函数y=mx+m一定过点(-1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=-x+2,∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,解得,m=或m=,故答案为:点睛:本题考查一次函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题19. 计算或化简.(1(2【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)-12|+tan60°=2+()+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.20. 例如(1(2.【答案】(1(2【解析】分析:(1)根据新定义型运算法则即可求出答案.(2)列出方程组即可求出答案详解:(1(2点睛:本题考查新定义型运算,解题的关键是正确利用运算法则,本题属于基础题型.21. 江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表根据以上信息,请回答下列问题:(1)这次调查的样本容量是,(2)扇形统计图中“自行车”对应的扇形的圆心角为度;(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.【答案】(1)50(2(3)该校最喜爱的省运动会项目是篮球的学生人数为480人.【解析】分析:(1)依据9÷18%,即可得到样本容量,进而得到a+b的值;(2)利用圆心角计算公式,即可得到“自行车”对应的扇形的圆心角;(3)依据最喜爱的省运会项目是篮球的学生所占的比例,即可估计该校最喜爱的省运会项目是篮球的学生人数.详解:(1)样本容量是9÷18%=50,a+b=50-20-9-10=11,故答案为:50,11;(2)“自行车”对应的扇形的圆心角故答案为:72°;(3(人).点睛:本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22. 4张相同的卡片上分别写有数字-1、-3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1的卡片中任意抽取1利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.【答案】(1(2【解析】解:(1)总共有四个,奇数有两个,所以概率就是(2分析:(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次获胜的性质,找出k<0,b>0的结果数,然后根据概率公式求解.详解:(1)从中任意抽取1张,抽到的数字是奇数的概率(2)画树状图为:共有12种等可能的结果数,其中k<0,b>0有4种结果,所以这个一次函数的图象经过第一、二、四象限的概率点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了一次函数的性质./小时.【解析】分析:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据时间=路程÷速度结合客车比货车少用6小时,即可得出关于x的分式方程,解之经检验后即可得出结论.是该方程的解/小时.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24. 并延长,交(1(2,求菱形.【答案】(1)证明见解析;(2【解析】分析:(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;(2)解直角三角形求出EF的长即可解决问题;详解:(1(2是菱形,点睛:本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25. 中,,为圆心,(1(2(3)在(2.【答案】(1)证明见解析;(2(3【解析】分析:(1垂线,垂足为OM=OE即可;(2)根据“S△AEO-S扇形EOF=S阴影”进行计算即可;(3.通过证明即可求解详解:(1(2(3)作关于由(2,即.点睛:本题是圆的综合题,主要考查了圆的切线的判定,不规则图形的面积计算以及最短路径问题.找出点E的对称点G是解决一题的关键.26. “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每.(1(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.【答案】(1(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】分析:(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.详解:(1故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.点睛:此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.27. 问题呈现如图1,在边长为1的正方形网格中,连接格点、、,相交于点的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题.比如连接格,那么就变换到中问题解决(1)直接写出图1_________;(2)如图2,在边长为1的正方形网格中,思维拓展(3)如图3,,.【答案】(1)见解析;(2(3【解析】分析:(1)根据方法归纳,运用勾股定理分别求出MN和DM的值,的值;(2)仿(1)的思路作图,即可求解;(3)方法同(2)详解:(1)如图进行构造由勾股定理得:∵222∴D M2+MN2=DN2∴△DMN是直角三角形.∵MN∥EC∴∠CPN=∠DNM,∵tan∠=2.(2(3)2).点睛:本题考查了非直角三角形中锐角三角函数值的求法. 求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形是解题的关键.28. 如图1的坐标为12个单位..(1________;(2(3两点,与如图2所示..【答案】(1的中点坐标是(2(3【解析】分析:(1)先根据时间t=2,和速度可得动点P和Q的路程OP和AQ的长,再根据中点坐标公式可得结论;(2)根据矩形的性质得:∠B=∠PAQ=90°,所以当△CBQ与△PAQ相似时,存在两种情况:①当△PAQ∽△QBC t的值;(3)根据t=1求抛物线的解析式,根据Q(3,2),M(0,2),可得MQ∥x轴,∴KM=KQ,KE⊥MQ,画出符合条件的点D,证明△KEQ∽△QMH,列比例式可得点D的坐标,同理根据对称可得另一个点D.详解:(1)如图1,∵点A的坐标为(3,0),∴OA=3,当t=2时,OP=t=2,AQ=2t=4,∴P(2,0),Q(3,4),∴线段PQ的中点坐标为:2);故答案为:2);(2)如图1,∵四边形OABC是矩形,∴∠B=∠PAQ=90°∴当△CBQ与△PAQ相似时,存在两种情况:①当△PAQ∽△QBC4t2-15t+9=0,(t-3)(=0,t1=3(舍),t2②当△PAQ∽△CBQt2-9t+9=0,∵0≤t≤6,7,不符合题意,舍去,综上所述,当△CBQ与△PAQ相似时,t(3)当t=1时,P(1,0),Q(3,2),把P(1,0),Q(3,2)代入抛物线y=x2+bx+c中得:∴抛物线:y=x2-3x+2=(x-)2-∴顶点k,∵Q(3,2),M(0,2),∴MQ∥x轴,作抛物线对称轴,交MQ于E,∴KM=KQ,KE⊥MQ,如图2,∠MQD=∠MKQ=∠QKE,设DQ交y轴于H,∵∠HMQ=∠QEK=90°,∴△KEQ∽△QMH,∴MH=2,∴H(0,4),易得HQ的解析式为:,x2-3x+2=-x+4,解得:x1=3(舍),x2∴D(;同理,在M的下方,y轴上存在点H,如图3,使∠由对称性得:H(0,0),易得OQ的解析式:,x2-3x+2=x,解得:x1=3(舍),x2;综上所述,点D的坐标为:D(.点睛:本题是二次函数与三角形相似的综合问题,主要考查相似三角形的判定和性质的综合应用,三角形和四边形的面积,二次函数的最值问题的应用,函数的交点等知识,本题比较复杂,注意用t表示出线段长度,再利用相似即可找到线段之间的关系,代入可解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年江苏省扬州市中考数学试卷试卷满分:150分 教材版本:苏科版一、选择题:本大题共8小题,每小题3分,共24分. 1.(2018·扬州市,1,3分)﹣5的倒数是( )A .15-B .51 C .5 D .﹣51.A ,解析:乘积等于1的两个数互为倒数,∴﹣5的倒数是15-.故选A .2.(2018·扬州市,2,3分)使3-x 有意义的x 的取值范围是( )A .3>xB .3<xC .3x ≥D .3≠x2.Ca ≥0有意义的条件是x -3≥0,即x ≥3.故选C . 3.(2018·扬州市,3,3分)如图所示的几何体的主视图是( )A .B .C .D .3.B ,解析:从不同的方向观察同一物体时,可以看到不同的图形,把从正面看到的图形叫主视图.故选B . 4.(2018·扬州市,4,3分)下列说法正确的是( )A .一组数据2,2,3,4,这组数据的中位数是2B .了解一批灯泡的使用寿命的情况,适合抽样调查C .小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D .某日最高气温是7℃,最低气温是﹣2℃,则该日气温的极差是5℃ 4.B ,解析:一组数据2,2,3,4,这组数据的中位数是(2+3)÷2=2.5;了解一批灯泡的使用寿命的情况,适合抽样调查;小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是(126+130+136)÷3=13023;某日最高气温是7℃,最低气温是﹣2℃,则该日气温的极差是7-(﹣2)=9℃.故选B .5.(2018·扬州市,5,3分)已知点A (x 1,3)、B (x 2,6)都在反比例函数xy 3-=的图像上,则下列关系式一定正确的是( )A .021<<x xB .210x x <<C .012<<x xD .120x x <<5.A ,解析:已知点A (1x ,3),B (2x ,6)都在反比例函数3y x=-的图像上,∴1x =﹣1,2x =﹣12,即有1x <2x <0.故选A .6.(2018·扬州市,6,3分)在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( ) A .(3,-4) B .(4,-3) C .(-4,3) D .(-3,4) 6.C ,解析:设M 的坐标为(x ,y ),∵点M 在第二象限内,则x <0,y >0;点M 到x 轴的距离为3,到y 轴的距离为4,∴x =﹣4,y =3.故选C . 7.(2018·扬州市,7,3分) 在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 平分∠ACD 交AB 于E ,则下列结论一定成立的是( ) A .BC =EC B .EC =BE C .BC =BE D .AE =ECA7.C ,解析:∵∠B +∠BCD =∠B +∠A =90°,∴∠BCD =∠A ;∵CE 平分∠ACD ,∴∠1=∠2; ∵∠CEB =∠A +∠1,∠BCE =∠BCD +∠2,∴∠CEB =∠BCE ,∴BC =BE .故选C . 8.(2018·扬州市,8,3分) 如图,点A 在线段BD 上,在BD 的同侧做等腰Rt △ABC 和等腰Rt △ADE , CD 与BE 、AE 分别交于点P 、M .对于下列结论:①BAE ∆∽CAD ∆;②ME MA MD MP ⋅=⋅;③CM CP CB ⋅=22.其中正确的是( ) A .①②③B .①C .①②D .②③8.A ,解析:由题意得AC ADAB AE=BAE =∠CAD =135°,∴△BAE ∽△CAD ,故①正确;∵△BAE ∽△CAD ,∴∠BEA =∠CDA ,又∵∠PME =∠AMD ,∴△PME ∽△AMD ,∴MP ·MD =MA ·ME ,故②正确;∵MP ·MD =MA ·ME ,又∵∠PMA =∠EMD ,∴△PMA ∽△EMD ,∴∠APM =∠DEM =90°,而∠CAE =90°,而∠ACP =∠MCA ,∴△CAP ∽△CMA ,∴CP ·CM =AC 2=2CB 2,故③正确.故选A .二、填空题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题中横线上. 9.(2018·扬州市,9,3分)在人体血液中,红细胞直径约为0.00077 cm ,数据0.00077用科学记数法表示 为 .9.7.7×410-,解析:把一个数记为a ×10n 的形式(其中1 ≤| a | <10,n 为整数),这种记数法叫做科学记BA数法,所以0.00077=7.7×410-.10.(2018·扬州市,10,3分)因式分解:2182x -= .10.2(3+x )(3-x ),解析:18-2x 2=2(9-x 2)=2(3+x )(3-x ). 11.(2018·扬州市,11,3分)有4根细木棒,长度分别为2cm ,3cm ,4cm ,5cm ,从中任选3根,恰好 能搭成一个三角形的概率是 .11.34,解析:从长度分别为2cm ,3cm ,4cm ,5cm 的4根细木棒中任选3根,有如下4中可能:①3,4,5;②2,4,5;③2,3,5;④2,3,4;其中能搭成一个三角形的有①,②,④三种,∴恰好能搭成一个三角形的概率是34. 12.(2018·扬州市,12,3分)若m 是方程01322=--x x 的一个根,则2015962+-m m 的值为 . 12.2018,解析:∵m 是方程22310x x --=的一个根,则22310m m --=,∴2692015m m -+=23(23)2015320152018m m -+=+=.13.(2018·扬州市,13,3分) 用半径为10cm ,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个 圆锥的底面圆半径为 cm . 13.103,解析:设这个圆锥的底面圆半径为r ,根据题意有2πr =12010180π⋅⋅ ,∴r =103. 14.(2018·扬州市,14,3分) 不等式组315122x xx +⎧⎪⎨->-⎪⎩≥的解集为 .14.-3<x ≤12,解析:解不等式3x +1≥5x ,得x ≤12;解不等式122x -->,得x >-3,∴不等式组的解集为-3<x ≤12. 15.(2018·扬州市,15,3分)如图,已知⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB =135°,则AB = .15.)AmB 上任取一点D ,∵∠ACB =135°,则∠ADB =45°,∠AOB =90°,∴△OAB为等腰直角三角形,∵OA =OB =2,∴AB=16.(2018·扬州市,16,3分)关于x 的方程0322=+-x mx 有两个不相等的实数根,那么m 的取值范 围是 .CDC16.m<13且m≠0,解析:∵关于x的方程有两个不相等的实数根,∴b2-4ac>0,且a≠0,即(-2)2-4×3m>0,m≠0,解得:m<13且m≠0.17.(2018·扬州市,17,3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.17.(165,125-),解析:设BD与OA相交于点E,过点D作DF⊥OA于点F.由折叠可知∠CBO=∠DBO,由矩形OABC可知OA∥CB,∴∠BOA=∠CBO,∴∠DBO=∠BOA,∴OE=BE;在Rt△ABE中,BE+AE=OE+AE=OA=8,由勾股定理可解出BE=5=OE,AE=3;由题意易知∠ABE=∠DOE,在Rt△ODF中,OF=OD×cos∠DOE=4×cos∠ABE=4×45=165,DF=OD×sin∠DOE=4×sin∠ABE=4×35=125;∴点D的坐标为(165,125-).18.(2018·扬州市,18,3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线:l )0(≠+=mmmxy把△ABO分成面积相等的两部分,则m的值为.18,解析:直线:l)0(≠+=mmmxy与x轴交于点(-1,0),与y轴交于点(0,m),与AB交于点C,由题意可知:直线AB的表达式为y=-x+2,解方程组2y mx my x=+⎧⎨=-+⎩得x=21mm-+,∴CDxx>2,故舍去,∴m三、解答题(本大题共10小题,满分96分,解答应写出文字说明、证明过程或演算步骤) 19.(2018·扬州市,19,8分)计算或化简: (1)11()2-2+tan60°;(2))32)(32()32(2-+-+x x x .思路分析:(1)先根据负整数指数幂、绝对值的性质及特殊角的三角函数值分别求出11()2-2、tan60°的值;(2)先运用完全平方公式和平方差公式分别计算出2(23)x +和(23)(23)x x +- 的值. 解答过程:(1)原式=22+4.(2)原式=224129(49)x x x ++--=22412949x x x ++-+=12x +18.20.(2018·扬州市,20,8分)对于任意实数a ,b ,定义关于“⊗”的一种运算如下:b a b a +=⊗2.例 如.1043243=+⨯=⊗ (1)求)(5-2⊗的值; (2)若,2)(=-⊗y x 且,12-=⊗x y 求x +y 的值.思路分析:(1)直接运用新定义的运算规则进行计算;(2)根据新定义的运算规则列出两个方程,联立成方程组,解出x 、y 的值,再求出x +y 的值. 解答过程:(1)2⊗(-5)=2×2+(-5)=4-5=-1;(2)由题意,得:2241x y y x -=⎧⎨+=-⎩,解方程组,得:7949x y ⎧=⎪⎪⎨⎪=-⎪⎩,则x +y =7949-=13.21.(2018·扬州市,21,8分)江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽 毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.根据以上信息,请回答下列问题: (1)这次调查的样本容量是,a +b = .(2)扇形统计图中“自行车”对应的扇形的圆心角为 .(3)若该校有1200最喜爱的省运会项目的人数分布扇形统计图其他游泳篮球自行车羽毛球18%思路分析:观察统计表和扇形统计图,从中获取信息是解决本题的关键.(1)观察图表可以看出这次调查中最喜爱羽毛球的有9人,占18%,∴样本容量为9÷18%=50,a +b =50-20-9-10=11;(2)最喜爱自行车项目的为10÷50×100%=20%,∴其对应的扇形的圆心角为360°×20%=72°;(3)运用样本估计总体的思想,该样本中最喜爱篮球项目的百分比为20÷50=40%,故该校1200名学生中最喜爱的省运会项目是篮球的学生约为1200×40%=480人. 解答过程:(1)50,11; (2)72;(3)1200×(20÷50)=480人答:该校1200名学生中,最喜爱的省运会项目是篮球的学生估计有480人.22.(2018·扬州市,22,8分)4张相同的卡片分别写着数字-1、-3、4、6,将卡片的背面朝上,并洗匀. (1)从中任意抽取1张,抽到的数字是奇数的概率是 ;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数b kx y +=中的k ;再从余下的卡片中 任意抽取1张,并将所取卡片上的数字记作一次函数b kx y +=中的b .利用画树状图或列表的 方法,求这个一次函数的图像经过第一、二、四象限的概率.思路分析:(1)从4张背面相同的卡片中任意抽取1张,有4种可能,分别是写有数字-1,-3,4,6,其中数字是奇数的有-1和-3,∴抽到的数字是奇数的概率是12;(2)正确画树状图或列表是解决问题的关键,注意本题是“不放回”,另外当k <0,b >0时,一次函数y =kx +b 的图像经过第一、二、四象限.解答过程:(1)12;(2)根据题意列表,得:当k <0,b >0时,一次函数y =kx +b 的图像经过第一、二、四象限,一共有12种可能,其中k <0,b >0有4种,∴这个一次函数的图像经过第一、二、四象限的概率P =412=13.说明:本题也可以画树状图,如下图:-1-1-16644-3-364-3-1开 始23.(2018·扬州市,23,10分) 京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462 km ,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6 h,那么货车的速度是多少?(精确到0.1 km/h)思路分析:本题是行程问题,基本的数量关系是:路程=速度×时间,由于本题中速度和时间均未知,故有两种设元方法.另外属于分式方程应用题,注意要“检验”.解答过程:设货车的速度为x km/h,则客车的速度为2x km/h,依题意,列方程1462146262x x-=解这个方程,得x=7326.经检验x=7326是所列方程的解,7326≈121.8答:货车的速度约为121.8 km/h.24.(2018·扬州市,24,10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF 并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DCtan∠DCB=3,求菱形AEBD的面积.思路分析:(1)要证四边形AEBD是菱形,可以先证明四边形AEBD为平行四边形,再证邻边相等或对角线互相垂直,也可以证四边相等;(2)根据已知条件,分别求出菱形AEBD的对角线ABED=再运用菱形的面积等于其对角线乘积的一半计算出面积.解答过程:(1)∵平行四边形ABCD∴AD∥BC,AB∥CD,AB=CD∴∠ADE=∠BED∵点F是AB的中点∴AF=BF∴△ADF≌△BEF∴AD=BE又∵AD∥BC∴四边形AEBD是平行四边形∵DA=DB∴平行四边形AEBD是菱形;(2)∵平行四边形AEBD是菱形∴AB⊥ED∵AB∥CD∴ED⊥CD在Rt△CDE中,tan∠DCB=3,DC∴DE=E∴菱形AEBD 的面积=12×AB ×ED =1215.25.(2018·扬州市,25,10分)如图,在△ABC 中,AB =AC ,AO ⊥BC 于点O ,OE ⊥AB 于点E ,以点O 为圆心,OE 为半径作半圆,交AO 于点F . (1)求证:AC 是⊙O 的切线;(2)若点F 是AO 的中点,OE =3,求图中阴影部分的面积;(3)在(2)的条件下,点P 是BC 边上的动点,当PE +PF 取最小值时,直接写出BP 的长.思路分析:(1)过点O 作AC 的垂线,交AC 于点D ,证明OD =OE ,根据“圆心到直线的距离等于该圆的半径,则这条直线与该圆相切”即可证明AC 是⊙O 的切线;(2)阴影部分面积等于△AEO 的面积-扇形OEF 的面积,要求扇形的面积必须求出圆心角∠EOA的度数,由点F 是AO 的中点可知AO =2OF =2OE ,由三角函数的知识可以得出∠EOA =60°; (3)作点E 关于OB 的对称点G ,当点F 、P 、G 共线时,PE +PF 才取最小值. 解答过程:(1)过点O 作AC 的垂线OD ,垂足为D∵AB =AC ,AO ⊥BC 于点O ∴OB =OC ,∠BAO =∠CAO ∵OE ⊥AB ,OD ⊥AC ∴OE =OD∵OE 为⊙O 的半径 ∴AC 是⊙O 的切线 (2)∵点F 是AO 的中点∴AO =2OF ∵OF =OE =3 ∴AO =6,在Rt △AOE 中,cos ∠AOE =3162OE OA ==∴∠AOE =60° ∴AE =OE ×tan ∠AOE =3×tan60°=∴阴影部分的面积=12×AE ×EO -2603360π⋅⋅=12×3×2603360π⋅⋅(3)BP . 26.(2018·扬州市,26,10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30 元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,如图所示.第25题答图FE(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大, 最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每 天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.(1)从图像中获取两点坐标,再运用待定系数法求一次函数的表达式;(2)先根据“销售利润=单件利润×销售量”这一关系式列出利润与销售单价的函数关系式,再根据条件“销售量不低于240件”可求出自变量x 的取值范围,最后运用二次函数的增减性求出最大利润;(3)根据纯利润不低于3600列出的是一个二次不等式,可以运用图像法求出自变量x 的取值范围. 解答过程:(1)设y =kx +b ,有图像可知x =40时,y =300;x =55时,y =150,即有方程组4030055150k b k b +=⎧⎨+=⎩,解得10700k b =-⎧⎨=⎩,∴y 与x 之间的函数关系式为y =-10x +700; (2)设每天获取的利润为w (元),则w =(x -30)y =2(30)(10700)10(50)4000x x x --+=--+ 由于每天漆器笔筒的销售量不低于240件,∴y =-10x +700≥240,解得x ≤46 ∵当x <50时,w 随x 的增大而增大∴当x =46时,w 有最大值,最大值=210(4650)4000-⨯-+=3840 即当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)由题意得210(50)4000x --+-150≥3600,解方程210(50)4000x --+-150=3600得:x 1=45,x 2=55∴不等式210(50)4000x --+-150≥3600的解集为45≤x ≤55 即该漆器笔筒销售单价x 的范围为45≤x ≤55.27.(2018·扬州市,27,12分) 问题呈现如图1,在边长为1的正方形网格中,连接格点D 、N 和E 、C ,DN 和EC 相交于点P ,求tan ∠CPN 的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN 不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M 、N ,可得MN ∥EC ,则∠DNM =∠CPN ,连接DM ,那么∠CPN 就变换到Rt △DMN 中. 问题解决(1)直接写出图1中tan ∠CPN 的值为 ;(2)如图2,在边长为1的正方形网格中,AN 与CM 相交于点P ,求cos ∠CPN 的值; 思维拓展(3)如图3,AB ⊥BC ,AB =4BC ,点M 在AB 上,且AM =BC ,延长CB 到N ,使BN =2BC ,连接AN 交CM 的延长线于点P ,用上述方法构造网格求∠CPN 的度数.思路分析:(1)由题意可知∠CPN =∠MND ,故tan ∠CPN =tan ∠MND =DMMN=2; (2)根据“方法归纳”,作AN 或MC 的平行线,通过等角转换,在一个直角三角形中求cos ∠CPN的值;(3)根据以上的解题经验,以BC 的长为1个单位长度,构造出一个网格图,作CM 或AN 的平行线,可求出∠CPN 的度数.解答过程:(1)2;(2)连接格点A 、B ,可得AB ∥MC ,连接BN ,∴∠CPN =∠BAN ,在Rt △ABN 中,AB =BN,ANcos ∠CPN =cos ∠BAN =ABAN=2;(3)设BC 的长为单位1,构造如图所示的网格图,连接格点AD ,可得AD ∥CM ,连接DN∴∠CPN =∠DAN在Rt △ADN 中,AD =DNAN=∴cos ∠CPN =cos ∠DAN =ADAN∴锐角∠DAN =∠CPN =45°.28.(2018·扬州市,28,12分)如图1,四边形OABC 是矩形,点A 的坐标为(3,0),点C 的坐标为(0, 6),点P 从点O 出发,沿OA 以每秒1个单位长度的速度向点A 出发,同时点Q 从点A 出发,沿AB 以每秒2个单位长度的速度向点B 运动,当点P 与点A 重合时运动停止.设运动时间为t 秒. (1)当t =2时,线段PQ 的中点坐标为 ; (2)当△CBQ 与△P AQ 相似时,求t 的值;(3)当t =1时,抛物线c bx x y ++=2经过P 、Q 两点,与y 轴交于点M ,抛物线的顶点为K ,如图2所示,问该抛物线上是否存在点D ,使∠MQD =12∠MKQ ,若存在,求出所有满足条件的D的坐标;若不存在,说明理由.BDAABN思路分析:(1)当t =2时,P 点坐标为(2,0),Q 点坐标为(3,4),易求出PQ 的中点坐标;(2)两三角形相似的对应边不确定,注意分类讨论,根据对应边成比例列出关于t 的方程求解; (3)由于△MQK 为等腰三角形,易求出12∠MKQ 的正切值,通过画草图可以知道满足条件的D 点有两个,构造直角三角形,运用等角的正切值相等列出方程,从而求出D 点坐标.解答过程:(1)(52,2);(2)根据题意得:AP =3-t ,AQ =2t ,BQ =6-2t ,BC =3,0<t <3,①若△CBQ ∽△P AQ ,则CB PA BQ AQ =,即33622tt t-=-,解得1t =2t 由于0<t <3,∴t②若△CBQ ∽△QAP ,则CB BQ QA AP =,即,解得;13t =,234t =,由于0<t <3,∴t =34 综上①、②,t或36223t t t -=-34; (3)存在D 点当t =1时,OP =1,AQ =2,∴P (1,0),Q (3,2),将P 、Q 两点坐标代入c bx x y ++=2,得方程组01293b c b c =++⎧⎨=++⎩,解得32b c =-⎧⎨=⎩,∴232y x x =-+∵当x =0时,y =2,223132()24y x x x =-+=--∴M 点的坐标为(0,2),顶点K 的坐标为(32,14-),E 点坐标为(32,2)∴MK =QK过K 作KE ⊥MQ ,垂足为E ,过D 作DH ⊥MQ ,垂足为H ,如图所示 ∵MK =QK∴∠QKE =12∠MKQ 在Rt △DQH 中,∠DQH =∠QKE =12∠MKQ ∴tan ∠DQH =tan ∠QKE 即DH EQQH EK=设点D 的坐标为(x ,232x x -+),则233222213324x x x-+-==-+①当D 在MQ 的上方时,2322233x x x -+-=-,解得13x =(舍),223x =-,当x =23-时,y =232x x -+=409 ∴点D 的坐标为(23-,409);②当D 在MQ 的下方时,22(32)233x x x --+=-,解得13x =(舍),223x =,当x =23时,y =232x x -+=49 ∴点D 的坐标为(23,49)综上①、②,该抛物线上存在点D ,使MK Q MQ D ∠=∠21,D 点的坐标为(23-,409)或(23,49).。

相关文档
最新文档