3.2.1几个常用函数导数(学、教案)

合集下载

高中数学 3.2.1几个常用函数的导数教案 新人教A版选修1-1

高中数学 3.2.1几个常用函数的导数教案 新人教A版选修1-1

甘肃省金昌市第一中学2014年高中数学 3.2.1几个常用函数的导数教案新人教A 版选修1-1教学重点和难点1.重点:推导几个常用函数的导数;2.难点:推导几个常用函数的导数。

教学方法: 自己动手用导数的定义求几个常用函数的导数,感知、理解、记忆。

教学过程:一、复习1、函数在一点处导数的定义;2、导数的几何意义;3、导函数的定义;4、求函数的导数的步骤。

二、新课推导下列函数的导数1、求()f x c =的导数。

解:()()0y f x x f x c c x x x∆+∆--===∆∆∆, '00()lim lim 00x x y f x x ∆→∆→∆===∆ 2、求()f x x =的导数。

解:()()1y f x x f x x x x x x x∆+∆-+∆-===∆∆∆, '00()lim lim 11x x y f x x ∆→∆→∆===∆。

'1y =表示函数y x =图象上每一点处的切线的斜率都为1.若y x =表示路程关于时间的函数,则'1y =可以解释为某物体做瞬时速度为1的匀速运动。

思考:(1).从求y x =,2y x =,3y x =,4y x =的导数如何来判断这几个函数递增的快慢?(2).函数(0)y kx k =≠增的快慢与什么有关?可以看出,当k>0时,导数越大,递增越快;当k<0时,导数越小,递减越快.3. 求函数2()y f x x ==的导数。

解: 22()()()2y f x x f x x x x x x x x x∆+∆-+∆-===+∆∆∆∆,''00()lim lim(2)2x x y y f x x x x x ∆→∆→∆===+∆=∆。

'2y x =表示函数2y x =图象上每点(x,y )处的切线的斜率为2x ,说明随着x 的变化,切线的斜率也在变化:(1) 当x<0时,随着 x 的增加,2y x =减少得越来越慢;(2)当x>0时,随着 x 的增加,2y x =增加得越来越快。

高中数学3.2.1几个常用函数的导数教案新人教A版选修1-1

高中数学3.2.1几个常用函数的导数教案新人教A版选修1-1

1 / 3甘肃省金昌市第一中学 2014 年高中数学几个常用函数的导数教课设计新人教 A 版选修 1-1教课要点和难点1.要点:推导几个常用函数的导数; 2.难点:推导几个常用函数的导数。

教课方法:自己着手用导数的定义求几个常用函 数的导数,感知、理解、记忆。

教课过程: 一、复习1、函数在一点处导数的 定义;2、导数的几何意义;3、导 函数的定义;4、求函数的导数的步骤。

二、新课推导以下函数的导数 1、求 f ( x)c 的导数。

解:yf (x x) f ( x)c c ,xxy x f ' (x)lim lim 0x 0 xx2、求 f (x)x 的导数。

解:y f ( x x) f ( x)x x x ,xx1xf ' (x)lim ylim 1 1 。

x 0 xxy ' 1 表示函数 yx 图象上每一点处的切线的斜率都为1.若 y x 表示行程对于时间的函数,则 y '1能够解说为某物体做刹时速度为1 的匀速运动。

思虑: (1). 从求 y x , y 2x , y 3x , y 4x 的导数怎样来判断这几个函数递加的快慢?(2).函数 ykx(k0) 增的快慢与什么相关?能够看出,当 k>0 时,导数越大,递加越快;当 k<0 时,导数越小,递减越快 .3. 求函数 yf (x) x 2 的导数。

解:y f (xx) f (x) ( xx)2 x 22xx ,xxx2 / 3y 'f ' ( x) lim y lim(2 xx) 2x 。

x 0 x x 0y ' 2x 表示函数 yx 2 图象上每点( x,y )处 的切线的斜率为2x ,说明跟着 x 的变化,切线的斜率也在变化:(1) 当 x< 0 时,跟着 x 的增添, y x 2 减少得愈来愈慢;( 2 )当 x>0 时,跟着 x 的增添, y x 2 增 加得愈来愈快。

几个常用函数的导数(教案)

几个常用函数的导数(教案)

几个常用函数的导数(教案)章节一:导数的基本概念教学目标:1. 理解导数的定义;2. 掌握导数的计算方法;3. 能够求解常见函数的导数。

教学内容:1. 导数的定义及几何意义;2. 导数的计算方法;3. 常见函数的导数。

教学步骤:1. 引入导数的定义,解释导数的几何意义;2. 引导学生通过极限的概念理解导数的计算方法;3. 举例讲解常见函数的导数;4. 练习求解常见函数的导数。

教学评估:1. 检查学生对导数定义的理解程度;2. 评估学生对导数计算方法的掌握情况;3. 检测学生求解常见函数导数的能力。

章节二:常数函数的导数教学目标:1. 掌握常数函数的导数;2. 能够求解常数函数的导数。

教学内容:1. 常数函数的导数定义;2. 常数函数导数的计算方法。

教学步骤:1. 引入常数函数的导数定义;2. 讲解常数函数导数的计算方法;3. 举例求解常数函数的导数;4. 练习求解常数函数的导数。

教学评估:1. 检查学生对常数函数导数定义的理解程度;2. 评估学生对常数函数导数计算方法的掌握情况;3. 检测学生求解常数函数导数的能力。

章节三:幂函数的导数教学目标:1. 掌握幂函数的导数;2. 能够求解幂函数的导数。

教学内容:1. 幂函数的导数定义;2. 幂函数导数的计算方法。

教学步骤:1. 引入幂函数的导数定义;2. 讲解幂函数导数的计算方法;3. 举例求解幂函数的导数;4. 练习求解幂函数的导数。

教学评估:1. 检查学生对幂函数导数定义的理解程度;2. 评估学生对幂函数导数计算方法的掌握情况;3. 检测学生求解幂函数导数的能力。

章节四:指数函数的导数教学目标:1. 掌握指数函数的导数;2. 能够求解指数函数的导数。

教学内容:1. 指数函数的导数定义;2. 指数函数导数的计算方法。

教学步骤:1. 引入指数函数的导数定义;2. 讲解指数函数导数的计算方法;3. 举例求解指数函数的导数;4. 练习求解指数函数的导数。

《3.2.1 几个幂函数的导数》教案

《3.2.1 几个幂函数的导数》教案

《3.2.1 几个幂函数的导数》教案一、教材分析1、教学内容本节课的教学内容主要是从科学研究和工程技术的需要出发,通过一系列具体事例说明函数导数计算的作用,多面引发学生对学习导数的计算方法和有关运算公式的兴趣。继而根据函数导数的定义推导出几个简单函数的导数。2、教材的地位和作用本节课是高中新课程湖南教育出版社《数学》选修1—1第三章第二节的第1个课时,在此之前学生已对求自由落体的瞬时速度、求作抛物线的切线的问题作了探索,学习了导数的概念和几何意义,掌握了导数的定义与求导的方法,能够运用导数的定义解决一些实际问题。通过这节课的学习学生将掌握几种常见幂函数的导数,为求导数打下坚实的基础。因此,我认为本节课有着承前启后的作用,也有着非常重要的实际意义。3、教学重点难点:本节教学重点是牢固、准确地记住几种常见幂函数的导数,为求导数打下坚实的基础。 本节教学难点是灵活动用公式求导。4、关于几个幂函数导数公式。(1)y=c(c 为常数)的导数。常数函数的导数为零的几何意义是曲线()f x c =(c 为常数)在任意点处的切线平行于x 轴。(2)y=x2的导数公式的推导。'2y x =表示函数2y x =图象上每点(x,y)处的切线的斜率为2x,说明随着x 的变化,切线的斜率也在变化:5、“曲线上点P 处的切线”与“过点P 的曲线的切线”的区别。在点P 处的切线,点P 必为切点;过点P 的切线,点P 未必为切点。二、学情分析(1)学生已学习了平均速度的求法。(2)学生已经知道了平均变化率,理解了平均变化率的几何意义就是过曲线上两点的割线的斜率。(3)学生掌握了导数的定义和导数的几何意义,会利用导数的定义求函数的导数。三、目标分析根据课程标准、教材内容、考虑到学生已有的知识结构和心理特征,我确定了如下的教学目标:知识与技能:了解函数导数运算的作用;理解并熟记课内推导出的几个幂函数导数公式并能运用公式求导。过程与方法:学习过程中逐步掌握的“由特殊到一般,再由一般到特殊”的研究数学的思想方法,通过学习,能够鉴赏公式所蕴涵的数学美。情感、态度与价值观:构建和谐平等的教学情境,尽可能让学生动脑、动手、动口,去发现、去猜想、去推导,激发不同层面学生的学习积极性。四、过程分析建构主义的数学教学观告诉我们:数学教学不仅是一种“授予——吸收”的过程,而是学生作为主体的主动建构过程,教师是学生学习活动的组织者、指导者、帮助者和促进者。为此,我设计了如下的教学环节:(一)创设情境,导入新课复习:1、导数的定义;2、用导数定义求导数有哪几个步;3、导数的几何意义为求运动物体的瞬时速度,要计算函数的导数;为了作出曲线在一点处的切线,要计算函数的导数;为了知道和评价事物变化的快慢和方向,要计算函数的导数。在科学研究和工程技术活动中,大量问题的解决离不开导数的计算。求函数的导数,和四则运算一样,如同家常便饭。函数的导数的计算是如此有用,如此重要。这一节我们就来学习导数的计算方法和有关的运算公式。*教学意图:复习旧知识,通过情景引发学生的学习动机,明确学习目标。(二)动手演算,发现规律推导下列函数的导数(1)()f x c =(2)()f x x =(3)2()f x x = (4)1()f x x =推导过程:(1)()f x c =解:()()0y f x x f x c c x x x∆+∆--===∆∆∆, '00()lim lim 00x x y f x x ∆→∆→∆===∆ (2)()f x x =解:()()1y f x x f x x x x x x x∆+∆-+∆-===∆∆∆, '00()lim lim11x x y f x x ∆→∆→∆===∆。 '1y =表示函数y x =图象上每一点处的切线的斜率都为1.若y x =表示路程关于时间的函数,则'1y =可以解释为某物体做瞬时速度为1的匀速运动。(3)2()f x x =解: 22()()()2y f x x f x x x x x x x x x∆+∆-+∆-===+∆∆∆∆, ''00()lim lim(2)2x x y y f x x x x x ∆→∆→∆===+∆=∆。 '2y x =表示函数2y x =图象上每点(x,y)处的切线的斜率为2x,说明随着x 的变化,切线的斜率也在变化: (4)1()f x x= 解: 211()()()1()y f x x f x x x x x x x x x x x x x x x x x-∆+∆--+∆+∆====-∆∆∆+∆∆+⋅∆, ''220011()lim lim()x x y y f x x x x x x∆→∆→∆===-=-∆+⋅∆ 思考:(1)如何求该曲线在点(1,1)处的切线方程?'(1)1k f ==-,所以其切线方程为2y x =-+。(2)改为点(3,3),结果如何?1、通过学生观察、分析、演算、发现、归纳等探究活动,突破第一个教学难点:用导数的定义推导幂函数的导数。2、让学生经历观察、分析、演算、归纳、发现规律的过程,掌握幂函数的导数。3、在这个过程中,体现了建构主义的数学学习观和教学观,即学生和教师是“数学学习的共同体”,教师是学生学习活动的组织者、指导者、帮助者和促进者,也体现了培养学生实践能力的课改主旋律和教师是教学中“平等中的首席”的新理念。(三)抽象概括,形成公式试猜想函数(),nf x x n Q =∈的导数,并证明。得出结论:(n x )=nxn-1(n ∈ Q)1、让学生体会到从特殊到一般的过程,感受到研究问题是为了获得更一般的形式化表示。2、通过问题的解决帮助学生理解导数的概念及其内涵,突出了重点,突破了难点。(四)学以致用,提高能力练习:写出下列几个幂函数的导数(1)y=x8 (2)y=x12 (3)y=x-5 (4)y=x1/3 (5)y=x4/3例1:质点运动方程是S=1/t5,求质点在t=2时的速度.例2 立方体的棱长x 变化时,求其体积关于x 的变化率是立方体表面积的多少倍? 1、例题分析:以上练习和例题是为了让学生熟悉幂函数导数公式,并能简单应用。2、例题的解析是培养训练学生运用知识解决问题的能力的过程,书写解题过程是对学生思路形成条理化、系统化的过程。(五)巩固新知,加深理解例3 求曲线y=x2在点(2,4)处的切线方程。变式:写出过点A(3,5)并且和曲线 y=x2相切的直线的方程。练习:求曲线y=x3在点p 的切线斜率为3,求点p 的坐标及切线方程。1、为了检验学生对幂函数导数公式及其内涵的理解,巩固所学知识。2、强调解答过程,练习的解答是培养训练学生运用知识解决问题的能力的过程,书写解题过程是对学生思路形成条理化、系统化的过程。(六)反思小结,深化认识1、如何利用导数的定义推导得幂函数的导数公式。2、研究问题的一般步骤3、记熟几个常用函数的导数结论,并能熟练使用;4.在今后的求导运算中,只要不明确要求用定义证明,上述几个结论直接使用。通过反思,深化知识理解,完善认知结构,领悟思想方法,也培养了学生的主体意识,锻炼了学生的语言表达、总结归纳(七)布置作业,P99 习题4 1,4补充:求曲线x3-y=0在点(2,8)处的切线方程根据因材施教,面向全体的原则,使每个层面的学生都能在原有的基础上有所进步,为后面探究导数运算做好铺垫。(八)板书设计标题:3.2.1几个幂函数的导数5个公式: 例题解析:推导过程例1例2例3整洁、有条理的板书可以让学生对自己所学的知识形成条理性,加深对知识的理解和掌握。五、教、学法分析1、教法分析数学教学不仅是关注结果,更应关注过程与方法,注重培养学生探究的数学品质。针对本节课的重点和难点,结合高二学生思维较活跃,有一定抽象思维能力特点,这节课我主要采用了直观演示、动手演算和引导发现相结合的体验教学法。在学生认知发展水平和已有知识经验的基础上,通过抽象概括,由特殊推广到一般,展现了一个完整的数学探究过程:提出问题、寻找想法、实施想法、发现规律、给出结论,加深了学生对本节课的理解和掌握。2、学法分析在教学过程中,这节课我通过学生观察、分析、演算、发现、归纳等探究活动,并通过学生动手、动眼、动口、动脑等活动,充分调动学生学习的积极性,积极参与了课堂,学会主动探究,发现问题、合作交流、归纳概括,并形成能力。六、评价分析课前设想:通过课件展示问题情景,层层深入,接着通过学生观察、分析、演算、发现、讨论、归纳等探究活动,再通过类比、迁移的方法,使学生掌握几个幂函数的导数的公式并能灵活运用公式解题。评价结果:学生在老师的启发引导下,主动参与探究活动,利用导数的定义推导出几个幂函数的导数的公式,体会数学思想,但学生在运用知识解决实际问题上有些困难,特别是把实际问题转化成数学问题的过程,和与导数的联系,这是我在教学过程中值得探究的问题。。

高中数学《几个常用函数的导数 基本初等函数的导数公式及导数的运算法则》导学案

高中数学《几个常用函数的导数  基本初等函数的导数公式及导数的运算法则》导学案

3.2.1几个常用函数的导数3.2.2基本初等函数的导数公式及导数的运算法则1.几个常见函数的导数原函数导函数f(x)=c f′(x)=□010f(x)=x f′(x)=□021f(x)=x2f′(x)=□032xf(x)=1xf′(x)=□04-1x2f(x)=x f′(x)=□0512x2.基本初等函数的导数公式原函数导函数f(x)=xα(α∈Q*)f′(x)=□06αxα-1f(x)=sin x f′(x)=□07cos xf(x)=cos x f′(x)=□08-sin xf(x)=a x f′(x)=□09a x ln_a(a>0)f(x)=e x f′(x)=□10e xf(x)=log a x f′(x)=□111x ln a(a>0且a≠1)f (x )=ln xf ′(x )=□121x3.导数的运算法则 设两个函数分别为f (x )和g (x )两个函数的 和的导数 [f (x )+g (x )]′=□13f ′(x )+g ′(x ) 两个函数的 差的导数 [f (x )-g (x )]′=□14f ′(x )-g ′(x ) 两个函数的 积的导数 [f (x )·g (x )]′=□15f ′(x )g (x )+f (x )g ′(x ) 两个函数的 商的导数 ⎣⎢⎡⎦⎥⎤f (x )g (x )′=□16f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0)4.导数的加法与减法法则(1)两个函数和(或差)的导数等于两个函数的导数的和(或差),可推广到多个函数的和(或差),即(f 1±f 2±…±f n )′=□17f 1′±f 2′±…±f n ′.(2)两个函数和(或差)的导数还可推广为[mf (x )±ng (x )]′=□18mf ′(x )±ng ′(x )(m ,n 为常数).基本初等函数的求导公式可分为四类(1)第一类为幂函数,y ′=(x α)′=α·x α-1(注意幂指数α可推广到全体实数).对于解析式为根式形式的函数,首先应把根式化为分数指数幂的形式,再求导数.(2)第二类为三角函数,可记为正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数.注意余弦函数的导数,不要漏掉前面的负号.(3)第三类为指数函数,y′=(a x)′=a x·ln a,当a=e时,e x的导数是(a x)′的一个特例.(4)第四类为对数函数,y′=(log a x)′=1x·ln a,也可记为(log a x)′=1x·log a e,当a=e时,ln x的导数也是(log a x)′的一个特例.1.判一判(正确的打“√”,错误的打“×”)(1)若y=2,则y′=12×2=1.()(2)若f′(x)=sin x,则f(x)=cos x.()(3)若f(x)=x32,则f′(x)=32x.()答案(1)×(2)×(3)√2.做一做(请把正确的答案写在横线上)(1)⎝⎛⎭⎪⎫1x3′=________.(2)(2x)′=________.(3)若f(x)=x3,g(x)=log3x则f′(x)-g′(x)=________.答案(1)-3x4(2)2x ln 2(3)3x2-1x ln 3探究1利用导数公式及运算法则求导例1求下列函数的导数.(1)y=5x3;(2)y=log5x;(3)f(x)=(x+1)2(x-1);(4)f(x)=2-2sin2x2;(5)f(x)=e x+1e x-1.[解](1)y′=(5x3)′=(x35)′=35x-25=355x2.(2)y ′=(log 5x )′=1x ln 5.(3)因为f (x )=(x +1)2(x -1)=(x 2+2x +1)(x -1)=x 3+x 2-x -1,所以f ′(x )=3x 2+2x -1.(4)因为f (x )=2-2sin 2x2=1+cos x ,所以f ′(x )=-sin x . (5)解法一:f ′(x )=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x-1)2=-2e x (e x-1)2.解法二:因为f (x )=e x +1e x -1=1+2e x -1,所以f ′(x )=2′(e x -1)-2(e x -1)′(e x -1)2=-2e x(e x -1)2.拓展提升(1)当函数解析式能化简时,要先化简再求导.(2)当函数解析式能变形时,可以先变形再求导,要注意,变形的目的是为了求导更简单,如果变形后求导并不简单,那就不要变形,直接求导.【跟踪训练1】 求下列函数的导数. (1)y =13x 2;(2)y =x 3·e x ;(3)y =cos xx .解 (1)y ′=⎝ ⎛⎭⎪⎪⎫13x 2′=(x -23 )′=-23·x -23 -1 =-23·x -53(2)y ′=(x 3·e x )′=(x 3)′·e x +x 3·(e x )′ =3x 2·e x +x 3·e x =x 2e x (3+x ).(3)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos xx 2.探究2 曲线切线方程的确定与应用例2 过原点作曲线y =e x 的切线,求切点的坐标及切线的斜率.[解]因为(e x)′=e x,设切点坐标为(x0,e x0),则过该切点的直线的斜率为e x0,所以所求切线方程为y-e x0=e x0(x-x0).因为切线过原点,所以-e x0=-x0·e x0,x0=1.所以切点为(1,e),斜率为e.[条件探究]已知点P是曲线y=e x上任意一点,求点P到直线y=x的最小距离.解根据题意设平行于直线y=x的直线与曲线y=e x相切于点P(x0,y0),该切点即为与y=x距离最近的点,如图.则在点(x0,y0)处的切线斜率为1,即y′|x=x=1.y′=(e x)′=e x,e x0=1,得x0=0,代入y=e x,y0=1,即P(0,1).利用点到直线的距离公式得距离为22.拓展提升利用基本初等函数的求导公式和导数的四则运算法则,结合导数的几何意义可以解决一些与距离、面积相关的几何的最值问题.解题的关键是正确确定所求切线的位置,进而求出切点坐标.【跟踪训练2】已知点P(-1,1),点Q(2,4)是曲线y=x2上的两点,求与直线PQ平行的曲线y=x2的切线方程.解因为y′=(x2)′=2x,设切点为M(x0,y0),则y′|x=x=2x0.又因为PQ 的斜率为k =4-12+1=1,而切线平行于PQ ,所以k =2x 0=1,即x 0=12, 所以切点为M ⎝ ⎛⎭⎪⎫12,14.所以所求的切线方程为y -14=x -12, 即4x -4y -1=0.探究3 导数计算的综合应用例3 设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求y =f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 围成的三角形面积为定值,并求此定值.[解] (1)方程7x -4y -12=0可化为y =74x -3. 当x =2时,y =12,即f (2)=12.由f ′(x )=a +bx 2,得⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.所以所求解析式为f (x )=x -3x .(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2,知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,即切线与直线x =0的交点为⎝ ⎛⎭⎪⎫0,-6x 0;令y =x ,得y =x =2x 0,即切线与直线y =x 的交点为(2x 0,2x 0).故点P (x 0,y 0)处的切线与直线x =0,y =x 围成的三角形的面积为12·⎪⎪⎪⎪⎪⎪-6x 0·|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 围成的三角形的面积为定值,此定值为6.拓展提升求曲线方程或切线方程时,应注意:(1)切点是曲线与切线的公共点,切点坐标既满足曲线方程也满足切线方程; (2)曲线在切点处的导数就是切线的斜率;(3)必须明确已知点是不是切点,如果不是,应先设出切点.【跟踪训练3】 已知f (x )=13x 3+bx 2+cx (b ,c ∈R ),f ′(1)=0,当x ∈[-1,3]时,曲线y =f (x )的切线斜率的最小值为-1,求b ,c 的值.解 f ′(x )=x 2+2bx +c =(x +b )2+c -b 2, 且f ′(1)=1+2b +c =0.① 若-b ≤-1,即b ≥1, 则f ′(x )在[-1,3]上是增函数, 所以f ′(x )min =f ′(-1)=-1, 即1-2b +c =-1,②由①②,解得b =14,不满足b ≥1,应舍去. 若-1<-b <3,即-3<b <1, 则f ′(x )min =f ′(-b )=-1, 即c -b 2=-1,③由①③,解得b =-2,c =3或b =0,c =-1. 若-b ≥3,即b ≤-3,f ′(x )在[-1,3]上是减函数, 所以f ′(x )min =f ′(3)=-1,即9+6b +c =-1,④由①④,解得b =-94,不满足b ≤-3,应舍去. 综上可知,b =-2,c =3或b =0,c =-1.1.利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式.解题时,要认真观察函数的结构特征,积极地进行联想化归.2.准确记忆导数的运算法则是进行导数运算的前提,但在解题过程中要注意如何使用运算法则可使运算较为简单.例如,求y =x ·x 的导数,若使用积的导数公式可以求出结果,但不如先化简为y =x ·x =x32 ,再求y ′=32x12简单.3.三次函数的导数为二次函数,当涉及与二次函数最值有关的问题时,常需要讨论,而讨论的立足点是二次函数的图象的对称轴与区间的位置关系.1.下列运算:①(sin x )′=-cos x ;②⎝ ⎛⎭⎪⎫1x ′=1x 2;③(log 3x )′=13ln x .其中正确的有( ) A .0个 B .1个 C .2个 D .3个 答案 A解析 ∵(sin x )′=cos x ,⎝ ⎛⎭⎪⎫1x ′=-1x 2,(log 3x )′=1x ln 3.∴所给三个都不正确.2.已知f (x )=x 3+3x +ln 3,则f ′(x )为( ) A .3x 2+3x B .3x 2+3x ·ln 3+13 C .3x 2+3x ·ln 3 D .x 3+3x ·ln 3答案 C解析 (ln 3)′=0,注意避免出现(ln 3)′=13的错误. 3.曲线y =cos x 在点A ⎝ ⎛⎭⎪⎫π6,32处的切线方程为________.答案 x +2y -3-π6=0解析 因为y ′=(cos x )′=-sin x ,所以k =-sin π6=-12,所以在点A 处的切线方程为y -32=-12⎝ ⎛⎭⎪⎫x -π6,即x +2y -3-π6=0. 4.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4的值为________.答案 1解析 ∵f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,∴f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x ,∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4sin π4+cos π4,即f ′⎝ ⎛⎭⎪⎫π4=2-1,从而有f ⎝ ⎛⎭⎪⎫π4=(2-1)cos π4+sin π4=1.5.已知直线y =kx 是函数y =ln x 的一条切线,试求k 的值. 解 设切点坐标为(x 0,y 0).∵y =ln x ,∴y ′=1x ,∴y ′|x =x 0=1x 0=k .∵点(x 0,y 0)既在直线y =kx 上,也在曲线y =ln x 上, ∴⎩⎪⎨⎪⎧y 0=kx 0,①y 0=ln x 0,②把k =1x 0代入①式得y 0=1,再把y 0=1代入②式求出x 0=e ,∴k =1x 0=1e .A 级:基础巩固练一、选择题1.已知函数f (x )=2x n -nx 2(n ≠0),且f ′(2)=0,则n 的值为( ) A .1 B .2 C .3 D .4 答案 B解析 由已知得f ′(x )=2nx n -1-2nx .因为f ′(2)=0,所以2n ·2n -1-2n ·2=0,即n ·2n -4n =0.当n =2时,2×22-4×2=0成立.故选B.2.已知f (x )=1x ,则f ⎣⎢⎡⎦⎥⎤f ′⎝ ⎛⎭⎪⎫15=( )A .-25B .-125 C.125 D .25答案 B解析 因为f (x )=1x ,所以f ′(x )=-1x 2.故f ′⎝ ⎛⎭⎪⎫15=-25,f ⎣⎢⎡⎦⎥⎤f ′⎝ ⎛⎭⎪⎫15=f (-25)=-125.3.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞) D .(-1,0) 答案 C解析 由题意知x >0,且f ′(x )=2x -2-4x ,即f ′(x )=2x 2-2x -4x >0,∴x2-x -2>0,解得x <-1或x >2.又∵x >0,∴x >2.4.若直线y =12x +b 与曲线y =-12x +ln x 相切,则实数b 的值为( ) A .-2 B .-1 C .-12 D .1 答案 B解析 设切点为(x 0,y 0),由y =-12x +ln x ,得y ′=-12+1x ,所以-12+1x 0=12,所以x 0=1,y 0=-12,代入直线方程得-12=12+b ,解得b =-1.故选B. 5.已知点P 在曲线y =x 3-x +23上移动,设动点P 处的切线的倾斜角为α,则α的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π2 B.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π C.⎣⎢⎡⎭⎪⎫3π4,π D.⎝ ⎛⎦⎥⎤π2,3π4 答案 B解析 设P (x 0,y 0),∵y ′=3x 2-1,∴动点P 处的切线的斜率k =3x 20-1≥-1,∴tan α≥-1.又α∈[0,π),∴0≤α<π2或3π4≤α<π.二、填空题6.若曲线y =x -12 在点(a ,a -12)处的切线与两坐标轴所围成的三角形的面积为18,则a =________.答案 64解析 ∵y ′=-12·x -32 ,∴y ′|x =a =-12·a -32 ,∴在点(a ,a -12 )处的切线方程为y -a -12 =-12·a -32 ·(x -a ).令x =0,得y=32a-12,令y =0,得x =3a ,由题意得a >0,∴12×3a ×32a -12=18,解得a =64.7.已知f (x )=ax 4+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x -2,则f (x )的解析式为________.答案 f (x )=52x 4-92x 2+1解析 f ′(x )=4ax 3+2bx ,由已知,得⎩⎪⎨⎪⎧f (0)=1,f ′(1)=1,f (1)=-1,所以⎩⎪⎨⎪⎧c =1,4a +2b =1,a +b +c =-1,解得⎩⎪⎨⎪⎧a =52,b =-92,c =1,所以f (x )的解析式为f (x )=52x 4-92x 2+1.8.已知f (x )=x -2x +lg 2,则f ′(x )=________.答案 12x -12-2x ln 2解析 因为f (x )=x12 -2x+lg 2,所以f ′(x )=12x -12 -2x ln 2.注意(lg 2)′=0,避免出现(lg 2)′=12ln 10的错误.三、解答题9.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =e xsin x .解 (1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos x x .(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x·(sin x )′sin 2x=e x ·sin x -e x ·cos x sin 2x =e x (sin x -cos x )sin 2x.10.已知函数f (x )=ax -6x 2+b 的图象在点M (-1,f (-1))处的切线的方程为x +2y+5=0,求函数的解析式.解 由条件知,-1+2f (-1)+5=0,f (-1)=-2,-a -61+b=-2,①又直线x +2y +5=0的斜率k =-12,f ′(-1)=-12,f ′(x )=-ax 2+12x +ab (x 2+b )2,f ′(-1)=-a -12+ab (1+b )2=-12,② 由①②解得,a =2,b =3(b +1≠0,b =-1舍去). 所求函数解析式为f (x )=2x -6x 2+3.B 级:能力提升练1.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2018(x )=________.答案 -sin x解析 f 0(x )=sin x ,f 1(x )=f 0′(x )=cos x ,f 2(x )=f 1′(x )=-sin x ,f 3(x )=f 2′(x )=-cos x ,f 4(x )=f 3′(x )=sin x ,….由此继续求导下去,发现四个一循环,从0到2018共2019个数,2019=4×504+3,所以f 2018(x )=f 2(x )=-sin x .2.已知函数f (x )=x 2a -1(a >0)的图象在x =1处的切线l ,求l 与两坐标轴围成的三角形面积的最小值.解 ∵f ′(x )=2x a ,∴f ′(1)=2a .又∵f (1)=1a -1, ∴切线l 的方程为y -1a +1=2a (x -1). 分别令x =0,y =0得y =-1a -1,x =a +12, ∴三角形的面积为S=12⎪⎪⎪⎪⎪⎪-1a-1·⎪⎪⎪⎪⎪⎪a+12=14⎝⎛⎭⎪⎫a+1a+2≥14×(2+2)=1.当且仅当a=1a,即a=1时,直线l与两坐标轴围成的三角形面积的最小值为1.。

3.2.1导数的计算-几种常见导数

3.2.1导数的计算-几种常见导数
3
5.若f(x)=x3,f′(x0)=3,则x0的值为 _________. 2 解:∵f′(x0)=3x0 =3, ∴x0=〒1.
作业
1、抄写一次基本初等函数的导数公式
2、求下列函数的导数:
(1) y x
5
(2) y 5
x
1 (2) y 5 x

2
(4) y e
5
3、求函数y cos x在x
3.2.1《导数的计算 -几种常见函数的导数》
一、复习 说明:上面的方法中把x换x0即为求函数在
点x0处的 导数 求函数的导数的方法是 :
(1)求函数的增量y f ( x x) f ( x);
y f ( x x) f ( x) ; x x
(2)求函数的增量与自变量的增量的比值 :
n 3.曲线y=x 在x=2处的导数为12,
则n=( ) ( A ) 1 ( B) 3 ( C ) 2 ( D) 4 n-1 【解析】选B.∵y′=nx , ∴n〓2n-1=12,可得n=3.所以选B.
4.给出下列结论: 3 1 3 ①若y= 3 ,则y′=- x 4 ;②y= x , x 1 1 则y′= x ;③y=log2x,则y′= ; x 3 ④y=cosx,则y′=sinx. 其中正确的个数是( A ) (A)1 (B)2 (C)3(D)4
1 (7)若f(x)=loga x,则f ′(x)= xlna (a>0且a≠1);
1 (8)若f(x)=lnx,则f ′(x)= x
.
例题 1 1.已知函数f(x)= x,则f′(-3)=( ) 1 1 1 ( A ) 4 ( B) ( C ) ( D ) 9
3.求下列函数的导数: 1 7 (1)y=x ;(2)y= x 2; log 1 x 3 (3)y= x ;(4)y= 2 .

几个常用函数的导数(教案)

几个常用函数的导数(教案)

几个常用函数的导数(教案)第一章:导数的基本概念1.1 引入导数的概念解释导数的定义强调导数表示函数在某点的瞬时变化率1.2 导数的几何意义图形演示导数表示切线的斜率解释导数与曲线的切线有关,导数为正表示曲线上升,导数为负表示曲线下降1.3 导数的计算法则介绍导数的四则运算法则强调复合函数的导数运算法则,如链式法则第二章:常数的导数2.1 常数的导数证明常数的导数为0强调常数的导数与函数的瞬时变化率无关2.2 常数倍函数的导数证明常数倍函数的导数为常数的倍数举例说明常数倍函数的导数性质第三章:幂函数的导数3.1 正整数幂函数的导数证明正整数幂函数的导数为幂函数的指数减1倍的函数举例说明正整数幂函数的导数性质3.2 负整数幂函数的导数证明负整数幂函数的导数为幂函数的指数加1倍的函数的倒数举例说明负整数幂函数的导数性质第四章:指数函数的导数4.1 指数函数的导数证明指数函数的导数为自身强调指数函数的导数与自变量无关4.2 对数函数的导数证明对数函数的导数为1除以自变量的对数强调对数函数的导数与自变量有关,随着自变量的增加而减少第五章:三角函数的导数5.1 正弦函数的导数证明正弦函数的导数为余弦函数强调正弦函数的导数周期性5.2 余弦函数的导数证明余弦函数的导数为负的正弦函数强调余弦函数的导数周期性5.3 正切函数的导数证明正切函数的导数为负的正弦函数除以余弦函数强调正切函数的导数周期性第六章:反三角函数的导数6.1 反正弦函数的导数证明反正弦函数的导数为1除以平方根下的1-x^2强调反正弦函数的导数定义域和值域6.2 反余弦函数的导数证明反余弦函数的导数为-1除以平方根下的1-x^2强调反余弦函数的导数定义域和值域第七章:双曲函数的导数7.1 双曲函数的导数证明双曲函数的导数为1除以自变量的双曲函数的平方强调双曲函数的导数与自变量有关,随着自变量的增加而减少7.2 双曲函数的导数的应用举例说明双曲函数的导数在几何和物理中的应用第八章:复合函数的导数8.1 复合函数的导数介绍复合函数的导数运算法则,如链式法则强调复合函数的导数计算的关键是找到内函数和外函数8.2 反函数的导数证明反函数的导数为原函数的导数的倒数强调反函数的导数与原函数的导数有关第九章:高阶导数9.1 一阶导数回顾一阶导数的定义和计算方法强调一阶导数的重要性9.2 二阶导数介绍二阶导数的定义和计算方法强调二阶导数在研究函数的增减性和极值中的作用第十章:导数的应用10.1 最大值和最小值问题介绍利用导数解决最大值和最小值问题的方法强调需要先求一阶导数和二阶导数10.2 曲线的切线和法线介绍利用导数求曲线的切线和法线的方法强调切线和法线的斜率与导数的关系10.3 曲线的曲率和凹凸性介绍利用导数研究曲线的曲率和凹凸性的方法强调曲率和凹凸性与导数的关系重点和难点解析重点一:导数的基本概念导数表示函数在某点的瞬时变化率,是微积分中的核心概念。

河北省高中数学第三章导数及其应用3.2.1几个常用函数的导数导学案新人教A版选修

河北省高中数学第三章导数及其应用3.2.1几个常用函数的导数导学案新人教A版选修
A. e2B.2e2C.e2D.
二、填空题
7.曲线y=xn在x=2处的导数为12,则n等于________.
8.质点沿直线运动的路程与时间的关系是s= ,则质点在t=32时的速度等于____________.
9.在曲线y= 上求一点P,使得曲线在该点处的切线的倾斜角为135°,则P点坐标为________.
3.已知直线y=kx是y=lnx的切线,则k的值为( )
A. B.- C. D.-
4.正弦曲线y=sinx上切线的斜率等于 的点为( )
A.( , )B.(- ,- )或( , )
C.(2kπ+ , )D.(2kπ+ , )或(2kπ- ,- )
二、填空题
5.(2015·陕西理)设曲线y=ex在点(0,1)处的切线与曲线y= (x>0)上点P处的切线垂直,则P的坐标为________.
基础题
cbbadd
7.3
8.
9.(2,1)
10设双曲线上任意一点P(x0,y0),
∵y′=- ,
∴点P处的切线方程y-y0=- (x-x0).
令x=0,得y=y0+ = ;
令y=0,得x=x0+x y0=2x0.
∴S△= |x|·|y|=2.
∴三角形面积为定值2.
提高题
Cdcd
5.(1,1)
6.4x-y-5=0
练习:曲线y=ex在点(0,1)处的切线斜率为()
A.1B.2C .eD.
例4若曲线y=x- 在点(a,a- )处的切线与两坐标轴围成的三角形的面积为18,求a的值.
练习:已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,求曲线y=f(x)在点(2,f(2))处的切线方程.
例5求函数y=2x在x=1处的切线方程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 2.1几个常用函数导数
课前预习学案
(预习教材P 88~ P 89,找出疑惑之处)
复习1:导数的几何意义是:曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 复习2:求函数)(x f y =的导数的一般方法:
(1)求函数的改变量y ∆=
(2)求平均变化率y x
∆=∆ (3)取极限,得导数/y =()f x '=x
y x ∆∆→∆0lim =
上课学案
学习目标1记住四个公式,会公式的证明过程;
2.学会利用公式,求一些函数的导数;
3.知道变化率的概念,解决一些物理上的简单问题.
学习重难点:会利用公式求函数导数,公式的证明过程
学习过程
合作探究
探究任务一:函数()y f x c ==的导数.
问题:如何求函数()y f x c ==的导数
新知:0y '=表示函数y c =图象上每一点处的切线斜率为 .
若y c =表示路程关于时间的函数,则y '= ,可以解释为 即一直处于静止状态.
试试: 求函数()y f x x ==的导数
反思:1y '=表示函数y x =图象上每一点处的切线斜率为 .
若y x =表示路程关于时间的函数,则y '= ,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数2,3,4y x y x y x ===的图象,并根据导数定义,求它们的导数.
(1)从图象上看,它们的导数分别表示什么?
(2)这三个函数中,哪一个增加得最快?哪一个增加得最慢?
(3)函数(0)y kx k =≠增(减)的快慢与什么有关?
典型例题
例1 求函数1()y f x x
==的导数 解析:因为11()()y f x x f x x x x x x x
-∆+∆-+∆==∆∆∆
2()1()x x x x x x x x x x
-+∆==-+∆∆+⋅∆ 所以220011lim lim ()x x y y x x x x x
∆→∆→∆'==-=-∆+⋅∆ 函数 导数
1y x = 21y x
'=- 例2 求函数2()y f x x ==的导数
解析:因为22
()()()y f x x f x x x x x x x
∆+∆-+∆-==∆∆∆ 222
2()2x x x x x x x x +∆+∆-==+∆∆
所以00
lim lim (2)2x x y y x x x x ∆→∆→∆'==+∆=∆ 函数 导数
2y x = 2y x '=
2y x '=表示函数2y x =图像(图3.2-3)上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2y x =减少得越来越慢;当0x >时,随着x 的增加,函数2y x =增加得越来越快.若2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .
有效训练
练1. 求曲线221y x =-的斜率等于4的切线方程.
练2. 求函数()y f x x ==的导数
反思总结 1. 利用定义求导法是最基本的方法,必须熟记求导的三个步骤: , , .
2. 利用导数求切线方程时,一定要判断所给点是否为切点,一定要记住它们的求法是不同的.
当堂检测
1.()0f x =的导数是( )
A .0
B .1
C .不存在
D .不确定
2.已知2()f x x =,则(3)f '=( )
A .0
B .2x
C .6
D .9
3. 在曲线2y x =上的切线的倾斜角为
4
π的点为( ) A .(0,0) B .(2,4) C .11(,)416 D .11(,)24
4. 过曲线1y x
=上点(1,1)且与过这点的切线平行的直线方程是 5. 物体的运动方程为3s t =,则物体在1t =时的速度为 ,在4t =时的速度为 . 课后练习学案
1. 已知圆面积2S r π=,根据导数定义求()S r '.
2. 氡气是一种由地表自然散发的无味的放射性气体.如果最初有500克氡气,那么t 天后,氡气的剩余量为()5000.834t A t =⨯,问氡气的散发速度是多少?
3.2.1几个常用函数导数(教案)
教学目标:1、能根据导数的定义推导部分基本初等函数的导数公式;
2、能利用导数公式求简单函数的导数。

教学重难点: 能利用导数公式求简单函数的导数,基本初等函数的导数公式的应用 教学过程:
检查预习情况:见学案
目标展示: 见学案
合作探究:
探究任务一:函数()y f x c ==的导数.
问题:如何求函数()y f x c ==的导数
新知:0y '=表示函数y c =图象上每一点处的切线斜率为 .
若y c =表示路程关于时间的函数,则y '= ,可以解释为 即一直处于静止状态.
试试: 求函数()y f x x ==的导数
反思:1y '=表示函数y x =图象上每一点处的切线斜率为 .
若y x =表示路程关于时间的函数,则y '= ,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数2,3,4y x y x y x ===的图象,并根据导数
定义,求它们的导数.
(1)从图象上看,它们的导数分别表示什么?
(2)这三个函数中,哪一个增加得最快?哪一个增加得最慢?
(3)函数(0)y kx k =≠增(减)的快慢与什么有关?
典型例题
1.函数()y f x c ==的导数
根据导数定义,因为()()0y f x x f x c c x x x
∆+∆--===∆∆∆ 所以00
lim lim 00x x y y x ∆→∆→∆'===∆ 函数 导数 y c = 0y '=
0y '=表示函数y c =图像上每一点处的切线的斜率都为0.若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.
2.函数()y f x x ==的导数
因为()()1y f x x f x x x x x x x
∆+∆-+∆-===∆∆∆ 所以00
lim lim 11x x y y x ∆→∆→∆'===∆ 函数 导数
y x = 1y '=
1y '=表示函数y x =图像上每一点处的切线的斜率都为1.若y x =表示路程关于时间的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动.
3.函数2()y f x x ==的导数
因为22
()()()y f x x f x x x x x x x
∆+∆-+∆-==∆∆∆ 222
2()2x x x x x x x x
+∆+∆-==+∆∆ 所以00
lim lim (2)2x x y y x x x x ∆→∆→∆'==+∆=∆ 函数 导数
2y x = 2y x '=
2y x '=表示函数2y x =图像上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2y x =减少得越来越慢;当0x >时,随着x 的增加,函数2y x =增加得越来越快.若2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .
4.函数1()y f x x
==的导数 因为11()()y f x x f x x x x x x x
-∆+∆-+∆==∆∆∆ 2()1()x x x x x x x x x x
-+∆==-+∆∆+⋅∆ 所以220011lim lim ()x x y y x x x x x
∆→∆→∆'==-=-∆+⋅∆ 函数 导数
1y x =
21y x '=- 5.函数y x =的导数
6推广:若*()()n y f x x n Q ==∈,则1()n f x nx -'= 反思总结
1. 利用定义求导法是最基本的方法,必须熟记求导的三个步骤: , , .
2. 利用导数求切线方程时,一定要判断所给点是否为切点,一定要记住它们的求法是不同的.
当堂检测
1.()0f x =的导数是( )
A .0
B .1
C .不存在
D .不确定
2.已知2()f x x =,则(3)f '=( )
A .0
B .2x
C .6
D .9
3. 在曲线2y x =上的切线的倾斜角为4
π的点为( ) A .(0,0) B .(2,4) C .11(,)416 D .11(,)24
4. 过曲线1y x
=上点(1,1)且与过这点的切线平行的直线方程是 5. 物体的运动方程为3s t =,则物体在1t =时的速度为 ,在4t =时的速度为 .
板书设计 略
作业 略。

相关文档
最新文档